
Preface

Optimal control of partial differential equations (PDEs) is by now, after more
than 50 years of ever-increasing scientific interest, a well-established discipline
in mathematics with many interfaces to science and engineering. During its
development, the complexity of the systems to be controlled has also increased
significantly, so that today, for example, fluid-structure interactions, magneto-
hydromechanical, and electromagnetical as well as chemical and civil engineer-
ing problems can be dealt with. However, the numerical realization of optimal
controls based on, say, optimality conditions together with the simulation of
states has also become an issue in scientific computing, as the number of vari-
ables involved may easily exceed a couple of millions and, hence, structure-
exploiting discretization and corresponding adaptive algorithms have to be
developed.

There are several trends to be observed in this discipline. One is to in-
crease the complexity of the system description in terms of genuinely non-
linear partial differential equations and hybrid couplings to ordinary or even
event-driven dynamics together with constraints not only on the controls but
also on the states. This kind of investigation typically focuses on a more accu-
rate modeling with respect to the physical description and typically subsumes
simple domains for the components. On the other hand, we observe a devel-
opment, in particular in multiscale modeling, where even classical equations
are considered on very complicated domains such that the focus is on the
increasing complexity of the geometry of the underlying domain. It obviously
is desirable, but also mostly prohibitive, to ask for everything: a very de-
tailed modeling of the process, the handling of very complex geometries, and
a timely or even real-time capable numerical realization. However, in the con-
text of modern industrial or science applications, this often turns out to be
impossible if one insists on very high accuracy.

Model reduction or effective modeling for optimal control problems involv-
ing systems of PDEs on complicated domains, therefore, has been the focus of
many research initiatives in the last decade. The dynamical system describing
the behavior of states may be replaced by a low-dimensional one using, for in-
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stance, a technique that has come to be known as the reduced basis approach
or, possibly greedy, proper orthogonal decomposition. Here, the geometry is
built into the simulation tools that provide the empirical bases using “snap-
shots” which, in turn, makes this approach difficult for hierarchically ordered
domains. On the other hand, one may use “surrogate models” on simple do-
mains, models that are simplifying approximations of both the state equation
and the domain.

A third avenue, the one along which we will proceed in this monograph,
is based on asymptotic analysis. The method we describe and further develop
aims at combining techniques of homogenization and approximation in order
to cover optimal control problems defined on reticulated domains, such as
lattice structures, honeycomb structures, hierarchical structures, or networked
domains in general. Here, error estimates are introduced in order to control
the quality of the controls obtained on the approximation level.

Our interest is mainly in problems where the control is exerted at, for ex-
ample, highly oscillating boundaries or interfaces associated with such struc-
tures, but we also ask for “controls in the coefficients”, that is, for controlling
material parameters on the microscopic ε-level. Our research is strongly mo-
tivated by recent developments in multiscale modeling and simulation in a
variety of applications. However, from a mathematical point of view, only the
aspect ratio – that is, the relation of, say, thickness versus length – is relevant
(as long as one does not enter molecular dynamics). In that respect, we can
also relate our research to networked structure mechanics in civil engineer-
ing, such as flexible structures, masts of all kinds, and gas, water, and traffic
networks.

As for material sciences, metallic, ceramic, or polymeric foams are par-
ticularly interesting because of their mechanical properties, such as being ex-
tremely lightweight and at the same time adequately stiff. Similarly, complex
conductors on the micro-level exhibit graphlike structures, and carbon nan-
otubes are used in many applications. They themselves serve as gridlike do-
mains supporting processes like electromagnetic wave propagation. However,
properly assembled in thousands or millions on a waferlike substrate, they can
be used as reactors for catalytic processes.

Mathematically speaking, elliptic, parabolic, and hyperbolic systems on
reticulated domains are used to model these applications which, in turn, ex-
hibit a genuine multiscale character. Engineers define cost or merit functions
that are to be optimized with respect to various control actions along the
boundary of the structure and, even more challenging, with respect to ma-
terial properties. Certainly, both states and controls have to be taken into
account as being constrained.

In particular, state constraints genuinely give rise to Lagrange-multipliers
that are measures. As a result, in a general setting, such PDEs on reticu-
lated domains should be dealt with in the context of descriptions allowing
for measures on the “right-hand side” as well as in the system equations and
the geometries. This means that providing an abstract approach to optimal
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control problems for PDEs in such domains is not the result of an intrinsically
motivated mathematical desire to achieve the highest degree of generality—it
follows the needs dictated by the applications!

Moreover, the type of reticulated structures to be considered varies drasti-
cally with the application context or with the degree of approximation needed
in a given context. Namely, in a gas network or a sewer system, civil engi-
neers trust in one-dimensional models for the gas-flow, and consequently in
network-flow problems on graphs. In a river system a fully three-dimensional
treatment may be necessary, but, still, the problem would be one on a net-
worked domain—a “fat graph”. The same rationale applies to elastic multi-
structures, foams, and all the way down the scales to nanotubes. Percolation
networks carrying microflows can be modeled as perforated domains, but, in
a further approximation, also as fat graphs.

Obviously, the aspect ratio and the cell size for the periodic structure serve
as scaling parameters. An optimal control problem defined on such structures,
therefore, genuinely inherits a number of scales that may be separated or even
not separable at all. The fundamental problem now is: How do such optimal
control problems “behave” upon changing these parameters? More precisely,
what happens if we go up the scales to a “continuum” description? However,
why should we do that to begin with? This question brings us back to the
question of model reduction and its interplay with approximation properties.
For a small scale, for example, a fine gridstructure, the numerical effort related
to a discretization in order to reveal a resolution according to the scale is
typically prohibitive. On the other hand, a coarse graining may miss the effects
looked for. Asymptotic analysis resolves this antagonism elegantly, in that
the limiting problem and approximations thereof can be taken as a surrogate
optimal control problem on a simple domain such that error estimates show
how far the true fine-scale solution is away from the “homogenized” solution
which, in turn, can be termed suboptimal.

In order for all of this to become a mathematically sound theory, it is
not sufficient to apply asymptotic expansions to all components of such an
optimal control problem—namely the cost function, the state equation, the
domains, and the control and observation instruments individually—and re-
place it by its low-order parts. An asymptotic analysis of optimal control
problems as such is in order. Meanwhile, an ill-posed PDE problem—in the
sense of Hadamard—due to the freedom of choosing proper control inputs
may turn out to be well-posed as an optimization problem, while a well-posed
PDE problem easily can exhibit ill-posedness, once integrated into an optimal
control problem. Hence, well-posedness of optimal control problems is a new
and interesting issue.

The book focuses on all of these aspects from two perspectives. First, a
rigorous and mostly self-contained mathematical theory of PDEs on reticu-
lated domains together with well-posedness for the governing optimal control
problems is described. The concept of optimal control problems for PDEs in
varying such domains, and hence in varying Banach spaces, is developed, fol-
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lowed by appropriate concepts for convergence of optimal control problems
in variable spaces. This comprises Part I of the book. Even though there are
by now a number of textbooks for PDE-constrained optimal control available,
this monograph contains a unique collection of results that are necessary to
treat the optimal control problem on varying structures which are not avail-
able in a textbook otherwise. In Part II, particular examples and applications
are investigated with the tools established in Part I of the book. These exam-
ples are strongly motivated by applications in mechanics and material sciences
as explained above, but they can be understood without any knowledge from
those fields. In order to accomplish this, the models are somewhat simplified
such that, for example, only quasi-static flow in cylindrically perforated do-
mains is considered instead of the fully time-dependent Navier–Stokes flow.
Additionally, the elliptic second order problems on thin or fat graphs are scalar
instead of being vectorial, which would be necessary in order to be directly
applicable to problems of elasticity.

Overall, the book’s first part can be seen as an advanced textbook for ab-
stract optimal control problems, in particular on reticulated domains, which
can be used in graduate courses, while its second part serves as a research
monograph, using somewhat stratified applications in an exemplary manner.
Part II can be of use also in seminars, building on the knowledge from a grad-
uate course taught from Part I. For the reader’s convenience, in Part II, we
sometimes reintroduce the basic concepts that are dealt with in Part I on an
abstract level; however, they are explicitly geared towards the particular ap-
plication. Admitting some potential redundancy, we thereby keep the chapters
in the second part of the book self-contained for researchers in the field.
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