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Background Material on Asymptotic Analysis
of Extremal Problems

This chapter is intended to provide various facts, notions, and concepts which
play a fundamental role in modern asymptotic analysis of optimization prob-
lems. We recall some main concepts and basic results of measure theory,
Sobolev spaces, and boundary value problems which are used later. We include
proofs only if the line of arguments is of importance for the understanding of
subsequent remarks. For a deeper insight in the subject, we refer to the books
of Adams [2], Bucur and Buttazzo [38], Evans and Gariepy [106], Kantorovich
and Akilov [128], Lions and Magenes [173], Maz’ya [185], Yosida [251], Ziemer
[267], and so on.

2.1 Measure theory and basic notation

Let Ω ⊂ R
n be a nonempty set. We say that a collection E of subsets of Ω is

a σ-algebra on Ω if

∅ ∈ E , Ω \A ∈ E whenever A ∈ E ,
⋃

k∈N

Ak ∈ E whenever Ak ∈ E for every k ∈ N.

Given a σ-algebra on Ω, we say that the pair (Ω, E) is a measure space.
We denote by B(Ω) the intersection of all σ-algebras on Ω containing the

open subsets of Ω. It turns out that B(Ω) is actually the smallest σ-algebra
on Ω containing the open subsets of Ω, and it is called the σ-algebra of Borel
subsets of Ω and its elements are called Borel sets.

Let (Ω,B(Ω)) be a Borel measure space. We define measures as set func-
tions.

Definition 2.1. A function μ : B(Ω) → R is a Borel measure on Ω (or simply
a measure) if μ(∅) = 0 and μ is countably additive in the sense that

A =
⋃

k∈N

Ak, Ak ∩Aj = ∅ if k �= j ⇒ μ(A) =
∑

k∈N

μ(Ak). (2.1)
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16 2 Background Material on Extremal Problems

The set of such measures will be denoted by M(Ω). We also say that a Borel
measure is positive if it takes its values in [0,∞). The set of positive Borel
measures will be denoted by M+(Ω).

We observe that, in the case of measures, the series in (2.1) must necessary
converge absolutely, since the union on the left-hand side of (2.1) does not
depend on the order in which the sets A1, A2, . . . are listed.

Let μ : 2Ω → R be a set function. We define the restriction μLA of μ to
A ⊂ Ω by μLA(B) = μ(A ∩B) for all B ∈ 2Ω .

Definition 2.2. A positive Borel measure on Ω that is finite on each compact
subset of Ω is said to be a Radon measure on Ω.

The restriction of the Lebesgue measure to B(Rn) is a classical example
of a Radon measure on R

n. Note also that the Lebesgue measure on R
n can

be defined as the unique positive Radon measure Ln on R
n satisfying

Ln([0, 1]n) = 1 and Ln(a + tA) = tnLn(A) ∀ a ∈ R
n, A ∈ B(Rn), t > 0.

(2.2)
We denote |A| = Ln(A).

Definition 2.3. For μ ∈ M(Ω) and A ∈ B(Ω), we define the total variation
of μ on A by

|μ|(A) = sup

{
∑

k∈N

|μ(Ak)| : A =
⋃

k∈N

Ak, Ak ∩Aj = ∅ if k �= j

}
.

It is well known that the total variation of a measure is a positive measure
taking only finite values |μ(A)| ≤ |μ|(A) for all A ∈ B(Ω), and the total
variation can be viewed as a norm on the set of measures on Ω.

We will indicate by Mb(Ω) the space of Radon measures on Ω with finite
total variation. Note that Mb(Ω) is a Banach space (i.e., a complete linear
normed space) when equipped with the norm ‖μ‖Mb(Ω) := |μ|(Ω).

Definition 2.4. The support of μ ∈M(Ω) is defined as

spt μ = {x ∈ Ω : |μ|(Br(x)) > 0 for all open balls Br(x) ⊂ Ω} .

Theorem 2.5. Every measure μ ∈M+(Ω) is regular in the following sense:

μ(A) = inf {μ(B) : A ⊂ B, B open} , (2.3)
μ(A) = sup {μ(C) : C ⊂ A, C closed} (2.4)

for all A ∈ B(Ω).

Note that approximating closed sets with compact sets, we also have

μ(A) = sup {μ(C) : K ⊂ A, K compact} .
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Definition 2.6. Let μ ∈M+(Ω) and λ ∈M(Ω). We say that λ is absolutely
continuous with respect to μ (and we write λ 
 μ) if λ(A) = 0 for every
A ∈ B(Ω) with μ(A) = 0.

We say that λ is singular with respect to μ, if there exists a set E ∈ B(Ω)
such that μ(E) = 0 and λ(A) = 0 for all A ∈ B(Ω) with A ∩ E = ∅ (in this
case, we say that λ is concentrated on E).

For μ ∈ M(Ω) we adopt the usual notation Lp(Ω, dμ) to indicate the
space of p-summable functions with respect to μ on Ω. We omit μ if it is the
Lebesgue measure. Let us observe that if f ∈ L1(Ω, dμ) and μ ∈ M(Ω) then
we can define the measure fμ ∈M(Ω) by

fμ(A) =
∫

A

f dμ.

Hence, fμ 
 |μ| and |fμ| = |f ||μ|. In particular, if λ 
 μ, then λ = fμ for
some f ∈ L1(Ω, dμ).

Theorem 2.7. (Radon–Nikodym) For λ ∈ M(Ω) and μ ∈ M+(Ω) there
exists a function f ∈ L1(Ω, dμ) and a measure λs, singular with respect to λ,
such that

λ = fμ + λs.

This relation is called the Radon–Nikodym decomposition of λ with respect
to μ.

Definition 2.8. Let μ = Ln and let f ∈ L1(Ω). Then each point x ∈ Ω with

lim
r→0+

1
μ(Br(x))

∫

Br(x)

|f(x)− f(y)| dμ(y) = 0

is called a Lebesgue point for f . Note that the set of Lebesgue points of f
depends on the particular choice of the representative in the equivalence class
of L1(Ω). Hence, we will always take a particular choice of the representative
of f whenever we consider Lebesgue points.

The expression “μ a.e.” means “almost everywhere with respect to the mea-
sure μ” – that is, except possibly on a set A with μ(A) = 0.

2.1.1 Hausdorff measures

We next introduce certain “lower-dimensional” measures on R
n, which allow

one to measure certain “very small” subsets of R
n. The idea is that A is an

“s-dimensional subset” of R
n if there is a so-called Hausdorff measure Hs such

that 0 < Hs(A) < +∞ even if A is very complicated geometrically. To do so,
we will construct a positive measure Hs on R

n from set functions, following
a procedure due to Carathéodory, which we briefly recall.
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Definition 2.9. A set function λ : 2Ω → [0, +∞] is an outer measure if
λ(∅) = 0 and λ is countably subadditive, that is,

λ(B) =
∑

k∈N

λ(Bk) for B ⊆
⋃

k∈N

Bk.

We say that a set M is measurable for λ if

λ(B) = λ(B ∩M) + λ(B \M) ∀B ⊆ Ω.

Let Mλ be a family of all measurable sets for λ. If λ is an outer measure,
then Mλ is a σ-algebra and λ|Mλ

is countably additive (see Evans [106]).
So, if B(Ω) ⊆ Mλ and λ(Ω) < +∞, then μ = λ|Mλ

∈ M+(Ω). In order
to see that an outer measure generates a measure by the above construction,
we have to prove that Borel sets are measurable. The following proposition
provides a simple criterion for measurability.

Proposition 2.10. Let λ be an outer measure. Then Borel sets are measur-
able for λ if and only if

dist (A, B) > 0 ⇒ λ(A) + λ(B) = λ(A ∪B) (2.5)

for all A, B ⊆ Ω, where dist (A, B) = inf {|x− y| : x ∈ A, y ∈ B}.

We now apply Carathéodory’s construction to define the measure which
will be of use in the sequel.

Definition 2.11. Let α ≥ 0 and δ > 0. For all E ⊂ R
n we define the pre-

Hausdorff measure Hα
δ of E as

Hα
δ (E) =

ωα

2α
inf

{
∑

k∈N

(diam Ek)α : diam Ek < δ, E ⊆
⋃

k∈N

Ek

}
,

where ωα = πα/2/Γ (α/2 + 1) and Γ (α) =
∫ +∞
0

sα−1 exp(−s) ds is the Euler
function, which coincides with the Lebesgue measure of the unit ball in R

n if
α is integer.

Note that Hα
δ (E) is decreasing in δ. Consequently, the limit

Hα(E) = lim
δ→0+

Hα
δ (E) = sup

δ>0
Hα

δ (E)

exists and is in [0,+∞]. The value Hα(E) is called the α-dimensional Haus-
dorff measure of E.

Remark 2.12. Let us note the following:

(a) Hα is a regular Borel measure (0 ≤ α < +∞).
(b) Hα is the null measure if α > n.
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(c) Hα(λA) = λαHα(A) for all λ > 0, A ⊂ R
n.

(d) If Hα(A) < ∞, then Hβ(A) = 0 for all 0 ≤ α < β < ∞.
(e) If Hβ(A) > 0, then Hα(A) = +∞ for all 0 ≤ α < β < ∞.

Thus, if α < n, then Hα(A) = +∞ for all nonempty open sets A ⊂ R
n,

and Hα(A) agrees with the ordinary “k-dimensional surface area” on nice sets
A ∈ B(Rn). Thus, Hα is not a positive Radon measure on R

n if α < n, since
R

n is not σ-finite with respect to Hα. However, if Hα(B) < +∞ for some
B ∈ B(Ω), then HαLB ∈ M+(Ω). Moreover, it can be proved that Hn = Ln

in R
n.

2.2 Sobolev spaces and boundary value problems

Here, we briefly outline some basic facts from the theory of Sobolev spaces
and the theory of boundary value problems, which are widely used throughout
the book. Most of these result are well known; therefore, we just formulate
them without proof. For details and complete proofs, the reader may turn to
the numerous textbooks on the subject – e.g., Adams [2], Kantorovich and
Akilov [128], Lions and Magenes [173], Maz’ya [185], Sobolev [232], Smirnov
[231], and so forth.

2.2.1 Weak derivatives

Let Ω be a bounded open subset of R
n, k ∈ N, let Ck(Ω) be the space of

k-times continuously differentiable functions u : Ω → R, and let Ck
0 (Ω) be

the functions in Ck(Ω) with compact support in Ω. Hence, C∞
0 (Ω) is the set

of all real-valued infinitely differentiable functions with compact support in
Ω. In this case, for any x0 ∈ Ω and ε > 0 small enough, the function

�ε(x) = �

(
x− x0

ε

)
, where �(x) =

⎧
⎨

⎩
exp

{
− 1

1− ‖x‖2
Rn

}
if ‖x‖Rn < 1,

0, otherwise,

is in C∞
0 (Ω). The support of �ε is the ball with center x0 and radius ε.

We define the set C0(Ω) as the closure of C∞
0 (Ω) in the uniform topology.

It is a separable Banach space if equipped with the ‖ · ‖∞-norm.
Denote by Lp(Ω), 1 ≤ p < +∞, the space of functions defined on Ω and

pth-power summable in the sense of Lebesgue. An element of Lp(Ω) is an
equivalence class of functions different only on a set of zero Ln-measure. The
space Lp(Ω) equipped with norm

‖u‖Lp(Ω) =
(∫

Ω

|u|p dx

)1/p

is a Banach space.
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Introduce the space L∞(Ω) of essentially bounded (i.e., bounded by a
constant almost everywhere) real-valued functions in Ω that are Lebesgue
measurable. The space L∞(Ω) is equipped with the norm

‖u‖L∞(Ω) = esssup
x∈Ω

|u(x)| = inf
A⊂Ω, |A|=0

sup
x∈Ω\A

|u(x)|;

that is, “ess sup” means the supremum up to a set of zero measure. In the
case of a bounded domain Ω, we have

‖u‖L∞(Ω) = lim
p→∞

‖u‖Lp(Ω),

which justifies the notation L∞(Ω).
Suppose α = (α1, . . . , αn) is a multi-index of order |α| = α1 + · · ·+αn = k.

We call a function ϕ belonging to C∞
0 (Ω) a test function. We say that v ∈

L1(Ω) is the αth-weak partial derivative of u ∈ L1(Ω), denoted Dαu = v,
provided ∫

Ω

uDαϕ dx = (−1)|α|
∫

Ω

vϕdx (2.6)

for all test functions ϕ ∈ C∞
0 (Ω). If a vector v = {v1, . . . , vn}, vi ∈ L1(Ω),

is the gradient of a function u ∈ L1(Ω) in the weak sense, then we denote it
either by ∇u or by ∂u/∂x.

2.2.2 Sobolev spaces

Having fixed 1 ≤ p < +∞ and k, we denote by W k,p(Ω) the Sobolev space
formed by all functions u ∈ Lp(Ω) such that for each multi-index α with
|α| ≤ k, Dαu exists in the weak sense and the norm

‖u‖W k,p(Ω) =

⎛

⎝
∫

Ω

∑

|α|≤k

|Dαu(x)|p dx

⎞

⎠
1/p

(2.7)

is finite. If p = 2, we usually write Hk(Ω) = W k,2(Ω) (k = 0, 1, . . . ). By
convention we set H0(Ω) = L2(Ω) and D0v = v. The letter H is used, since
Hk(Ω) is a Hilbert space equipped with the scalar product

(u1, u2)Hk(Ω) =
∑

|α|≤k

∫

Ω

Dαu1(x)Dαu2(x) dx.

The space W k,p
0 (Ω) is the closure of the set C∞

0 (Ω) in W k,p(Ω). The space
H1

0 (Ω) = W 1,2
0 (Ω) is naturally associated with the Dirichlet problem, since

the inclusion u ∈ H1
0 (Ω) represents an equivalent formulation of the boundary

condition u|∂Ω = 0. To clarify the presentation further, we will consider only
the Sobolev space W 1,p(Ω), which is a separable Banach space for the norm
(2.7) and reflexive if 1 < p < +∞.
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We recall that a Banach space X is said to be compactly embedded in
a Banach space Y provided (i) ‖x‖Y ≤ C‖x‖X (x ∈ X) for some constant
C and (ii) each bounded sequence in X is precompact in Y . The following
definition expresses in precise terms the intuitive notion of a regular boundary
(C∞, Ck, or Lipschitz).

Definition 2.13. (i) Let Ω ⊂ R
n be open and bounded. We say that Ω is

a bounded open set with Ck, k ≥ 1, boundary, if for every x ∈ ∂Ω,
there exist a neighborhood U ⊂ R

n of x and a one-to-one and onto map
T : Q �→ U , where

Q = {x ∈ R
n : |xj | < 1, j = 1, 2, . . . , n} ,

T ∈ Ck(Q), T−1 ∈ Ck(U), T (Q+) = U ∩Ω, T (Q0) = U ∩ ∂Ω

with Q+ = {x ∈ Q : xn > 0} and Q0 = {x ∈ Q : xn = 0}.
(ii) If T is in Ck,α, 0 < α ≤ 1, we will say that Ω is a bounded open set with

Ck,α boundary.
(iii) If T is in C0,1, we will say that Ω is a bounded open set with Lipschitz

boundary.

Thus, an open set Ω ⊂ R
n has Lipschitz boundary if for every x ∈ ∂Ω,

there exists a neighborhood U ⊂ R
n of x such that U ∩ ∂Ω is a graph, in a

suitable coordinate system, of a Lipschitz continuous function whose epigraph
contains U ∩ Ω; see Fig. 2.1. Note that every polyhedron has a Lipschitz
boundary, whereas the unit ball in R

n has a C∞ boundary. If Ω is an open
convex set, then Ω has a Lipschitz boundary as well. If Ω has a Lipschitz
boundary, then for Hn−1-a.e. x ∈ ∂Ω, there exists the outward unit vector
normal to ∂Ω, which we denote by nΩ (see Nečas [205]).

Fig. 2.1. A regular boundary
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Suppose that Ω ⊂ R
n is a bounded open set with Lipschitz boundary.

Then, by the Sobolev embedding theorem and the Rellich–Kondrachov theo-
rem (see Adams [2], Maz’ya [185]), we have the following:

• If 1 ≤ p < n, W 1,p(Ω) ↪→ Lq(Ω) with

– compact embedding for q ∈ [1, p∗), where
1
p∗

=
1
p
− 1

n
, and

– continuous embedding for q = p∗;
• If p = n, W 1,p(Ω) ↪→ Lq(Ω) with compact embedding for q ∈ [1,∞);
• If p > n, W 1,p(Ω) ↪→ C0(Ω) with compact embedding.

Hereafter we call the constant p∗ = np/(n− p) the Sobolev conjugate of p.
Note that in all cases (i.e., 1 ≤ p ≤ ∞), the embedding of W 1,p(Ω) in

Lp(Ω) is compact. These results are still valid for W 1,p
0 (Ω) without any reg-

ularity assumption on ∂Ω. However, examples of domains Ω between two
spirals can be constructed where the embedding W 1,p(Ω) in Lp(Ω) is not
compact [91]. If Ω is unbounded, then the compactness of that embeddings
is lost. Indeed, as in P. L. Lions [174, 175], we concentrate on the case when
Ω = R

n.

Theorem 2.14. Assume that for n ≥ 3,

fk → f strongly in L2
loc(R

n), Dfk ⇀ Df in
[
L2(Rn)

]n
.

Suppose further that

|Dfk|2 ⇀ μ in M(Rn), |fk|2
∗

⇀ ν in M(Rn).

Then there exist an at most countable index set J , distinct points {xj}j∈J ⊂
R

n, and non-negative weights {μj , νj} such that

ν = |f |2
∗

+
∑

j∈J

νjδxj , μ ≥ |Df |2 +
∑

j∈J

μjδxj ,

where δxj ∈Mb(Rn) denotes the Dirac measure located at the point xj.

Note that a typical function y ∈ W 1,p(Ω) is not, in general, continuous
and is only defined almost everywhere on Ω. Since ∂Ω has n-dimensional
Lebesgue measure 0, there is no direct meaning we can give to the expression
“u restricted to ∂Ω.” The notion of a trace operator resolves this problem
– namely if ∂Ω is Lipschitz continuous, then there exists a unique linear
continuous map

γ : W 1,p(Ω) → Lp(∂Ω)

such that for any y ∈ W 1,p(Ω) ∩ C(Ω), one has γ(y) = y|∂Ω. The function
γ(y) is called the trace of y on ∂Ω.

Remark 2.15. It is worth noting that when Ω is an open set with cusps on the
boundary, then the existence of the trace operator with the above properties
may fail. Indeed, consider, for instance, in R

2 the domain
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Ω =
{
(x1, x2) : 0 < x1 < 1, 0 < x2 < x5

1

}
.

Then for the function u(x1, x2) = 1/x1, we have

∂u

∂x1
= − 1

x2
1

,
∂u

∂x2
= 0 in Ω

in the distributional sense. So
∫

Ω

{
u2 + |∇u|2

}
dx =

∫

Ω

{
1
x2

2

+
1
x4

1

}
dx1dx2

=
∫ 1

1

dx1

∫ x5
1

0

{
1
x2

2

+
1
x4

1

}
dx2

=
∫ 1

0

{
x3

1 + x1

}
dx1 =

3
4
.

Thus, u ∈ H1(Ω), but the trace of u on ∂Ω does not belong to L2(∂Ω) since
1
x1
�∈ L2(0, 1).

It is clear now that the space H1
0 (Ω) can be defined as

H1
0 (Ω) =

{
u ∈ H1(Ω), γ(u) = 0

}
.

However, we note that γ is not onto Lp(∂Ω) (i.e., there exist functions
in Lp(∂Ω) which are not traces of any element of W 1,p(Ω)). In particular, if
p = 2, then this leads us to the following set H1/2(∂Ω) := γ(H1(Ω)), where
H1/2(∂Ω) is a Banach space with respect to the norm

‖u‖H1/2(∂Ω) =
(
‖u‖2L2(∂Ω) +

∫

∂Ω

∫

∂Ω

|u(x)− u(y)|2
|x− y|n+1

dxdy

)1/2

with compact embedding H1/2(∂Ω) ↪→ L2(∂Ω).
As mentioned earlier, if ∂Ω is Lipschitz continuous, then the unit outward

normal vector n = (n1, . . . , nn) to Ω is well defined almost everywhere. As a
result, the well-known Green formula for smooth functions can be extended
to Sobolev spaces. Indeed, in this case we have

∫

Ω

u
∂v

∂xi
dx = −

∫

Ω

v
∂u

∂xi
dx +

∫

∂Ω

γ(u)γ(v)ni ds, i = 1, . . . , n,

for any u, v ∈ H1(Ω).
For any bounded domain Ω, the Friedrichs inequality

∫

Ω

y2 dx ≤ C

∫

Ω

|∇y|2 dx, ∀ y ∈ H1
0 (Ω), (2.8)

holds with a constant C independent of y. Inequality (2.8) implies that the
functional ‖y‖1 =

(∫
Ω
|∇y|2 dx

)1/2 can be taken as an equivalent norm in
H1

0 (Ω), and, indeed, we will always consider ‖y‖1 as a norm in this space.
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Remark 2.16. It should be stressed that we need to impose a condition of the
type y = 0 on ∂Ω (which comes from the hypothesis y ∈ H1

0 (Ω)) to avoid
constant functions y (which imply ∇y = 0), otherwise inequality (2.8) would
be trivially false.

If u ∈ H1(Ω) and Ω is a bounded connected open domain with Lipschitz
boundary, then the Poincaré inequality

∫

Ω

y2 dx ≤ C

{(∫

Ω

y dx

)2

+
∫

Ω

|∇y|2 dx

}
, ∀ y ∈ H1(Ω), (2.9)

is valid, and, by the Rellich–Kondrachov compactness theorem, the imbedding
H1(Ω) ↪→ L2(Ω) is compact. Sometimes the Poincaré inequality appears in
the following form. If 1 ≤ p ≤ ∞ and if we set

MΩ(y) =
1
|Ω|

∫

Ω

y(x) dx,

then there exists a constant C(Ω, p) > 0 so that

‖y −MΩ(y)‖Lp(Ω) ≤ C(Ω, p)‖∇y‖Lp(Ω), ∀ y ∈ W1,p(Ω).

The dual space of H1
0 (Ω) (i.e., the set of all continuous linear function-

als on H1
0 (Ω)) is denoted by H−1(Ω). If f is an element of H−1(Ω), then

〈f, y〉H−1(Ω),H1
0 (Ω) stands for the value of the functional f applied to the ele-

ment y ∈ H1
0 (Ω). Note that for any element F ∈ H−1(Ω), there exist n + 1

functions f0, f1, . . . , fn such that F = f0 +
∑n

k=1 ∂fk/∂xk in the sense of
distributions, that is,

〈F, y〉H−1(Ω),H1
0 (Ω) =

∫

Ω

f0y dx−
n∑

k=1

∫

Ω

fk
∂y

∂xk
dx.

Moreover,

‖F‖2H−1(Ω) = inf
n∑

k=0

‖fk‖2L2(Ω),

where the infimum is taken over all vectors

(f0, f1, . . . , fn) ∈
[
L2(Ω)

]n+1

such that the representation for F given above holds true.
One can give an example of a linear functional on H1

0 (Ω), setting

〈f0, y〉H−1(Ω),H1
0 (Ω) =

∫

Ω

f0ϕ dx, f0 ∈ L2(Ω).

Similarly, if ϕ ∈ H1/2(∂Ω) and f ∈ L2(∂Ω), one also has
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〈f, y〉(H1/2(∂Ω))∗,H1/2(∂Ω) =
∫

∂Ω

fϕds.

Suppose that ∂Ω is Lipschitz continuous. Then one has L2(Ω) ⊂ H−1(Ω)
with compact injection. Hence, the following embeddings are compact (so-
called Gelfand–Lions triplet of Sobolev spaces):

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

Remark 2.17. It is clear that the restriction of any element of (H1(Ω))∗ to
H1

0 (Ω) is in H−1(Ω). However, the dual space (H1(Ω))∗ is not contained
in H−1(Ω) since (H1(Ω))∗ can be identified with the direct sum H−1(Ω) ⊕
H−1/2(∂Ω), where H−1/2(∂Ω) = (H1/2(∂Ω))∗. Moreover, if ∂Ω is Lipschitz
continuous, y ∈ H(Ω, div) =

{
y : y ∈

[
L2(Ω)

]n
, div y ∈ L2(Ω)

}
, and w ∈

H1(Ω), then y · n ∈ H−1/2(∂Ω), the map

H(Ω, div) � y �→ y · n ∈ H−1/2(∂Ω)

is linear and continuous, and

−
∫

Ω

(divy)w dx =
∫

Ω

y · ∇w dx + 〈y · n, w〉H−1/2(∂Ω),H1/2(∂Ω) . (2.10)

For any vector p ∈ L2(Ω) =
(
L2(Ω)

)n, the divergence is an element of the
space H−1(Ω) defined by

〈div p, ϕ〉H−1(Ω),H1
0 (Ω) = −

∫

Ω

p · ∇ϕ dx, ∀ϕ ∈ H1
0 (Ω), (2.11)

where “·” denotes the scalar product of two vectors. The following estimate
is evident:

‖div p‖H−1(Ω) = sup
‖ϕ‖1=1

∫

Ω

p · ∇ϕ dx ≤ ‖p‖L2(Ω). (2.12)

A vector field p is said to be solenoidal if divp = 0. We say that a vector field
v ∈ L2(Ω) is potential if v can be represented in the form v = ∇u, where
u ∈ H1

0 (Ω).

2.2.3 Vector-valued spaces of the type Lp(a, b;X)

Let X be a Banach space, Ω ⊂ R
n, and p such that 1 ≤ p ≤ +∞. We denote

by Lp(Ω;X) the set of measurable functions y : Ω → X such that ‖u(·)‖X ∈
Lp(Ω). Similarly, one can also define the set of distributions D′(Ω;X) on Ω
with values in X. Lp(Ω;X) is a Banach space with respect to the norm

‖y‖Lp(Ω;X) =
(∫

Ω

‖u(x)‖p
X dx

)1/p

.
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If X is reflexive and 1 < p < ∞, the space Lp(Ω;X) is reflexive, too. Moreover,
if X is separable and 1 ≤ p < ∞, then Lp(Ω;X) is separable.

This type of spaces is well adapted to the study of problems where one
of the variables plays a special role. For instance, this occurs for the vari-
able “time” in time-dependent problems. For various results on vector-valued
functions, we refer to Schwartz [224] and Lions and Magenes [173].

Let B0 and B be two Banach spaces such that the embedding B0 ↪→ B
is compact. A natural question is whether the embedding Lp(a, b; B0) ↪→
Lp(a, b; B) is also compact. Actually, one can prove that this is not true, in
general. However, if we have three Banach spaces B0 ↪→ B ↪→ B1 such that
B0 and B1 are reflexive and the embedding B0 ↪→ B is compact, then the
embedding W ↪→ Lp0(a, b; B) is compact too, where

W =
{

y : y ∈ Lp0(a, b; B0),
∂y

∂t
∈ Lp1(a, b; B1)

}
, 1 < p0, p1 < +∞,

is a Banach space with respect to the graph norm

‖y‖W = ‖y‖Lp0 (a,b;B0) +
∥∥∥∥

∂y

∂t

∥∥∥∥
Lp1 (a,b;B1)

.

Here, the derivative ∂y/∂t is the distribution in D′(a, b; B1) defined by

∂y

∂t
(ϕ) = −

∫ b

a

y
∂ϕ

∂t
dt, ∀ϕ ∈ D(a, b).

The following theorem plays an important role in the study of PDEs.

Theorem 2.18. Let us define the Banach spaces

W =
{

y : y ∈ L2(a, b; H1
0 (Ω)),

∂y

∂t
∈ L2(a, b; H−1(Ω))

}
,

W1 =
{

y : y ∈ L2(a, b; L2(Ω)),
∂y

∂t
∈ L2(a, b; H−1(Ω))

}
,

equipped with the norm of the graph. Then the following properties holds true:

(a) The embeddings W ↪→ L2(a, b; L2(Ω)), W1 ↪→ L2(a, b; H−1(Ω)) are com-
pact.

(b) One has the embedding

W ↪→ C([a, b]; L2(Ω)), W1 ↪→ C([a, b]; H−1(Ω)),

where, for X = L2(Ω) or X = H−1(Ω), one denotes by C([a, b];X) the
space of measurable functions on [a, b] × Ω such that y(t, ·) ∈ X for any
t ∈ [a, b] and such that the map t ∈ [a, b] �→ y(t, ·) ∈ X is continuous.
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(c) For any u, v ∈ W, one has

d
dt

∫

Ω

u(t, x)v(t, x) dx = 〈u′(t, ·), v(t, ·)〉H−1(Ω),H1
0 (Ω)

+ 〈v′(t, ·), u(t, ·)〉H−1(Ω),H1
0 (Ω) .

Let y ∈ L2
(
a, b; H1

0 (Ω)
)
∩ C

(
[a, b];L2(Ω)

)
. Then the following density

result holds: For any δ > 0, there exists Φ ∈ C∞([a, b];D(Ω)) such that

‖y − Φ‖C([a,b];L2(Ω)) ≤ δ, ‖∇y −∇Φ‖L2((a,b)×Ω) ≤ δ.

To end this subsection, we recall one property, useful in the sequel, con-
cerning the space L2(Ω; Cper(Y )), where Cper(Y ) denotes the subset of C(Y )
of Y -periodic functions – namely the space L2(Ω; Cper(Y )) is separable and
dense in L2(Ω; L2(Y )) = L2(Ω × Y ).

2.2.4 Lax–Milgram’s lemma

Consider a real Hilbert space V . Let a(u, v) be a bilinear form on V (i.e.,
a : V × V → R is linear with respect to each argument). Suppose that the
form a(·, ·) is continuous and coercive – that is, the following inequalities are
satisfied:

a(u, v) ≤ ν1‖u‖V ‖v‖V , ∀u, v ∈ V, ν1 > 0,

a(u, u) ≥ ν2‖u‖2V , ∀u ∈ V, ν2 > 0.
(2.13)

Let V ∗ be the dual space of V . For any fixed u ∈ V , the linear form a(u, v)
is continuous with respect to v ∈ V and represents an element of V ∗ denoted
by Au. Thus, we obtain a linear operator defined by the formula

〈Au, v〉V ∗,V = a(u, v), A : V → V ∗.

Inequalities (2.13) show that the operator A is bounded and coercive: ‖A‖ ≤
ν2, 〈Au, u〉V ′,V ≥ ν1‖u‖2V . For any given f ∈ V ∗, consider the following
problem: Find an element u ∈ V such that

a(u, v) = 〈f, v〉V ∗,V , ∀ v ∈ V. (2.14)

In fact, this problem is equivalent to establishing solvability of the equation
Au = f . The following assertion generalizes the Riesz representation theorem.

Lemma 2.19. (Lax–Milgram) The problem (2.14) has a solution u which is
unique and satisfies the estimate ‖u‖V ≤ ν−1

1 ‖f‖V ∗ . In other words, the
bounded coercive operator A is an isomorphism between the spaces V and
V ∗ and the norm of the inverse operator is bounded by ν−1

1 .



28 2 Background Material on Extremal Problems

If the bilinear form a(u, v) is symmetric, then Au = f is the Euler equation
associated with the following variational problem:

E = inf
v∈V

F (v), F (v) =
1
2
a(v, v)− 〈f, v〉V ∗,V .

Indeed, let u = A−1f . Then

2(F (v)− F (u)) = 〈Av, v〉V ∗,V − 〈Au, u〉V ∗,V − 2 〈f, v〉V ∗,V

+2 〈f, u〉V ∗,V = 〈Av, v〉V ∗,V − 〈Au, u〉V ∗,V + 2 〈f, u〉V ∗,V

−2 〈Au, v〉V ∗,V = 〈Av, v〉V ∗,V − 2 〈Au, v〉V ∗,V + 〈Au, u〉V ∗,V

= 〈A(v − u), v − u〉V ∗,V > 0, ∀ v �= u.

So, u = A−1f is the unique minimizer for F (v).

2.2.5 General setting of the variational formulation of boundary
value problems

To begin with, we recall the notation of a well-posed problem introduced by
Hadamard. Let P be a boundary value problem and let Y and F be two
Banach spaces. We say that P is well-posed (with respect to Y and F) if the
following hold:

(i) For any element f ∈ F there exists a solution y ∈ Y of P.
(ii) The solution is unique.
(iii) The map F � f �→ y ∈ Y is continuous.

Obviously, the well-posedness of a problem depends on the choice of the spaces
Y and F . As a matter of fact, the examples of boundary value problems with
this property, which we treat in the sequel, are related to an equation of the
form Ay = f , where the operator A is given as follows:

A = −div(A(x)∇) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
. (2.15)

Here, A(x) = {aij(x)} is a matrix (not necessarily symmetric) with bounded
measurable elements (i.e., ‖aij‖L∞(Ω) ≤ β) satisfying the ellipticity condition

∃α > 0 such that
n∑

i,j=1

aij(x)λiλj ≥ α

n∑

i=1

λ2
i a.e. on Ω ∀λ ∈ R

n. (2.16)

The matrix will always be associated with the bilinear form

a(y, ϕ) =
∫

Ω

∇ϕ ·A(x)∇y dx. (2.17)
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The Dirichlet problem

Let f ∈ H−1(Ω) and consider the problem

− div(A∇y) = f in Ω, y = 0 on ∂Ω. (2.18)

The corresponding variational formulation is
{

Find y ∈ H1
0 (Ω) such that

a(y, ϕ) = 〈f, ϕ〉H−1(Ω),H1
0 (Ω) , ∀ϕ ∈ H1

0 (Ω).
(2.19)

Because of the Friedrichs inequality (2.8), the form a(y, ϕ) is coercive on
H1

0 (Ω). Therefore, for any f ∈ H−1(Ω), there exists a unique element y ∈
H1

0 (Ω) satisfying (2.19). Moreover, ‖y‖H1
0 (Ω) ≤ α−1‖f‖H−1(Ω). This element

is called a weak solution of the Dirichlet problem (2.18). It is clear that (2.18)
is a well-posed problem (in Hadamard’s sense) for the choice Y = H1

0 (Ω) and
F = H−1(Ω) (or F = L2(Ω)).

Assume that ∂Ω is Lipschitz continuous. Suppose we are given f in
H−1(Ω) and g in H1/2(∂Ω). Consider the nonhomogeneous Dirichlet problem

−div(A∇y) = f in Ω, y = g on ∂Ω.

Using the trace notion, we say that y is a weak solution of this problem iff

− div(A∇y) = f in D′(Ω), γ(y) = g in H1/2(∂Ω). (2.20)

Then the problem (2.20) has a unique solution y in H1(Ω) such that

‖y‖H1(Ω) ≤ C
[
‖f‖H−1(Ω) + ‖g‖H1/2(∂Ω)

]
,

where C is a positive constant depending on Ω, α, and β.
Moreover, we have the following result (see Lions and Magenes [173]).

Theorem 2.20. Suppose that N � s ≥ 2. Then for any f ∈ Hs−2(Ω) and
g ∈ Hs−1/2(∂Ω), there exists a unique solution y ∈ Hs(Ω) of the problem

−� y = f in Ω, γ(y) = g.

Moreover, in this case,

‖y‖2Hs(Ω) ≤ C
[
‖f‖2Hs−2(Ω) + ‖g‖2Hs−1/2(∂Ω)

]
, (2.21)

where the constant C is independent of f and g.
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The Neumann problem

Let f ∈ (H1(Ω))∗ and g ∈ H−1/2(∂Ω). Let us introduce the following nota-
tion:

∂

∂νA
=

n∑

i,j=1

aij(x)ni
∂

∂xj
, (2.22)

where ni denotes ith component of the unit outward normal vector to Ω. We
consider the Neumann problem

− div(A∇y) + y = f in Ω,
∂y

∂νA
= 0 on ∂Ω. (2.23)

The corresponding variational formulation is
⎧
⎨

⎩

Find y ∈ H1(Ω) such that

ã(y, ϕ) =
∫

Ω

fϕdx, ∀ϕ ∈ H1(Ω),
(2.24)

where now ã is defined by

ã(y, ϕ) =
∫

Ω

∇ϕ ·A(x)∇y dx +
∫

Ω

yϕ dx, ∀y, ϕ ∈ H1(Ω).

Let us observe that if y is a solution of the problem (2.24), then (2.23) holds
in D′(Ω). Then, due to Remark 2.17 (see (2.10)), A∇y belongs to H1(Ω, div),
and therefore, ∂y/∂νA is well-defined as an element of H1/2(∂Ω). This is the
sense to be given to the boundary condition in (2.23).

If g = 0 and the domain Ω is sufficiently smooth (for instance, such that
the Poincaré inequality holds in Ω), then for any f ∈ (H1(Ω))∗, there exists
a unique solution y ∈ H1(Ω) of the problem (2.24). Moreover,

‖y‖H1(Ω) ≤
1

min{1, α}‖f‖(H1(Ω))∗ and ‖y‖H1(Ω) ≤
1

min{1, α}‖f‖L2(Ω),

provided f ∈ L2(Ω).
As for the nonhomogeneous Neumann problem in domains with a Lipschitz

continuous boundary, namely

− div(A∇y) + y = f in Ω,
∂y

∂νA
= g on ∂Ω, (2.25)

we have the following result: For any f ∈ L2(Ω) and for any g ∈ H−1/2(∂Ω)
there exists a unique solution y ∈ H1(Ω) of the problem (2.25). Moreover, in
this case,

‖y‖H1(Ω) ≤
1

min {1, α}
(
‖f‖L2(Ω) + C(Ω)‖g‖H−1/2(∂Ω)

)
, (2.26)
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where C(Ω) is a positive constant.
If we consider, instead of (2.25), the nonhomogeneous Neumann problem

− div(A∇y) = f in Ω,
∂y

∂νA
= g on ∂Ω (2.27)

under the same hypotheses on f and g as earlier, then the corresponding
bilinear form a(y, ϕ) is no longer coercive on H1(Ω), but it is coercive in
the quotient space W (Ω) = H1(Ω)/R. This space is the space of classes of
equivalence with respect to the relation

y1 � y2 ⇔ y1 − y2 is a constant, ∀ y1, y2 ∈ H1(Ω).

Let us denote by ẏ the class of equivalence represented by y. Then the natural
variational formulation of (2.27) is

⎧
⎨

⎩

Find ẏ ∈ W (Ω) such that ∀ ϕ̇ ∈ W (Ω)

ȧ(ẏ, ϕ̇) =
∫

Ω

fϕdx + 〈g, ϕ〉H−1/2(∂Ω),H1/2(∂Ω) , ∀ϕ ∈ ϕ̇,
(2.28)

where ȧ is defined by

ȧ(ẏ, ϕ̇) =
∫

Ω

∇ϕ ·A(x)∇y dx, ∀y ∈ ẏ, ϕ ∈ ϕ̇, ∀ϕ̇, ẏ ∈ W (Ω).

It is clear that this problem makes sense if the right-hand side of (2.28) is
independent of ϕ ∈ ϕ̇ – namely suppose that f ∈ L2(Ω) and for any g ∈
H−1/2(∂Ω) satisfy the compatibility condition

∫

Ω

f dx + 〈g, 1〉H−1/2(∂Ω),H1/2(∂Ω) = 0,

then there exists a unique solution ẏ ∈ W (Ω) of the problem (2.28) with the
estimate

‖ẏ‖W (Ω) ≤
1

min {1, α}
(
‖f‖L2(Ω) + C(Ω)‖g‖H−1/2(∂Ω)

)
. (2.29)

We refer to Lions and Magenes [173] for the following result.

Theorem 2.21. Suppose that N � s ≥ 2 and that f ∈ Hs−2(Ω) and g ∈
Hs−1−1/2(∂Ω) satisfy the compatibility condition:

∫

Ω

f(x) dx +
∫

∂Ω

g(s) dHn−1 = 0. (2.30)

Then, there exists a unique solution ẏ ∈ Hs(Ω) \ R to the problem (2.27).
Moreover,

‖ẏ‖2Hs(Ω)\R
≤ C

[
‖f‖2Hs−2(Ω) + ‖g‖2Hs−1/2(∂Ω) + ‖y‖2L2(Ω)

]
,

where the constant C is independent of f and g.
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The Robin problem

As in the previous case, suppose that ∂Ω is Lipschitz continuous and let
f ∈ L2(Ω) and g ∈ H−1/2(∂Ω). The Robin boundary value problem we
consider can be stated as follows:

− div(A∇y) + y = f in Ω,
∂y

∂νA
+ dy = 0 on ∂Ω, (2.31)

where d ∈ R is such that d ≥ 0. The variational formulation of this problem
is then

⎧
⎨

⎩

Find y ∈ H1(Ω) such that

ã(y, ϕ) =
∫

Ω

fϕdx + 〈g, ϕ〉H−1/2(∂Ω),H1/2(∂Ω) , ∀ϕ ∈ H1(Ω), (2.32)

where for all y, ϕ ∈ H1(Ω),

a(y, ϕ) =
∫

Ω

∇ϕ ·A(x)∇y dx +
∫

Ω

yϕ dx + d

∫

∂Ω

yϕ ds. (2.33)

In view of our suppositions, the linear form

F (y) =
∫

Ω

fy dx+ < g, ϕ >H−1/2(∂Ω),H1/2(∂Ω)

is bounded on H1(Ω). Hence, F ∈
(
H1(Ω)

)∗. Then, having observed that the
bilinear form a(y, ϕ) given by (2.33) is continuous on H1(Ω) × H1(Ω) and
coercive, since d is positive, we can apply the Lax–Milgram Lemma 2.19 with
V = H1(Ω) to get a unique element y ∈ H1(Ω) satisfying (2.32). Moreover,
in this case we have the same estimate for ‖y‖H1(Ω) as in (2.26).

To end this section, we consider the case where one has a Dirichlet con-
dition on a part of the boundary ∂Ω and a homogeneous Robin one on the
rest of the boundary. Let Ω be a bounded connected domain with a Lipschitz
boundary ∂Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are two disjoint closed sets and Γ1

is of positive measure. Let V be the closure of C∞
0 (Rn \ Γ1) with respect to

norm of H1(Ω), that is,

V =
{
y | y ∈ H1(Ω), y|Γ1 = 0

}
.

We say that y ∈ V is a weak solution to the mixed Dirichlet–Robin problem
⎧
⎨

⎩

−div(A∇y) = f in Ω,

y = 0 on Γ1,
∂y

∂νA
+ dy = 0 on Γ2,

(2.34)

where d ≥ 0 if
∫

Ω

∇ϕ ·A(x)∇y dx + d

∫

Γ2

yϕ ds =
∫

Ω

fϕdx ∀ϕ ∈ V.
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The existence of a unique solution to this problem immediately follows from
the Lax–Milgram lemma and the inequality

∫

Ω

ϕ2(x) dx ≤ C0

∫

Ω

|∇ϕ|2 dx, ∀ϕ ∈ C∞
0 (Rn \ Γ1),

which, in analogy to (2.8), will also be called the Friedrichs inequality.

2.3 Spaces of periodic functions

In this section, we provide a notion of periodicity for functions in the Sobolev
space H1. Let us consider measurable functions defined on R

n and periodic
in each argument x1, x2, . . . , xn with periods l1, l2, . . . , ln, respectively. Let �
be the parallelepiped in R

n defined by � = (0, l1)× · · · × (0, ln). We will refer
to � as the reference period. Then the function f is called �-periodic iff

f(x + kliei) = f(x) a.e. on R
n, ∀ k ∈ Z, ∀ i ∈ {1, 2, . . . , n},

where {e1, . . . , en} is the canonical basis of R
n.

The mean value of a periodic functions is essential when studying periodic
oscillating functions. Let us recall that for any �-periodic function f the mean
value of f is the real number M�(f) given by

M�(f) =
1
|�|

∫

�
f(y) dy,

where |�| = l1l2 · · · ln is the volume of the parallelepiped �. The Lebesgue
space of periodic measurable functions with a finite norm M1/α

� (|f |α) for
α ≥ 1 we denote by Lα(�). The following property of periodic functions is
frequently used in the asymptotic analysis.

A property of the mean value. Let f be a �-periodic function, f ∈
Lα(�), α ≥ 1. Then

∫

Ω

f(ε−1x)ϕ(x) dx −→M�(f)
∫

Ω

ϕ(x) dx as ε → 0 (2.35)

for every ϕ ∈ Lα′
(Ω), where 1/α+1/α′ = 1, α ∈ (0,∞), and Ω is an arbitrary

bounded domain in R
n.

Let C∞
per(�) be the subset of C∞(Rn) of �-periodic functions. We denote

by H1
per(�) the completion of the space C∞

per(�) with respect to the H1-norm.
It should be stressed that H1

per(�) does not coincide with the entire Sobolev
space H1(Ω) for Ω = �. Functions in H1

per(�) as well as all other periodic
functions, are assumed to be defined on R

n – namely if u ∈ H1
per(�), then u is

in H1(D) for any bounded open subset D of R
n and u satisfies the following

condition:
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u(x + kliei) = u(x), ∀ k ∈ Z, ∀ i ∈ {1, 2, . . . , n}.

Thus, we may write H1
per(�) =

{
u ∈ H1

loc(R
n), u is �-periodic

}
. The space

H1
per(�) possesses the following obvious property: If u ∈ H1

per(�), then u has
the same trace on the opposite site faces of �.

In the sequel, we will make use of the quotient spaceWper(�) = H1
per(�)/R

defined as the space of equivalent classes with respect to the relation

u ∼= v ⇔ u− v is a constant, ∀u, v ∈ H1
per(�).

As usual, we denote by u̇ the equivalence class represented by u. Then the
quantity

‖u̇‖Wper(�) = ‖∇u‖L2(�), ∀u ∈ u̇, u̇ ∈ Wper(�)

defines a norm on Wper(�) for which Wper(�) is a Banach space. Moreover,
the dual space W∗

per(�) can be identified with the set
{

F ∈ W∗
per(�)

∣∣ F (c) = 0, ∀ c ∈ R
}

,

with 〈F, u̇〉W∗
per(�),Wper(�) = 〈F, u〉(H1

per(�))∗,H1
per(�) for all u ∈ u̇ and ∀ u̇ ∈

Wper(�).
We define also the space of solenoidal periodic vector fields, by setting

L2
sol(�) :=

{
p ∈ L2(�), div p = 0 in R

n
}

. (2.36)

Clearly, L2
sol(�) is a closed subspace of L2(�), and, by definition, p ∈ L2

sol(�)
if p ∈ L2(�) and the identity

∫

�
p · ∇ϕdx = 0, ∀ϕ ∈ C∞

per(�)

is valid (see [261]). Moreover, in this case, the following orthogonal represen-
tation holds:

L2(�) = L2
sol(�)⊕V2

pot(�), V2
pot(�) =

{
∇u, u ∈ H1

per(�)
}

.

It should be pointed out that because of the Poincaré inequality, V2
pot(�) is

a closed subspace of L2(�). We also introduce the space of potential periodic
vector fields

L2
pot(�) = R

n ⊕ V2
pot(�).

Then any vector field v ∈ L2
pot(�) is potential by definition and can be rep-

resented in the form v = M�(v) +∇u.

2.4 Weak and weak-∗ convergence in Banach spaces

In this section, we recall without proofs the basic facts from functional analysis
concerning the weak and weak-∗ convergence in Banach spaces.
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Let F be a Banach space equipped with the norm ‖ · ‖F and let F ∗ be its
dual. We set E = F ∗. The norm of u in E is defined by the formula

‖u‖E = sup
‖f‖F =1

〈u, f〉E,F ,

where 〈u, f〉E,F denotes the value of u ∈ E at f ∈ F .

Definition 2.22. A sequence {uk}∞k=1 ⊂ E is said to be strongly convergent
to u ∈ E as k →∞ if ‖uk − u‖E → 0 as k →∞. In this case, we write

uk → u strongly in E as k →∞.

Definition 2.23. A sequence {uk}∞k=1 ⊂ E is said to converge weakly to u,
written uk ⇀ u in E, provided

〈u∗, uk〉E∗,E → 〈u∗, u〉E∗,E , ∀u∗ ∈ E∗.

For instance, let Ω be an open bounded domain in R
n. We write wk ⇀ w

in Lp(Ω) if for any ϕ ∈ Lp′
(Ω) (1 ≤ p < ∞, p′ = p/(p− 1))

lim
k→∞

∫

Ω

wkϕdx =
∫

Ω

wϕ dx.

A weakly convergent sequence is necessarily bounded in the norm.

Theorem 2.24. (Boundedness of weakly convergent sequences) Assume uk ⇀
u in E. Then the following hold:

(i) {uk}∞k=1 is bounded in E,
(ii) ‖u‖E ≤ lim infk→∞ ‖uk‖E,

that is, the norm in E is lower semicontinuous with respect to the weak con-
vergence in E.

Moreover, a refinement of (ii) holds: If E is reflexive, uk ⇀ u in E, and
limk→∞ ‖uk‖E = ‖u‖E , then

uk → u strongly in E.

For the case of Lebesgue spaces, Brezis and Lieb [31] obtained the following:
Let uk ⇀ u in Lp(Ω) (1 ≤ p < ∞) and uk → u almost everywhere in Ω. Then

lim
k→∞

(
‖uk‖p

Lp(Ω) − ‖uk − u‖p
Lp(Ω)

)
= ‖u‖p

Lp(Ω).

The following theorem states one of the main properties of the weak con-
vergence in reflexive Banach spaces. For the proof, which is rather technical,
we refer to Yosida [251] or Kantorovich and Akilov [128].

Theorem 2.25. (Eberlein-Ŝmuljan) Assume that E is a reflexive Banach
space and let {uk}∞k=1 be a bounded sequence in E. Then the following hold:
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(i) There exist a subsequence
{
ukj

}∞
j=1

of {uk}∞k=1 and an element u ∈ E

such that
ukj ⇀ u in E as k →∞.

(ii) If each weakly convergent subsequence of {uk}∞k=1 has the same limit u,
then the whole sequence {uk}∞k=1 weakly converges to u.

This theorem is definitely false if we take F = L1(Ω) and E = L∞(Ω) as a
simple example illustrates. Indeed, let us consider the following sequence in
L1(Ω) (Ω = (−1, 1)):

xk =

⎧
⎪⎨

⎪⎩

0 if t ∈ (−1,−1/n) ∪ (1/n, 1);

n2t + n if t ∈ [−1/n, 0);

−n2t + n if t ∈ [0, 1/n],

k = 1, 2, . . . .

It is clear that supk∈N ‖xk‖L1(Ω) = 1. However, this sequence is not compact
with respect to the weak convergence in L1(Ω). In order to prove it, we note
that

lim
k→∞

∫

Ω

xk(t)ϕ(t) dt = ϕ(0), ∀ϕ ∈ C∞
0 (Ω), (2.37)

by the mean value theorem. Indeed, due to the continuity of ϕ, for any η > 0
there exists an ε0 > 0 such that |ϕ(t)− ϕ(0)| < η, provided |t| < ε0. Then

∣∣∣∣
∫

Ω

xk(t)ϕ(t) dt− ϕ(0)
∣∣∣∣ =

∣∣∣∣∣

∫ 1/n

−1/n

xk(t)ϕ(t) dt− n

2

∫ 1/n

−1/n

ϕ(0) dt

∣∣∣∣∣

≤ n

2

∫ 1/n

−1/n

|ϕ(t)− ϕ(0)| dt <
n

2
η

∫ 1/n

−1/n

dt = η

for all ε < ε0.
Let us suppose that there is a function x ∈ L1(Ω) such that

∫

Ω

x(t)ϕ(t) dt = ϕ(0), for all ϕ ∈ C∞
0 (Ω). (2.38)

Since tϕ(t) ∈ C∞
0 (Ω), from (2.37) it follows that
∫

Ω

x(t)tϕ(t) dt = tϕ(t)|t=0 = 0 ∀ϕ ∈ C∞
0 (Ω).

Hence, by Raymond’s lemma (see, for instance, [49]), we conclude that tx(t) =
0 a.e. in Ω. So, x(t) = 0 for almost all t ∈ Ω, and we come into conflict
with (2.38). This means that the above sequence does not converge weakly in
L1(Ω).

We will also need a more general form of the weak convergence, which is
usually called the weak-∗ convergence.
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Definition 2.26. A sequence {uk}∞k=1 ⊂ E is said to converge weakly-∗ to u

(written uk
∗
⇀ u in E = F ∗), provided

〈uk, u∗〉F∗,F → 〈u, u∗〉F∗,F , ∀u∗ ∈ F.

In particular, if uk, u ∈ L1(Ω) and the sequence {uk}∞k=1 is bounded in L1(Ω),
then uk

∗
⇀ u, provided the relation

lim
k→∞

∫

Ω

ukϕ dx =
∫

Ω

uϕ dx

holds for any ϕ ∈ C∞
0 (Ω).

The main properties of weak convergence are still valid for weak-∗ conver-
gence. In particular, any weakly-∗ convergent sequence in E is bounded and
the norm in E is lower semicontinuous with respect to the weak-∗ convergence
in E. It is very important for what follows that a weak-∗ limit is uniquely de-
fined. It is also clear that the weak convergence in E (in L1(Ω), in particular)
implies the weak-∗ convergence. However, in general, the converse statement
does not hold. Indeed, let

Ω = (0, 1), uk =
1√
πk

exp(−t2k−1).

Then uk
∗
⇀ 0 in L1(Ω). However,

∫

Ω

uk dt = 〈1, uk〉L∞(Ω),L1(Ω) −→
1
2

as k →∞.

The equivalent of Theorem 2.25 for weak-∗ convergence read as follows.

Theorem 2.27. Let F be a separable Banach space and let E = F ∗. If
{uk}∞k=1 is a bounded sequence in E, then following hold:

(i) There exist a subsequence
{
ukj

}∞
j=1

of {uk}∞k=1 and an element u ∈ E

such that
ukj

∗
⇀ u in E as k →∞.

(ii) If each weakly-∗ convergent subsequence of {uk}∞k=1 has the same limit u,
then the whole sequence {uk}∞k=1 weakly-∗ converges to u.

One often has to find the limit of the product 〈fk, uk〉E∗,E as k → ∞. In
the trivial case, when either uk ⇀ u in E and fk → f in E∗ or uk → u in E
and fk

∗
⇀ f in E∗, we have 〈fk, uk〉E∗,E → 〈f, u〉E∗,E . However, in general,

one cannot pass to the limit in the product 〈fk, uk〉E∗,E as k →∞ when both
of these sequences are only known to be weakly convergent.

The following classical example is very significant. Let v(t) be the periodic
function of period 1, defined on R by v(t) = sin(2πt), and set � = [0, 1),
Ω = (a, b), and
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vk(t) := v (kt) = sin (2πkt) , t ∈ (a, b),

where a, b ∈ R. Applying the mean value property (2.35), we have

vk ⇀ M�(v) =
∫ 1

0

sin(2πt) dt = 0 in L2(a, b) as k →∞.

On the other hand, 〈vk, vk〉L2(Ω),L2(Ω) does not converge to 0. Indeed,

〈vk, vk〉L2(Ω),L2(Ω) =
∫ b

a

sin2 (2πkt) dt =
1

2πk

∫ 2πkb

2πka

sin2(τ) dτ

=
1

2πk

∫ 2πkb

2πka

1− cos(2τ)
2

dτ

=
b− a

2
+

1
8πk

[− sin(4πkb) + sin(4πka)] ,

so that, as k →∞,

〈vk, vk〉L2(Ω),L2(Ω) −→
b− a

2
�= 0.

To understand the ways in which a weakly convergent sequence of functions
can fail to be strongly convergent, we consider a sequence {uk}∞k=1 in Lp(Ω)
(1 < p < ∞), where Ω is a bounded smooth open subset of R

n, such that
uk ⇀ u in Lp(Ω) as k →∞. Let us observe that even if we know the functions
{uk}∞k=1 to be bounded in the supremum norm, so that uk converges weakly
to u in Lq(Ω) for all 1 ≤ q < ∞, we still cannot deduce strong convergence
in Lq(Ω) for any 1 ≤ q < ∞. The difficulty is with the possibility of very
rapid fluctuations in the functions uk (see the previous example). This is the
problem of wild oscillations.

Second, observe that even if we know additionally that

uk → u a.e. in Ω,

so that wild oscillations are excluded, we still cannot deduce strong conver-
gence in Lp(Ω). The obstruction is that the mass of |uk − u|p may somehow
coalesce onto a set of zero Lebesgue measure. This is the problem of concen-
tration. To characterize the concentration effects, let us suppose that uk ⇀ u
in Lp(Ω) and introduce the following measure:

θk(E) =
∫

E

|uk − u|p dt, k = 1, 2, . . . ,

where E is a Borel subset of Ω. Thus, θk(E) controls how close the function uk

is to u in the Lp-norm restricted to the set E. Following DiPerna and Majda
[95], we call the value θ(E) = lim supk→∞ θk(E) the reduced defect measure
associated with the weak convergence uk ⇀ u in Lp(Ω). The idea is that θ(E)
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encodes an information about the extent to which strong convergence fails. In
particular,

uk → u in Lp(E) if and only if θ(E) = 0 (see [105]).

For instance, let Ω = (−1, 1), u = 0, and

uk(t) =
{

k if − k−1 ≤ t ≤ k−1,
0 otherwise.

Then uk ⇀ 0 in L2(Ω) and θ is concentrated on E = {0}. In this case
θ(Ω \ V ) = 0 for each open set V ⊃ E.

The following theorem, taken from Valadier’s work [245], gives necessary
and sufficient conditions under which weak convergence implies strong con-
vergence.

Theorem 2.28. Suppose that uk ⇀ u in L1(Ω). Then uk → u strongly if and
only if the following criterion is satisfied: ∀ε > 0, ∀A ⊂ Ω with meas(A) > 0,
∃N ∈ N, ∃B ⊂ A with meas(B) > 0, such that, ∀k ≥ N , the inequality

1
meas(B)

∫

B

∣∣∣∣uk(t)− 1
meas(B)

∫

B

uk(t) dt

∣∣∣∣ dt < ε

holds true.

2.4.1 Weak convergence of measures

Let M(Ω) be the set of Borel measures on Ω. For all μ ∈ M(Ω), we define
the functional

Lμ(ϕ) =
∫

Ω

ϕdμ, ∀ϕ ∈ L1(Ω, dμ). (2.39)

It is clear that Lμ is linear and continuous on C0(Ω). Following Riesz’s theorem
[28, 221], for any linear continuous functional Lμ : C0(Ω) → R there exists

a unique measure μ ∈ M(Ω) such that the representation Lμ(ϕ) =
∫

Ω

ϕdμ

holds true for every ϕ ∈ C0(Ω). Thus, the map μ �→ Lμ is a bijection between
M(Ω) and (C0(Ω))∗. Moreover, in this case, we have ‖Lμ‖ = |μ|(Ω). Indeed,

‖Lμ‖ = sup
{∫

Ω

ϕdμ : ϕ ∈ C0(Ω), |ϕ| ≤ 1
}

≤ sup
{∫

Ω

|ϕ| d|μ| : ϕ ∈ C0(Ω), |ϕ| ≤ 1
}

=
∫

Ω

d|μ| = |μ|(Ω).

Thus, measures can be identified as elements of the dual space of continuous
functions vanishing on ∂Ω. Hence, they inherit a notion of weak-∗ convergence
which was defined earlier. In view of this, we can define a weak topology on
M(Ω) as follows.
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Definition 2.29. We say that a sequence {μk}∞k=1 ⊂M(Ω) converges weakly
to μ (and we write μk ⇀ μ) if Lμk

∗
⇀ Lμ in the weak-∗ topology of C0(Ω),

that is,

lim
k→∞

∫

Ω

ϕ dμk =
∫

Ω

ϕ dμ, ∀ϕ ∈ C0(Ω).

By the Banach–Steinhaus theorem, we have that

if μk ⇀ μ, then sup
k
|μk|(Ω) < +∞.

Note, moreover, that by the lower semicontinuity of the dual norm with respect
to weak-∗ convergence, we have that μ �→ |μ|(Ω) is weakly lower semicontin-
uous (i.e., |μ|(Ω) ≤ lim infk→∞ |μk|(Ω), provided μk ⇀ μ).

Example 2.30. Let � be the parallelepiped in R
n defined by

� = (0, l1)× · · · × (0, ln).

We will refer to � as the reference period. Let F be a �-periodic connected
domain in R

n. Let Ω be as usual a bounded smooth open subset of R
n. So,

we may always suppose that Ω is a measurable set in the sense of Jordan. Let
us introduce the following measure on Ω,

dμ = ρ(x)dx, ρ(x) =

{
|F ∩Ω|−1 if x ∈ Ω,

0 if x ∈ R
n \Ω.

(2.40)

It is clear that μ ∈M(Ω) as a periodic Borel positive measure with periodicity

cell � and
∫

�
dμ = 1. This measure is absolutely continuous with respect to

the Lebesgue measure Ln. Let us consider the sequence {μk}∞k=1 in M(Ω),
where

μk(B) = k−nμ(kB), ∀ k ∈ N,

for every Borel set B ⊂ R
n. Then dμk = ρ(kx) dx and

∫

k−1�
dμk = k−n

∫

�
dμ = k−n.

We wish to prove that μk ⇀ Ln as k →∞. Indeed, let �i = � + i, where i is
a vector in R

n with integer components. Then k−1�i is a partition of R
n for

every fixed k ∈ N and
∫

Ω

ϕ(x) dμk =
∑∫

k−1�i

ϕ(x) dμk +
∑∫

k−1�i∩Ω

ϕ(x) dμk (2.41)

for every ϕ ∈ C0(Ω), where the first sum is taken over all i such that k−1�i

is inside Ω and the second sum is over all i such that k−1�i and ∂Ω have
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common points. Let us first consider the first sum in (2.41). Since ϕ ∈ C0(Ω),
there exist points xi ∈ k−1�i such that

∫

k−1�i

ϕ(x) dμk = ϕ(xi)
∫

k−1�i

dμk = ϕ(xi)k−n

∫

�
dμ = k−nϕ(xi).

This, together with the fact that
∑

k−nϕ(xi) is the construction of a Riemann
sum, implies that

lim
k→∞

∑
k−nϕ(xi) →

∫

Ω

ϕ(x) dx. (2.42)

Let us consider the second sum in (2.41). We have
∣∣∣∣
∑∫

k−1�i∩Ω

ϕ(x) dμk

∣∣∣∣ ≤ max
x∈Ω

|ϕ(x)|k−nM(k),

where M(k) is the number of cubes k−1�i containing the boundary of Ω.
Since k−nM(k) → 0 by the Jordan measurability property of Ω, we conclude

lim
k→∞

∑∫

k−1�i∩Ω

ϕ(x) dμk = 0. (2.43)

Thus, the desired property follows by taking (2.42)–(2.43) into account.

Theorem 2.31. Let {μk}∞k=1 be a sequence in M(Ω) with supk |μk|(Ω) <
+∞. Then there exists a subsequence of {μk}∞k=1 weakly converging to some
μ ∈M(Ω).

To characterize this result, which can be found in Federer [109] and Evans
and Gariepy [106], let us consider a bounded sequence {uk}∞k=1 in L1(Ω, dμ),
where μ is a positive Borel measure on Ω. Then Theorem 2.31 applied with
μk = ukμ yields the relative compactness of {μk}∞k=1 only in the weak-M(Ω)
topology. Consequently, in general, its cluster points need not be in L1(Ω).

Let us list some general properties of the weak convergence in the space
of Radon measures Mb(Ω) which we apply below. We recall that a sequence
{μk}∞k=1 of Radon measures on R

n is said to be bounded if

sup
k∈N

μk(K) < +∞ for each compact set K ⊂ R
n.

Lemma 2.32. Let {μk}∞k=1 and μ be Radon measures on Ω such that μk ⇀ μ
in Mb(Ω) as k →∞. Then (see Zhikov [258]) the following hold:

1. ημk ⇀ ημ in Mb(Ω) for every positive function η ∈ C(Ω).
2. lim inf

k→∞
μk(A) ≥ μ(A) for every open set A ⊂ Ω.

3. lim sup
k→∞

μk(K) ≤ μ(K) for every compact set K ⊂ Ω.
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4. If lim
k→∞

μk(Ω) = μ(Ω), then the weak convergence μk ⇀ μ implies the

following convergence:

lim
k→∞

∫

Ω

ϕdμk =
∫

Ω

ϕdμ, ∀ϕ ∈ C(Ω).

Since Mb(Ω) is the dual space of C0(Ω), it follows that every Radon
measure on Ω can be identified with an element of the space of distributions
D′(Ω) in the usual way. Therefore, we say that a Radon measure μ belongs to
Mb(Ω)∩W−1,q(Ω) if and only if there exist functions f0, f1, . . . , fn ∈ Lq(Ω)
such that

∫

Ω

ϕdμ =
∫

Ω

f0ϕdx−
n∑

k=1

∫

Ω

fk
∂ϕ

∂xk
dx, ϕ ∈ C∞

0 (Ω).

In other words, we say that a Radon measure μ on Ω belongs to W−1,q(Ω) if
there exists f ∈ W−1,q(Ω) such that

〈f, ϕ〉W−1,q(Ω),W 1,p
0 (Ω) =

∫

Ω

ϕdμ, ϕ ∈ C∞
0 (Ω).

In this case, we can identify f ∈ W−1,q(Ω) and μ ∈ Mb(Ω). Note also that,
by the Riesz theorem, every non-negative element of W−1,q(Ω) is a Radon
measure.

Theorem 2.33 ([105]). Assume that a sequence of Radon measures {μk}∞k=1

is bounded in Mb(Ω). Then {μk}∞k=1 is precompact in W−1,q(Ω) for each
1 ≤ q < 1∗ = n/(n− 1).

Proof. In view of Theorem 2.31, we may extract a subsequence
{
μkj

}∞
j=1

⊂
{μk}∞k=1 so that μkj ⇀ μ in M(Ω) for some measure μ ∈ Mb(Ω). Let us
set q′ = q/(q − 1) and denote by B the closed unit ball in W 1,q′

0 (Ω). Since
1 ≤ q < 1∗, we have q′ > n. So, by the Sobolev embedding theorem, B
is a compact set in C0(Ω). Hence, for a given δ > 0, there exist functions
{φi}N(δ)

i=1 ⊂ C0(Ω) such that

sup
1≤i≤N(δ)

‖ϕ− φi‖C(Ω) < δ, ∀ϕ ∈ B.

Thus, if ϕ ∈ B, then
∣∣∣∣
∫

Ω

ϕdμkj −
∫

Ω

ϕdμ

∣∣∣∣ ≤ 2δ sup
j

∣∣μkj

∣∣ (Ω) +
∣∣∣∣
∫

Ω

φi dμkj −
∫

Ω

φi dμ

∣∣∣∣

for some index 1 ≤ i ≤ N(δ). Consequently,

lim
j→∞

sup
ϕ∈B

∣∣∣∣
∫

Ω

ϕdμkj −
∫

Ω

ϕdμ

∣∣∣∣ = 0,

and so μkj → μ in W−1,q(Ω).
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The notion of a Radon measure can be easily extended to the case when Ω
is a locally compact Hausdorff space. For more results about weak convergence
of measures and its consequences, we refer to Evans and Gariepy [106], Federer
[109], and Rudin [221].

2.4.2 Weak convergence in L1(Ω)

Let Ω be a bounded open domain in R
n. Let uk ∈ L1(Ω) (k ∈ N) and

u ∈ L1(Ω) be given functions. The sequence {uk}∞k=1 is said to be weakly
convergent to u in L1(Ω) if

lim
k→∞

∫

Ω

ukϕdx =
∫

Ω

uϕ dx, ∀ϕ ∈ L∞(Ω).

Since L1(Ω) cannot be characterized as the dual of some Banach space, the
notion of weak-∗ convergence is not interesting in this space. However, as
was mentioned earlier, for any bounded sequence {uk}∞k=1 in L1(Ω) its clus-
ter points need not be in L1(Ω). Indeed, having applied Theorem 2.31 with
dμk = uk dx, we obtain the relative compactness of {μk}∞k=1 only in the weak-
M(Ω) topology. At this point, one can ask under which conditions a bounded
sequence in L1(Ω) is weakly compact. To answer this question, we need the
following definitions.

Definition 2.34. A sequence {uk}∞k=1 in L1(Ω) is said to be equi-integrable
if, for any η > 0, there exists δ > 0 such that

∀ k ∈ N,

∫

E

|uk(x)| dx < η, for any E ⊂ Ω with |E| < δ,

where |E| stands for the Lebesgue measure of E.

Definition 2.35. A function h(t) (t ≥ 0) is said to be coercive, if it is non-
negative, non-decreasing, and satisfies the condition

lim
t→∞

t−1h(t) dt = +∞.

Then the answer to the above question is as in the following proposition.

Proposition 2.36. (Dunford–Pettis) The following statements are equiva-
lent:

(a) The sequence {uk}∞k=1 is weakly compact in L1(Ω).
(b) The sequence {uk}∞k=1 is equi-integrable.

(c) There is a coercive function h(t) such that supk∈N

∫

Ω

h(|uk|) dx < +∞.

(d) Given δ > 0, there is λ = λ(δ) such that supk∈N

∫

{|uk|>λ}
|uk| dx < δ.
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Theorem 2.37. (Generalized Lebesgue’s Theorem) Let {uk}∞k=1 be an equi-
integrable sequence in L1(Ω) such that uk → u almost everywhere on Ω as
k →∞. Then u ∈ L1(Ω) and uk → u in L1(Ω).

The proof of the above statements can be found in Dunford and Schwartz
[99], Ekeland and Temam [104], and Natanson [198].

One of the useful implication of the condition (c) is that for any u ∈ L1(Ω),
there exists a coercive function ϕ such that ϕ(|u|) ∈ L1(Ω). Of course, this
result is very simple and can be proved quite easily on the basis of the following
observation: For any given numerical series

∑∞
k=1 ak < +∞, where ak ≥ 0,

there exists a sequence λk →∞ such that
∑∞

k=1 λkak < +∞.

2.5 Elements of capacity theory

In this section, we give the notion of capacity as a way to study certain “small”
subsets of R

n. Let Ω ⊂ R
n be a bounded open set and let 1 < p < +∞. The

p-capacity of a subset E in Ω is

capp (E, Ω) = inf
{∫

Ω

|∇u|p dx : u ∈ UE

}
,

where UE is the set of all functions of the Sobolev space W 1,p
0 (Ω) such that

u ≥ 1 almost everywhere in a neighborhood of E.
We say that a property P(x) holds quasi everywhere (abbreviated as q.e.)

in a set E if it holds for all x ∈ E except for a subset N of E with capp (N, E) =
0. The expression almost everywhere refers, as usual, to the Lebesgue measure.

A subset A of Ω is said to be p-quasi-open if for every ε > 0, there exists
an open subset Aε of Ω, such that A ⊆ Aε and capp (Aε \A, Ω) < ε. The class
of all p-quasi-open subsets of Ω we denote by A(Ω).

A function f : Ω → R is said to be p-quasi-continuous (resp., quasi-lower
semicontinuous) if for every ε > 0, there exists a continuous (resp., lower
semicontinuous) function fε : Ω → R such that capp ({f �= fε} , Ω) < ε, where
{f �= fε} = {x ∈ Ω : f(x) �= fε(x)}. It is well known that (see, e.g., Ziemer
[267]) every function u ∈ W 1,p

0 (Ω) has a p-quasi-continuous representative,
which is uniquely defined up to a set of p-capacity 0. We will always identify
the function u with its quasi-continuous representative, so that a pointwise
condition can be imposed on u(x) for p-quasi-every x ∈ Ω. Note that with
this convention we can write

capp (E, Ω) = inf
{∫

Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω), u ≥ 1 q.e. on E

}
(2.44)

for every subset E of Ω.
Since p is fixed, the index p may be dropped when speaking about p-quasi-

open sets, p-quasi-continuity, and so forth. It is clear that a set of zero capacity
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has zero measure, but the converse is not true. Moreover, when p > n, the
p-capacity of a point is strictly positive and every W 1,p-function has a con-
tinuous representative. Therefore, a property which holds p-quasi-everywhere,
with p > n, holds in fact everywhere. We refer to [106, 120] for a review of
the main properties of the p-capacity. We recall the following key results.

Theorem 2.38. Assume A, B ⊂ Ω. Then the following hold:

1. capp (A, Ω) = inf
{
capp (U,Ω) : U is open, A ⊂ U ⊆ Ω

}
.

2. capp (λA, Rn) = λn−pcapp (A, Rn), λ > 0.
3. capp (B(x, r), Rn) = rn−pcapp (B(0, 1), Rn).
4. capp (A, Ω) ≤ CHn−p(A) for some constant C depending only on p and n.
5. Ln(A) ≤ Ccapp (A, Ω)n/(n−p) for some constant C depending only on p

and n.
6. capp (A ∪B, Ω) + capp (A ∩B, Ω) ≤ capp (A, Ω) + capp (B, Ω).

Theorem 2.39. Let u ∈ H1(Rn). Then for q.e. x ∈ R
n,

lim
ε→0

|B(x, ε)|−1

∫

B(x,ε)

u(y) dy = ũ(x),

where ũ is a quasi-continuous representative of u.

Theorem 2.40. Every strongly converging sequence in H1(Rn) has a subse-
quence converging q.e. in R

n.

Theorem 2.41. Let A and Ω be two bounded open subsets of R
n such that

A ⊂ Ω and consider an element u of H1
0 (Ω). Then u|A ∈ H1

0 (A) if and
only if ũ = 0 quasi-everywhere on Ω \ A, where ũ = 0 is a quasi-continuous
representative of u.

In view of this, we note that the following two spaces:

H1
o (A; Ω) =

{
ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e. in Ω \A
}

and

H1
0 (A; Ω) =

{
ϕ ∈ H1

0 (Ω) : ϕ = 0 q.e. in Ω \A
}

are not equal, in general. Indeed, ϕ ∈ H1
0 (A; Ω) cannot be characterized by

merely saying that this function and its derivatives are 0 almost everywhere
in Ω \A. By definition, a function ϕ ∈ H1(Ω) is said to be 0 quasi-everywhere
in a subset E of Ω if there exists a quasi-continuous representative of ϕ which
is 0 quasi-everywhere in E. This makes sense, since any two quasi-continuous
representatives of an element ϕ of H1(Ω) are equal quasi-everywhere. So,
we have H1

0 (A; Ω) ⊂ H1
o (A; Ω). However, as can be seen from the following

example, in general the reverse inclusion is not true.
Let B(0, r) be the open ball of radius r > 0 in R

n. Let us set Ω = B(0, 3)
and A = B(0, 2) \ ∂B(0, 1). It is well known that the circular crack ∂B(0, 1)
in A has nonzero capacity but zero Lebesgue measure Ln. Since ∂B(0, 1) has
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zero measure, it follows that H1
o (A; Ω) contains functions ψ ∈ H1

0 (B(0, 2))
whose restriction to B(0, 2) are not 0 on the sphere ∂B(0, 1). Hence, those
functions ψ do not belong to H1

0 (A, Ω). So, H1
o (A; Ω) � H1

0 (A; Ω). However,
if A has a Lipschitz boundary, then the spaces H1

o (A; Ω) and H1
0 (A; Ω) can

be identified (see Delfour and Zolésio [91]). In view of this, it is natural to
introduce the following terminology (see Rauch and Taylor [217]).

Definition 2.42. A set A is said to be stable with respect to Ω if H1
o (A; Ω) =

H1
0 (A; Ω).

Following Buttazzo and Dal Maso [45], let us denote by Mp
0(Ω) the set of

all non-negative Borel measures μ on Ω such that the following hold:

1. μ(B) = 0 for every Borel set B ⊂ Ω with capp (B, Ω) = 0.
2. μ(B) = inf {μ(U) : U quasi-open, B ⊆ U} for every Borel set B ⊂ Ω.

When p = 2, we use the notation M0(Ω) instead of M2
0(Ω).

As examples of measures in the class Mp
0(Ω) we can quote the following:

(i) ϕLn ∈ Mp
0(Ω) for every ϕ ∈ L∞(Ω), where, as usual, Ln is the n-

dimensional Lebesgue measure.
(ii) If n− 2 < α ≤ n, then the α-dimensional Hausdorff measure Hα belongs

to Mp
0(Ω). This is a consequence of the two following implications:

Hn−2(B) < +∞⇒ capp (B, Ω) = 0,

capp (B, Ω) = 0 ⇒ Hn−2+δ(B) = 0, ∀δ > 0.

(iii) The measure

∞S(B) =
{

0 if capp (B ∩ S, Ω) = 0,
+∞ otherwise (2.45)

belongs to Mp
0(Ω) for every quasi-closed set S, and so does the measure

μA = ∞Ω\A for every open set A ⊂ Ω, that is,

μA(B) =
{

0 if capp (B \A, Ω) = 0
+∞ otherwise.

Let B∗(Ω) be the σ-field generated by the Borel subsets of Ω. It is well
known that a subset E of Ω belongs to B∗(Ω) if and only if there exists
B ∈ B(Ω) with capp (E�B) = 0, where � denotes the symmetric difference
of sets. Therefore, each measure μ ∈Mp

0(Ω) can be extended in a unique way
to a countably additive set function, still denoted by μ, defined on the larger
σ-field B∗(Ω).

We say that A(μ) is a regular set for the measure μ ∈ Mp
0(Ω) if A(μ) is

defined as the union of all open subsets A of Ω such that μ(A) < +∞. The
singular set S(μ) is defined as the complement of A(μ) in Ω. It is easy to see
that A(μ) is also open, and if A is a open subset of Ω which intersects S(μ),
then μ(A) = +∞.



2.6 On the space W 1,p
0 (Ω) ∩ Lp(Ω, dμ) and its properties 47

2.6 On the space W 1,p
0 (Ω) ∩ Lp(Ω, dμ) and its properties

Let Ω be a bounded open subset of R
n with n ≥ 2. Let us fix μ ∈ Mp

0(Ω)
and denote by Xp

μ(Ω) the vector space of all functions u ∈ W 1,p
0 (Ω) such that∫

Ω

|u|p dμ < +∞. Note that this definition makes sense because μ vanishes

on all sets of capacity 0 and every function u ∈ W 1,p
0 (Ω) is defined up to a set

of capacity 0. So, the integral
∫

Ω

|u|p dμ is unambiguously defined. On Xp
μ(Ω)

we consider the norm

‖u‖Xp
μ(Ω) =

[∫

Ω

|Du|p dx +
∫

Ω

|u|p dμ

]1/p

.

Theorem 2.43. Xp
μ(Ω) is a Banach space.

Proof. Let {ui}∞i=1 be a Cauchy sequence in Xp
μ(Ω). Then {ui}∞i=1 is a Cauchy

sequence both in W 1,p
0 (Ω) and in Lp(Ω, dμ). Therefore, {ui}∞i=1 converges to

a function u in W 1,p
0 (Ω) and to a function v in Lp(Ω, dμ). Taking into account

the fact that every convergent sequence in W 1,p
0 (Ω) is relatively compact with

respect to the pointwise convergence q.e. on Ω, we can extract a subsequence
{uik

}∞k=1 converging to u q.e. in Ω. Since μ vanishes on all sets with capacity 0,
{uik

}∞k=1 converges to u μ-a.e. in Ω. On the other hand, a further subsequence
of {uik

}∞k=1 converges to v μ-a.e. in Ω. Hence, u = v μ-a.e. in Ω and, therefore,
u ∈ Xp

μ(Ω) and {ui}∞i=1 converges to u both in W 1,p
0 (Ω) and in Lp(Ω, dμ).

This implies that {ui}∞i=1 converges to u in Xp
μ(Ω). Thus, the normed space

Xp
μ(Ω) is complete.

It is clear now that in the case when p = 2, X2
μ(Ω) = H1

0 (Ω)∩L2(Ω, dμ) is a
Hilbert space with respect to the scalar product,

(u, v)X2
μ(Ω) =

∫

Ω

DuDv dx +
∫

Ω

uv dμ. (2.46)

Let us consider now some examples which illustrate the structure of the
space Xp

μ(Ω) under some special assumptions on the measure μ.

Example 2.44. Assume that μ = gLn with g ∈ Lq(Ω), where
{

q ∈ [1, +∞) if p ≥ n,
q ∈ [1, p∗ = pn/(n− p)] if p < n.

By the Sobolev embedding theorem, we have that W 1,p
0 (Ω) ↪→ Lq(Ω). Hence,

Xp
μ(Ω) = W 1,p

0 (Ω) with equivalent norm.
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Example 2.45. Let A be an open subset of Ω and let S = Ω\A. If μ is equal to
the measure μ = ∞S +gLn, where g ∈ Lq(Ω), q satisfies the conditions of the
previous example, and ∞S is defined by (2.45), then Xp

μ(Ω) = W 1,p
0 (A), and

the norms in Xp
μ(Ω) and W 1,p

0 (Ω) are equivalent by the Poincaré inequality.

Consider now a measure μ ∈ Mp
0(Ω). By

(
Xp

μ(Ω)
)∗ we denote the dual

space of Xp
μ(Ω), with duality pairing 〈·, ·〉(Xp

μ(Ω))∗,Xp
μ(Ω). Note that even in the

case when p = 2, the space X2
μ(Ω) is not dense in L2(Ω). Therefore, we do not

identify the isomorphic spaces X2
μ(Ω) and

(
X2

μ(Ω)
)∗. Let us show that the

spaces Lp′
(Ω), W−1,p′

(Ω), and Lp′
(Ω, dμ) can be viewed as linear subspaces

of (Xμ(Ω))∗ (here p′ = p/(p− 1)).
Let i : Xp

μ(Ω) → W 1,p
0 (Ω) be the natural embedding defined by i(u) = u

for every u ∈ Xp
μ(Ω). The transpose map ti : W−1,p′

(Ω) →
(
Xp

μ(Ω)
)∗ allows

us to consider W−1,p′
(Ω) as a subspace of (Xμ(Ω))∗. With a little abuse of

notation, which is discussed in a moment, we write f instead ti(f) for every
f ∈ W−1,p′

(Ω). With this convention we have

〈f, v〉(Xp
μ(Ω))∗,Xp

μ(Ω) = 〈f, v〉W−1,p′ (Ω),W 1,p
0 (Ω) , ∀ v ∈ Xp

μ(Ω). (2.47)

In particular, for f ∈ Lp′
(Ω), we have

〈f, v〉(Xp
μ(Ω))∗,Xp

μ(Ω) =
∫

Ω

fv dx, ∀ v ∈ Xp
μ(Ω).

The abuse in our notation consists in the fact that the map ti : W−1,p′
(Ω) →(

Xp
μ(Ω)

)∗ is, in general, not injective, because Xp
μ(Ω) is, in general, not dense

in W 1,p
0 (Ω). Therefore, there may exist two elements f and g of W−1,p′

(Ω)
such that f �= g in W−1,p′

(Ω) but f = g in
(
Xp

μ(Ω)
)∗, where the last equality

means ti(f) = ti(g), according to our convention (2.47).

Example 2.46. Assume that μ is the measure ∞Ω defined in (2.45) taking S =
Ω. Then Xp

μ(Ω) = {0}; hence, ti(f) = 0 for every f ∈ W−1,p′
(Ω). Therefore,

in view of (2.47), we have f = 0 in
(
Xp

μ(Ω)
)∗ for every f ∈ W−1,p′

(Ω).

Let j : Xp
μ(Ω) → Lp(Ω, dμ) be the natural embedding defined by j(u) = u

for every u ∈ Xp
μ(Ω). Then the transpose map tj : Lp′

(Ω, dμ) →
(
Xp

μ(Ω)
)∗

allows us to consider Lp′
(Ω, dμ) as a subspace of

(
Xp

μ(Ω)
)∗. For every g ∈

Lp′
(Ω, dμ), the image tj(g) is denoted by gμ. With this convention we have

〈gμ, v〉(Xp
μ(Ω))∗,Xp

μ(Ω) =
∫

Ω

vg dμ, ∀ v ∈ Xp
μ(Ω). (2.48)

Since Xp
μ(Ω) is, in general, not dense in Lp(Ω, dμ), the map tj : Lp′

(Ω, dμ) →(
Xp

μ(Ω)
)∗ is, in general, not injective. Therefore, there may exist two elements

f and g of Lp′
(Ω, dμ) such that f �= g in Lp′

(Ω, dμ), that is,
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μ({x ∈ Ω : f(x) �= g(x)}) > 0,

but fμ = gμ in Xp
μ(Ω).

Example 2.47. Let E be the set of all points x = (x1, x2, . . . , xn) in Ω whose
first coordinate x1 is rational. Let μ = ∞E+Ln. Then it is clear that Xp

μ(Ω) =
{0}. Therefore, taking g = χΩ\E , where χΩ\E is the characteristic function
of the set Ω \ E, we have g ∈ Lp′

(Ω, dμ) and g �= 0 in Lp′
(Ω, dμ), whereas

gμ = tj(g) = 0 in
(
Xp

μ(Ω)
)∗.

Let us fix a measure μ ∈M2
0(Ω). Then by the Riesz–Fréchet representation

theorem, for every F ∈
(
X2

μ(Ω)
)∗, there exists a unique u ∈ X2

μ(Ω) such that

〈F, v〉(X2
μ(Ω))∗,X2

μ(Ω) = (u, v)X2
μ(Ω), ∀ v ∈ X2

μ(Ω). (2.49)

By definition (2.46) of the scalar product in X2
μ(Ω), (2.49) is equivalent to

∫

Ω

DuDv dx +
∫

Ω

uv dμ = 〈F, v〉(X2
μ(Ω))∗,X2

μ(Ω) , ∀ v ∈ X2
μ(Ω).

However, according to our conventions (2.47) and (2.48), the last equality can
be written in the form

〈−�u, v〉(X2
μ(Ω))∗,X2

μ(Ω) + 〈uμ, v〉(X2
μ(Ω))∗,X2

μ(Ω)

= 〈F, v〉(X2
μ(Ω))∗,X2

μ(Ω) , ∀ v ∈ X2
μ(Ω). (2.50)

This shows that each element F of
(
X2

μ(Ω)
)∗ can be represented as F = f+gμ

with f ∈ H−1(Ω) and g ∈ L2(Ω, dμ). On the other hand, because of (2.50),
we refer to the solution of (2.49) as the solution of the problem

u ∈ X2
μ(Ω), −�u + uμ = F in

(
X2

μ(Ω)
)∗

.

2.7 Sobolev spaces with respect to a measure

Let Ω be an open domain in R
n and let μ be a finite positive (e.g., probability)

measure of Mp
0(Ω). We introduce the Sobolev space W 1,p(Ω, dμ) as follows.

Definition 2.48. We say that a function u belongs to W 1,p(Ω, dμ) if there
exist a sequence

{
uk ∈ C∞(Ω)

}∞
k=1

and a vector-function z ∈ Lp(Ω, dμ) :=
[Lp(Ω, dμ)]n such that

uk → u in Lp(Ω, dμ) and ∇uk → z in Lp(Ω, dμ). (2.51)

In this case we say that z is a gradient or μ-gradient of u and denote it by
∇μu.
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In other words, to define the space W 1,p(Ω, dμ), we construct the space
W = W (Ω, dμ) as the closure in Lp(Ω, dμ) × Lp(Ω, dμ) of the set of pairs{
(u,∇u) : ∀u ∈ C∞(Ω)

}
. Thus, the elements of W are pairs (u, z), where

the vector z is denoted by ∇μu, and said to be a gradient of u. As a result, the
collection of the first components u is called the Sobolev space W 1,p(Ω, dμ).
Note that if we put in (2.51) functions u ∈ C∞

0 (Ω), we just obtain the defini-
tion of the Sobolev space W 1,p

0 (Ω, dμ). Note also that we do not introduce a
norm in these spaces. If p = 2, we usually write H1(Ω, dμ) = W 1,2(Ω, dμ).

Remark 2.49. In the above definition, the strong convergence in Lp(Ω, dμ)
and Lp(Ω, dμ) can be replaced by the weak convergence in the same spaces.

In general, the gradient of a W 1,p(Ω, dμ) function is not unique since a
function u in W 1,p(Ω, dμ) can have many gradients. Let us denote by Γμ(u)
the set of all gradients of a fixed function u ∈ W 1,p(Ω, dμ). It is clear that
Γμ(u) has the structure Γμ(u) = ∇μu + Γμ(0), where ∇μu is some gradient
and Γμ(0) is the set of gradients of 0. By definition, z ∈ Γμ(0) if there exist
uk ∈ C∞(Ω) (k = 1, 2, . . . ) such that

lim
k→∞

∫

Ω

|uk|p dμ = 0 and lim
k→∞

∫

Ω

|∇uk − z|p
Rn dμ = 0.

Obviously, Γμ(0) is a closed subspace of the vector space Lp(Ω, dμ). So, the
gradient of an arbitrary W 1,p(Ω, dμ) function can be viewed as the corre-
sponding equivalence class. As an illustration of nonuniqueness of the gradi-
ent, we consider the following example.

Example 2.50. The case of a singular measure μ concentrated on the
segment. Let I = {x | a ≤ x1 ≤ b; x2 = 0} be a segment in R

2 and suppose
that a bounded domain Ω ⊂ R

2 contains I. Let μ be a probability measure
concentrated on this segment, uniformly distributed on it, and coinciding with
1D Lebesgue measure on I – namely we set

dμ =
1

b− a
χ(x1) dx1 × δ(x2), (2.52)

where χ(t) is the characteristic function of the segment [a, b] and δ(t) is the
Dirac mass concentrated at 0. It is clear that μ is a singular measure with
respect to L2, and, by definition of the class M0(Ω), we have μ ∈ M0(Ω).
Note also that μ(Ω \ I) = 0. Therefore, any functions taking the same values
on the segment I coincide as elements of L2(Ω, dμ).

By Definition 2.48, a function u is an element of H1(Ω, dμ) if there are a
sequence of smooth functions uk ∈ C∞(Ω) and z = (z1, z2) ∈ L2(Ω, dμ) such
that
∫

I

|u− uk|2 dx1 → 0,

∫

I

∣∣∣∣
∂uk

∂x1
− z1

∣∣∣∣
2

dx1 → 0,

∫

I

∣∣∣∣
∂uk

∂x2
− z2

∣∣∣∣
2

dx1 → 0.
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Thus, due to (2.51) each element of H1(Ω, dμ) is uniquely defined by the
respective element of the 1D Sobolev space H1([a, b]) and z1 = ∂u/∂x1. Thus,
∇μu = (∂u/∂x1, z2). We now show that the component z2 can be an arbitrary
element of L2(I). In other words,

Γμ(0) = {(0, α)} , α ∈ L2(I) = L2(Ω, dμ).

Indeed, since Γμ(0) is closed in L2(Ω, dμ) and C∞(I) is dense in L2(I), it
is sufficient to verify that (0, α) ∈ Γμ(0) for α ∈ C∞(I). To do so, we set
uk(x1, x2) = x2α(x1). Then uk → 0 strongly in L2(Ω, dμ) as k → ∞ and,
moreover,

∂uk

∂x1

∣∣∣∣
x2=0

= 0,
∂uk

∂x2

∣∣∣∣
x2=0

= α(x1).

Hence, the required conclusion is obtained. To conclude this example, we note
that a Borel function u = u(x1, x2) belongs to the space H1(Ω, dμ) if and only
if u ∈ H1(Ω) and the restriction (trace) of u to the segment I is an H1 function
of a single variable. Note also that the trace of a function in H1(Ω) is defined
on I and is an element of the space H1/2(I), in general!

Let us consider several examples of the Sobolev spaces H1(Ω, dμ).

Example 2.51. Network node. Consider the segments I1, I2, . . . , IN start-
ing at the origin and directed along vectors v1, v2, . . . , vN . Suppose that
vi/|vi| �= vj/|vj | for i �= j, and a bounded open domain Ω ⊂ R

2 contains
this star structure. Let μ1, μ2, . . . , μN be the 1D measures on the segments
I1, I2, . . . , IN , respectively (see, for instance, (2.52)). Let λ1, λ2, . . . , λN be
arbitrary positive numbers. We set

μ =
N∑

i=1

λiμi.

Then it is easy to verify that a Borel function u = u(x1, x2) belongs to the
space H1(Ω, dμ) if and only if its restriction to each segment Ij is an H1 func-
tion of a single variable and the values of the restricted functions at the origin
coincide for all segments (recall that, by the Sobolev embedding theorem, an
H1 function of a single variable is continuous).

Example 2.52. Junction. Let Ω = (−1, 1)3, G =
[
−1

8 , 1
8

]3,

Π =

{
x ∈

[
−1

2
,
1
2

]3

: x3 = 0, (x1, x2) ∈
[
0,

3
8

]
×
[
−1

8
,
1
8

]}
,

I =

{
x ∈

[
−1

2
,
1
2

]3

: x2 = x3 = 0, x1 ∈
[
1
4
,
1
2

]}
,
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μ1 is the standard Lebesgue measure on the segment I, μ2 is the planar
Lebesgue measure on Π, and dx is the spatial Lebesgue measure in R

3 re-
stricted to the cube G. Introduce the measure on Ω as follows:

dμ = dμ1 + dμ2 + dx.

Note that the trace of an H1(Ω) function is defined on Π and is an element
of the space H1/2(Π). The trace of an H1(Π) function on the segment I is
also well defined. However, unlike the 2D case, in the case of dimension 3,
the traces of an H1(Ω) function on 1D segments are not defined. Therefore,
we have to use the following obvious fact: The space H1(Ω, dμ) is isomorphic
to the direct sum of the spaces H1(Ω,χGdx) and H1(Ω, dμ1 + dμ2). Thus,
the function u belongs to H1(Ω, dμ) if u = û + ũ, where û ∈ H1(G), ũ ∈
H1(Π)∩H1(I,dμ2), and ũ|I is an element of H1(I). For the other properties
of the space H1(Ω, dμ), we refer to [58, 59].

We now describe some properties of the subspace Γμ(0).

(i) If g ∈ Γμ(0) and a ∈ L∞(Ω, dμ), then ag ∈ Γμ(0).
To see this, it suffices to consider the case a ∈ C∞(Ω). Then if follows
from the definition of Γμ(0) that

auk
L2(Ω,dμ)−→ 0, ∇μ(auk) = ∇μa uk + a∇uk

L2(Ω,dμ)−→ ag.

Hence, ag ∈ Γμ(0).
(ii) Let Π be the orthogonal projection of L2(Ω, dμ) onto Γμ(0). Then

Π(ag) = aΠ(g), ∀g ∈ L2(Ω, dμ), a ∈ L∞(Ω, dμ).

Indeed, setting ĝ = Π(g), we obtain ĝ ∈ Γμ(0) and g− ĝ⊥Γμ(0). Then,
by property (i), we have

aĝ ∈ Γμ(0), (a(g − ĝ), h) = 0, ∀h ∈ Γμ(0),

as required.
(iii) The set Γμ(0) ∩ L∞(Ω, dμ) is dense in Γμ(0). In fact, if ak is the char-

acteristic function of the set {x ∈ Ω : |g| ≤ k}, then akg ∈ Γμ(0) and
akg → g as k →∞.

(iv) There exists a μ-measurable subspace D(x) ⊂ R
n such that

Γμ(0) =
{
g ∈ L2(Ω, dμ) : g(x) ∈ D(x)

}
. (2.53)

Indeed, let e1, e2, . . . , en be the natural basis of R
n. We set ξi = Πei

and define D(x) as the linear span of the vectors {ξ1(x), . . . , ξn(x)}. We
denote by B the subspace of L2(Ω, dμ) defined by the right-hand side of
(2.53) and show that Γμ(0) = B.
Let g ∈ Γμ(0) ∩ L∞(Ω, dμ). Then, by property (ii), we obtain
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g = g1e1 + · · ·+ gnen = Πg = g1ξ1 + · · ·+ gnξn ∈ B.

In view of property (iii) and the fact that B is closed, we have the inclu-
sion Γμ(0) ⊆ B. To verify the reverse inclusion B ⊆ Γμ(0), we note that

a(x)
n∑

i=1

λiξi ∈ Γμ(0), ∀ a ∈ L∞(Ω, dμ), ∀λi ∈ R
1

because of properties (i) and (ii) and the fact that ξ1, . . . , ξn ∈ Γμ(0).
The set of such elements is dense in B. Let us assume that there exists
a b ∈ B such that b �= 0 and

(
ab,

n∑

i=1

λiξi

)

L2(Ω,dμ)

= 0.

Since a is an arbitrary function, it follows that
(

b(x),
n∑

i=1

λiξi(x)

)

Rn

= 0

for μ-almost all x ∈ Ω, which means that b(x) = 0. The proof is complete.

Definition 2.53. We say that a gradient ∇μu is tangential for u ∈ H1(Ω, dμ)
if ∇μu⊥Γμ(0) (or in the equivalent form, if ∇μu(x) ∈ T (x) for μ-almost all
x ∈ Ω, where T (x) = (D(x))⊥).

It is clear that each function in the Sobolev space H1(Ω, dμ) has a unique
tangential gradient. It is also obvious that if ∇μu(x) is some gradient of u and
P (x) is the orthogonal projection R

n → T (x), then P (x)∇μu(x) is the tan-
gential gradient. Combining these results, we come to the following conclusion
(see [256]): There exists a μ-measurable subspace T (x) such that the set of gra-
dients of each function in H1(Ω, dμ) has the representation ∇μu(x) + g(x),
where ∇μu(x) ∈ T (x) and g is an arbitrary vector in L2(Ω, dμ) such that
g(x) ∈ T⊥(x). The subspace T (x) is called the tangential space at the point
x and ∇μu is called the tangential gradient. For more results concerning the
Sobolev spaces with respect to a measure and their applications, we refer
to Chechkin, Zhikov, Lukkassen and Piatnitski [58], Bouchitté, Buttazzo and
Seppecher [25], and Fragalà and Mantegazza [110].

2.8 Boundary value problems in Sobolev spaces
with measures

The asymptotic behavior of thin and reticulated structures such as, for ex-
ample, shells, plates, thin films, rod structures, skeletons, and so on is widely
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discussed in the mathematical and engineering literatures. As a rule, the goal
of an asymptotic analysis is to reduce dimension (i.e., to reduce the original
problem to a problem on some structure of smaller dimension). For instance,
the equation on a thin 3D plate is replaced with an equation on a 2D domain
[257], the system describing a rod construction is reduced to a family of or-
dinary differential equations [265], and so on. The reduced system is usually
simpler, especially from the point of view of numerical analysis.

Asymptotic methods for such problems are well known in the literature,
but, as a rule, they are derived under strict restrictions on the geometry
and smoothness of the structure (see, for instance, [14, 22, 66, 200, 209, 216]).
There are numerous works in mechanics where asymptotics for different special
models were obtained at the physical level of rigor.

From mathematical point of view, it is of great interest to construct a
general approach to the asymptotic analysis of different classes of boundary
value problems on thin and reticulated structures, that would be associated
with the corresponding periodic measures, singular measures, partially singu-
lar measures, as well as measures converging to singular ones. A successful
attempt to create such a theory was made in [25, 26, 254, 256, 257, 265]. In
this section, following these works, we define the meaning of boundary value
problems in spaces with measures and clarify the idea of Sobolev spaces with
an arbitrary measure. The main motivation of our intention can be clarified
by a simple example. Let μ be a positive finite Borel measure defined on a
smooth bounded domain Ω. We have the following variational problem:

inf
ϕ∈C∞

0 (Ω)

∫

Ω

(
A(x)∇ϕ(x) · ∇ϕ(x) + ϕ2(x)− 2f(x)ϕ(x)

)
dμ(x),

where A ∈ C(Ω, Rn×n) is a coercive matrix of positive elements and f ∈ C(Ω)
is a given function. Our aim is to describe a minimizer to this problem as an
element of an appropriate Sobolev space with respect to the measure μ and
associate it with a solution to the corresponding Euler equation.

Throughout this section, we assume that Ω is an open domain in R
n

and μ is a periodic Borel (e.g., probability) measure of Mp
0(Ω) such that∫

� dμ = 1, where � = [0, 1)n is the cell (or the torus) of periodicity for μ. Let
H1

per(�, dμ) = W 1,2
per(�, dμ) be the periodic Sobolev space with respect to the

measure μ. Since μ can be identified with the corresponding periodic measure
in R

n, we will also make use the Sobolev space H1(Rn, dμ).
Let A = [aij(x)]i,j=1,...,n be a continuous function with values in the space

of symmetric n× n matrices satisfying the uniform ellipticity condition

α|ξ|2
Rn ≤ (A(x)ξ, ξ)Rn ≤ α−1|ξ|2

Rn , α > 0, ξ ∈ R
n (2.54)

for all x ∈ R
n. Let f be a given element of L2(Rn, dμ) and let λ > 0.

To begin with, we define the notion of divergence with respect to the
measure.
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Definition 2.54. Suppose that g ∈ L2(Rn, dμ) and v ∈
[
L2(Rn, dμ)

]n. We
say that g(x) = divμv(x) if

∫

Rn

g(x)ϕ(x) dμ(x) = −
∫

Rn

v(x) · ∇ϕ(x) dμ(x), ∀ϕ ∈ C∞
0 (Ω).

It is easy to see that, in this definition, instead of smooth functions ϕ one
can take functions ϕ ∈ H1(Rn, dμ).

Definition 2.55. We say that a pair (u,∇μu), where u ∈ H1(Rn, dμ) and
∇μu is a μ-gradient of u, satisfies the equation

− divμ
(
A(x)∇μu

)
+ λu = f (2.55)

in L2(Rn, dμ) if for any v ∈ H1(Rn, dμ) and any gradient ∇μv of v, we have
∫

Rn

A(x)∇μu · ∇μv dμ + λ

∫

Rn

uv dμ =
∫

Rn

fv dμ. (2.56)

Definition 2.56. A function u ∈ H1(Rn, dμ) is called a solution to (2.55) if
the integral identity (2.56) holds for some of the gradients of u and for any
v ∈ H1(Rn, dμ) and any gradient ∇μv of v.

Note that in Definitions 2.55 and 2.56, instead of functions v ∈ H1(Rn, dμ),
one can take the test functions v in C∞

0 (Rn).

Remark 2.57. In the special case when the matrix A(x) in (2.55) is identity,
relation (2.56) takes the form

∫

Rn

∇μu · ∇μv dμ + λ

∫

Rn

uv dμ =
∫

Rn

fv dμ.

Then the corresponding expression divμ∇μu is usually denoted by Δμu and
called the μ-Laplacian of u.

The main result of this section can be formulated as follows:

Lemma 2.58. Let A ∈ C(Ω, Rn×n) be a symmetric matrix satisfying con-
ditions (2.54). Then for every f ∈ L2(Rn, dμ), (2.55) has a unique solu-
tion (u,∇μu), u ∈ H1(Rn, dμ). Moreover, the choice of a μ-gradient of u is
uniquely determined by the condition of orthogonality of the vector A(x)∇μu
and the subspace Γμ(0) of the gradients of 0.

Proof. Since the matrix A = A(x) is positive definite, the left-hand side of
(2.56) is the inner product in W 2(Rn, dμ) (see the definition of the space
W 2(Rn, dμ) in Sects. 2.7 and 6.4), whereas the right-hand side of (2.56) is
a continuous linear functional on W 2(Rn, dμ). By the Riesz representation
theorem, there exists a pair (u,∇μu) ∈ W 2(Rn, dμ) satisfying relation (2.56).
Taking for a test function in (2.56) the pair (0, z), where z ∈ Γμ(0), we see
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that the vector A(x)∇μu is orthogonal to Γμ(0). Using the Riesz theorem
again, we conclude that there is a unique element z of the set of μ-gradients
of u satisfying the orthogonality condition. Thus, the solution u ∈ H1(Rn, dμ)
to (2.55) is unique. � 

Remark 2.59. By Lemma 2.58, the gradient ∇μu chosen by a solution u to the
problem (2.55) satisfies the condition∇μu⊥Γμ(0). Hence, in view of Definition
2.53, ∇μu is the tangential gradient for a function u ∈ H1(Rn, dμ). Moreover,
in the case when the measure μ is defined as in Example 2.51, the orthogonality
A(x)∇μu|x=0⊥Γμ(0) is equivalent to the classical Kirchoff condition.

Let us apply Lemma 2.58 to establish some additional properties of the
solutions to the elliptic equation (2.55).

Lemma 2.60. Under the assumptions of Lemma 2.58, the set of solutions to
(2.55), for all f ∈ L2(Rn, dμ), is dense in the space L2(Rn, dμ).

Proof. Denote by D the set of solutions to the (2.55) when f runs over
the entire space L2(Rn, dμ). Assume that there is a nontrivial element g ∈
L2(Rn, dμ) which is orthogonal to D. For a fixed f ∈ L2(Rn, dμ), we denote by
uf ∈ H1(Rn, dμ) the corresponding solution to (2.55). Then ug ∈ H1(Rn, dμ)
is a solution to the equation

−divμ
(
A(x)∇μu

)
+ λu = g.

Taking ug as a test function in (2.56) and uf for a test function in the last
equation and taking the difference of the obtained integral identities, we come
to the relation ∫

Rn

fug dμ = 0, ∀ f ∈ L2(Rn, dμ).

Hence, ug = 0 and g = 0, which contradicts the assumption that g is nontriv-
ial. The proof is complete. � 

Further, we note that (2.55) can be written in the operator formAu+λu =
f , where A is a self-adjoint symmetric operator. Indeed, let uf be any element
of D (i.e., uf is a solution to (2.55) for some f ∈ L2(Rn, dμ)). We set

Auf = f − λuf .

Then, in view of Lemma 2.58, the operator (A + λI)−1 sends a function
f ∈ L2(Rn, dμ) to the corresponding unique solution uf of (2.55). Since this
operator is nonnegative, bounded, and symmetric, we come to the required
conclusion.

The following assertion can be proved in the same way as in the case of
classical variational problems in the space H1(Rn) (see, for instance, [169]).
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Proposition 2.61. Let f ∈ L2(Rn, dμ) and let A ∈ C(Ω, Rn×n) be a symmet-
ric matrix satisfying conditions (2.54). Then for every λ > 0, the variational
problem

inf
ϕ∈H1(Rn,dμ)

{∫

Rn

(
A(x)∇μu · ∇μu + λu2

)
dμ−

∫

Rn

2fu dμ

}
(2.57)

has a unique minimum point in H1(Rn, dμ) and it is a solution to (2.55).

Thus, (2.55) or the equivalent equation Au +λu = f is an Euler equation for
the variation problem (2.57).

The developed technique allows us to study not only problems in the entire
space R

n but also various boundary value problems. We illustrate this by an
example of a Dirichlet problem (we consider other types of boundary problems
in the second part of this book).

Let Ω be a bounded Lipschitz domain in R
n and let μ be a positive finite

Borel measure on Ω.

Definition 2.62. We say that a function u ∈ L2(Ω, dμ) belongs to the space
H1

0 (Ω, dμ) and z ∈ L2(Ω, dμ) =
[
L2(Ω, dμ)

]n is a μ-gradient of u if there
exists a sequence {uk ∈ C∞

0 (Ω)}∞k=1 such that

uk → u in L2(Ω, dμ) as k →∞,

∇uk → z in L2(Ω, dμ) as k →∞.

Consider the Dirichlet problem

−divμ
(
A(x)∇μu

)
+ λu = f in L2(Ω, dμ), (2.58)

u = 0 on ∂Ω. (2.59)

As before, we assume that the matrix A ∈ C(Ω, Rn×n) is symmetric and
satisfies the uniform ellipticity condition in Ω like (2.54).

Definition 2.63. We say that u ∈ H1
0 (Ω, dμ) is a solution to the Dirichlet

problem (2.58)–(2.59) if the integral identity
∫

Ω

A(x)∇μu · ∇μv dμ + λ

∫

Ω

uv dμ =
∫

Ω

fv dμ

holds true for any v ∈ H1
0 (Ω, dμ).

The existence and uniqueness of a solution to the problem (2.58)–(2.59)
can be established in the same way as in the proof of Lemma 2.58. We recall
that a gradient of the solution that satisfies the above integral identity is
chosen in a unique way.
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2.9 On weak compactness of a class of bounded sets
in Banach spaces

Let X be a Banach space and X
∗ its dual. Let us recall that the weak-∗

topology of X
∗ is the locally convex topology σ(X∗, X) in which the linear

functionals
X∗ � f �→ 〈f, u〉

X∗,X , u ∈ X

are continuous.
Due to the Banach–Alaoglu theorem, it is well known that any bounded

weakly-∗ closed subset B ⊂ X
∗ is compact with respect to the weak-∗ topology

of X
∗. However, it is hard to verify the property of weak-∗ closure for sets which

differ from a ball, even for relatively simple sets B ⊂ X
∗. Therefore, the main

goal of this section is to study the compactness property for other types of
subsets in X

∗ (see, for instance, [151, 152]).
Let X and {Zj}k

j=1 be Banach spaces and let X
∗ and

{
Z
∗
j

}k

j=1
be their

duals, respectively. Let

{Λj : (D(Λj) ⊂ Zj) → X}k
j=1

be linear mappings defined on the domains D(Λj) which are dense subsets of
the corresponding spaces Zj . Let

{
Λ∗

j :
(
D(Λ∗

j ) ⊂ X
∗)→ Z

∗
j

}k

j=1

be their dual mappings, respectively. We set

D∗ =
k⋂

j=1

D(Λ∗
j )

and endow this set with the graph norm

‖y∗‖∗ = ‖y∗‖
X∗ +

k∑

j=1

∥∥Λ∗
jy

∗∥∥
Z∗

j

. (2.60)

By Y
∗ we denote the normed space D∗ equipped with the norm ‖ · ‖∗. Let X

∗
σ

and Z
∗
j,σ be the spaces X

∗ and Z
∗
j , respectively, endowed with the topologies

σ(X∗, X) and σ(Z∗
j , Zj). The graphs grΛ∗

j of operators Λ∗
j are closed in X

∗
σ ×

Z
∗
j,σ for every j = 1, 2, . . . , k (see [241]). Hence, Y

∗ is a Banach space. By Xw

we denote the Banach space X endowed with the σ(X, X∗) topology. Let us
consider the following class of subsets in Y

∗:

K∗ =
{

ξ ∈ Y
∗ : ‖y∗‖X∗ ≤ l0, ‖Λ∗

jy
∗‖Z∗

j
≤ lj , j = 1, 2, . . . , k

}
, (2.61)

where l0, l1, . . . , lk are positive numbers.
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Having used the notation D = X×
∏k

j=1 D(Λj), we note that the set D can
be associated with the family of linear continuous functionals Gφ(·) on Y

∗.
Indeed, let φ = (φ0, φ1, . . . , φk) be a fixed element of D. Then the functional
Gφ(·) can be defined as follows:

Gφ(y∗) = 〈y∗, φ〉 := 〈y∗, φ0〉X∗,X +
k∑

j=1

〈
Λ∗

jy
∗, φj

〉
Z∗

j ,Zj
.

Remark 2.64. Let σ(Y∗,D) be the weakest topology on Y
∗ with respect to

which all functionals Gφ(·) are continuous. Then the pair (Y∗, σ(Y∗,D)) is a
locally convex topological space.

Definition 2.65. We say that a sequence {y∗
n}

∞
n=1 ⊂ Y

∗ converges D-weakly

to an element y∗ ∈ Y
∗, written y∗

n
D
⇀ y∗, provided

lim
n→∞

〈y∗
n, φ0〉X∗,X = 〈y∗, φ0〉X∗,X ,

lim
n→∞

〈
Λ∗

jy
∗
n, φj

〉
Z∗

j ,Zj
=
〈
Λ∗

jy
∗, φj

〉
Z∗

j ,Zj

for all φ = (φ0, φ1, . . . , φk) ∈ D.

Note that this concept can be easy extended to the case of D-weakly conver-
gent nets (or generalized sequences) {y∗

α}α∈A ⊂ Y
∗, where A is a directed set

of indices.
The following result deals with the compactness property of the set K∗.

Theorem 2.66. Let X and {Zj}k
j=1 be Banach spaces and let X

∗,
{
Z
∗
j

}k

j=1

be their duals, respectively. Let

{Λj : (D(Λj) ⊂ Zj) → X}k
j=1

be a given family of linear mappings with dense domains D(Λj) in Zj for each
j = 1, . . . , k. Then the set K∗, defined by (2.61), is D-weakly compact in Y

∗

for every collection of positive numbers l0, l1, . . . , lk.

Proof. Let l0, l1, . . . , lk be given positive numbers. Let {y∗
α}α∈A be an arbi-

trary net in K∗. To prove this theorem, we have to show that there is a subnet
{x∗

β}β∈B of the original net {y∗
α}α∈A, which D-weakly converges in Y

∗ to some
element of K∗. Taking into account the structure of the set K∗, we see that
{y∗

α}α∈A belongs to the close ball BX∗(0, l0) centered at the origin with radius
l0. Hence, by the Banach–Alaoglu theorem (see Yosida [251] or Kantorovich
and Akilov [128]), there exists a subnet of {y∗

α}α∈A, denoted by {x∗
β}β∈B0 ,

such that x∗
β → y∗ in X

∗
σ and ‖y∗‖X∗ ≤ l0. Setting now j = 1, we consider the

net {Λ∗
1x

∗
β}β∈B0 . Since the elements Λ∗

1x
∗
β belong to the closed ball BZ∗

1
(0, l1),
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it follows that there exists a subnet
{
z∗γ
}

γ∈B1
such that Λ∗

1z
∗
γ → μ1 in Z∗

1,σ

and ‖μ1‖Z∗
1
≤ l1. Repeating this iteration process under j = 2, . . . , k, finally,

we can extract a subnet {d∗ν}ν∈Bk
of the origin net {y∗

α}α∈A such that

〈d∗ν , φ0〉X∗,X

ν∈Bk−→ 〈y∗, φ0〉X∗,X ,
〈
Λ∗

jd
∗
ν , φj

〉
Z∗

j ,Zj

ν∈Bk−→ 〈μj , φj〉Z∗
j ,Zj

,

‖y∗‖X∗ ≤ l0, ‖μj‖Z∗
j
≤ lj , j = 1, 2, . . . , k,

for each φ = (φ0, φ1, . . . , φk) ∈ D.
In view of the properties of the domains D(Λj), the operators Λ∗

j :(
D(Λ∗

j ) ⊂ X
∗) → Z

∗
j are closed in X

∗
σ × Z

∗
j,σ. Hence, μj = Λ∗

jy
∗ for ev-

ery j = 1, 2, . . . , k. As a result, we have d∗ν
D
⇀ y∗, where ‖y∗‖X∗ ≤ l0 and

‖Λ∗
jy

∗‖Z∗
j
≤ lj for j = 1, . . . , k. Thus, y∗ ∈ K∗, which concludes the proof. � 

To illustrate the possible applications of this theorem, we give the following
example.

Example 2.67. Let Ω be open bounded subset of R
n with a Lipschitz bound-

ary. Let X = Zj = L1(Ω) for all j = 1, . . . , k. We define the collection of linear
mappings {Λj : (D(Λj) ⊂ Zj) → X}k

j=1 as follows:

Λjy := −∂y/∂xj , j = 1, 2, . . . , k,

where D(Λj) is the closure of C∞
0 (Ω) with respect to the norm

‖y‖j = ‖y‖L1(Ω) + ‖∂y/∂xj‖L1(Ω).

Thus, if y ∈ C(Ω) ∩D(Λj), then

y ∈ L1(Ω), supp y(x) is a compact in Ω and ∂y/∂xj ∈ L1(Ω),

where the partial derivatives ∂y/∂xj we mean in the weak sense (see (2.6)).
It is easy to see that the following chain of embeddings holds:

C1
0 (Ω) ⊂ W 1,1

0 (Ω) ⊂ D(Λj) ⊂ L1(Ω), ∀ j = 1, . . . , k.

Since C1
0 (Ω) is dense in L1(Ω) with respect to the topology induced by the

norm ‖ · ‖L1(Ω), it follows that the weak closure of the set C1
0 (Ω) coincides

with the entire space L1(Ω). Therefore, the domains D(Λj) are weakly dense
in L1(Ω) for all j = 1, . . . , k. In view of this, the dual operators

{
Λ∗

j :
(
D(Λ∗

j ) ⊂ L∞(Ω)
)
→ L∞(Ω)

}k

j=1

are well defined and closed. Moreover, in this case, we have Λ∗
j = ∂/∂xj . As

a result, we obtain
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D∗ :=
k⋂

j=1

D(Λ∗
j ) = W 1,∞(Ω),

where

W 1,∞(Ω) =
{

y(x) : y ∈ L∞(Ω),
∂y

∂xj
∈ L∞(Ω), j = 1, . . . , k

}

is the Banach space equipped with the norm

‖y‖W 1,∞(Ω) = ess sup
x∈Ω

|y(x)|+
k∑

j=1

ess sup
x∈Ω

∣∣∣∣
∂y(x)
∂xj

∣∣∣∣ .

Hence Y
∗ = W 1,∞(Ω) and, therefore, due to the Theorem 2.66, the bounded

set

K∗ =

{
y ∈ W 1,∞(Ω) : ‖y‖L∞(Ω) ≤ l0,

∥∥∥∥
∂y

∂xj

∥∥∥∥
L∞(Ω)

≤ lj , j = 1, . . . , k

}

is D-weakly compact in W 1,∞(Ω) for every positive numbers l0, l1, . . . , lk.
Following Definition 2.65 and using the fact that L1(Ω) is a separable Banach
space, it means that for any net {y∗

α}α∈A ⊂ K∗, there exists a sequence
{x∗

i }i∈N
(which is a subnet of {y∗

α}α∈A) such that

lim
i→∞

〈x∗
i , φ〉Y∗,Y = 〈y, φ〉

Y∗,Y , ∀φ = (φ0, . . . , φk) ∈ L1(Ω)×
k∏

j=1

D(Λj),

where y ∈ K∗ and

〈y, φ〉
Y∗,Y =

∫

Ω

y(x)φ0(x) dx +
k∑

j=1

∫

Ω

φj(x)
∂y(x)
∂xj

dx.

Thus, the set K∗ is sequentially D-weakly compact.
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