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1 Introduction

Turbulence is a behavior seen in many fluid flows, which is conjectured to be driven
by the inertia to viscosity force ratio, i.e. the Reynolds number. Even though re-
search in turbulence has existed for more than a century there is still no consen-
sus as how to elaborate a self-consistent and genuine theory, which describes the
dynamics of a transition from a laminar to a turbulent regime or vice versa, and
the geometric flow structure of turbulent phenomena. So far, it is believed that the
Navier–Stokes equations model turbulence in an adequate way. However the exis-
tence of general solutions in three plus one space–time dimensions is still an open
question [Ca07, Ca08, Co01, Co07, Fe06].

With the present discussion we intend to take a step in a new direction and show
that a connection between microscopic and macroscopic degrees of freedom may
well be the crucial ingredient for progress on the subject. Usually flow phenomena
are captured starting from a continuous medium fluid which, in principle, permits
us to scale down volume elements to infinitesimal size. As a consequence of us-
ing an equation independent of scales implies that the laws that dictate the macro-
scopic dynamics do not undergo changes while altering reference lengths, or other
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measure quantities. In fact, fluids are made from atoms and molecules which obey
microscopic laws and collectively constitute a stochastic system. This system obeys
macroscopic laws provided by statistical thermodynamics and hydrodynamics. Both
realms can be described phenomenologically by macroscopic observables and mate-
rial dependent parameters (viscosity, thermal conductivity, specific heat, compress-
ibility, among others), where these parameters hide the microscopic properties. If
one traces back the parameters until its microscopic origin, in principle it should be
possible to find quantitative macroscopic-microscopic relationships beyond mere
phenomenology, where viscosity and length scales among others are macroscopic
manifestations with microscopic origin.

In this line we reason that turbulence, which is related to the Reynolds number,
may be considered an interplay of the dynamics of at least two scales, a macro-
scopic one and a microscopic one. Thus, the present work is an attempt to show
the possibilities that arise from, in our case, a simplified macroscopic-microscopic
relationship, which we derive based on a simplified model motivated by Maxwell–
Boltzmann transport. This chapter is organized as follows. In the next section we
present the microscopic approach and introduce a length scale which relates to vor-
ticity, in Sect. 3 we identify viscosity based on microscopic and thermodynamical
quantities and last (Sect. 4) we discuss our findings and give future perspectives.

2 The Vortex Correlator

Consider the fluid being composed by a particle ensemble (atoms, molecules or
other micro-particles), which may be characterized mechanically by a local parti-
cle density n = n(x,y,z, t) and thermally by a local temperature T = T (x,y,z, t). In
local equilibrium one has a well defined relation between the temperature and a ve-

locity scale Cth =
√

kBT
〈m〉 (the thermal velocity) where kB is Boltzmann’s constant

and particles have an average mass 〈m〉. Here local equilibrium signifies that there
exists a volume sufficiently small that temperature variations or equivalently varia-
tions in the velocity distribution are negligible, but that the volume contains still a
sufficiently large number of particles as to represent a statistical ensemble.

Further, we assume that there exists a particle–particle interaction with associ-
ated potential, which may in general be of scalar, vector or tensor type depending on
the structure of the particles under consideration and their properties. For the forth-
coming discussion we assume for simplicity that the interaction may be sufficiently
characterized by a scalar potential Φ . A frequently used phenomenological potential
is the Lennard–Jones potential, with its large range attraction and short range repul-
sion [Ma81]. Once the interaction potential is known or defined, one may calculate
the interaction cross section σ , the correlated mean free path λ = (nσ)−1 and mean
free propagation time τλ = λ

Cth
. To have a typical path length, below which particles

in the average do not interact, makes evident the discrepancy between a continuous
picture where in principle each infinitesimal volume element of the continuum in-
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fluences the remainder of the fluid. The microscopic picture suggests a non-dense
point set of interaction centers and a complementary dense set of interaction free
points, where the microscopic behavior, because of its different topology in com-
parison to a continuous approach, may give rise to a different collective behavior
(ensemble averages) on a macroscopic scale.

On the macroscopic scale we understand the velocity field�v(x,y,z, t) = 〈�c〉 as the
ensemble average of particle velocities�c in a given volume element ΔV centered at
�r = (x,y,z) at an instant t. The first difficulty arises when trying to capture a typical
macroscopic length scale, based on a microscopic property, which shall be related to
a strength with which a flow is perturbed in order to present turbulent behavior. To
this end we define the dimensionless velocity vector field �G(�r, t) = �v

Cth
and consider

the field infinitesimally displaced �G → �GδR, which shall simulate the change in the
velocity field by virtue of vorticity. One may establish the relation to the original
field by an infinitesimal coordinate transformation, which reads

�GδR(�r, t) = R �G(R−1�r, t)

= (1−δ�θ�G) �G((1−δ�θ�G)�r, t)

= �G+δ�θ (−�G �G+�G (�r× (�∇× �G)))

where �G are the generators of the transformation R represented as a vector and each
component contains a 3×3 transformation matrix which act on �G. �θ is the infinites-
imal transformation parameter, i.e. a rotation angle with respect to a given axis θ̂ .
In component form and using the convention of summing over double indices, this
reads

ΓδR i = Γi +δθ j (−εi jmΓm + ε jmnrm∂nΓi) (1)

where εi jk is the complete antisymmetric Levi-Civita symbol.
These findings may be related to vorticity using a concept from differential ge-

ometry, i.e., the generating term in (1) shall arise as a closed operator sequence—
translation (Γ ), vorticity (Ω ), back translation and vorticity again, around a plaque
of infinitesimal size.

∮
ΩidΓj ∝ −εi jmΓm + εimnrm∂nΓj. (2)

An expression compatible with (2) and for any volume of interest then has the form

Ωi =
1
V

∫

V

∂Γj

∂ t
(−εi jmΓm + εimnrm∂nΓj) d3r. (3)

One identifies two contributions, an extrinsic one which explicitly depends on the
position and a second contribution which is position independent and thus may have
only intrinsic origin. The presence of the second term can describe vorticity without
the phenomenon of creating eddies (for instance present in shear flows), whereas
the first term creates eddies even for a macroscopic velocity field which derives as
a gradient from a scalar potential, for which the second term cancels out. A further
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comment is in order here: the intrinsic term makes sense only if microscopic degrees
of freedom exist that constitute the macroscopic field Γ , since it depends only on
the velocity field and its temporal variation in different directions.

From this quantity (3) one may derive a macroscopic length scale which shall be
used in order to define the Reynolds number. One may recognize that Ω contains the
Γ fields in a bilinear form, so that the vorticity may be generalized to a correlation
like function, henceforth called vorticity correlator

ϒt(t, t ′) =
1
V

∥∥∥∥
∫

V

∂Γj

∂ t
(t)

(
−εi jmΓm(t ′)+ εimnrm∂nΓj(t ′)

)
d3r

∥∥∥∥ .

In the limit t ′ → t the correlator turns vorticity. Since the vorticity may be related
to the angular frequency of an eddy, the correlator may be used to measure how
far a particle with velocity Cth propagates across an eddy with non-vanishing cor-
relations. The length scale Λ is then defined by the correlation between time and
thermal velocity via the implicit relation

Λ = τCth =
Cth√

2

(∣∣∣∣
∫ τ

0

ϒ0(t,0)
ϒt(t,0)

dt

∣∣∣∣
) 1

2

,

where

ϒ0(t,0) =
1
V

∥∥∥∥
∫

V
Γj(t)(−εi jmΓm(0)+ εimnrm∂nΓj(0)) d3r

∥∥∥∥

and the thermal noise limit limτ→0
1
τ

∫ τ
0

ϒ0
ϒt

dt = 2.
So far the velocity field �v = 〈�c〉, the macroscopic length scale Λ are available

from expectation values of a microscopic ensemble. The remaining quantities like
the particle density and the viscosity may be determined only from an analysis of
the transport equation, i.e., a Navier–Stokes type equation, which may be derived
starting from the Maxwell–Boltzmann transport equation.

3 The Transport Equation

The Maxwell–Boltzmann equation describes the time evolution of the pseudo-local
expectation values in a transport phenomenon. Here pseudo-local signifies local in a
macroscopic (continuous) sense but discrete (by particle nature) in the microscopic
sense. Its generic form is [Mu79]

∂
∂ t

n〈O〉+ ∂
∂ rμ

n
〈
cμO

〉
−

〈
∂O

∂cμ
bμ

〉
= n

(
δ 〈O〉

δ t

)

Coll
. (4)

A similar equation to the Navier–Stokes one is obtained by substituting the op-
erator to represent momentum transport n〈O〉 = n

〈
mCμCν

〉
= pμν which is also

recognized as the pressure tensor; here �C =�c−�v. In thermal equilibrium obviously
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pμν = pδμν holds and since dissipative contributions are no longer at work, the
diagonal (equilibrium) contributions to the pressure tensor contribute only to the
homogeneous solution of the transport equation. We are interested in the dissipative
part of the equation and hence reduce the pressure tensor to the friction pressure
tensor

πμν = nm

〈
CμCν −

1
3

C2δμν

〉

with zero trace T r{πμν}= 0. The second term, after decomposition and some alge-
braic manipulations separates a term with constant temperature and a velocity field
gradient, from a term that represents heat flux, which is kinetic energy transport

qμ =
n
2

m
〈
C2Cμ

〉
,

respectively. For simplicity we ignore possible contributions of an external force
field and its resulting acceleration bμ , so that the term still to be determined is the
right hand side of (4). A convenient way to simplify the equation is to approximate
the collision term by an average friction pressure change

δπμν

δ t
≈ πμν

τp

which renders the original equation a transport relaxation equation [Ch95, Ba08]

∂
∂ t

πμν +2nkBT

(
1
2

(
∂vμ

∂ rν
+

∂vν
∂ rμ

)
− 1

3
∂vλ
∂ rλ

δμν

)

+
4
5

(
1
2

(
∂qμ

∂ rν
+

∂qν
∂ rμ

)
− 1

3
∂qλ
∂ rλ

δμν

)
+

πμν

τp
= 0. (5)

The relaxation time constant τp for phenomenological potentials and for systems
not far from equilibrium in (5) may be related to the microscopic cross section in the
spirit of Chapman–Cowling [Ma81]. The expression below shows the mechanical
relaxation time, for an isotropic two particle interaction central potential:

τp =
5

16
√

π
1

nCth

(∫ ∞

0

∫ π

0
e−u2

u7(1− cos2(θ))σ(θ ,
√

2Cthu)sin(θ) dθ du

)−1

=
5

16
√

π
1

nCthI2
.

Here u is the relative velocity between the collision partners in multiples of
√

2Cth,
θ signifies the scattering angle, and Cth a velocity scale, i.e. the thermal velocity.

A local collision operator is responsible for the space–time evolution of the dis-
tribution in consideration. The collision term depends in general on microscopic
dynamics which in many cases is not exactly known or is too complex to be eval-
uated analytically. However, for a number of applications there do exist interaction
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models [Dh07] that are sufficient to capture qualitatively as well as to a certain pre-
cision quantitatively properties of the fluid flow.

The equation above results in the Navier–Stokes type equation if the following
phenomenological identity holds:

πμν = −ηV
∂vλ
∂ rλ

δμν −2η
(

1
2

(
∂vμ

∂ rν
+

∂vν
∂ rμ

)
− 1

3
∂vλ
∂ rλ

δμν

)

with η shear and ηV volumetric viscosity, respectively. By comparison one identifies
the shear viscosity as

η = kBT τp =
5nkBT

16
√

πCthI2
=

5n〈m〉Cth

16
√

πI2
.

Upon substitution of the found quantities into the traditional Reynolds number defi-
nition and replacing the usually employed macroscopic length by the vortex correla-
tor length Λ one arrives at an expression which is characterized by two macroscopic-
microscopic ratios, the correlation length Λ against the mean free path λ and the
macroscopic flow velocity v against the thermal velocity Cth besides a factor which
is determined from the collision integral and the total collision cross section σT .

Re =
ρΛv

η
=

16
√

π
5

I2

σT

Λ
λ

v
Cth

.

For a collision model where the cross section σ(θ ,
√

2Cthu) does not depend on the
scattering angle the integral can be solved analytically and is I2 = σT

π .

4 Conclusion

In the present discussion we established a connection between microscopic and
macroscopic lengths and velocities which redefines the traditional Reynolds num-
ber. It is evident from its original definition that one needs a reference length in order
to render the transport equation non-dimensional. In any case this length scale shall
somehow synthesize the influence of boundaries and/or obstacles. Since bound-
aries select specific solutions from a manifold the velocity field that results from
the solution of the transport equation contains this information and may thus be
used to define a problem related length scale which we introduced by the vorticity
correlator—a macroscopic reference length. We introduced the correlator motivated
by the phenomenon that once a flow changes from laminar to turbulent flow pertur-
bations perpendicular to the local flow velocity become important. In order to see
what such a contribution looks like we analyzed the changes in the vector field under
infinitesimal rotation. Making contact to the vorticity definition and generalizing our
expression led to the vorticity correlator which yields only significant contributions
if the afore mentioned perturbations are present in the field. These perturbations are
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evidently a manifestation of inner and/or outer boundaries present in the problem
under consideration.

In our approach for vorticity one identifies an extrinsic (position dependent) and
intrinsic contribution. The presence of the intrinsic term accounts for vorticity al-
though the macroscopic velocity field derives from a gradient of a scalar potential,
for which the curl of the extrinsic term cancels out. An intrinsic term can only be at-
tributed to intrinsic degrees of freedom of a continuous macroscopic field and thus
needs further (microscopic) degrees of freedom. In other words the macroscopic
field is nothing but a macroscopic mean field from the microscopic point of view.

The counterpart to the vorticity correlator—the microscopic length—has its ori-
gin in the interpretation of the dissipation parameter (i.e. the viscosity) in terms
of particle collisions which through the cross section supplies with the mean free
path of the particles that constitute the fluid. At this length the scaling symmetry of
macroscopic transport breaks down. It is noteworthy that these lengths may be of
macroscopic magnitude (for instance they may be several cm in a gas). The micro-
scopic picture for dissipation circumvents a problem that arises if the fluid in consid-
eration behaves approximately as an ideal fluid. In the classical Reynolds definition
this means that the viscosity tends to small values which rises the Reynolds number
in contradiction to the fact that without dissipation turbulence will not occur. This is
different from the microscopic definition where the mean free path tends to infinity
(or at least is huge) which drives the Reynolds number close to zero.

A further effect comes from thermal motion in relation to the flow velocity. In
a gas the thermal velocity may be orders of magnitude larger than the flow veloc-
ity, which means that the thermal noise may destroy coherent structures which are
present in turbulence, because particles propagate back and forth in the fluid over
lengths larger than the effective displacement length of the fluid. The closer the two
velocities are the less is the influence of noise in the flow, and the formation of co-
herent flow patterns are possible. Such a collective behavior may not be understood
from a purely macroscopic and continuous picture.

From our findings we reach a new meaning of scale invariance of the macro-
scopic transport equation—hydrodynamical similarity. Apart from the collision
model which enters as a factor, which for a variety of interaction potentials is of the
order of magnitude of 100, there are two relevant ratios responsible for similarity,
the vorticity correlation length times the flow velocity as macroscopic expectation
values compared to the mean free path times the thermal velocity, i.e. two micro-
scopic reference quantities.

Since our considerations are an attempt to approach the turbulence problem from
a microscopic-macroscopic interplay (few body interaction—collective mean field
dynamics) the present discussion is a first step into a new direction. The theoretical
conception presented in this work may be applied to experimental findings as for
instance the visualization of the time evolution of flows and can be compared to the
simulations based on the Maxwell–Boltzmann transport equation. Such an analysis
is necessary to support our new definition which hopefully will prove useful in the
future to classify the regimen in flows and may bring benefit for applications as
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for instance in the problem of dispersion of pollution in the atmosphere and water.
These challenges define the next steps of future activities.

References

[Ba08] Banda, M., Klar, A., Pareschi, L., Seaïd, M.: Lattice-Boltzmann type relaxation systems
and high order relaxation schemes for the incompressible Navier–Stokes equations. Math.
Comp., 77, 943–965 (2008).

[Ca07] Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive
equations of large scale ocean and atmosphere dynamics. Annals of Mathematics, 166,
245–267 (2007).

[Ca08] Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations.
Indiana Univ. Math. J., 57, 2643–2662 (2008).

[Ch95] Cheng, M.-C.: An efficient approach to solving the Boltzmann transport equation. Simu-
lation of Semiconductor Devices and Processes, 6, 202–205 (1995).

[Co01] Constantin, P.: Some Open Problems and Research Directions in the Mathematical Study
of Fluid Dynamics. Mathematics Unlimited and Beyond, Springer Verlag, Berlin, 353–
360 (2001).

[Co07] Constantin, P., Levant, B., Titi, E.S.: A note on the regularity of inviscid shell model of
turbulence. Physics Review E, 75, 016304-1–016304-10 (2007).

[Dh07] Dhama, A.K., McCourt, F.R.W., Dickinson, A.S.: Accuracy of recent potential energy
surfaces for the He–N2 interaction I: Virial and bulk transport coefficients. J. Chem. Phys.,
127, 054302-1–054302-13 (2007).

[Fe06] Fefferman, C.L.: Fluids and singular integrals. Contemporary Math., 411, 39–52 (2006).
[Ma81] Maitland, G.C., Rigby, M., Smith, E.B., Wakeham,W.A.: Intermolecular Forces: Their

Origin and Determination. Oxford University Press, Oxford (1981).
[Mu79] Muncaster, R.G.: On generating exact solutions of the Maxwell–Boltzmann equation.

Arch. Rational Mech. Anal., 70, 79–90 (1979).



http://www.springer.com/978-0-8176-8237-8


	On a New Definition of the Reynolds Number from the Interplay of Macroscopic and Microscopic Phenomenology
	1 Introduction
	2 The Vortex Correlator
	3 The Transport Equation
	4 Conclusion
	References


