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1 Introduction

Let �,�′ be two bounded Stein domains (or manifolds) with smooth strictly
pseudoconvex boundaries X0, X ′0 (these are compact contact manifolds), and f0

Louis Boutet de Monvel
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a contact isomorphism X0 → X ′0. If H0, H
′
0 denote the spaces of CR functions

(or distributions) on X0, X ′0 (boundary values of holomorphic functions), S, S′ the

Szegő projectors,3 the map E0 : u �→ S′(u ◦ f −1
0 ) : H0→ H

′
0 is Fredholm (it is an

elliptic Toeplitz FIO). The index of E0 was introduced by C. Epstein [17, 18, 19, 20],
who called it the relative index of the two CR structures. A formula for the index was
proposed in [27]. A special case was established in [21], and a proof of this index
formula in the general case was given by C. Epstein in [19], based on an analysis
of the situation using the “Heisenberg-pseudodifferential calculus.” (Another proof
based on deformation quantization should also be possible, using the ideas in [23]
and [24].) In this paper we propose a simpler proof based on equivariant Toeplitz-
operator calculus, which gives a straightforward view. Our formula is described in
Section 4.4. It is essentially equivalent to the formula proposed in [27], which was
stimulated by a problem in the theory of Fourier integral operators, a subject in
which Hans Duistermaat was a pioneer [13].

It is awkward to keep track of the index in the setting of Toeplitz operators on X0
and X ′0 alone, because we are dealing with several Szegő projectors, and Toeplitz-
operator calculus controls the range H of a generalized Szegő projector at best up to
a vector space of finite rank.4

To make up for this, we use the ball ˜� ⊂ C × � defined by t t̄ < φ, where
t is the coordinate on C, φ is a smooth defining function (φ = 0, dφ �= 0 on
X0 = ∂�, φ > 0 inside; note that this is the opposite sign from the usual one)
chosen so that Log 1

φ is strictly plurisubharmonic, so that the boundary X = ∂˜� is
strictly pseudoconvex; such a defining function always exists; e.g., we can choose
φ strictly plurisubharmonic. Then X is a compact contact manifold with (positive)
action of the circle group U(1). We will identify X0 with the submanifold {0} × X0
of X .

We perform the same construction for �′: we will see that there exist an equi-
variant germ near X0 of an equivariant contact isomorphism f : X → X ′ extending
f0 such that t ′ ◦ f is a positive multiple of t , and an elliptic equivariant Toeplitz FIO
E extending E0, associated5 to the contact map f ; the holomorphic spaces H, H

′
split in Fourier components Hk, H

′
k on which the index is repeated infinitely many

times. This construction has the advantage of taking into account the geometry of
the two fillings �,�′, which obviously must come into the picture.

The final result can then be expressed in terms of an asymptotic version of the
relative index (G-index) of E , derived from the equivariant theory of M.F. Atiyah
and I.M. Singer [4]: the asymptotic index, described in Section 4.4, ignores finite-
dimensional spaces and is well defined for Toeplitz operators or Toeplitz systems; it
is also preserved by suitable contact embeddings.

The asymptotic equivariant trace and index are described in Sections 2 and 3.
The relative index formula is described and proved in Section 4 (Theorem 5).

3 The definition of S requires choosing a smooth positive density on X0; nothing of what follows
depends on this choice.
4 There is no index formula for a vector bundle elliptic Toeplitz operator, although there is one for
matrix Toeplitz operators, a straightforward generalisation of the Atiyah–Singer formula; cf. [7].
5 f is associated to E in the same manner as a canonical map is associated to an FIO.
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2 Equivariant trace and index

2.1 Equivariant Toeplitz Operators

Let G be a compact Lie group with Haar measure dg(
∫

dg = 1), g its Lie alge-
bra, and X a smooth compact cooriented contact manifold with an action of G; this
means that X is equipped with a contact form λ (two forms define the same coori-
ented contact structure if they are positive multiples of each other); G acts smoothly
on X and preserves the contact structure and coorientation, i.e., for any g the image
g∗λ is a positive multiple of λ; replacing λ by the mean

∫

g∗λ dg, we may suppose
that it is invariant. The associated symplectic cone � is the set of positive multiples
of λ in T ∗X , a principal R

+ bundle over X , a half-line bundle over X .
We also choose an invariant measure dx with smooth positive density on X , so

L2 norms are well defined. The results below will not depend on this choice.
It was shown in [10] that there always exists an invariant generalized Szegő pro-

jector S which is a self adjoint Fourier-integral projector whose microsupport is �,
mimicking the classical Szegő projector. The projector S extends or restricts to all
Sobolev spaces; for s ∈ R we will denote by H

(s) the range of S in the Sobolev
space H s(X), and by H the union.

A Toeplitz operator of degree m on H is an operator of the form f �→ TQ f =
SQ f , where Q is a pseudodifferential operator of degree m. Here we use pseudo-
differential operators in a strict sense, i.e., in any local set of coordinates the total
symbol has an asymptotic expansion q(x, ξ) ∼ ∑

k≥0 qm−k(x, ξ), where qm−k is
homogeneous of degree m − k with respect to ξ , and the degree m and k ≥ 0
are integers.6 A Toeplitz operator of degree m is continuous H

(s) → H
(s−m) for

all s. Recall that Toeplitz operators give rise to a symbolic calculus, microlocally
isomorphic to the pseudodifferential calculus, that lives on � (cf. [10]).

In particular, the infinitesimal generators of G (vector fields determined by
elements ξ ∈ g) define Toeplitz operators Tξ of degree 1 on H. An element P of
the universal enveloping algebra U(g) acts as a higher-order Toeplitz operator PX

(equivariant if P is invariant), and the elements of G act as unitary Fourier integral
operators, or “Toeplitz-FIO.”

H (with its Sobolev counterparts) splits according to the irreducible representa-
tions of G : H =̂

⊕

Hα.
Below we will use the following extended notions: an equivariant Toeplitz bundle

E is the range of an equivariant Toeplitz projector P of degree 0 on a direct sum H
N .

The symbol of E is the range of the principal symbol of P; it is an equivariant vector
bundle on X . Any equivariant vector bundle on X is the symbol of an equivariant
Toeplitz bundle (this also follows from [10]).

6 We will occasionally use as multipliers operators of degree m = 1
2 (or any other complex

number), with k still an integer in the expansion.
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2.2 G-trace

The G-trace and G-index (relative index in [4]) were introduced by M.F. Atiyah in
his joint work with I.M. Singer [4] for equivariant pseudodifferential operators on
G-manifolds. The G-trace of such an operator A is a distribution on G, describing
tr (g ◦ A). Here we adapt this to Toeplitz operators. Because the Toeplitz spaces
H and E are really defined only up to a finite-dimensional space, their G-traces or
indexes are ultimately defined only up to a smooth function, i.e., they are distribution
singularities on G (distributions mod C∞); they are described below, and renamed
“asymptotic G-trace or index.”

If E, F are equivariant Toeplitz bundles, there is an obvious notion of Toeplitz
(matrix) operator P : E → F, and of its principal symbol σd (P) (if it is of degree
d), a homogeneous vector-bundle homomorphism E → F over �. The operator P
is elliptic if its symbol is invertible; it is then a Fredholm operator E

s → F
s−d and

has an index which does not depend on s.
If E is an equivariant Toeplitz bundle and P : E → E is a Toeplitz operator of

trace class7 (deg P < −n), the trace function8 TrG
P (g) = tr (g ◦ P) is well defined;

it is a continuous function on G. It is smooth if P is of degree−∞ (P ∼ 0). If P is
equivariant, its Fourier coefficient for the representation α is 1

dα
tr P|Eα (with dα the

dimension of α, Eα the α-isotypic component of E).

Definition 1. We denote by char g ⊂ � the characteristic set of the G-action, i.e.,
the closed subcone where all symbols of infinitesimal operators Tξ , ξ ∈ g, vanish
(this contains the fixed-point set �G ). The base of char g is the set of points of X
where all Lie generators Lξ , ξ ∈ g, are annihilated by the contact form λ; in the
sequel we will usually denote it by Z ⊂ X .

The fixed-point set X G is the base of �G because G is compact (there is an
invariant section). The base Z contains the fixed-point set X G . Note that �G is
always a smooth symplectic cone and its base X G is a smooth contact manifold;
char g and Z may be singular.

The following result is an immediate adaptation of the similar result for pseudo-
differential operators in [4].

Proposition 1. Let P : E→ E be a Toeplitz operator, with P ∼ 0 near char g (i.e.,
its total symbol vanishes near char g). Then TrG

P = tr (g ◦ P) is well defined as a
distribution on G. If P is equivariant, we have, in the sense of distributions,

TrG
P =

∑ 1

dα
(tr P|Eα ) χα (1)

7 dim X = 2n − 1. The Toeplitz algebra is microlocally isomorphic to the algebra of pseudodiffer-
ential operators in n real variables, and operators of degree < −n are of trace class.
8 We still denote by g the action of a group element g through a given representation, for example
if we are dealing with the standard representation on functions, g f = f ◦ g−1, also denoted by
g∗ f , g∗−1 f , or g−1∗ f .

Louis Boutet de Monvel, Eric Leichtnam, Xiang Tang and Alan Weinstein



Asymptotic equivariant index of Toeplitz operators 61

where α runs over the set of irreducible representations, dα is the dimension, and
χα the character.

We have seen above that this is true if P is of trace class. For the general case,
let DG be a bi-invariant elliptic operator of order m > 0 on G (e.g., the Casimir of a
faithful representation, with m = 2). Since DG is in the center of U(g), the Toeplitz
operator DX : E→ E it defines is invariant, with characteristic set char g.

If P ∼ 0 near char g, we can divide it repeatedly by DX (modulo smoothing
operators) and get for any N ,

P = DN
X Q + R with R ∼ 0.

The degree of Q is deg P − Ndeg (DG), so it is of trace class if N is large enough.
We set TrG

P = DN
G TrG

Q + TrG
R : this is well defined as a distribution; the fact that this

does not depend on the choice of DG , N, Q, R is immediate.
Formula (1) for equivariant operators is obvious for trace class operators, and

the general case follows by application of DN
X and DN

G . Note that the series in the
formula converges in the sense of distributions, i.e., the coefficients have at most
polynomial growth.

Slightly more generally, let

(E, d) : · · · → E j
d−→ Ei+1 → · · ·

be an equivariant Toeplitz complex of finite length, i.e., E is a finite sequence Ek

of equivariant Toeplitz bundles, d = (dk : Ek → Ek+1) a sequence of Toeplitz
operators such that d2 = 0. If the (degree-zero) endomorphism P = {Pk} of the
complex E is ∼ 0 near char g, its supertrace TrG

P =
∑

(−1)kTrG
Pk

is well defined; it
vanishes if P = [P1, P2] is a supercommutator with one factor ∼ 0 on char g.

2.3 G index

Let E0, E1 be two equivariant Toeplitz bundles. An equivariant Toeplitz operator
P : E0 → E1 is G-elliptic (relatively elliptic in [4]) if it is elliptic on char g, i.e., the
principal symbol σ(P), which is a homogeneous equivariant bundle homomorphism
E0 → E1, is invertible on char g. Then there exists an equivariant Q : E1 → E0
such that Q P ∼ 1E0, P Q ∼ 1E1 near char g. The G-index I G

P is defined as the
distribution TrG

1−Q P − TrG
1−P Q .

More generally,9 an equivariant complex E as above is G-elliptic if the principal
symbol σ(d) is exact on char g. Then there exists an equivariant Toeplitz operator
s = (sk : Ek → Ek−1) such that 1 − [d, s] ∼ 0 near char g([d, s] = ds + sd).

9 This reduces to the case of a single operator where the complex is concentrated in degrees 0
and 1.
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The index (Euler characteristic) is the supertrace I G
(E,d)

= str (1 − [d, s]) =
∑

(−1) j TrG
(1−[d,s]) j

.
For any irreducible representation α, the restriction Pα : E0,α → E1,α is a

Fredholm operator with index Iα , (respectively the cohomology H ∗α of d |Eα is finite-
dimensional), and we have

I G
P =

∑ 1

dα
Iαχα

⎛

⎝respectively I G
(E,D) =

∑

j,α

(−1)

dα

j

dim H j
α χα

⎞

⎠ .

The G-index I G
A is obviously invariant under compact perturbation and deformation,

so it depends only on the homotopy class of σ(P) once E j has been chosen; it does
depend on a choice of E j (on the projector that defines it, or on the Szegő projec-
tor), because E j is determined by its symbol bundle only up to a finite-dimensional
space; this inconvenience is removed with the asymptotic index below.

It is sometimes convenient to notate an index as an infinite representation (mod
finite representations)

∑

nαχα . For the circle group U(1), all simple representations
are powers of the tautological representation, denoted by J , and all representations
occurring as indices have a generating series

∑

k∈Z
nk J k (mod finite sums). (2)

In fact, the positive and negative parts of the series have a weak periodicity property:
they are of the form P±(J±1)/

∏

i (1 − (J±1)ki ) for a suitable polynomial P± and
positive integers ki .10

Here in our relative index problem, only very simple representations of the form
m

∑∞
0 J k = m(1− J )−1 (for some integer m) will occur.

3 K-theory and embedding

A crucial point in the proof of the Atiyah–Singer index theorem [2] consists in show-
ing how one can embed an elliptic system A in a simpler manifold where the index
theorem is easy to prove, preserving the index and keeping track of the K-theoretic
element [A]. The new embedded system F+A is analogous to a derived direct image
(as in algebraic geometry), and the K-theoretic element [F+A] is the image of [A] by
the Bott homomorphism constructed out of R. Bott’s periodicity theorem (cf. [2]).

10 This notation represents the series expansion in positive powers of J±1; it is obviously abu-
sive but suggestive, especially if one thinks of the extension to a multidimensional torus; it also
represents a rational function whose poles are roots of 1, and whose Taylor series has integral
coefficients, of which the corresponding distribution on G is the boundary value from one or the
other side of the circle in the complex plane. Something similar occurs for any compact group;
cf. [4].
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Here we will do the same for Toeplitz operators. The direct image F+A is even
somewhat more natural, as is its relation to the Bott homomorphism (Section 3.4).
The direct image for elliptic systems does not preserve the exact index, since this
is not defined (because the Toeplitz space H is at best defined only mod a space of
finite rank); but it does preserve the asymptotic equivariant index.

3.1 A short digression on Toeplitz algebras

We use the following notation: for distributions, f ∼ g means that f − g is C∞; for
operators, A ∼ B (or A = B mod C∞) means that A− B is of degree−∞, i.e., has
a smooth Schwartz kernel. If M is a manifold, T •M denotes the cotangent bundle
deprived of its zero section; it is a symplectic cone with base S∗M = T •M/R+, the
cotangent sphere bundle.

As mentioned above, a compact contact G-manifold always possesses an invari-
ant generalized Szegő projector. More generally, if M is a G-manifold, � ⊂ T •M
an invariant symplectic cone, there exists an associated equivariant Szegő projec-
tor (cf. [10]). If � ⊂ T •M,�′ ⊂ T •M ′, and f : � → �′ is an isomorphism of
symplectic cones, there always exists an “adapted FIO” F which defines a Fredholm
map u �→ F̃u = S′(Fu) : H → H

′ and an isomorphism of the corresponding
Toeplitz algebras (A �→ F̃ AF̃−1, mod C∞).

One can choose F equivariant if f is. Indeed, any adapted FIO can be defined
using a global phase function φ on T •(M × M ′op) such that11

(1) φ vanishes on the graph of f , and dφ coincides with the Liouville form ξ ·dx−
η · dy there;

(2) Im φ 
 0, i.e., Im φ > 0 outside of the graph of f , and the transversal
Hessian is
 0; replacing φ by its mean gives an invariant phase; we may set
F f (x) = ∫

eiφa f (y)dy dη dξ , where the density a(x, ξ, y, η)dy dη dξ is a
symbol, invariant and positive elliptic (F is of Sobolev degree deg (a dy dη dξ)
− 3

4 (nx + ny) (cf. L. Hörmander [22]), so a is possibly of nonintegral degree if
we want F of degree 0). The transfer map from H to H

′ is S′FS.

If M is a manifold and X = S∗M , the cotangent sphere, X carries a canonical
Toeplitz algebra, viz. the sheaf ES∗M of pseudodifferential operators acting on the
sheaf μ of microfunctions. In general, if X is a contact manifold, we will denote by
EX (or just E) the algebra of Toeplitz operators on X . It is a sheaf of algebras on
X acting on μH = H mod C∞, which is a sheaf of vector spaces on X ; the pair
(EX , μH) is locally isomorphic to the pair of sheaves of pseudodifferential operators
acting on microfunctions. If X is a G-contact manifold, we can choose the Szegő
projector invariant, so G acts on EX and μX .

For a general contact manifold, EX is well defined up to isomorphism, indepen-
dently of any embedding, but no better than that. The corresponding Szegő projector

11 op in M ′op refers to the change of sign in the symplectic form on T ∗M ′.
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(not mod C∞) is defined only up to a compact operator (a little better than that; see
below).

3.2 Asymptotic trace and index

The symbol bundles E j of the Toeplitz bundles E j determine these only up to a
space of finite dimension (because, as mentioned above, both the projector defining
them, and the Szegő projector, are not uniquely determined by their symbols).
However, if E, E

′ are two equivariant Toeplitz bundles with the same symbol, there
exists an equivariant elliptic Toeplitz operator U : E → E

′ with quasi-inverse V
(i.e., V U ∼ 1E, U V ∼ 1E′ ). This may be used to transport equivariant Toeplitz
operators from E to E

′: P �→ Q = U PV . Then if P ∼ 0 on Z , Q = U PV and
V U P have the same G-trace, and since P ∼ V U P , we have TrG

P −TrG
Q ∈ C∞(G).

Definition 2. We define the asymptotic G-trace of P as the singularity of TrG
P (i.e.,

TrG
P mod C∞(G)).

The asymptotic trace vanishes if and only if the sequence of Fourier coefficients of
TrG

P is of rapid decrease, i.e., O(cα)−m for all m, where cα is the eigenvalue of DG

in the representation α. This is the case if P is of degree−∞.

Definition 3. We will say that a system P of Toeplitz operators is G-elliptic
(relatively elliptic in [4]) if it is elliptic on char g. When this is the case, the
asymptotic G-index (or ˜I G

P ) is defined as the singularity of I G
P . (We will still denote

it by I G
P if there is no risk of confusion.)

We denote by K G(X−Z) the equivariant K-theory with compact support. By the
excision theorem, K G(X − Z) is the same as K G

X−Z (X), the equivariant K-theory
of X with compact support in X − Z , i.e., the group of stable classes of triples
d(E, F, u), where E, F are equivariant G-bundles on X , and u an equivariant iso-
morphism E → F defined near the set Z (the equivalence relation is d(E, F, a) ∼ 0
if a is stably homotopic (near Z ) to an isomorphism on the whole of X ). The
asymptotic index is also defined for equivariant Toeplitz complexes, exact near
char g.

If u : E → F is a G-elliptic Toeplitz system or complex, its principal symbol
defines a homogeneous linear map on �, invertible on char g. Its restriction to any
equivariant section of � defines a K-theoretic element [u] ∈ K G(X − Z) (in case
of a complex, u defines the same K-theoretic element as u + u∗ : E

even → E
odd).

The asymptotic index depends only on the homotopy class of the principal symbol
σ(P), and since it is obviously additive, we get the following

Theorem 2. The asymptotic index of u depends only on the K-theoretic element [u].
It defines an additive map from K G(X − Z) to C−∞(G)/C∞(G), where Z is, as
above, the base of charg.
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Note that the sequence of Fourier coefficients tr Pα
dα

is in any case of polynomial
growth with respect to the eigenvalues of D or DX ; if P ∼ 0, it is of rapid decrease.
The coefficients Iα

dα
of the asymptotic index are integers, so they are completely

determined, except for a finite number of them, by the asymptotic index.

Remark. If V is a finite-dimensional representation of G and V ⊗ P or V ⊗ d
is defined in the obvious way, we have I G

V⊗P = χV I G
P (i.e., Index (V ⊗ P)α =

(V ⊗ Index P)α , except at a finite number of places).

For example, let G = SU2 acting on the sphere X of V = C
2 in the usual

manner, and E = Sm V the mth symmetric power. Then E × X is a G bundle with
the action g(v, x) = (gv, gx). The CR structure on the sphere gives rise to a first
Szegő projector S1(v · f ) = v · S( f ), where S is the canonical Szegő projector on
holomorphic functions. On the other hand, since X is a free orbit of G, the bundle
E × X is isomorphic to the trivial bundle E0 × X , where E0 is some fiber (i.e., the
vector space of homogeneous polynomials of degree m, with trivial action of G).
This gives rise to a second Szegő projector S0, not equal to the first, but giving the
same asymptotic index; we recover the fact that Sm V ⊗∑

Sk V ∼ (m + 1)
∑

Sk V
(= in degree≥ m).

3.3 E-modules

For the sequel, it will be convenient to use the language of E-modules. In the C∞
category, E is not coherent; general E-module theory is therefore not practical and
not usefully related to topological K-theory. We will just stick to the two useful
cases below (elliptic complexes or “good” modules).12 Note also that the notion
of ellipticity is slightly ambiguous; more precisely: a system of Toeplitz operators
(or pseudodifferential operators) is obviously invertible mod C∞ if its principal
symbol is, but the converse is not true. The notion of “good” system below partly
compensates for this; it is in fact indispensable for a good relationship between
elliptic systems and K-theory.

If M is an E-module (respectively a complex of E modules), it corresponds to
the system of pseudodifferential (respectively Toeplitz) operators whose sheaf of
solutions is Hom (M, μH); e.g., a locally free complex of (L, d) of E-modules
defines the Toeplitz complex (E, D) = Hom (L, H).

More generally we will say that an E-module M is “good” if it is finitely gene-
rated, equipped with a filtration M = ⋃Mk (i.e., EpMq =Mp+q ,

⋂Mk = 0)
such that the symbol grM has a finite locally free resolution. We write σ(M) =
M0/M−1, which is a sheaf of C∞ modules on the basis X ; since there exist
global elliptic sections of E , grM is completely determined by the symbol, as is
the resolution.

12 Things work better in the analytic category.
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A resolution of σ(M) lifts to a “good resolution” of M, i.e., a finite locally free
resolution13 of M.

It is standard that two resolutions of σ(M) are homotopic, and if σ(M) has
locally finite locally free resolutions it also has a global one (because we are work-
ing in the C∞ category on a compact manifold or cone with compact support, and
dispose of partitions of unity); this lifts to a global good resolution of M.

If M is “good,” it defines a K-theoretic element [M] ∈ KY (X) (where Y is
the support of σ(M)), viz. the K-theoretic element defined by the symbol of any
good resolution (this does not depend on the resolution, since any two such are
homotopic).

All this works just as well in the presence of a G-action (if the filtration etc. is
invariant).

As above (Section 2.2), the asymptotic G-trace TrG
A [using subscripts as before]

is well defined if A is an endomorphism of a good locally free complex of Toeplitz
modules. The same holds for a good module M: the asymptotic trace of A ∈
End E(M) vanishing near char g is the asymptotic trace of any lifting of A to a
good resolution of M. (Such a lifting, vanishing near char g, exists and is unique up
to homotopy, i.e., modulo supercommutators.) Likewise, the asymptotic G-index of
a locally free complex exact on Z , or of a good E- module with support outside of
Z , is defined: it is the asymptotic G-trace of the identity.

Definition 3 of the asymptotic index (or Euler characteristic) extends in an
obvious manner to good complexes of locally free E-modules or to good E-modules.
The asymptotic G-index of such an object, when it is G-elliptic, depends only on
the K-theoretic element which it defines on the base.

Let us note that the asymptotic trace and index are still well defined for locally
free complexes or modules with a locally free resolution, not necessarily good; in
that case, what no longer works is the relation to topological K-theory on the base.

3.4 Embedding

If M is a manifold, � ⊂ T •M a symplectic subcone, the Toeplitz space H is the
space of solutions of a pseudodifferential system mimicking ∂̄b. If I ⊂ E is the
ideal generated by these operators (mod C∞), and M = E/I , we have μH =
Hom E (M, μ) (as a sheaf: f ∈ Hom (M, μ) �→ f (1); here as above μ denotes the
sheaf of microfunctions). For example, in the holomorphic situation, I is the ideal
generated by the components of ∂̄b.

We have End E (M) = [I : I ], the set of pseudodifferential operators a such that
Ia ⊂ I , acting on the right: if a ∈ [I : I ], the corresponding endomorphism of M
takes f (mod I ) to f a (mod I ); this vanishes if and only if a ∈ I . The map which
takes a ∈ [I : I ] to the endomorphism f �→ a f of H defines an isomorphism from

13 The converse is not true: if d is a locally free resolution of M, its symbol is not necessarily a
resolution of the symbol of M, if only because filtrations must be defined to define the symbol and
can be modified rather arbitrarily.
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End E (M) to the algebra of Toeplitz operators mod C∞. Thus M is an ET •M − E�

bimodule (where E� � EndM denotes the sheaf of Toeplitz operators mod C∞).
This extends immediately to the case in which T •M is replaced by an arbitrary

symplectic cone �′′ with base X ′′.14 The small Toeplitz sheaf μH can be realized
as Hom E ′′ (M, μH

′′), where M = E ′′/I and I ⊂ E ′′ is the annihilator of the Szegő
projector S of � (i.e., the null-sheaf of I in Hom E ′′(M, H

′′) = μH). IfP is a (good)
E-module, the transferred module is M ⊗E P , which has the same solution sheaf
(Hom E ′′(M⊗P, H

′′) = Hom E ′′ (P, Hom E (M, H
′′)) and Hom E ′′(M, H

′′) = H).
Thus the transfer preserves traces and indices.

The module M = E ′′/I is generated by 1 (mod I ) and has a natural filtration,
which is a good filtration, in the holomorphic case, the good resolution is dual to the
complex ∂̄b on (0, ∗) forms.

In general it always has a good locally free resolution, well defined up to homo-
topy equivalence. In a small tubular neighborhood of � one can choose this so that
its symbol is the Koszul complex on

∧

N ′, where N ′ is the dual of the normal
tangent bundle of � equipped with a positive complex structure (as in the holo-
morphic case). The corresponding K-theoretic element [M] ∈ K G

X (X ′′) is pre-
cisely the element used to define the Bott isomorphism (with support Y ⊂ �)
K G

Y (�) → K G
Y (�′′). (Here, Y is some set containing the support of σ(M) and

the map is the product map: [E] �→ [M][E], where the virtual bundle [E] on � is
extended arbitrarily to some neighborhood of � in �′′.)15

For example, if �′′ is C
N\{0}, with Liouville form Im z̄ · dz and base the unit

sphere X ′′ = S
2N−1, H

′′ is the space of boundary values of holomorphic functions,
� ⊂ �′′ consists of the nonzero vectors in the subspace z1 = · · · = zk = 0, and
X ⊂ X ′′ is the corresponding subsphere, then H consists of the functions indepen-
dent of z1, . . . , zk , and I is the ideal spanned by the Toeplitz operators T∂1, . . . T∂k .
In this example the ideal I is generated by z̄1, . . . , z̄k , or by Tz̄ j , j = 1, . . . , k (on
the sphere we have T∂ j = (A+ N)Tz̄ j with A = T∑N

1 z j ∂ j
). The E-module M itself

has a global resolution with symbol the Koszul complex constructed on z̄1, . . . , z̄k .
What precedes works exactly as well in the presence of a compact group action.

If P is a good module with support outside of Z (or a complex with symbol exact
on Z ), the transferred module has the same property (Z ⊂ Z ′′), and it has the same
G-index (the G-index of the complex Hom E (M, H) � Hom E ′′(M′′, H

′′)).
If X, X ′′ are (compact) contact G-manifolds, f : X → X ′′ an equivariant

embedding, P a good (G − E)-module with support outside of Z (the base of
char g in �), or a Toeplitz complex, exact on Z , the transferred module on X is
f+P =M⊗ f∗E ′ f∗P ′. This is exact outside of f (�) and has the same G-index as
P ; its K-theoretic invariant [P] is the image of [P] by the equivariant Bott homo-
morphism. The K-theoretic element [ f+P] ∈ K G

X−Z (X) is the image of [P] by

14 We use a double prime here because, eventually, we will be embedding two cones in a third one.
15 Toeplitz operators (mod C∞) live on � and their principal symbols are homogeneous functions
on �. However, the K-theoretic element [u] ∈ K G (X − Z) of a G-elliptic element lives on the
base X , so as the support of “good” E-modules or complexes, in contrast to what happens for
pseudodifferential operators.
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the Bott homomorphism (it is well defined, since f (Z) ⊂ Z ′′). Thus we have the
following Theorem.

Theorem 3. Let f : X → X ′′ be an equivariant embedding. The Bott homomor-
phism K G

X−Z (X)→ K G
X ′′−Z ′′(X ′′) commutes with the asymptotic G index.16

It is always possible to embed a compact contact manifold in a canonical contact
sphere with linear G-action. In fact, it is easier to work with the corresponding cones,
as follows:

Proposition 4. Let � be a G-cone (with compact base), λ a horizontal 1-form,
homogeneous of degree 1, i.e., ρ�λ = 0, and Lρλ = λ, where ρ is the radial
vector field, generating homotheties. Then there exists a homogeneous embedding
x �→ z(x) of � in a unitary representation space V c of G such that λ = Im z̄ · dz.

In the proposition, z(x) must be homogeneous of degree 1
2 . This applies of course

if � is a symplectic cone, λ its Liouville form. (The symplectic form is ω = dλ and
λ = ρ�ω.)

We first choose a smooth equivariant function y = (y j ), homogeneous of degree
1
2 , realizing an equivariant embedding of � in V − {0}, where V is a real unitary
G-vector space (this always exists if the base is compact (the coordinates z j on V
are homogeneous of degree 1

2 , so that the canonical form Im z̄ · dz is of degree 1)).
Then there exists a smooth function x = (x j ) homogeneous of degree 1

2 such that
λ = 2x · dy. We can suppose x equivariant, replacing it by its G-mean if need be.
Since y is of degree 1

2 we have 2ρ�dy = y, hence x · y = ρ�λ = 0. Finally, we get

λ = Im z̄ · dz with z = x + iy.

4 Relative index

As indicated in the introduction, we are considering the index of the Fredholm map
E0 : u �→ S′(u ◦ f −1

0 ) from H0 to H
′
0, where X0, X ′0 are the boundaries of two

smooth strictly pseudoconvex Stein manifolds �,�′, H, H
′ the spaces of CR distri-

butions (ker ∂̄b, equal to space of boundary values of holomorphic functions), S, S′
the Szegő projectors, and f0 a contact isomorphism X0 → X ′0.

As announced, we modify the problem and move to the larger boundaries X, X ′
of “balls” |t|2 < φ, |t ′|2 < φ′ in C×�, C×�′, on which the circle group acts (t �→
eiλt) (Section 4.1). We will see (Section 4.2) that the Toeplitz FIO E0 defines almost
canonically an equivariant extension F which is U(1)-elliptic, and Index (F |Hk ) =
Index (E0) for all k (Hk ⊂ H(X) is the subspace of functions f = tk g(x)), so that

16 As mentioned above, the interplay between the Bott isomorphism and embeddings of systems
of differential or pseudodifferential operators lies at the root of Atiyah–Singer’s proof of the index
theorem; it is described in M.F. Atiyah’s works [1, 2, 3, 4]; cf. also [11] in the context of holomor-
phic D-modules, close to the Toeplitz context.
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our relative index Index (E0) appears as an asymptotic equivariant index, easier to
handle in the framework of Toeplitz operators.

In Section 4.3 we will show that the whole situation can be embedded in a large
sphere, with action of U(1) as in the examples above. In the final result (Section 4.4)
the relative index appears as the asymptotic index of an equivariant U(1)-elliptic
Toeplitz complex on this large sphere. In general, the equivariant index (asymp-
totic or not) is rather complicated to compute, but in our case the U(1)-action
is quite simple.17 It reduces naturally to the standard Atiyah–Singer K-theoretic
index formula on a symplectic ball. The result is better stated in terms of K-theory
anyway, but it can be translated via the Chern character in terms of cohomology or
integrals. We give here a (rather clumsy) cohomological-integral translation, essen-
tially equivalent to the result conjectured in [27].

We will also see below (Section 4.2) that f0 has an almost canonical extension
f near the boundary, well defined up to isotopy, not holomorphic but symplectic.
We can then define a space Y by gluing together Y+, Y− by means of f . The space Y
is not a Hausdorff manifold, but it is symplectic and both Y+, Y− carry orientations
which agree on their intersection (as do the symplectic structures). We can further
choose differential forms ν± representatives of the Todd classes of Y± so that they
are equal near the boundary X0 (the symplectic structures agree, not the complex
structures, but they define the same Todd classes).

Theorem 5. The relative index (index of E0) is the integral
∫

Y (ν+ − ν−), where
ν± are representatives of Todd(Y±) as above, so that the difference has compact
support in Y − X0.

This will be explained in more detail below (Section 4.4). This formula is related
to the Atiyah–Singer index formula on the glued space Y , but is not quite the same,
since Y is not a symplectic manifold.

To prove the index theorem we will give an equivalent equivariant description of
the situation, where the index of E0 is repeated infinitely many times, and embed
everything in a large sphere where the index is given by the K-theoretic index char-
acter (Section 4.4).

4.1 Holomorphic setting

Let � be a strictly pseudoconvex domain (or Stein manifold), with smooth boundary
X0; �̄ = � ∪ X0 is assumed to be compact. We write ˜� ⊂ C × �̄ for the ball
|t|2 < φ, where φ is a defining function (φ = 0, dφ �= 0 on X0, φ > 0 inside). φ is
chosen so that the boundary X = ∂˜� is strictly pseudoconvex, i.e., Log 1

φ is strictly

plurisubharmonic (i.e., Im ∂̄∂ 1
φ 
 0).

The circle group U(1) acts on X by (t, x) �→ (eiλt, x). We choose as volume
element on X the density dθ dv, where dv is a smooth positive density on �

17 It is free on the support of the K-theoretic symbol of our complex.
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(t = eiθ |t|). This is a smooth positive density on X ; it is invariant by the action
of U(1) as are the Szegő projector S and its range H, the space of boundary values
of holomorphic functions.

The infinitesimal generator of the action of U(1) is ∂θ , and we denote by D the
restriction to H of 1

i ∂θ , which is a self-adjoint nonnegative Toeplitz operator; D is
the restriction of Tt T∂t .

The model case is the sphere S
2N+1 ⊂ C

N+1 with the action

(t = z0, z = (z1, . . . , zN )) �→ (eiθ t, z).

The Fourier decomposition of H,

H = ̂⊕k≥0 Hk (Hk = ker (D − k)),

corresponds to the Taylor expansion of holomorphic functions: the kth component
of f =∑

fk(x)tk ∈ H is fk tk .
H0 identifies with the set of holomorphic functions on X0 (it is the set of

boundary values of holomorphic functions on � with moderate growth at the bound-
ary, i.e., | f | ≤ c d(·, X0)

−N where c and N are constants, and d(·, X0) is the
distance to the boundary).

Remark. If f = tk g(x) with g continuous, in particular if f ∈ Hk , its L2(X)
norm is

‖ f ‖L2(X) =
π

k + 1

∫

�
φk+1|g(x)|2dv,

where as above, dv is the chosen as the smooth volume element on �. The restriction
of the Szegő projector to functions of the form tk g(x) is thus identified with the
orthogonal projector on holomorphic functions in L2(�, φk+1dv). Such sequences
of projectors were considered by F.A. Berezin [5] and further exploited by M. Englis
[14, 15, 16], whose presentation is closely related to the one used here.

For the sequel, it will be convenient to modify the factorisation D = t∂t .
We begin with the easy following result.

Lemma 6. Let D = P Q be any factorisation where P, Q are Toeplitz operators
and [D, P] = P. Then there exists a (unique) invariant invertible Toeplitz operator
U such that P = tU, Q = U−1∂t .

Indeed it is immediate that any homogeneous function a on σ such that 1
i ∂θa =

±a is a multiple mt of t (respectively of t̄), with m invariant. For the same reason
(or by successive approximations) a Toeplitz operator A such that [D, A] = ±A is
a multiple of Tt M (or M ′Tt ) Tt with M or M ′ invariant (respectively of T∂t , on the
right or on the left). Thus in the lemma above we have P = TtU, Q = U ′T∂t , where
U, U ′ are Toeplitz operators which necessarily commute with D, and are elliptic
and inverses of each other.

Note that D = P Q, [D, P] = P is equivalent to D = P Q, [Q, P] = 1.
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In particular, since D = D∗ = T ∗∂t
T ∗t , there exists a Toeplitz operator A such that

T∂t = AT ∗t ; A is elliptic of degree 1 (in fact invertible), positive since D = Tt AT ∗t
is self-adjoint≥ 0; it is also invariant: [D, A] = 0.

Definition 4. We will set T = Tt A
1
2 ; its symbol is denoted by σ(T ) = τ .

Note that τ is homogeneous of degree 1
2 , and T is of degree 1

2 , so it is not a
Toeplitz operator in our strict sense, but for multiplications and automorphisms
P �→ U PU−1 it is just as good. We have

T ∗ = A
1
2 T ∗t , [D,T ] = T · D = T T ∗ (3)

(for any other such factorisation D = B B∗ with [D, B] = B , B is of degree 1
2 , and

we have B = T U with U invariant and unitary; T is the unique Toeplitz operator
giving such a factorisation and such that T = Tt A′ with A′ a Toeplitz operator of
degree 1

2 , A′ 
 0).
In what precedes, all = signs can be replaced by ∼ (= mod C∞); we then get

local statements.
The symbol τ = σ(T ) is the unique homogeneous function of degree 1

2 such
that σ(D) = |τ |2, ∂θ τ = iτ, τ

t > 0.
We also have the following (easy) local result:

Lemma 7. Given any Toeplitz operator K (mod C∞) on H such that D ∼ KK∗,
[D,K] = K near the boundary, there exists a unique unitary equivariant Toeplitz
FIO F such that F |H0 ∼ Id , FT ∼ KF.

The geometric counterpart is this: given any function k on � homogeneous
of degree 1

2 such that σ(D) = kk̄ there exists a unique germ of homogeneous
symplectic isomorphism f such that f |�0 = Id , k ◦ f = τ . This is immediate
because the two Hamiltonian pairs Hτ , Hτ̄ , Hk, Hk̄ define real 2-dimensional folia-
tions, and an isomorphism � ∼ �0 × C near �0. Note that this would not work
if we replaced k, k̄ by two functions a, b such that σ(D) = ab, ∂θa = ia but not
b = ā, because then the “foliation” defined by the Hamiltonian vector fields Ha, Hb,
although it is formally integrable, is not real.

The operator statement follows, e.g., by successive approximations. Note that F
is completely determined by its restriction F0 if it commutes with T . In fact in E� ,
the commutator sheaf of T and T ∗ identifies with the inverse image of E�0 , at least
as far as the leaves of the Hamiltonian fields HT , HT ∗ define a fibration over �0: E�

is the (completed) tensor product of the Toeplitz algebra Toepl(T ,T ∗) generated by
T and T ∗ and this commutator: E� ∼ E�0 ⊗ Toepl(T ,T ∗) (in a neighborhood of
�0). In this statement, (T ,T ∗) cannot be replaced by (Tt , T∂t ), whose commutator
sheaf is defined only in the algebra of jets of infinite order along �0, because the
Hamiltonian leaves are complex, no longer real.

Note that in our case, the base of char g is the boundary X0 (the set of fixed
points), outside of which D is elliptic.
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4.2 Collar isomorphisms

Let now �′ be another strictly pseudoconvex domain (or Stein manifold) with
smooth boundary X ′. We do the similar constructions �̃′, H

′, and D′, . . . as in
the previous subsection. Let f0 : X0 → X ′0 be a contact isomorphism.

We define the Fourier Toeplitz operator E0 : u �→ S′(u ◦ f −1
0 ) : H→ H

′, which

is a Fredholm operator. It will be convenient to replace E0 by F0 = (E0 E∗0 )− 1
2 E0,

which has the same index and is unitary mod C∞ (E0 E∗0 is an elliptic ≥ 0 Toeplitz

operator on H
′); (E0 E∗0 )− 1

2 is defined to be 0 on ker E∗0 (mod C∞ would be
quite enough). As for ˜�, we construct a Toeplitz operator T ′ such that D′ =
T ′T ′∗, [D′T ′] = T ′, T−1

t T ′ 
 0.
Exactly as in Lemma 4.2, there exists a unique (unitary) Toeplitz FIO F , defined

near the boundary X0 and mod C∞, elliptic, such that F |H0 = F0, and FT ∼ T ′F
near the boundary (mod C∞).

The geometric counterpart is this: there exists a unique equivariant germ of
contact isomorphism f : X → X ′ (defined and invertible near the boundary) such
that f |X0 = f0, τ ′ = τ ◦ f .

We may extend F , using an invariant cut-off Toeplitz operator, so that it vanishes
(mod C∞) away from the boundary. There is an invariant FIO parametrix F ′, i.e.,
F ′F ∼ 1H, F F ′ ∼ 1H′ , near the boundary.

Proposition 8. For any k, Fk = F |Hk has an index, equal to Index F0.

Proof. Both F ′F and F F ′ are invertible on the boundary, so have a G-index;
the index of Fk = F |Hk is tr (1 − F ′F)k − tr (1 − F F ′)k . Now T , respectively
T ′, is an isomorphism Hk → Hk+1, respectively H

′
k → H

′
k+1, and we have

Index (Fk+1 A) = Index (A′Fk), so Index Fk+1 = Index Fk , i.e., the index does
not depend on k and is equal to Index E0.18

The asymptotic index is stable by embedding; here the index is constant, and the
asymptotic index of F (which is essentially a Toeplitz invariant) gives the index of
F0 itself.

4.3 Embedding

Theorem 9. Let f : X → X ′ be a collar isomorphism defined in some invariant
neighborhood of X0 in X. Then for large N there exist equivariant contact embed-
dings U : X → S

2N+1, U ′ : X ′ → S
2N+1 such that U = U ′ ◦ f near the boundary,

and tX , t ′X ′ map to positive multiples of tS2N+1 (as above, the contact sphere S
2N+1

is equipped with the U(1)-action (t, z) �→ (eiθ t, z)).

18 For a more general situation in which P is a Toeplitz operator elliptic on X0, or in which the
canonical Szegő projector is replaced by some other general equivariant one, we would get only
that the index Index (Pk) is constant for k 
 0. Here the fact that Index Pk = Index P0 is obvious
but important.
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As usual, it will be more comfortable to work with the symplectic cones. The
symplectic cone of X is � = R+ × X , where we choose the radial coordinate
invariant.

The symbol of D is τ̄ τ with τ/t > 0 as in Definition 4. The Liouville form
is Im (τ̄dτ ) + λ0, where λ0 is a horizontal form, i.e., the pull-back of a form on
�b = U(1)\� � R+ × �̄ (equivalently: ∂θ�λ0 = L∂θ λ0 = 0).

Lemma 4 provides an embedding x �→ zb(x) of �b in C
N ′ − {0} (with the trivial

action of U(1)). We now choose real functions ψ1, ψ2 invariant, homogeneous of
degree 0, such that ψ2

1+ψ2
2 = 1, with supp ψ1 contained in the domain of definition

of f and ψ2 vanishing near the boundary, and we construct a new embedding z in
three pieces: z = (z1, z2, z3) with z1 = ψ1z0, z2 = ψ2z0, z3 = 0 in C

N ′′ , N ′′ to be
defined below.

Since Im z̄ j z jψ j dψ j = 0 (z̄ j z j ψ j dψ j is real), we still have Im (z̄1 · dz1 + z̄2 ·
dz2) = (ψ2

1 + ψ2
2 )Im z̄0 · dz0 = Im z̄0 · dz0 inducing λ0. The first embedding is

U = (τ, v) : �→ C
1+N (N = 2N ′ + N ′′).

Similarly there exists an embedding x ′ �→ z′0(x ′) of �′b in C
N ′′ − {0} (with the

trivial action of U(1)).
We replace this by z′ = (z′1, z′2, z′3) with z′1 = ψ ′1z1 ◦ f −1, z′2 = 0, z′3 = ψ ′3z′0,

where ψ ′1, ψ
′
3 again are invariant, homogeneous of degree 0, ψ ′21 + ψ ′23 = 1, and

supp ψ ′1 is contained in the domain of definition of f −1, ψ ′3 vanishes near the
boundary. This also defines an embedding U ′ = (a′, z′) : �′ → C

N+1; we have
U = U ′ ◦ f near the boundary, since ψ2, ψ

′
3 vanish there.

4.4 Index

We are now reduced to the case in which both U(1)-manifolds X, X ′ sit in a large
sphere S = S

2N+1 and coincide near the set of fixed points S0.
As in the preceding section, we can embed the U(1) sheaves μHX , μHX ′ as

sheaves of solutions of two good equivariant ES-modules MX ,MX ′ , and the iden-
tification F gives an equivariant Toeplitz isomorphism ˜F near X0 (we can make the
construction so that MX =MX ′, ˜F = Id near X0).

The asymptotic index then depends only on the difference element

d([MX ], [MX ′], σ (˜F)) ∈ K U (1)(S− S0).

Now U(1) acts freely on S − S0, with quotient space U(1)\(S − S0) the open
unit ball B2N ⊂ C

N . We have the following result.

Proposition 10. The pull-back map is an isomorphism K (B)→ K U (1)(S− S0).
We have K (B) ∼ Z, with generator the symbol of the Koszul complex kx at the

origin (or any point of the interior), whose index is 1.
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Its pull-back is the generator of K U (1)
S−S0

(S): the symbol is the same, but now acting

on H(S). Its index is
∑∞

0 J k, where (as in (2)) J is the tautological character of
U(1): J (eiλ) = eiλ.

The first assertion is immediate (cf. [4]): if G is a compact group acting freely on a
space Y , the pull-back defines an equivalence from the category of vector bundles
on G\Y to that of G-vector bundles on Y (an inverse equivalence is given by E �→
G\E), and this induces a bijection on K-theory (with supports).

The fact that kx defines the generator of K (B)(= K0(B)) is just a restatement of
Bott’s periodicity theorem. Its pull-back is then the generator of K U (1)(S− S0): the
corresponding complex of Toeplitz operators is then the standard Koszul complex,
acting on holomorphic functions, whose index is the space of holomorphic functions
of z0 = t alone.

Thus if [u] ∈ K U (1)(S − S0), its asymptotic index is m
∑∞

k=0 J k , where the
integer m is the value of the K-theoretic character K (B) on the element [uB] whose
pull-back is [u].

Let us now return to our index problem: we have constructed the difference
bundle d([MX ], [MX ′], σ (˜F)). We may replace MX ,MX ′ by good resolutions in
small equivariant tubular neighborhoods of X , respectively X ′, whose K-theoretic
symbol is the Bott element: the Koszul complex for a positive complex structure
on the normal symplectic bundle of X , respectively X ′. ˜F lifts to the resolutions
(uniquely up to homotopy), and the symbol of the lifting u is an isomorphism near
X0 (we can make the construction so that u = Id near X0), so our K-theoretic
element is [u] = d(βX , βX ′, u) (the equivariant K-theoretic element attached to the
double complex defined by u).

Theorem 11. Let m be the index of E0 we are investigating. Then, notation and
embeddings being as above,

(1) the asymptotic index of our equivariant extension ˜F is the asymptotic index of
the difference element [u] = d(βX , β ′X , u) ∈ K U (1)(S − S0), where u is the
symbol of ˜F (i.e., the identity map near S0, where X and X ′ coincide);

(2) the index m itself is the value of the index character of K (B) on the element
[uB] = d(β�, β�′ , ū).

The first part has just been proved. The asymptotic index is∼ m(1− J )−1 for some
integer m.

To prove the second we go down to B2N . The bases of X, X ′ are the embeddings
Y+, Y− of �,�′ in B, which coincide near the boundary, and as above, the pull-back
is an isomorphism KY±(B)→ K G

X±(S − S0). The Bott complexes βX± descend as
Bott elements βY± on B, realized as Koszul complexes of positive complex struc-
ture of the normal symplectic bundle;19 u descends as an isomorphism near the
boundary.

19 Note that Y± are symplectic submanifolds, not complex; but all positive complex structures are
homotopic.
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The index m we are looking for is the K-theoretic index character of the
difference element d(βY+, βY− , u). This can as usual be translated in terms of coho-
mology, or as an integral:

m =
∫

B

ω,

where ω is a differential form with compact support, representative of the Chern
character of our difference element d(βY+, βY−, u).

We can push this down further. The construction can be made so that u = Id near
the boundary; choose differential forms ω± with support in small tubular neighbor-
hoods of Y± so that they coincide near the boundary (as do the tubular neighbor-
hoods), so that ω is the difference ω+ − ω−.

The integral ν± of ω± over the fibers of the respective tubular neighborhoods is
then a representative of the Todd class of Y±; ν+ and ν− coincide near the boundary,
so that the difference ν+ − ν− has compact support in Y = Y+ ∪ Y−.

Finally, the index m is the integral
∫

Y (ν+ − ν−) as announced in Theorem 5.
The integral can also be thought of as the constant limit

∫

Y+,ε
ν+−

∫

Y−,ε
ν−, where

the subscript ε means that we have deleted the neighborhood φ < ε in Y+ and the
corresponding image in Y−.

4.5 Appendix

In this section we show how various symplectic extensions of f0 are related. It is a
little intriguing that although in our proof, the extension f must be chosen rather
carefully so that the asymptotic index of the corresponding Toeplitz FIO E is
(asymptotically) the index of E0, the final result, expressed as an integral on the
bases glued together by means of f near their boundaries, depends only on the
isotopy class of f , which is unique.

4.5.1 Contact isomorphisms and base symplectomorphisms

Let X be as above, with X0 the fixed-point set of codimension 2. Near the boundary,
X is identified with X = X0×C, and the base U(1)\X ∼ � identifies with X0×R+;
we have φ = t t̄ and the C-coordinate is t = √φ eiθ (it is smooth on X ). The contact
form is λX = Im (t̄ dt − ∂φ) = φ dθ + λ�, where λ� = −Im ∂φ is a smooth basic
form. The connection form is γ = dθ− λ�

φ , and the base � = X0×R+ is equipped
with the (basic) symplectic curvature form

μ = dγ

(

with γ = λ�

φ
, λ� = −Im ∂φ

)

.

We will still use the symplectic cone of X ; this is � = char g � R+ × X , with
Liouville form aλX and symplectic form its derivative, with the R+ coordinate a
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defined below. With the notation of Lemma 4, we have a = σ(A), i.e., σ(D) =
aφ = τ τ̄ , τ = t

√
a (as above, D = 1

i T∂θ denotes the infinitesimal generator of
rotations). We will also write in polar coordinates τ = ρ eiθ (ρ = √φ a).

Let F be a homogeneous equivariant symplectic transformation of �. Then F
preserves σ(D) = τ τ̄ , so we have necessarily F∗τ = u τ , with u invariant, |u| = 1.
Then F is completely determined by its restriction to the boundary, since it com-
mutes with the two real commuting Hamiltonian vector fields Re Hτ , Im Hτ , which
are linearly independent and transversal to �0.

Thus there is a one-to-one correspondence between unitary functions on the base
� and germs near �0 = char g of equivariant symplectomorphisms inducing Id on
char g, or equivalently of contact automorphisms of X inducing Id on X0.

If F is such a contact automorphism, the base map F� is obviously a diffeo-
morphism of � which induces Id on the boundary X0 and preserves the symplectic
form μ.

The converse is not true. If F� is a smooth symplectomorphism of � inducing
the identity on X0, we have F∗�(λ�

φ ) = λ�
φ +α with α a closed form. It is elementary

that α = c dφ
φ + β, where c is a constant and β is smooth on the boundary. Locally

on X0, F� lifts to X or �: the lifting is F : (x, τ ) �→ (x ′, τ ′ = τeiψ) (θ ′ = θ +ψ),
where ψ is a primitive of α (this is not smooth at the boundary, only continuous).
It is immediate that conversely, any α of the form above gives rise to such a contact
isomorphism with smooth base map. (On � the horizontal (invariant) coordinates
satisfy Hτeiψ f = 0; the horizontal part of the Hamiltonian Hτeiψ is −iτeiψ(∂ρ −
H 0

ψ) (with H 0
ψ = ψξ j ∂x j − ψx j ∂ξ j ); finally, ∂ρ − H 0

ψ is smooth, so the horizontal
coordinates (x ′, ξ) are determined by smooth differential equations.) Summing up:

Theorem 12. The map which to a germ of contact isomorphism F (near X0) assigns
the invariant unitary smooth function u such that F∗τ = τu is one-to-one (and
continuous). In particular, the homotopy class of F is determined by that of u (an
element of H 1(X, Z)).

The map which to a smooth germ of symplectomorphism F� (near X0) assigns
the closed one-form α = c dφ

φ + smooth is one-to-one; the group of such symplec-
tomorphisms is contractible. The contact lifting (which exists locally, and globally
if α is exact) is smooth on X0 if and only if c = 0.

The fact that this group is contractible (connected) simplifies the final result.
Namely, in the proof of Theorem 11 it was essential that the base map F� have
a smooth symplectic extension preserving τ > 0; for Theorem 5, however, any
symplectic F� will do, since these are all isotopic.

4.5.2 Example

(A smooth symplectic automorphism of the base does not lift to a smooth equi-
variant contact automorphism of the sphere.)

Let S be the unit sphere in C
N+1, with coordinates x0 = t, x1, . . . , xN .

Louis Boutet de Monvel, Eric Leichtnam, Xiang Tang and Alan Weinstein
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U(1) acts by t �→ eiθ t . The base is B = S/U(1), the unit ball of C
N .

The contact form is Im t̄ dt+λ = φ dθ+λ with λ =∑

x̄ j dx j , φ = t̄ t = 1− x̄ x .
The connection form is γ = dθ+ λ

φ ; its curvature is the symplectic form μ = d λ
φ

(on the interior of B).
Let FB be the diffeomorphism of B defined by x �→ x ′ = FB(x) = eciφx , c a

constant; this preserves φ, and the inverse is x = e−ciφ x ′. We have

F∗Bλ = Im (x̄(dx + ci x dφ)) = λ+ c(1− φ)dφ.

Since d(1− φ) dφ
φ = 0, FB is symplectic (F∗Bμ = μ).

But FB does not lift to a smooth equivariant contact automorphism of S: such a
lifting F must preserve the connection form, so it is of the form

t �→ e−iα t (θ �→ θ − α) with α = cLog φ − φ + const

(dα = c(1− φ) dφ
φ ), and this is not smooth at the boundary t = 0 if c �= 0.

Of course the reverse works: if F is a smooth equivariant contact automorphism
of the sphere S (or a germ of such near the fixed diameter S0), the base map FB is a
smooth symplectomorphism of the ball B (up to the boundary).

4.6 Final remarks

(1) The preceding construction applies in particular to the following situation: let
V , W be two compact manifolds, and f0 a contact isomorphism S∗V → S∗W .

We may suppose V real analytic; then S∗V is contact isomorphic to the bound-
ary of small tubular neighborhoods of V in its complexification. For example, if V
is equipped with an analytic Riemannian metric, and (x, v) �→ ex(v) denotes the
geodesic exponential map, the map (x, v) �→ ex(iv) is well defined for small v, and
for small ε it realizes a contact isomorphism of the tangent (or cotangent) sphere of
radius ε to the boundary of the complex tubular neighborhood of radius ε (cf. [6]).

The corresponding FIOs can be described as follows: as above, there exists a
complex phase (as in [25, 26]) function φ on T ∗W × T ∗V 0 such that (1) φ vanishes
on the graph of f0 and dφ = ξ.dx − η.dy there; (2) Im φ 
 0, i.e., it is positive
outside of the graph and the transversal Hessian is 
 0. Then φ is a global phase
function for FIO associated to f0 (φ is not unique, but obviously the set of such
functions is convex, hence contractible).

The elliptic FIOs we are interested in are those that can be defined by a positive
symbol (or a symbol isotopic to 1):

f �→ g(x) =
∫

eiφa(x, ξ, y, η) f (y)dy dη dξ with a > 0 on the graph.

The degree of such operators depends on the degree of a, but they all have the same
index, given by the formula above.
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(2) The formula above extends also to vector bundle cases: if E, E ′ are holo-
morphic vector bundles (or complexes of such) on �,�′, f0 a contact isomorphism
(∂�→ ∂�′) as above, and A a smooth (not holomorphic) isomorphism f0∗E → E ′
on the boundaries, the Toeplitz operator a �→ S′(A f0∗a) is Fredholm and its index
is given by the same construction as above. For this construction f0 needs to be
defined only where the complexes are not exact.

In particular let �,�′ have singularities (isolated singularities, since we still
want smooth boundaries): we can embed �,�′ in smooth strictly pseudoconvex
domains ˜�, ˜�′ of the same (higher) dimension; the contact isomorphism extends
at least in a small neighborhood of ∂� in ∂˜�. The coherent sheaves O�,O�′ have
global locally free holomorphic resolutions on ˜�, ˜�′; near the boundary these are
homotopy equivalent to a Koszul complex, hence equivalent.

The theorem above shows that the relative index is the K-theoretic character of
the difference virtual bundle d([O�], [O�′]) (vanishing near the boundary). Note,
however, that the virtual bundles [O�], [O�′] lie in the K-theory of ˜� with support
in �. This can be readily described in terms of cohomology classes on ˜�, etc., with
support in �, not on � itself (the relation between coherent holomorphic modules
and topological K-theory, or K-theory and cohomology, is not good enough when
there are singularities).
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de Trèves, São Carlos). Contemporary Math. vol. 205 (1997), 15–24.
9. Boutet de Monvel, L. Vanishing of the logarithmic trace of generalized Szegő projectors.
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