
Preface

This book is intended for research mathematicians interested in unsolved problems,
and graduate students in mathematics or engineering who are interested in the math-
ematical side of the theory of error-correcting codes. It also may be of interest to
coding-theorists who simply want to know how to use SAGE to do certain compu-
tations with error-correcting codes.

Strong undergraduates should find much in this book of some interest as well. In
terms of classroom use, this text could serve as a basis for a special topics course in
the theory of error-correcting codes. A good background in algebra, especially linear
algebra, would be needed from the student. Some sections also require a strong
background in algebraic geometry and number theory.

Coding theory is the branch of mathematics concerned with reliably transmitting
data across noisy channels. In many cases, one can simply subdivide the data stream
into blocks of a fixed length k and then encode each such block with some redun-
dancy to a “codeword” of longer length n, which is then transmitted. With enough
redundancy, the hope is that the receiver can recover the original k data bits. For
example, in the late 1960s to early 1970s NASA’s Mariner 9 took pictures1 of Mars
such as in Fig. 1. Black and white images such as in Fig. 1 were transmitted through
space back to Earth using the so-called Reed–Muller code of length n = 32, with
k = 6 data bits and n − k = 26 redundancy bits.

In spite of over 60 years of intensive work from the best minds in the world, there
are many interesting mathematical questions which remain unsolved in the theory of
error-correcting codes. The modest aim of this book will provide some “publicity”
for some of those questions.

A chapter-by-chapter overview follows. We have tried to order the chapters by
the rough level of mathematical sophistication required from the reader.

Chapter 1 contains a brief discussion of some basic terms and results on error-
correcting codes. For example, the binary symmetric channel, entropy and uncer-

1This image of Mars’ Olympus Mons was found on the NASA website http://marsprogram.jpl.
nasa.gov/MPF/martianchronicle/martianchron2/index.html and is in the public domain. See also
http://en.wikipedia.org/wiki/Mariner_9.
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Fig. 1 Mars’ Olympus Mons
taken by Mariner 9

tainty, Shannon’s theorem, the Hamming metric, the weight distribution (or spec-
trum) of a code, decoding basics, bounds on the parameters of a code (such as the
Singleton bound, Manin’s theorem, and the Gilbert–Varshamov asymptotic bound),
and examples of important codes such as the Hamming codes and the quadratic
residue codes. SAGE examples are scattered throughout to emphasize the computa-
tional aspect.

Chapter 2 is a very short chapter surveying certain aspects of the beautiful theory
resulting in the intersection between self-dual codes, lattices, and invariant theory.
This is a large field with several excellent books and survey articles already written.
We introduce weight enumerator polynomials (and the MacWilliams identity), di-
visible codes and their classification, invariants associated to the different types of
self-dual codes arising in this classification, and lattices arising from self-dual codes.
The chapter ends with a discussion of the famous unsolved (at present) problem of
the existence of a self-dual [72,36,16] binary code. Again, some SAGE examples
are given. A few proofs are sketched, but most results are stated with only references
to original proofs.

Chapter 3 discusses some fascinating results in the intersection between coding
theory, block designs, group theory, orthogonal arrays, Latin squares, and recre-
ational mathematics. After introducing Hadamard matrices (and the Hadamard con-
jecture, with SAGE examples), one of the most remarkable results in all of coding
theory is discussed, the Assmus–Mattson theorem. Roughly speaking, this theorem
shows a relationship between certain codes and the construction of certain block
designs. Connections with Latin squares and orthogonal arrays are given. The un-
expected combinatorial structure “hidden” in certain “design-theoretic” codes is ex-
emplified by the constructions in the section involving a Golay code and the “kitten”
and “minimog” constructions. The last sections of the chapter discuss recreational
aspects of the theory—strategies for winning a “mathematical blackjack” card-game
and horsetrack-betting.
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Chapter 4 explores an intriguing analogy between the Duursma zeta function
(a recently introduced “invariant” object associated to a linear code) and the zeta
function attached to an algebraic curve over a finite field. Much remains unknown
(at this time) regarding the Duursma zeta function, but this chapter surveys its known
properties (mostly with proofs). Several SAGE examples are given; in fact, SAGE
is the only mathematics software package (at this time) with commands to compute
Duursma zeta functions.

Chapter 5 discusses two very hard and unsolved problems. The first is a nontrivial
estimate for the number of solutions (mod p) to a polynomial equation y2 = f (x),
where f (x) is a polynomial whose degree is “small” compared to the prime p.
(When p is small compared to the degree of f , then Weil’s estimate gives a good es-
timate of the number of solutions.) The second unsolved problem is the best asymp-
totic bounds for a binary linear code. The surprise is that these two seemingly unre-
lated problems are in fact, rather closely related. Aspects of this relationship, with
some proofs and SAGE examples, are discussed in detail.

Finally, Chap. 6 discusses some aspects of algebraic-geometric codes (or AG
codes, for short). These are codes arising generally from algebraic varieties over fi-
nite fields, though the focus here is on modular curves. This is a relatively technical
chapter, requiring some familiarity of number theory, algebraic geometry, and mod-
ular forms and also of representation theory of finite groups. Fitting with the general
theme of this book, this chapter mostly illustrates how little we know about the alge-
braic structure of AG codes arising from modular curves. As with many other areas
of mathematics, it seems that the more one knows, the more one discovers how little
is really known.
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