Chapter 2
Quality of Service for I/0 Workloads

in Multicore Virtualized Servers

J. Lakshmi and S.K. Nandy

Abstract Emerging trend of multicore servers promises to be the panacea for all
data-center issues with system virtualization as the enabling technology. System vir-
tualization allows one to create virtual replicas of the physical system, over which
independent virtual machines can be created, complete with their own, individual
operating systems, software, and applications. This provides total system isolation
of the virtual machines. Apart from this, the key driver for virtualization adoption in
data-centers will be safe virtual machine performance isolation that can be achieved
over a consolidated server with shared resources. This chapter identifies the basic
requirements for performance isolation of virtual machines on such servers. The
consolidation focus is on enterprise workloads that are a mix of compute and I/O
intensive workloads. An analysis of prevalent, popular system virtualization tech-
nologies is presented with a view toward application performance isolation. Based
on the observed lacunae, an end-to-end system virtualization architecture is pro-
posed and evaluated.

2.1 Introduction

System virtualization on the emerging multicore servers is a promising technology
that has solutions for many of the key data-center issues. Today’s data-centers have
concerns of curtailing space and power footprint of the computing infrastructure,
which the multicore servers favorably address. A typical multicore server has suf-
ficient computing capacity for aggregating several server applications on a single
physical machine. The most significant issue with co-hosting multiple-server appli-
cations on a single machine is with the software environment of each of the appli-
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cations. System virtualization addresses this problem since it enables the creation
of virtual replicas of a complete system, over which independent virtual machines
(VMs) can be built, complete with their own, individual operating systems, software,
and applications. This results in complete software isolation of the VMs, which al-
lows independent applications to be hosted within independent virtual machines on
a single physical server.

Apart from the software isolation, the key driver for virtualization adoption in
data-centers will be safe virtual machine performance isolation that can be achieved
over a consolidated server. This is essential, particularly for enterprise application
workloads, like database, mail, and web-based applications that have both CPU and
I/0 workload components. Current commodity multicore technologies have system
virtualization architectures that provide CPU workload isolation. The number of
CPU-cores in comparison to I/O interfaces is high in multicore servers. This results
in the sharing of I/O devices among independent virtual machines. As a result, this
changes the I/O device sharing dynamics when in comparison to dedicated servers,
wherein all the resources like the processors, memory, I/O interfaces for disk and
network access are architected to be managed by a single OS. On such systems, so-
Iutions that optimize or maximize the application usage of the system resources are
sufficient to address the performance of the application. When multiple, indepen-
dent applications are consolidated onto a multicore server, using virtual machines,
performance interference caused due to shared resources across multiple VMs adds
to the performance challenges. The challenge is in ensuring performance of the inde-
pendent I/O intensive applications, hosted inside isolated VMs, on the consolidated
server while sharing a single I/O device [10].

Prevalent virtualization architectures suffer from the following distinct problems
with regard to I/O device virtualization;

1. Device virtualization overheads are high due to which there is a reduction in the
total usable bandwidth by an application hosted inside the VM.

2. Prevalent device virtualization architectures are such that sharing of the device
causes its access path also to be shared. This causes performance degradation
that is dependent on I/O workloads and limits scalability of VMs that can share
the 1/0 device [1].

3. Device access path sharing causes security vulnerabilities for all the VMs sharing
the device [35].

These reasons cause variability in application performance that is dependent on the
nature of consolidated workloads and the number of VMs sharing the I/O device.

One way to control this variability is to impose necessary Quality of Service
(QoS) controls on resource allocation and usage of shared resources. Ideally, the
QoS controls should ensure that:

e There is no loss of application performance when hosted on virtualized servers
with shared resources.
e Any spare resource is made available to other contending workloads.

The chapter starts with a discussion on the resource specific QoS controls that
an application’s performance depends on. It then explores the QoS controls for re-
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source allocation and usage in prevalent system virtualization architectures. The
focus of this exploration is on the issues of sharing a single NIC across multiple vir-
tual machines (VMs). Based on the observed lacunae, an end-to-end architecture for
virtualizing network I/O devices is presented. The proposed architecture is an ex-
tension to that of what is recommended in the PCI-SIG IOV specification [21]. The
goal of this architecture is to enable fine-grained controls to a VM on the I/O path of
a shared device leading to minimization of the loss of usable device bandwidth with-
out loss of application performance. The proposed architecture is designed to allow
native access of I/O devices to VMs and provides the device-level QoS controls
for managing VM specific device usage. The architecture evaluation is carried out
through simulation on a layered queuing network(LQN) [3, 4] model to demonstrate
its benefits. The proposed architecture improves application throughput by 60% as
in comparison to what is observed on the existing architectures. This performance
is closer to the performance observed on nonvirtualized servers. The proposed I/O
virtualization architecture meets its design goals and also improves the number of
VMs that can share the I/O device. Also, the proposed architecture eliminates some
of the shared device associated security vulnerabilities [35].

2.2 Application Requirements for Performance Isolation on
Shared Resources

Application performance is based on timely availability of the required resources
like processors, memory, and I/O devices. The basic guideline for consolidating
enterprise servers over multicore virtualized systems is by ensuring availability of
required resources as and when required [7]. For the system to be able to do so, the
application resource requirements are enumerated using resource requirement (RR)
tuples. An RR tuple is an aggregated list of various resources that the application’s
performance depends on. Thus RR tuple is built using individual resource tuples.
Each resource tuple is made up of a list of resource attributes or the attribute tuples.
Using this definition, a generic RR tuple can be written as follows:

Application(RR) =
(R1 < A1(Unit, Def , Min, Max), A2(Unit, Def , Min, Max), ... >,
R1 < A1(Unit, Def , Min, Max), A2(Unit, Def , Min, Max), ... >,
.2
where:

e Application(RR)—Resource requirement tuple of the application.

e R1—Name of a resource, viz. processor (CPU), memory, network(NIC), etc.

e Al—Name of the attribute of the associated resource. As an example, if Al rep-
resents the CPU speed attribute, it is denoted by the tuple that describes the CPU
speed requirements for the application.
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o (Unit, Def, Min, Max) represent the Unit of measurement, Default, Minimum, and
Maximum values of the resource attribute.

Using the XML format for resource specification, akin to Globus Resource Spec-
ification Language [13], the following example in Fig. 2.1 illustrates the applica-
tion(RR) for a typical VM that has both compute and I/O workloads.

In the depicted example, the resource tuple for the CPU resource is described
by the <CPU_Resource_Descriptor> and </CPU_Resource_Descriptor> tag pair.
Attribute tuples relevant to and associated with this resource are specified using the
attribute and value tag pair, within the context of resource tag pair. Each attribute
is specified by its Unit of measurement, Default, Minimum, and Maximum values
that the virtual machine monitor’s (VMM’s) resource allocator uses for allocating
the resource to the VM. In the example, the CPU speed is defined by the attribute
tags <Speed> and </Speed>. The Unit of Measurement for CPU speed is men-
tioned as MHz. The attribute values for Default, Minimum, and Maximum specify
the CPU speed required for the desired application performance hosted inside the

<Application_RR_descriptor>
<CPU_Resource_Descriptor>
<Speed>
<Unit>MHz</Unit>
<Default>1800</Default>
<Minimum>1500</Minimum>
<Maximum>2000</Maximum>
</Speed>
<NCPU>
<Default>4</Default>
<Minimum>1</Minimum>
<Maximum>4</Maximum>

</NCPU>
<L1Cache>

<Unit>KB</Unit>
<Default>64</Default>
<Minimum>64</Minimum>
<Maximum>64</Maximum>
</L1Cache>
</CPU_Resource_Descriptor>
<Memory_Resource_Descriptor>
<Size>
<Unit>MB</Unit>
<Default>2000</Default>
<Minimum>1000</Minimum>
<Maximum>4000</Maximum>
</Size>
<Bandwidth>
<Unit>MBps</Unit>
<Default>6400</Default>
<Minimum>6400</Minimum>
<Maximum>6400</Maximum>

</Bandwidth>
</Memory_Resource_Descriptor>

<Network_Resource_Descriptor>
<Speed>
<Unit>Mbps</Unit>
<Default>1000</Default>
<Minimum>100</Minimum>
<Maximum>1000</Maximum>
</Speed>

<Bandwidth> .
<Unit>KBps</Unit>

<Default>5000</Default>
<Minimum>5000</Minimum>
<Maximum>8000</Maximum>
</Bandwidth>
<Unit>KB</Unit>
<Default>64</Default>
<Minimum>64</Minimum>
<Maximum>64</Maximum>
</Bandwidth>
</Network_Resource_Descriptor>
<Disk_Resource_Descriptor>
<Size>
<Unit>MB</Unit>
<Default>1000</Default>
<Minimum>1000</Minimum>
<Maximum>1000</Maximum>
</Size>
<Bandwidth>
<Unit>MBps</Unit>
<Default>100</Default>
<Minimum>100</Minimum>
<Maximum>400</Maximum>
</Bandwidth>
</Disk_Resource_Descriptor>
</Application_RR_Descriptor>

Fig. 2.1 An example Application Resource Requirement tuple for a VM, expressed in XML
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VM. Default value specifies the attribute value that the VMM can initially allo-
cate to the VM. On an average, this is the value that the VM is expected to use.
The Minimum value defines the least value for the attribute that the VM needs to
support the guaranteed application performance. The Maximum value defines the
maximum attribute value that the VM can use while supporting its workload. All
the three attribute values can be effectively used if the VMM uses dynamic adaptive
resource allocation policies. For each resource, its tuple is specified using attribute
value tuples that completely describe the specific resource requirement in terms of
the quantity, number of units, and speed of resource access.

On a virtualized server the physical resources of the system are under the control
of the VMM. The resource tuples are used by the VMM while allocating or deal-
locating resources to the VMs. It can be assumed that RR contains values that are
derived from the application’s performance requirements. In the context of multi-
core servers, with server consolidation as the goal, each application can be assumed
to be hosted in an independent VM which encapsulates the application’s environ-
ment. Hence, the application’s resource tuples can be assumed to be the RR for each
VM of the virtualized server. In the case where multiple applications are co-hosted
on a single VM, these resource tuples can be arrived at by aggregating the resource
requirements of all the applications hosted by the VM.

2.3 Prevalent Commodity Virtualization Technologies and QoS
Controls for I/0 Device Sharing

Commodity virtualization technologies like Xen and Vmware have made the normal
desktop very versatile. A generic architecture of system virtualization, implemented
in these systems, is given in Fig. 2.2. The access to CPU resource is native, to all
VMs sharing the CPU, for all instructions except the privileged instructions. The
privileged instructions are virtualized, i.e., whenever such instructions are executed

VM-1 VM-2 VM-3
Web Application Database
Server Server Server

‘ Para—wrtuallzed NI }) "((‘Emulated Disk ‘
Fig. 2.2 Generic System ﬂg

Virtual Mag onitor
Virtualization architecture of

provalent commodity | e %;@ |

virtualization technologies
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from within the VM, they are trapped, and control is passed to the VMM. All I/O
instructions fall under the category of privileged instructions. Thus, I/O devices like
the Network Interface Card (NIC) and the DISK are treated differently, when vir-
tualized. There are two different, popularly adopted, methods used for virtualizing
I/0O devices, namely, para-virtualization and emulation [27]. Para-virtualized mode
of access is achieved using a virtual device driver along with the physical device
driver. A hosting VM or the VMM itself has exclusive, native access to the physical
device. Other VMs sharing the device use software-based mechanisms, like the vir-
tual device driver, to access the physical device via the hosting VM or the VMM. In
emulated mode of access, each VM sharing the physical device has a device driver
that is implemented using emulation over the native device driver hosted by the
VMM. Both these modes provide data protection and integrity to independent VMs
but suffer from loss of performance and usable device bandwidth. Details of the
evaluation are elucidated in the following section. In order to understand the effect
of the device virtualization architectures on application performance, experimental
results of well-known benchmarks, httperf [8] and netperf [2], are evaluated. The
first experiment is described in Sect. 2.3.1 and explores how virtualization affects
application performance. The second experiment, described in Sect. 2.3.2, evalu-
ates the existing QoS constructs in virtualized architectures for their effectiveness
in providing application-specific guarantees.

2.3.1 Effect of Virtualization on Application Performance

Prevalent commodity virtualization technologies, like Xen and Vmware, are built
over system architectures designed for single OS access. The 1/O device architec-
tures of such systems do not support concurrent access to multiple VMs. As a result,
the prevailing virtualization architectures support I/O device sharing across multiple
VMs using software mechanisms. The result is device sharing along with its access
path. Hence, serialization occurs at the device and within the software layers used
to access the device.

In virtualized servers, disk devices are shared differently compared to sharing of
NICs. In the case of disk devices, a disk partition is exposed as a filesystem that
is exported to a single VM. Any and every operation to this filesystem is from a
single VM, and all read and write disk operations are block operations. The data
movements to and from the filesystem is synchronized using the filesystem buffer
cache that is resident within the VM’s address space. The physical data movement
is coordinated by the native device drivers within the VMM or the hosted VM,
and the para-virtualized or emulated device driver resident in the VM. In the para-
virtualized mode, the overheads are due to the movement of data between the device
hosting VM and the application VM. In the case of emulation mode of access, the
overheads manifest due to the translation of every I/O instruction between the em-
ulated device driver and the native device driver. Due to this nature of I/O activity,
VM specific filesystem policies get to be implemented within the software layers of
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the VMM or the hosting VM. Since the filesystem activity is block based, setting
up appropriate block sizes can, to some extent, enable the control of bandwidth and
speed requirements on the I/O channel to the disk. However, these controls are still
coarse-grained and are insufficient for servers with high consolidation ratios.

For network devices, the existing architecture poses different constraints. Unlike
for the disk I/O which is block based, network I/O is packet based, and sharing
a single NIC with multiple VMs has intermixed packet streams. This intermixing
is transparent to the device and is sorted into per VM stream by the VMM or the
hosting VM. Apart from this, every packet is subjected to either instruction transla-
tion (emulation) or address translation (para-virtualization) due to virtualization. In
both the cases, virtualization techniques build over existing “single-OS over single
hardware” model. This degrades application performance.

Throughput studies of standard enterprise benchmarks highlight the effects of
virtualization and consolidation based device sharing. Since NIC virtualization puts
forth the basic issues with virtualization technologies, an analysis of NIC sharing
over application throughput is presented. Figures 2.3a and 2.4a depict the perfor-
mance of two standard benchmarks, netperf [2] and httperf [8], wherein the bench-
mark server is hosted in three different environments, namely nonvirtualized, virtu-
alized, and consolidated servers. The nonvirtualized environment is used to generate
the baseline for the metric against which the comparison is made for the perfor-
mance on virtualized and consolidated server. The virtualized server hosts only one
VM wherein the complete environment of the nonvirtualized server is reproduced
inside the VM. This environment is used to understand the overheads of virtualiza-
tion technology. The consolidated server hosts two VMs, similar to the VM of the
virtualized server, but with both VMs sharing the same NIC. The consolidated server
environment is used to understand the I/O device sharing dynamics on a virtualized
Server.

For the netperf benchmark, netperf is the name of the client, and netserver is
the server component. The study involves execution of the TCP_CRR test of net-
perf. The TCP_CRR test measures the connect-request-response sequence through-
put achievable on a server and is similar to the access request used in h#tp-based
applications. In the case of httperf benchmark, the client, called httperf, communi-
cates with a standard http server using the http protocol. In the httperf test used, the
client allows for specifying the workload in terms of the number of http requests to
the server in one second, for a given period of time, to generate statistics like the
average number of replies received from the server (application throughput), the av-
erage response time of a reply, and the network bandwidth utilized for the workload.
While netperf gives the achievable or achieved throughput, httperf gives an aver-
age throughput calculated for a subset of samples, executed over a specified period
of time, within the given experiment. Hence, httperf results give an optimistic esti-
mate which may fall short of expectation in situations where sustained throughput
is a requirement.

It is observed from the throughput graphs of netperf and httperf that there is
a significant drop in application throughput as it is moved from nonvirtualized to
Xen virtualized server. Xen virtualization uses para-virtualization mechanism with
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Fig. 2.4 httperf server Throughput and %CPU Utilization on Xen virtualized single-core server.
The hypervisor and the VMs are pinned to the same core

software bridging to virtualize the NIC. The application throughput loss is the over-
all effect of virtualization overheads. There is a further drop when the application
is hosted on a consolidated server with the VMs sharing the NIC. This is obvi-
ous, since for the consolidated server, the NIC is now handling twice the amount of
traffic in comparison to that of the virtualized server case. It is interesting to note
that the virtualization overheads manifest as extra CPU utilization on the virtualized
server [17]. This is observed by the CPU utilization graphs of Figs. 2.3b and 2.4b.
Both benchmarks indicate increased CPU activity to support the same application
throughput. This imposes response latencies leading to application throughput loss
and also usable device bandwidth loss for the VM. The noteworthy side effect of this
device bandwidth loss, for a VM, is that it is usable by another VM, which is shar-
ing the device. This is noticed in the throughput graphs of the consolidated server
for netperf benchmark. It is an encouraging fact for consolidating I/O workloads on
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virtualized servers. However, httperf benchmark performance on the consolidated
server is not very impressive and suggests further investigation.

Conducting this experiment on Vmware virtualization technology produces sim-
ilar behavior, which is depicted in Fig. 2.5. The httperf benchmark tests are con-
ducted on an Intel Core2Duo server with two cores. Unlike the case of Xen, pinning
of ESXi server (the hypervisor) to a CPU is not allowed. Hence, any CPU utilization
measurements for the ESXi hypervisor on Vmware show utilizations for all CPUs
included. This results in %CPU utilization above 100% in the case of multicore
systems. Vmware-ESXi server implements NIC virtualization using device emula-
tion. It is observed that the overheads of emulation are comparatively quite high in
relation to para-virtualization used in Xen. Here also, virtualization of NIC results
in using up more CPU to support network traffic on a VM when in comparison to
a nonvirtualized server. The other important observation is the loss of application
throughput. Device emulation imposes higher service times for packet processing,
and hence drastic drop of application throughput is observed in comparison to non-
virtualized and para-virtualized systems. In this case 70% drop on the maximum
sustained throughput is observed in comparison to the throughput achieved in the
nonvirtualized environment. This loss is visible even in the consolidated server case.
Interestingly, the total network bandwidth used in the case of consolidated VMs on
Vmware-ESXi was only 50% of the available bandwidth. Hence, the bottleneck is
the CPU resource available to the VMs, since each of the VM was hosted on the
same core. It is reasonable to believe that multicores can alleviate the CPU require-
ment on the consolidated server. On such systems, the CPU requirement of the VMs
can be decoupled from that of the VMM by allocating different CPU cores to each
of them. Study of httperf benchmark on consolidated server with each VM pinned
to a different core, for both Xen and Vmware-ESXi virtualized server, shows oth-
erwise. Application throughput increase is observed in comparison to single-core
consolidated server, but this increase still falls short by 10% of what was achieved
for the nonvirtualized server. The reason for this shortcoming is because both VMs
sharing the NIC also share the access path that is implemented by the Independent
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Fig. 2.6 httperf server %CPU Ultilization on Xen and Vmware-ESXi virtualized multicore server.
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Driver Domain (IDD) in the case of Xen and the hypervisor in the case of Vmware-
ESXi virtualized server. This sharing manifests as serialization and increased CPU
utilization of the IDD or the hypervisor, which becomes the bottleneck as the work-
load increases. Also, this bottleneck restricts the number of VMs that can share the
NIC. This is clearly depicted in the graphs of Fig. 2.6. In Fig. 2.6a, it is observed
that as the httperf workload is increasing, there is a linear increase in the CPU uti-
lization of the VMs as well as the Xen-IDD hosting the NIC. The CPU utilization of
the IDD, however, is much more when compared to the CPU utilization of either of
the VMs. This is because the IDD is supporting network streams to both the VMs.
As a consequence, it is observed that even though there is spare CPU available to
the VMs, they cannot support higher throughput since the IDD has exhausted its
CPU resource. This indicates that lack of concurrent device with concurrent access
imposes serialization constraints on the device and its access path which limits de-
vice sharing scalability on virtualized servers. This behavior is also observed in the
case of the Vmware-ESXi server as is depicted in Fig. 2.6b. However, as in the case
of single-core experiments, the CPU Utilization by the hypervisor and the VMs is
significantly much higher in comparison to the Xen server for the same benchmark
workload. This results in poor performance when compared to para-virtualized de-
vices, but yields more unused device bandwidth. As a result, Vmware-ESXi server
supports higher scalability for sharing the NIC.

The analysis for multicore virtualized server CPU Ultilization indicates that even
with the availability of required resources, for each of the VMs and the hypervi-
sor, the device sharing architecture has constraints that impose severe restrictions
in usable bandwidth and scalability of device sharing. These constraints are specif-
ically due to serialization of device and its access paths. Hence, it is necessary to
rearchitect device virtualization to enable concurrent device access to eliminate the
bottlenecks evident in device sharing by the VMs.
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2.3.2 Evaluation of Network QoS Controls

The most noteworthy point of observation of the study in Sect. 2.3.1 is the behavior
of each stream of benchmark on the consolidated server. In general, it is observed
that there is a further reduction of throughput on the consolidated server in compar-
ison to the single VM on a virtualized server, for both the benchmarks netperf and
httperf, with a marked decrement in the latter case. This indicates the obvious: lack
of QoS constraints would lead to severe interference in performance delivered by
the device sharing VMs.

The current commodity virtualization technologies like Xen and Vmware allow
for VM specific QoS controls on different resources using different mechanisms.
The CPU resource allocations are handled directly by the VMM schedulers like
Credit, SEDF, or BVT schedulers of Xen [11]. Also, as discussed in [17, 24, 31, 32],
the existing CPU resource controls are fine-grained enough to deliver desired per-
formance for CPU-based workloads. The problem is with I/O devices. The access
to an I/O device is always through the hypervisor or the driver domain OS kernel to
ensure data integrity and protection. The device is never aware as to which VM is
using it at any given instance of time; this information and control is managed by
the hypervisor or the driver domain. Hence, resource allocation controls with regard
to the I/O devices are at a higher abstraction level rather than at the device level,
unlike in the case of the CPU resource. These controls are effective for the outgoing
streams from the server, since packets that overflow are dropped before reaching the
NIC. However, for the incoming stream, the control is ineffective since the decision
of accepting or rejecting is made after the packet is received by the NIC. Hence,
the controls are coarse-grained and affect the way resource usage is controlled and
thereby the application performance. In scenarios where I/O device utilization is
pushed to its maximum, limitations of such QoS controls are revealed as loss of us-
able bandwidth or scalability of sharing, thereby causing unpredictable application
performance, as is illustrated in the next section.

To understand the effect of software-based QoS controls for network bandwidth
sharing, an experimental analysis of httperf benchmark on a consolidated server is
presented. The consolidated server hosts two VMs, namely VM1 and VM2, that
are sharing a NIC. Each VM hosts one Atfp server that responds to a httperf client.
The httperf benchmark is chosen for this study because it allows customization of
observation time of the experiment. This is necessary since the bandwidth control
mechanisms that are available are based on time-sampled averages and hence, need
a certain interval of time to affect application throughput. The experiment involves
two studies, one is that of best effort sharing where no QoS is imposed on either
of the VMs, and in the second case VM1 is allowed to use the available network
bandwidth when VM2 is constrained, by imposing specific QoS value based on the
desired application throughput. For both studies, each VM is subjected to equal load
from the httperf clients.

The performance of consolidated server corresponding to the best effort shar-
ing case is presented in Figs. 2.4a and 2.5a. As it is observed from the graphs, the
NIC bandwidth sharing is equal in both the virtualization solutions. When no QoS
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controls are enforced and each VM has equal demand for the resource, it is shared
equally on a best effort basis. In the second study, when bandwidth control is en-
forced on the VM2, while allowing complete available bandwidth to the VM1, the
expected behavior is to see improved throughput for the unconstrained VM1. This
is to say, VM1 performance is expected to be better in comparison to the best effort
case. Figure 2.7 demonstrates that imposing QoS controls on VM2 does not trans-
late to extra bandwidth availability for the other, unconstrained VM. The reasons
for this behavior are a multitude. The most significant ones being the virtualization
overhead in terms of the CPU resource required by the VMM or the hosting VM to
support I/O workload, serialization of the resource and its access path, lack of con-
trol on the device for the VM specific incoming network stream, and lastly, higher
priority to the incoming stream over the outgoing stream at the device. All these
lead to unpredictable application performance inspite of applying appropriate QoS
controls. Also, it is interesting to note that the variation in performance is dependent
on the nature of the consolidated workloads. This performance variation affects all
the consolidated workloads and makes the application guarantee weak. On multi-
core servers hosting many consolidated workloads of a datacenter, indeterminate
performance is definitely not acceptable. Also, since virtual device is an abstraction
supported in software, device usage controls are coarse grained and hence ineffec-
tive. This could lead to an easy denial of service attack on a consolidated server with
shared devices.

The bandwidth controls enforced are based on the following principle. For each
of the virtualization technologies used, i.e., Xen and Vmware, the network band-
width used by a single VM to support different httperf request rates, without perfor-
mance loss, is measured. These bandwidth measurements are used to apply control
on the outgoing traffic from VM2. Currently, the available controls allow constraints
only on the outgoing traffic. On the incoming traffic, ideally the control should be
applied at the device so that any packet causing overflow is dropped before recep-
tion. Such controls are not available at present. Instead, in Xen, at least one can use
the netfilter module’s stream-based controls after receiving the packet. This does not
serve the purpose, because by receiving a packet that could potentially be dropped
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later, the device bandwidth is anyway wasted. Hence, the study involves using only
the outgoing traffic controls for the constrained VM.

The selection of different range of workloads, for each of the virtualized server,
is based on the maximum throughput that each can support in a consolidated server
environment. For each QoS control, the maximum throughput achieved, without
loss, by each of the VM, is plotted in the graphs of Figs. 2.7a and b. In these figures,
the x-axis represents the httperf request rate based on which the network bandwidth
control was applied on the VM2, and the y-axis represents the application through-
put achieved by each of the VMs. In the case of Xen, Linux fc utility of the netfilter
module [34] is used to establish appropriate bandwidth controls. Specifically, each
traffic stream from the VMs is defined using htb class with rbf queue discipline with
the desired bandwidth control. Each queue is configured with a burst value to sup-
port a maximum of 10 extra packets. In the case of Vmmware-ESXi server, the Veam
Monitor controls for network bandwidth are used and populated with the same QoS
controls as is done for the Xen server.

Based on the behavior of the benchmarks, following bottlenecks are identified
for sharing network I/O device across multiple VMs on Xen or Vmware-ESXi vir-
tualized server.

e Virtualization increases the device utilization overheads, which leads to increased
CPU utilization of the hypervisor or the IDD hosting the device.

e Virtualization overheads cause loss of device bandwidth utilization from inside a
VM. Consolidation improves the overall device bandwidth utilization but further
adds to CPU utilization of the VMM and IDD. Also, if the VMM and IDD do not
support concurrent device access APIs, they themselves become the bottlenecks
for sharing the device.

e QoS features for regulating incoming and outgoing traffic are currently imple-
mented in the software stack. Uncontrolled incoming traffic at the device, to a
VM that is sharing a network device, can severely impact the performance of
other VMs because the decision to drop an incoming packet is taken after the
device has received the packet. This could potentially cause a denial of service
attack on the VMs sharing the device.

Based on the above study, a device virtualization architecture is proposed and de-
scribed in the following sections. The proposal is an extension to I/O virtualization
architecture, beyond what is recommended by the PCI-SIG IOV specification [21].
The PCI-SIG IOV specification defines the rudiments for making I/O devices vir-
tualization aware. On the multicore servers with server consolidation as the goal,
particularly in the enterprise segment, being able to support multiple virtual I/O de-
vices on a single physical device is a necessity. High-speed network devices, like
10-Gbps NICs, are available in the market. Pushing such devices to even 80% uti-
lization needs fine-grained resource management at the device level. The basic goal
of the proposed architecture is to be able to support finer levels of QoS controls,
without compromising on the device utilization. The architecture is designed to en-
able native access of I/O devices to the VMs and provide device-level QoS hooks
for controlling VM specific device usage. The architecture aims to reduce network
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I/O device access latency and enable improvement in effective usable bandwidth in
virtualized systems by addressing the following issues:

e Separating device management issues from device access issues.

e Allowing native access of a device to a VM by supporting concurrent device
access and eliminating hypervisor/IDD from the path of device access.

e Enable fine-grained resource usage controls at the device.

In the remaining part of the chapter, we bring out the need for extending I/O device
virtualization architecture in Sect. 2.4. Section 2.5 highlights the issues in sharing of
the I/O device and its access path in prevalent virtualization architectures leading to
a detailed description of the proposed architecture to overcome the bottlenecks. Xen
virtualization architecture is taken as the reference model for the proposed archi-
tecture. In the subsequent part of the section, a complete description of the network
packet work-flow for the proposed architecture is presented. These work-flows form
a basis for generating the LQN model that is used in the simulation studies for ar-
chitecture evaluation described in Sect. 2.6. A brief description of the LQN model
generation and detailed presentation of simulation results is covered in Sect. 2.7.
Finally, in Sect. 2.8 the chapter conclusion highlights on the benefits of the archi-
tecture.

2.4 Review of I/0 Virtualization Techniques

Virtualization technologies encompass a variety of mechanisms to decouple the
system architecture and the user-perceived behavior of hardware and software re-
sources. Among the prevalent technologies, there are two basic modes of virtualiza-
tion, namely, full system virtualization as in Vmware [15] and para-virtualization
as in Xen [11]. In full system virtualization complete hardware is replicated virtu-
ally. Instruction emulation is used to support multiple architectures. The advantage
of full system virtualization is that it enables unmodified Guest operating systems
(GuestOS) to execute on the VM. Since it adopts instruction emulation, it tends to
have high performance overheads as observed in the experimental studies described
earlier. In Para-virtualization the GuestOS is also modified suitably to run concur-
rently with other VMs on the same hardware. Hence, it is more efficient and offers
lower performance overheads. In either case, system virtualization is enabled by a
layer called the virtual machine monitor (VMM), also known as the hypervisor, that
provides the resource management functionality across multiple VMs. I/O virtual-
ization started with dedicated I/O devices assigned to a VM and has now evolved
to device sharing across multiple VMs through virtualized software interfaces [27].
A dedicated software entity, called the I/O domain, is used to perform physical de-
vice management [9, 12]. The I/O domain can be part of the VMM or be an inde-
pendent domain, like the independent driver domain (IDD) of Xen. In the case of
IDD, the I/O devices are private to the domain, and memory accesses by the devices
are restricted to the IDD. Any application in a VM seeking access to the device has



2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 37

to route the request through the IDD, and the request has to pass through the address
translation barriers of the IDD and VM [14, 19, 20, 22].

Recent publications on concurrent direct network access (CDNA) [23] and scal-
able self-virtualizing network interface [16] are similar to the proposed work in the
sense that they explore the I/O virtualization issues on the multicore platforms and
provision for concurrent device access. However, the scalable self-virtualizing in-
terface describes assigning a specific core for network I/O processing on the virtual
interface and exploits multiple cores on embedded network processors for this. The
authors do not detail how the address translation issues are handled, particularly in
the case of virtualized environments. CDNA is architecturally closer to our archi-
tecture since it addresses concurrent device access by multiple VMs. CDNA relies
on per VM Receive (Rx) and Transmit (Tx) ring buffers to manage VM specific
network data. The VMM handles the virtual interrupts, and the Xen implementation
still uses IDD to share the I/O device. Also, authors do not address the performance
interference due to uncontrolled data reception by the device nor do they discuss the
need for addressing the QoS controls at the device level.

The proposed architecture addresses these and suggests pushing the basic con-
structs to assign QoS attributes like required bandwidth and priority into the device
to get fine-grained control on interference effects. Also, the proposed architecture
has it basis in exokernel’s [6] philosophy of separating device management from
protection. In exokernel, the idea was to extend native device access to applications
with the exokernel providing the protection. In the proposed approach, the exten-
sion of native device access is with the VM, the protection being managed by the
VMM and the device collectively. A VM is assumed to be running the traditional
GuestOS without any modifications with native device drivers. This is a strong point
in support of legacy environments without any need for code modification. Further,
the PCI-SIG community has realized the need for I/O device virtualization and has
come out with the IOV specification to deal with it. The IOV specification, however,
talks about device features to allow native access to virtual device interfaces, through
the use of I/O page tables, virtual device identifiers, and virtual device-specific in-
terrupts. The specification presumes that QoS is a software feature and does not ad-
dress this. Many implementations adhering to the IOV specification are now being
introduced in the market by Intel [18], Neterion [25], NetXen [26], Solarflare [33],
etc. Apart from these, the Crossbow [28] suite from SUN Microsystems talks about
this kind of resource provisioning. However, Crossbow is a software stack over a
standard IOV complaint hardware. The results published using any of these prod-
ucts are exciting in terms of the performance achieved. These devices when used
within the prevalent virtualization technologies need to still address the issue of
provisioning QoS controls on the device. Lack of such controls, as illustrated by
the previously described experimental studies, cause performance degradation and
interference that is dependent on the workloads sharing the device.
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2.5 Enhancement to I/O Virtualization Architecture

The analysis of prevalent commodity virtualization technologies in Sect. 2.3 clearly
highlights the issues that need to be addressed while sharing I/O devices across
independent VMs on multicore virtualized servers. It is also observed that while
para-virtualization offers better performance for the application, emulation is an
alternative for improved consolidation. The goals are seemingly orthogonal since
current technologies build over virtualization unaware I/O devices. The proposed
architecture takes a consolidated perspective of merging these two goals, that of en-
suring application performance without losing out on the device utilization by taking
advantage of virtualization aware I/O devices and rearchitecting the end-to-end vir-
tualization architecture to deliver the benefits. In order to understand the benefits of
the proposed architecture, the Xen-based para-virtualization architecture for I/O de-
vices is taken as the reference model. In the existing Xen virtualization architecture,
analysis of the network packet work-flow highlights following bottlenecks:

e Since the NIC device is shared, the device memory behaves like a common mem-
ory for all the contending VMs accessing the device. One misbehaving VM can
ensure deprivation leading to data loss for another VM.

e The Xen-IDD is the critical section for all the VMs sharing the device. IDD in-
curs processing overheads for every network operation executed on behalf of each
VM. Current IDD implementations do not have any hooks for controlling the
overheads on per VM basis. Lack of such controls leads to performance interfer-
ence in the device sharing VMs.

e Every network packet has to cross the address translation barrier of VMM to IDD
to VM and vice-versa. This happens because of lack of separation of device man-
agement issues from device access issues. Service overheads of this stage-wise
data movement cause drop in effective utilized device bandwidth. In multicore
servers with scarce I/O devices, this would mean having high-bandwidth under-
utilized devices and low-throughput applications on the consolidated server.

To overcome the above-listed drawbacks, the proposed architecture enhances I/O
device virtualization to enable separation of device management from device access.
This is done by building device protection mechanisms into the physical device and
managed by the VMM. As an example, for the case of NIC, the VMM recognizes
the destination VM of an incoming packet by the interrupt raised by the device and
forwards it to the appropriate VM. The VM then processes the packet as it would
do so in the case of nonvirtualized environment. Thus, device access and scheduling
of device communication are managed by the VM that is using it. The identity for
access is managed by the VMM. This eliminates the intermediary VMM/IDD on
the device access path and reduces I/O service time, which improves the application
performance on virtualized servers and also the usable device bandwidth which re-
sults in improved consolidation. In the following subsections we describe the NIC
I/O virtualization architecture, keeping the above goals in mind, and suggest how
the system software layers of the VMM and the GuestOS inside the VM should use
the NIC hardware that is enabled for QoS-based concurrent device access.
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2.5.1 Proposed 1/0 Virtualization Architecture Description

Figure 2.8 gives a block schematic of the proposed I/O virtualization architecture.
The picture depicts a NIC card that can be housed within a multicore server. The
card has a controller that manages the DMA transfer to and from the device mem-
ory. The standard device memory is now replaced by a partitionable memory sup-
ported with n sets of device registers. A set of m memory partitions, where m < n,
along with device registers, forms the virtual-NICs (vNICs). The device memory
is reconfigurable, i.e., dynamically partitionable, and the VM’s QoS requirements
drive the sizing of the memory partition of a vNIC. The advantage of having a dy-
namically partitionable device memory is that any unused memory can be easily
extended into or reduced from a VNIC in order to support adaptive QoS specifica-
tions. The NIC identifies the destination VM of an arriving packet, based on the
logical device address associated with it. A simple implementation is to allow a sin-
gle physical NIC to support multiple MAC address associations. Each MAC address
then represents a VNIC, and a vNIC request is identified by generating a message-
signaled interrupt (MSI). The number of MAC addresses and interrupts supported
by the controller restricts the number of vNICs that can be exported. Although the
finite number of physical resources on the NIC restricts the number of vNICs that
can be exported, judicious use of native and para-virtualized access to the vNICs,
based on the QoS guarantees a VM needs to honor, can overcome the limitation.
A VM that has to support stringent QoS guarantees can choose to use native ac-
cess to the VNIC, whereas those VMs that are looking for best-effort NIC access
can be allowed para-virtualized access to a vNIC. The VMM can aid in setting up
the appropriate hosting connections based on the requested QoS requirements. The
architecture can be realized with the following enhancements:

Virtual Machine 1 ‘ ‘ Virtual Machine 2
Page Address Page Address
Translation Table Translation Table
Guest OS Device Address Device Address Guest OS
Translation Table Translation Table
Device Driver Device Driver
MSI-X | DMA Channel 1 DMA Channel 2| MSI-X
Virtual Machine Monitor
VNIC-1 vNIC-2 VvNIC-3

Hardware IO Virtualization

Physical NIC

Fig. 2.8 NIC architecture *’—‘
supporting independent LAN

reconfigurable virtual-NICs ‘
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Virtual-NIC

In order to define vNIC, the physical device should support timesharing in hard-
ware. For a NIC, this can be achieved by using MSI and dynamically partitionable
device memory. These form the basic constructs to define a virtual device on a phys-
ical device as depicted in Fig. 2.8. Each virtual device has a specific logical device
address, like the MAC address in case of NICs, based on which the MSI is routed.
Dedicated DMA channels, a specific set of device registers, and a partition of the
device memory are part of the virtual device interface which is exported to a VM
when it is started. This virtual interface is called the vNIC which forms a restricted
address space on the device for the VM to use and remains in possession of the
VM until it is active or relinquishes the device. The VMM sets up the device page
translation table, mapping the physical device address of the vNIC into the virtual
memory of the importing VM, during the vNIC creation and initialization. The de-
vice page translation table is given read-only access to the VM and hence forms
a significant security provisioning on the device. This prohibits any corrupt device
driver of the VM GuestOs to affect other VMs sharing the device or the VMM itself.
Also, for high-speed NIC devices, the partitionable memory of the vNIC is useful in
setting up large receive and segment offload capabilities specific to each vNIC and
thus customizes the sizing of each vNIC based on the QoS requirements of the VM.

Accessing Virtual-NIC

To access the vNIC, the native device driver hosted inside the VM replaces the IDD
layer. This device driver manipulates the restricted device address space which is
exported through the vNIC interface by the VMM. The VMM identifies and for-
wards the device interrupt to the destination VM. The GuestOS of the VM handles
the I/O access and thus directly accounts for the resource usage it incurs. This elim-
inates the performance interference when the IDD handles multiple VM requests to
a shared device. Also, direct access of vNIC to the VM reduces the service time on
the I/O accesses. This results in better bandwidth utilization. With the vNIC inter-
face, data transfer is handled by the VM. The VM sets up the Rx/Tx descriptor rings
within its address space and makes a request to the VMM for initializing the I/O
page translation table during bootup. The device driver uses this table along with
the device address translation table and does DMA directly into the VM’s address
space.

QoS and Virtual-NIC

The device memory partition acts as a dedicated device buffer for each of the VMs.
With appropriate logic on the NIC card, QoS-specific service level agreements
(SLAs) can be easily implemented on the device that translates to bandwidth re-
strictions and VM-based processing priority. The key is being able to identify the
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incoming packet to the corresponding VM. This is done by the NIC based on the
packet’s associated logical device address. The NIC controller decides on whether
to accept or reject the incoming packet based on the bandwidth specification or the
current free memory available with the destination vNIC of the packet. This gives
a fine-grained control on the incoming traffic and helps reduce the interference ef-
fects. The outbound traffic can be controlled by the VM itself, as is done in the
existing architectures.

Security and Virtual-NIC

Each vNIC is carved out as a device partition, based on the device requirement
specification of the VM. By using appropriate microarchitecture and hardware con-
structs it can be ensured that a VM does not monopolize device usage and cause
denial of service attack to other VMs sharing the device. The architecture allows
for unmodified GuestOS on a VM. Hence the security is verified and built outside
the VM, i.e., within the VMM. Allowing native device driver within the VM for the
vNIC not only enhances the performance but also allows for easy trapping of the
device driver errors by the VMM. This enables for building robust recovery mech-
anisms for the VM. The model also eliminates sharing of the device access path by
allowing direct access to the vNIC by the VM and thereby eliminates the associated
failures [35].

With these constructs, the virtualized NIC is now enabled for carving out secure,
customized VNICs for each VM, based on its QoS requirements, and supports native
device access to the GuestOS of the VM.

2.5.2 Network Packet Work-Flow Using the Virtualized 1/0
Architecture

With the proposed I/0 device virtualization architecture, each VM gets safe, direct
access to the shared I/0 device without having to route the request through the IDD.
Only the device interrupts are routed through the VMM. In Figs. 2.9a and b, the
workflow for network data reception and transmission using the described device
virtualization architecture is depicted. When a packet arrives at the NIC, it deci-
phers the destination address of the packet, checks if it is a valid destination, then
copies the packet into the vNIC’s portion of the device memory and issues DMA
request to the destination VM based on the vNIC’s priority. On completion of the
DMA request, the device raises an interrupt. The VMM intercepts the interrupt,
determines the destination VM, and forwards the interrupt to the VM. The VM’s
device driver then receives the data from the VM specific device descriptor rings
as it would do in the case of nonvirtualized server. In the case of transmission, the
device driver that is resident in GuestOS of the VM does a DMA transfer of the
data directly into the vNIC’s mapped memory and sets the appropriate registers to



J. Lakshmi and S.K. Nandy

42

QINOIIYDIE UOTIBZI[ENIIIA AITAP (/] PASIA0IdWI YIIM UOHEIIUNWWIOD (/] JI0MIU JO MOPSIOM 6T “SIA

MOJ-}IOM UOISSIWSUET) 19306 (q)

4

ININA
901A9(J d1mboy

€

1sanbay] ywsue1], vleq

OWA 99149 DIN

1oor g JTWSURL],

9

JIoM)au I9A0

juas syayded

\ QUIYOBIA] [EMIIIA

JIOALI(] 1A DINA

vreq Yyind

uonedrddy

1opng Sury
/I UOTSSTWISUBL],  1933nq 19330

N~

wo) eyep Kdo)

mop-yrom uondosar jaoed (&)

1
OIN 2y} 18
v DIN =

ININA
jdnuojuy DINA

S

1dniouy premioq

QALLIE S)3)deq

4

KIOWAA 991491 DINA

KdoD 29 AJuoA

\ QUIYIBIA [EIMIA
IOALI(J 991A9(J DINA
€
Bled VINA
uoneorddy
1opng Sury
0O/1 uondasoy Ioyyng 1930
S~ 7
1 ejep Adop




2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 43

initiate data transmission. The NIC transmits this data based on the vNICs proper-
ties like speed, bandwidth, and priority. It may be worth noting here that the code
changes to support this architecture in the existing implementation will be minimal.
Each VM can use the native device driver for its vNIC. This device driver is the
standard device driver for the IOV complaint devices with the only difference that
it can only access restricted device address. The device access restrictions in terms
of memory, DMA channels, interrupt line, and device register sets are setup by the
VMM when the VM requests for a virtual device. With the virtual device interface,
the VMM now only has to implement the virtual device interrupts.

2.6 Evaluation of Proposed Architecture

Since the architecture involves the design of a new NIC and a change in both VMM
and the device handling code inside the VM’s GuestOS, evaluation of the archi-
tecture is carried out using simulation based on LQN model of the architecture. In
LQN models, functional components of the architecture workflow are represented
as server entries. Service of each entry is rendered on a resource. End-to-end work-
flow is enacted using entry interactions. The LQN models capture the contention at
the resource or software component using service queues. The reason for choosing
LQN-based modeling is twofold. First, there is a lack of appropriate system simu-
lation tools that allow incorporating design of new hardware along with VMM and
GuestOS changes. Second, LQN models are intuitive queuing models that enable
capturing of the device and software contention and associated serialization in the
end-to-end workflow, right from the application to the device including the inter-
mediate layers of the VM, IDD, and VMM. With appropriate profiling tools, the
LQN models are fairly easy to build and are effective in capturing the causes of
bottlenecks in the access path. For complete details on general description of LQN
modeling and simulation, the reader may refer to [3-5].

2.6.1 LON Model for the Proposed Architecture

LQN models can be generated based on the network packet receive and transmit
workflows, manually, using the LQNDEEF [3] software developed at the RADS lab-
oratory of Carleton University. In the chapter, results generated for the LQN model
corresponding to the httperf benchmark are presented for analysis, since the bottle-
neck issues are prominent for this benchmark. For complete details on the generation
of the LQN models for the httperf benchmark and validation of the models against
experimental data, readers may refer to [29, 30]. Three assumptions are made while
generating the LQN models used for this analysis, namely:

e The service times established at each of the entries constituting the LQN model
are populated based on the service times measured for an http request, instead of
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a TCP packet. While it is feasible to model packet level contention, the reason
for choosing request level contention was to enable measurement of the model
throughput in terms of the number of satisfied requests. The model validation
results demonstrate that there is no significant loss or gain (<1%) of throughput
because of this.

e The experimental results for httperf benchmark illustrated in Sect. 2.3 are carried
out with varying request rates for a single specified file. In this mode of execution,
the file that is fetched as a reply to each of the hffp request, remains constant.
Hence the measured service time to process each request remains constant. Also,
for the chosen mode of execution of the Attperf benchmark, the arrival request rate
is observed to be uniform. Hence, the service times and arrival rates populated on
the LQN model are modeled as deterministic.

e The service time for all device activities that are assumed to be executed in hard-
ware, in the proposed architecture and modeled as separate entities in the LQN
model, is set to be significantly low (10~'% seconds). For the rest of the software
entries, the service times are derived based on the measurements made for the
nonvirtualized servers. This is justified since the proposed architecture gives na-
tive access to the device from within the VM which is assumed to be running the
same GuestOS as is used for the nonvirtualized server.

In general it is observed that the maximum throughput observed using the LQN
model is higher than the experimental observations. The reason for this is simple.
For every packet received or transmitted in Linux, there are several layers of the net-
work stack that each packet has to pass through. The time taken to traverse this pas-
sage is recorded by the profiler as the service time. In the real system, to match the
difference between the device speed and CPU speed, appropriate memory buffers
(TCP transmit and receive buffers of Linux kernel) are maintained. The sizing of
these buffers affects the observed application throughput. Observed throughputs are
higher for larger buffer sizes. This trend is maintained to the point until the device
can handle the rate of network traffic. Once device saturation occurs, the failure be-
havior usually results in a sudden drop in application throughput. While setting up
the LQN model, the maximum permissible default buffer size was used in the simu-
lator (which is more than three times than what was set on the experimental system).
This is normally the adopted practice since in throughput studies the interest is to
understand the limits of the model for those service times that make the contention
predominant. This gives an idea on the upper bound of application throughput on a
system with maximum possible resources for the service times possible within the
desired architecture. The basic idea is to eliminate buffer size constraint in the simu-
lation environment. While it is true that for the proposed architecture in which native
access to the I/O device is provided, the maximum throughput that can be achieved,
in reality, cannot exceed that of the maximum throughput achieved in the case of
nonvirtualized server, the results observed using simulations are contradictory. This
is because in the simulation environment, the buffer sizes used were much larger
than the experimental system. Hence, to make the comparison fair, normalization
of simulation results for existing architecture is carried out. To normalize, the LQN
model of existing Xen architecture is built, and simulation results are generated.
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These results are verified and validated for correctness with that of observed exper-
imental results. After this, all comparisons for the proposed architecture are made
using the simulation results of the existing architecture rather than the experimental
results.

2.7 Simulation and Results

The proposed architecture is evaluated using the parasrvn simulator of the LONS
software package [3].The architecture is evaluated for multicore virtualized servers
since the illustrated device sharing dynamics are expected to be pertinent to such
systems. The LQN model built for this study consists of one VMM and two VMs,
and each is pinned to an independent core. In order to compare the performance of
the proposed end-to-end architecture within the simulation environment, validation
of the LQN model for the existing Xen architecture for a multicore server is car-
ried out. Figure 2.10 depicts the results of achievable throughput and server CPU
utilization for a multicore Xen server with two VMs consolidated. The throughput
graph for both the VMs is similar and appears overlapped in the chart. As it can be
noted from Figs. 2.10a and b, in a multicore environment with Xen-IDD, VM1 and
VM2 each pinned to a core, and each VM servicing one httperf stream, the max-
imum throughput, without loss, achievable per stream is 950 requests/s as against
450 requests/s in the case of single core. But, for the maximum throughput, it is
observed that the Xen-IDD, which is hosting the NIC of the server, the CPU uti-
lization saturates. This indicates that further increase in application throughput is
impossible since the processor core serving the Xen-IDD has no computing power
left. Figure 2.11 shows these statistics for a similar situation but with the proposed
I/O virtualization architecture. As one can observe from Fig. 2.11a, the maximum
throughput achievable now per VM increases to 1500 requests/s. This is an increase
of application throughput by about 60%. The total throughput achievable at the NIC,
derived from consolidating the throughput of both the VMs, also increases by 60%
in comparison to what was achieved on the existing Xen architecture.

Also, from Fig. 2.11b it is observed that the CPU utilization of the IDD or the
hypervisor has considerably reduced and remains bounded by an upper limit. The
reason for this behavior is that the NIC is now handling the identity of the packet
destination. Also, in the existing model, bridging software, which routes the packets
to a VM and has a substantial overhead, is eliminated in the proposed architecture.
The effect is a reduction in the processing time that the IDD spends on behalf of
each VM. It is also noticed that since the VMM is now spending almost constant
time on I/O requests on behalf of the VMs, there is an elimination of performance
interference due to varying workloads. This improves the scalability of sharing the
device across VMs. With the proposed architecture, each VM is now accountable
for all the resource consumption, thereby leading to better QoS controls.

The next evaluation of the proposed architecture is for QoS controls on the net-
work bandwidth. Since the architecture is implemented using LQN model, certain
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Fig. 2.10 Maximum throughput achievable per httperf stream and CPU utilization for existing
Xen architecture on a multicore server hosting two VMs, each servicing one of the httperf stream.
The IDD, VM1, and VM2 are pinned to independent cores
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Fig. 2.11 Maximum achievable throughput and CPU utilization charts for a multicore virtualized
server incorporating the proposed /O virtualization architecture and hosting two VMs, pinned to
different cores, each servicing one httperf stream

modeling assumptions are made to simulate the network bandwidth controls as im-
plemented in the netfilter module of Linux. LQN model is basically a queuing model
wherein any node (also called entry in parasrvn notation) of the queue is described
using three parameters, namely, the arrival rate, the service time, and the think time.
The arrival rate models the rate of input requests at the entry, service time represents
the time the entry takes to process the request before forwarding to the next entry or
replying back to the requesting entry, and think time denotes the time before which
the entry actually services the request. The think time parameter is useful to model
policies like bandwidth restrictions, time-sharing intervals, periodic processing, etc.
The LQN model is basically a directed acyclic graph that captures the complete
workflow. Hence, the arrival rate is set for the source entry and in this case repre-
sents the rate of request arrival at the network interface of the virtualized server.
The service time represents the resource time used for servicing the request by the
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entry of LQN model, and think time is used to model bandwidth restriction. For ex-
ample, to model 250 requests/second bandwidth restriction, the think time derived
is 1/250 seconds. This ensures that the entry will only process 250 requests/second
and anything extra will be queued or dropped. The next parameter to model is the
burst parameter of the bandwidth control mechanism in Linux netfilter module. In
Linux netfilter module, once the bandwidth limit is reached, packet loss occurs. The
bandwidth control mechanism also has a burst parameter that allows for some extra
packet delivery on the channel, over and above that of imposed bandwidth restric-
tion. By setting the burst rate sufficiently low, equivalent to 10 packets, which is
also the minimum that is permissible, it is ensured that the bandwidth control on the
constrained channel is tight. The HTML page that is requested in the experiments re-
quires fourteen packets to complete a successful request. Since there is no feature in
LQN model to associate the burst parameter of netfilter, the QoS experiments were
carried out by setting the burst rate to 10 packets. This ensures that for the request
that exceeds the configured bandwidth, control fails, and the throughput reported
takes into account the desired behavior. Thus, think time setting in LQN model is
more restrictive than the netfilter. However, since the think time value is based on
the deterministic request rate parameter that defines the bandwidth constraint, it still
produces equivalent results, and this has been validated against observed experi-
mental values [29].

The following graphs in Fig. 2.12 depict the effect of not imposing (Fig. 2.12a)
and imposing network bandwidth QoS controls on the incoming stream of VM2
(Fig. 2.12b), in the proposed architecture. The simulations are conducted on a sin-
gle core server to keep the achievable throughput range within reasonable simulation
time. As it can be observed from the graphs of Fig. 2.12a, for the best effort service,
the maximum throughput, without loss, achieved by either of the VMs on the con-
solidated server is equal, indicating a fair share of the resource. The graphs of the
Fig. 2.12b show that, unlike as in the case of existing architectures, the QoS con-
straints, when moved to device level, allow the usage of available bandwidth by the
unconstrained channel. In the figure, VM2 is constrained to allow requests starting
from 150 requests/second to 950 requests/second, and VM1 is unconstrained. Since
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Fig. 2.12 Throughput achieved before and after imposing QoS controls on VM2 of the proposed
architecture
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the NIC is discarding requests to VM2 that are above the specified request rate, VM 1
can use the available bandwidth, and hence higher throughput (1500 replies/sec) on
VM1 is achievable. As the bandwidth control on VM2 is relaxed, it is noticed that
the throughput graphs start converging toward each other and finally merge to that
of the best effort case. The bandwidth control on the incoming stream also works to
our advantage on the http traffic, because by discarding the request at the device it-
self, the server and hence the associated resources are spared to respond on requests
that will eventually be dropped because of bandwidth controls. This control on the
device also acts as a strong deterrent for any denial of service type of attacks. The
other observation is that when multiple VMs are sharing the NIC, the maximum
bandwidth achievable on the unconstrained channel is less (<10%) than that which
is achieved by the isolated VM. Further reduction on this loss is possible by apply-
ing channel-based priority and bandwidth control on the outgoing channel of the
constrained VM. The outgoing channel constraints are easily achievable by using
existing mechanisms such as those available in the netfilter module of Linux [34].
The important point to note here is that with faster and higher-bandwidth NIC de-
vices, judicious use of large receive and segment offload buffers can lead to higher
device utilization without compromising the VM’s performance.

2.8 Conclusion

In this chapter, we described how the lack of virtualization awareness in I/O devices
can lead to latency overheads on the I/O path and also cause security vulnerabilities.
In addition to this, the intermixing of device management and data protection is-
sues further increases the latency. This results in reducing the effective usable band-
width of the device. Also, lack of appropriate device-sharing control mechanisms,
at the device level, leads to loss in bandwidth, causes performance interference on
the device sharing VMs, and makes the virtualization software the most vulnerable
component of the consolidated server. To address these issues, I/O device virtualiza-
tion architecture is proposed. The architecture is an extension to the PCI-SIG IOV
specification. The architecture evaluation is done by capturing it as an LQN model
and analyzing using simulation of the model. The simulation results show a utiliza-
tion benefit of about 60%, without enforcing any QoS guarantees or performing any
software optimization on the I/O path. The proposed architecture also improves the
security and scalability of VMs sharing the NIC. It is demonstrated that by moving
the QoS controls to the shared device, the unused bandwidth is made available to
the unconstrained VM, unlike the case in prevalent technologies. Although the eval-
uation is done for para-virtualized systems like Xen, it is reasonable to expect that
the ideas presented would benefit fully virtualized systems like Vimware since the
architecture enables elimination of the common software entity by providing native
device access to the GuestOS of the VM.

Acknowledgements Credits for this work are due to all those unknown reviewers who have
meticulously pointed out deficiencies and improvements over several rounds of reviews and also
to the summer interns who have enthusiastically carried out the numerous experimental work that
helped validate the simulation results.



2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 49
Appendix

Layered Queuing Network (LQN) models are the queuing models designed to cap-
ture the interdependencies in layered systems. The complete system is described
by a set of operations carried out over a set of resources. Every operation requires
one or more resources for execution. The LQN model defines an architectural and
resource context for each operation. The architectural context defines the initiating
event for the operation (execution trigger), when the execution should begin (ex-
ecution timing) and when it should complete (completion trigger). Based on the
semantics of the architectural context, the operation uses resources to carry out its
activities, which is defined by its resource context. A resource can be a software en-
tity or a hardware unit involved in actual execution of the operation. Each resource is
associated with a queue with a discipline that enforces the order of resource use by
the tasks. In layered systems, execution of an activity is carried out by a structured
order of operations over resources organized in different layers. An LQN model is
necessarily an acyclic graph of all possible sequences of requests to avoid the issue
of resource deadlocks. LQNs are very intuitive in capturing resource contentions
and thereby the performance implications on a layered system. These models are
quite common in practice for modeling software system performance.

The LQN models used in this chapter to evaluate I/O virtualization architecture
for the httperf benchmark are generated using the software developed at the RADS
Laboratory of Carleton University. Complete details of the software, tools, and the
associated documentation can be found on their website [3].

A short description of the LQN models generated for the proposed I/O virtualiza-
tion architecture and Xen is provided here. The I/O virtualization issues are promi-
nent for the httperf benchmark, and hence LQN models that capture the end-to-end
architecture are generated for analyzing the issues. The diagrams in Figs. 2.13 and
2.14 depict the LQN models generated for a consolidated Xen server and the pro-
posed I/O virtualization architecture, hosting two VMs. The model has two httperf
streams accessing http servers hosted on different VMs. The model captures the
scenario for a multicore system. In these models, each rectangular box represents
the conceptual functional entity that is active in the receive or the transmit path of
the network packet workflows depicted in Fig. 2.9, to complete one httperf request—
reply sequence. To make the LQN model simpler, a few assumptions are made:

1. While in reality every htfp request is broken into a sequence of packets that are
passed through various layers of OS, on an LQN model it is captured as a single
service request. This allows for throughput measurements on the model in terms
of satisfied http requests. This is the unit of measurement for the httperf bench-
mark. By aggregating contention issues from packet level to request level, the
throughput measurements tend to be optimistic than what is observed in actual
experiments.

2. The service time associated with the transmit/receive operation is consolidated
to represent the sending of all the packets composing the http request. Because
of this assumption, the results of the simulation tend to give upper bounds on
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Layerl Requestl | httperfl_post Request2| httperf2_post Legend:
1. Request: Generate httperf request.
2.DMA_IN, DMA_OUT: NIC Device
Layer2 DMAI_IN | DMA2_IN| NIC_IN | [Timerl_intr| Timerl Driver calls for data DMA
3.Timer, Tintr: Timer event and timer
Interrupt handler.
Layer3 ISRINI | ISRIN2 | TintrlH | VMM_ISRIN
4. ISRIN, ISROUT: Interrupt service
| ‘N handler.
Layer4 Recvl_Pkt |[Recv2_Pkt | IDD_RecV | |Forw1_Pkt|Forw2_Pkt [DD_Forw(]|
5. Forw_Pkt, Rev_Pkt: Packet iden—
tification and forwarding.
Layer5 Recvl_req [httpS1_Recv| [Recv2_req |httpS2_Recv
6. Recv_Pkt, Send_Pkt: Copy packet
from/to application space to/from
1/0 ring buffer.
Layer6 Send1_Rep| httpS1_Reply Send2_Rep| httpS2_Reply
7. Send_Rep: Generate reply to the
received request.
Layer7 Rev1_pkt|Rev2_pkt| IDD_RevC
Layer8 ISRIOUT|ISR20UT|VMM_ISROUT]|
Layer9 Sendl_Pkt [Send2_Pkt [IDD_Send | [DMAI1_OUT|DMA2_OUT| NIC_OUT]| [Timer2_intr| Timer2 | [Timer3_intr] Timer3
Layerl10 Replyl |httperfl_Recv Reply2 | httperf2_Recv | | Tintr2H [VMI_ISRIN Tintr3H [VM2_ISRIN

Fig. 2.13 Layered Queuing Network Model for end-to-end Attperf benchmark on Xen server
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Layerl Request! | httperfl_post Request2 | httperf2_post Legend:
1. Request: Generate httperf request.
2.DMA_IN, DMA_OUT: NIC Device
Layer2 DMAI_IN |DMA2_IN| NIC_IN | [Timer!_int| Timer1 Driver calls for data DMA
/ 3.Timer, Tintr: Timer event and timer
Interrupt handler.
Layer3 ISRIN1 | ISRIN2 | TintrlH | VMM_ISRIN
4. ISRIN, ISROUT: Interrupt service
handler.
Layer4 Forw1_Pkt| DD1_ForwC Forw2_Pkt | DD2_ForwC 5. Forw_Pkt, Rev_Pkt: Packet iden—
\K tification and forwarding.

Layer5 Recvl_Pkt |DDI_Recv Recv2_Pkt |DD2_Recv Recvl_req |httpS1_Recv Recv2_req |httpS2_Recv

6. Recv_Pkt, Send_Pkt: Copy packet
Layer6 Send]_Rep| htpS1_Reply|  [Send2_Rep| hups2_reply from/to application space to/from

1/0 ring buffer.

7. Send_Rep: Generate reply to the
Layer7 Revl_pkt |Rev2_pkt| IDD_RevC .
received request.
~
Layer8 Sendl_Pkt [ DD1_Send|  |ISRIOUT|ISR20OUT|VMM_ISROUT| | Send2_Pkt| DD2_Send
Layer9 DMA1_OUT[DMA2_OUT| NIC_OUT|  [Timer2_intr] Timer2 | [Timer3_intr| Timer3
Layerl10 Replyl | httperfl_Recv| | Reply2 | httperf2_Recv | | Tintr2H |VMI1_ISRIN Tintr3H |VM2_ISRIN

Fig. 2.14 Layered Queuing Network Model for end-to-end httperf benchmark on proposed 1/0
virtualized server
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the achievable throughput when compared to actual implementation. But the de-
viation is well within 10% of the observed values, as reported in [29, 30]. This
makes LQN models very useful in evaluating end-to-end architectures.

. One element that is incorporated in the LQN model and not shown in the work-

flow is the system timer interrupt using the server element “Timer.” This element
is introduced in the LQN to account for the queuing delays accrued, while the
OS is handling timer interrupts. For generating the service time of the interrupt
handler, a significantly small delay is used. This value is currently set randomly
for want of standard tools to profile kernel procedures.

All entries in the LQN model that represent hardware functions are set with a
significantly small delay as the service time.

Further details on generating of the LQN models and validating the models against
experimental data for this benchmark are discussed in [29, 30].
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