Chapter 2
Evolutionary Computation

Abstract The basic approach to optimisation is to formulate a fitness function,
which evaluates the performance of the fitness function and improves this per-
formance by choosing from available alternatives. Most classical optimisation
methods produce a deterministic sequence of trial solutions using the gradient or
higher-order statics of the fitness function. However, such methods may converge
to local optimal solutions. The evolutionary computation approach is a population-
based optimisation process rooted on the model of organic evolution, which can
outperform the classical optimisation methods for many engineering problems.
The existing approaches to evolutionary computation include genetic algorithms,
evolution strategies, evolutionary programming, genetic programming and so on,
which are considerably different in their practical instantiations. The emphasis of
this chapter is put on the biological background and basic foundations of genetic
algorithm and evolutionary programming. As the principles of particle swarm
optimisation are similar to that of evolutionary algorithms, the standard particle
swarm optimisation algorithm and an improved particle swarm optimisation
algorithm are also presented in this chapter.

2.1 The Evolutionary Algorithms of Computational
Intelligence

2.1.1 Objectives of Optimisation

Before investigating the mechanics and power of evolutionary algorithms, which
belong to the evolutionary approach of CI, it is necessary to outline the objective
of optimising a function or a process, as in this book evolutionary algorithms are
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applied to solve engineering optimisation problems. Mathematical optimisation is
the formal title given to the branch of computational science that seeks to answer
the question “what is the best?”, for problems in which the quality of any answer
can be expressed as a numerical value. Such problems arise in all areas of
mathematics, the physical, chemical and biological sciences, engineering, archi-
tecture and economics, and the range of techniques available to solve them is very
wide. In simple words, optimisation concerns the minimisation or maximisation of
a function. The conventional view about optimisation is presented well by
Beightler, Philips and Wilde [1]:

Man’s longing for perfection finds expression in the theory of optimisation. It studies how
to describe and attain what is the Best, once one knows how to measure and alter what is
Good or Bad ... An optimisation theory encompasses the quantitative study of optima and
methods for finding them.

The objective of an optimisation problem can be formulated as follows: find a
combination of parameters (independent variables) which optimise a given
quantity, possibly subject to some restrictions on allowed parameter ranges. The
quantity to be optimised (maximised or minimised) is termed the objective
function; the parameters which may be changed in the quest for the optimum are
called control or decision variables; and the restrictions on allowed parameter
values are known as constraints.

Generally speaking, an optimisation technique is mostly used to find a set of
parameters, x = [x1, X2, . . ., X,], which can in some way be defined as optimal. In a
simple case this might be the minimisation or maximisation of some system
characteristics that are dependent on x. In a more advanced formulation an
objective function f(x), to be minimised or maximised, might be subject to con-
straints in the form of equality constraints, inequality constraints and/or parameter
bounds. For instance, optimisation of an engineering problem is an improvement
of a proposed design that results in the best properties for minimum cost. In more
elaborate problems encountered in engineering, there is a property to be made best
(optimised) such as the weight or cost of a structure. Then there are constraints,
such as the load to be handled, and the strength of steel that is available. Thus,
optimisation seeks to improve performance towards some optimal points. There is
a clear distinction between the process of improvement and the destination or
optimum itself. However, attainment of the optimum is much less important for
complex systems. It would be nice to be perfect, meanwhile, we can only strive to
improve [1].

Conventionally, the general search and optimisation techniques are classified
into three categories: enumerative, deterministic and stochastic (random). Although
an enumerative search is deterministic, a distinction is made here as it employs no
heuristics [2]. Common examples of each type are shown in Fig. 2.1 [1, 2]:

1. Enumerative schemes are perhaps the simplest search strategy. Within a defined
finite search space, each possible solution is evaluated. However, it is easily
seen this technique is inefficient or even infeasible when search spaces become
large.
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2. Deterministic algorithms attempt to solve the inefficiency by incorporating
problem domain knowledge. As many real-world problems are computationally
intensive, some means of limiting the search space must be implemented to find
acceptable solutions in acceptable time. Many of these are conceived as graph/

tree search algorithms, e.g. the hill-climbing and branch-bound algorithms.

3. Random search algorithms have achieved increasing popularity, as researchers
have recognised the shortcomings of calculus-based and enumerative schemes.
A random search is the simplest stochastic search strategy, as it simply eval-
uates a given number of randomly selected solutions. A random walk is very
similar amongst each other, except that the next solution evaluated is selected
randomly using the last evaluated solution as a starting point.

2.1.2 Overview of Evolutionary Computation

Evolutionary computation techniques or evolutionary algorithms (EAs) work on a
population of potential solutions in a search space. Through cooperation and
competition amongst potential solutions, EAs can find optimal solutions more
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quickly when applied to complex optimisation problems. In the last forty years, the
growth of interest in heuristic search methods for optimisation has been quite
dramatic. The most commonly used population-based EAs are motivated from the
evolution of nature. The subject now includes GA [1], GP [3], evolutionary pro-
gramming [4], evolution strategies [5], and most recently the concept of evolvable
hardware [6]. These algorithms stemmed from the very basic description of bio-
logical systems and were derived with a simple understanding of genetic evolu-
tion, which have shown the capabilities in solving optimisation problems of
complex systems. EAs are classified as stochastic search algorithms for global
optimisation problems, which have found many engineering and industrial appli-
cations [7, 8].

Different from these evolution-motivated evolutionary computation techniques,
a recently emerged evolutionary computation technique, namely PSO [9, 10], is
motivated from simulations of social behaviours. PSO shares many similarities
with evolutionary computation techniques such as GAs, which is initialised with
a population of random solutions and searches for optima by updating genera-
tions. However, unlike GA, PSO has no evolution operators such as crossover
and mutation. In PSO, potential solutions, called particles, fly through a problem
space by following the current optimum particles. In general, compared with
GAs, the advantages of PSO are that PSO is easy to implement and there are few
parameters to adjust. Recent studies of PSO indicate that although the standard
PSO outperforms other EAs in early iterations, it does not improve the quality of
solutions as the number of generations is increased. In [11], passive congrega-
tion, a concept from biology, was introduced to improve the search performance
of the standard PSO. Simulation results show that this novel hybrid PSO out-
performs the standard PSO on multi-model and high-dimensional optimisation
problems.

All these related fields of research concerning GA, GP and PSO are often
nowadays grouped under the heading of EAs, which is an offshoot of CI. EAs have
been considered as general purpose parameter search techniques inspired by nat-
ural evolution models, which are appealing to many researchers in engineering. In
this book, GA, GP and PSO are employed to identify model parameters and extract
fault features for engineering problems. Detailed discussions on GA, GP and PSO
are introduced in the following sections.

2.2 Genetic Algorithm

The application of GAs is one of the most important developments in the research
field of EAs. GAs are excellent for quickly finding an approximate global maxi-
mum or minimum value, which explore a domain space with mutation and derive
satisfactory results with selection and crossover. The two major problems using
GAs are in converting a problem domain into genes (bit patterns) and creating an
effective objective function.
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2.2.1 Principles of Genetic Algorithms

GAs originated from the studies of cellular automata, conducted by John Holland
and his colleagues at the University of Michigan. Holland’s book, published in
1975 [12], is generally acknowledged as the beginning of the research of GAs.

Briefly, GAs require a natural parameter set of an optimisation problem to be
coded as a finite-length string (analogous to chromosomes in biological systems)
containing characters, features (analogous to genes), taken from some finite-length
alphabets. For a binary GA, the binary alphabet that consists of only 0 and 1 is
taken. Each feature is represented with different values (alleles) and may be
located at different positions (loci). The total package of strings is called a
structure or population (or, genotype in biological systems). A summary of the
similarities between natural and artificial terminologies of GAs is given in
Table 2.1.

A GA is generally recognised as a kind of optimisation method, which is
different from the conventional optimisation techniques, e.g. gradients, Hessians
and simulated annealing. GAs differ from the conventional optimisation algo-
rithms in four aspects:

1. They work using an encoding scheme of control variables, rather than the
variables themselves.
2. They search from one population of solutions to another, rather than from
individual to individual.
. They use only objective function information, not derivatives.
4. They employ probabilistic, not deterministic, rules, which do not require
accurate initial estimates.

W

From the early 1980s the community of GA has experienced an abundance of
applications, which spread across a wide range of disciplines. GAs have been
applied to solve difficult problems with objective functions that do not possess nice
properties such as continuity, differentiability, satisfaction of the Lipschitz Con-
dition, etc. In recent years the furious development of GAs in sciences, engi-
neering and business has lead to successful applications to optimisation problems,
e.g. scheduling, data fitting and clustering and trend spotting. Particularly, GAs
have been successfully applied to various areas in power systems such as power
dispatch [13, 14, 15], reactive power planning [16, 17] and electrical machine
design [18, 19].

Table 2.1 Comparison of

natural and GA terminologies Natural GA
Chromosome String
Gene Feature
Allele Feature value
Locus String position
Genotype Population

Phenotype Alternative solution
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2.2.2 Main Procedures of a Simple Genetic Algorithm

The GA used in this book is known as the simple genetic algorithm (SGA). The
use of SGA requires the determination of five fundamental issues: chromosome
representation, genetic operators making up the reproduction function, the creation
of an initial population, termination criteria and an objective function. An SGA
manipulates strings and reproduces successive populations using three basic
genetic operators: selection, crossover and mutation [12]. The rest of this sub-
section describes each of these issues.

2.2.2.1 Solution Representation

In neo-Darwinism, we have a population of living organisms, i.e. the phenotype—
coded by their deoxyribonucleic acid (DNA) and gene sequence—genotype. The
genotype expresses its phenotype which competes in an environment. The com-
petition drives the genotype to evolve a phenotype that performs best in an
environment. The chromosomes found in living cells can be described as strings of
many thousands of smaller units called alleles. There are only four different kinds
of alleles. In the following example, we reduce the number of different kinds of
alleles to 2 and the number of alleles in a chromosome to 10. Then, a simulated
chromosome in an SGA scheme can be represented by a 10-digit binary number,
e.g. 0010100111. The characteristic of an organism is determined by the particular
sequence of alleles in its chromosomes. In this example, we parallel this concept
by stating that the quality of any proposed binary number as a solution is deter-
mined by comparing it with an arbitrary ideal sequence which we are trying to find
[20].

As mentioned previously, GAs are computer programs that employ the
mechanics of natural selection and natural genetics to evolve solutions for solving
an optimisation problem. In GAs there is a population of solutions encoded by a
string. The representation of a possible solution as a string is essential to GAs as
described in the above paragraph. A set of genes which corresponds to a chro-
mosome in natural genetics is treated as a string in a GA. This algorithm, the most
popular format of which is the binary GA, starts by setting an objective function
based upon the physical model of a problem to calculate fitness values, and
thereafter measures each binary coded string’s strength with its fitness value. The
stronger strings advance and mate with other stronger strings to produce off-
springs. Finally, the best survives.

2.2.2.2 Selection Function

The selection of individuals to produce successive generations plays an extremely
important role in GAs. This selection is based on the string fitness according to the
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“survival of the fittest” principle. A reproduction operator copies individual
strings according to their fitness values. The strings with higher fitness values tend
to have a higher probability of contributing one or more offsprings to the next
generation. A selection method is required, which chooses individuals in relation
to their fitness. It can be deterministic or stochastic, and the roulette wheel
selection (RWS) method used in this study is discussed as the following [1, 20].

To reproduce, a simulated weighted roulette wheel is spun as many times as a
population size. The selection for an individual, i, is stochastic and proportional to
its fitness, f;. It requires fitness values to be positive numbers, f; > 0, Vi, as each
individual occupies a slice of a pie (hence a biased roulette wheel): f; is the ith
element of the total fitness — va:l fi» where N is the population size. The prob-

ability of individual i to be selected is P(i) = f;/S "~ f;- A uniformly distributed
random number, R, is generated: R€ U[0, 1]. If R is between the cumulative
probabilities of the ith and (i + 1)th individuals, then i is selected. This is repeated
for the required number of replacements (usually N) for the next step.

2.2.2.3 Crossover Function

Nature modifies its code by crossing over sections of chromosomes and mutating
genes, and GAs borrow this idea for this artificial algorithm. Once two parents
have been selected for crossover, a crossover function combines them to create
two new offsprings. The crossover operator operates in two steps following
reproduction. First, each member in the newly reproduced string group is matched
with another at random with a high probability p.. Secondly, each pair of strings
performs crossover with an exchange of each end part of strings at a certain
position to generate a pair of new strings. An example of one point crossover is
given below [20].

If a simulated weighted coin toss rejects crossover for a pair, then both solutions
remain in a population unchanged. However, if it is approved, then two new
solutions are created by exchanging all the bits following a randomly selected
locus on the strings. For example, if crossover after position 5 is proposed between
solutions 1100111010 and 1000110001, the resulting offsprings are 1100110001
and 1000111010, which replace their parents in the population.

2.2.2.4 Mutation Function

The mutation operator flips the code of certain digits of binary coded strings
randomly with a small probability. For instance, if every solution in a population
has O as the value of a particular bit, then a number of crossover operations may
produce a solution with a 1 at a particular bit. This process could prevent strings
from loss of useful genetic information, which usually results from frequent
reproduction and crossover operations. In general, every bit of each solution is
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potentially susceptible to mutation. Each bit is subjected to a simulated weighted
coin toss with a probability of mutation p,,, which is usually very low (of the order
of 0.01 or less). If mutation is approved, the bit changes its value (in the case of
binary coding from 1 to O or from O to 1).

2.2.2.5 Initialisation and Termination Criteria

GAs must be provided with an initial population as indicated previously. The
most common method is to randomly generate solutions for the entire popu-
lation. Since GAs can iteratively improve existing solutions, the initial popu-
lation can be seeded with potentially good solutions, with the remainder of the
population being randomly generated solutions. GAs move from generation to
generation selecting and reproducing parents until a termination criterion is
met. The most frequently used termination criterion is a specified maximum
number of generations. Another termination criterion involves population
convergence criteria. In general, GAs force much of an entire population to
converge to a single solution. When the sum of deviations amongst individuals
becomes smaller than a specified threshold, the algorithm can be terminated.
The algorithm can also be terminated due to a lack of improvement in the best
solution over a specified number of generations. Alternatively, a target value
for an evaluation measure can be established based upon some arbitrarily
acceptable thresholds. Moreover, several termination strategies can be
employed in conjunction with each other.

2.2.2.6 Fitness Function

For engineering problems, GAs are usually employed to optimise model
parameters, so that outputs of a model have a good agreement with reference
values, subject to the minimal requirement that a function can map a population
into a partially ordered set. A fitness evaluation function is independent of a GA,
which depends on a particular problem to be optimised. In a simple term, the
fitness function is the driving force behind a GA. A fitness function is called
from a GA to determine the fitness of each solution string generated during a
search. A fitness function is unique to the optimisation of the problem at hand;
therefore, when a GA is used for a different problem, a fitness function must be
formulated to determine the fitness of individuals. For many problems, a fitness
value is normally determined by the absolute error produced by a GA individual
with respect to a given reference value. The closer this error to zero, the better
the individual.

Suppose o denotes the desired signal raw and the output raw of a GA individual
is p. In general, the fitness can be calculated using an error fitness function or an
objective function:
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or a squared error fitness function:
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where n is the number of output target samples.

2.2.3 Implementation of a Simple Genetic Algorithm

The SGA used in this book is implemented in binary coding, and its computation
process is listed in Fig. 2.2:
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Fig. 2.2 A basic computation process of SGA
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. Initialise a population.

. Evaluate the fitness of every string in the population.

. Keep the best string in the population.

. Make a selection from the population at random.

. Crossover on selected strings with a probability p..

. Mutation on selected strings with a probability p,,.

. Evaluate the fitness of every string in a new population.
. Make elitism.

. Repeat (4) to (8) until a termination criterion is met.
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The crossover probability, p., and the mutation probability, py,, the size of the
population and the maximum number of generations are usually selected as
“a priori”.

2.3 Genetic Programming
2.3.1 Background of Genetic Programming

GP, established by Koza in his fundamental book [3] upon the concepts of GAs,
has become one of the most applied techniques in evolutionary computation.

The main difference between GP and GA is the representation of individuals in
a population. Whilst GA encodes solution variants into fixed-length strings
(chromosomes), GP has no such requirements, since a tree-structured (or hierar-
chical) representation of GP individuals holds an ability to evolve individual
structures during a learning process, i.e. dynamically vary its size, shape and
values. GP produces mathematical expressions as solutions. According to Langdon
[21]:

Genetic programming is a technique, which enables computers to solve problems without

being explicitly programmed.

A complete GP process is typically a GA and repeats its operation sequence as
listed in Sect. 2.2.3 [3, 22]. In order to run GP, several preliminary procedures are
required to be undertaken [22]:

1. Determination of terminals and functions.

2. Definition of a fitness function.

3. Choosing GP parameters such as a population size, a maximum individual size,
crossover and other probabilities, a selection method and termination criteria
(e.g. maximum number of generations).

The population of GP individuals, being constructed as tree-structured
expressions, is undergone by a procedure of fitness evaluation, which represents
the individual survivability during a selection procedure. Then the fittest indi-
viduals, being chosen as parents for performing genetic operations, produce
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offsprings constituting new generations of a population. The process continues
until a given termination criterion is met or simply a certain generation number is
reached. The finally survived individual is treated as a variant of a desired solution.
The tree structure of individuals allows GP to vary its size and shape, thereby,
achieving a high efficiency in searching of a solution space with respect to what
GAs are able to do [3, 22].

2.3.2 Implementation Processes of Genetic Programming

2.3.2.1 Terminals and Functions

GP generates an expression as a composition of functions from a function set and
terminals from a terminal set. The choice of functions and terminals, which are
collectively referred as nodes, plays an important role in GP since they are the
building blocks of GP individuals.

Terminals correspond to the inputs of GP expressions, whether they are con-
stants, variables or zero-argument functions that can be executed. Regarding tree-
structured (or hierarchical) representations of individuals, terminals end a branch
of a tree. In order to improve GP performance, an ephemeral random constant can
also be included as a terminal [3].

Functions are chosen to be appropriate to a problem domain, which may be
presented by arithmetic operations, standard mathematical, logical and domain-
specific functions, programming functions and statements. In this book, only the
mathematical functions listed in Table 2.2 are adopted for feature extraction using
GP after numerous GP trials with different sets of functions are utilised.

2.3.2.2 Population Initialisation

The initial generation of a population of GP individuals for later evolution is the
first step of a GP process. In general, the size of a newly initialised or reproduced

Table 2.2 A function set for

feature extraction using GP Symbolic No. of Description
name arguments
Add, Sub Addition, substraction

2
Mul, Div 2 Multiplication, division
Power 2 Involution
Sqr, Abs 1 Square, absolute value
SqrtAbs 1 Square root of absolute value
Exp, Ln 1 Exponent, natural logarithm
Sin, Cos 1 Sine, cosine
Arctan, Not 1 Arc tangent, invertor
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GP individual is bounded by the maximum depth of a tree, i.e. by the maximum
total number of nodes in the tree.

The depth of a node is the minimal number of nodes that must be traversed to
reach from the root of the tree to the selected node and, correspondingly, the
maximum depth is the largest depth being permitted between the root node and the
outmost terminals of an individual [22].

In most cases, the initialisation of GP tree structures is implemented using the
full or grow methods [3]. The grow method creates an irregular shape tree
structure due to random selections of its nodes, whether it is a function or a
terminal (except the root node being only a function). Thus, the maximum depth of
a tree could not be reached until the terminal node is appeared, concluding the tree
branch. As an example in Fig. 2.3a a tree-structured GP individual of a maximum
depth of 4, calculating the following expression:

a(b — ¢) + sin b, (2.3)

is presented being initialised with the grow method. The terminals are variables
a, b and ¢, whereas arithmetical functions +, — and sin are the functions.

On the other hand, the full method generates tree structures by choosing only
functions to build nodes in a tree branch until it reaches a maximum depth. Then
only terminals are chosen. As a result, each branch of the tree is of the full
maximum depth [22]. For instance, the tree in Fig 2.3b, representing the following
expression:

ab— (b+c), (2.4)

is initialised using the full method with a maximum depth of 3.

The ramped half-and-half method has also been devised in order to enhance the
population diversity by combining both the full and grow methods [3]. Given the
maximum depth d, a GP population is divided equally amongst individuals to be
initialised having maximum depths 2, 3, ..., d — 1, d. For each depth group, half

(a) (b)

Fig. 2.3 Tree-structured GP expressions
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of the individuals are generated using the grow method, and the other half by using
the full method.

2.3.2.3 Genetic Operators

In GP the populations of hundreds and thousands of expressions are generally bred
using the Darwinian principle of survival and reproduction of the fittest. Similar to
GAs, three genetic operators, i.e. crossover, mutation and reproduction, are
employed for this breeding, which are appropriate for generating a new offspring
population of individual expressions from an initial population.

The crossover operation is used to create new offspring individuals from two
parental ones selected by exchanging of the subtrees between parental structures as
shown in Fig. 2.4. These offspring individuals are generally with different sizes
and shapes to their parents [22, 23]. Mutation is operated on only one individual by
replacing a subtree at a randomly selected node of an individual by a randomly
generated subtree as shown in Fig. 2.5. The reproduction operation makes a direct
copy of the best individual from the parental population and places it into the
offspring population [22].

Parent 1 Parent 2
(+) ()
(+} i (+) ()
OO ®» G ©» O O
OO
Child 1 Child 2

Fig. 2.4 Crossover of tree-structured GP expression
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Fig. 2.5 Mutation of tree-structured GP expression

2.3.2.4 Fitness Function

Each individual expression in a population is evaluated in order to quantify how
well it performs in a particular problem environment, which is represented by a
fitness value. For a two-category classification problem, the Fisher’s discriminant
ratio (FDR) criterion is usually utilised as a fitness function. FDR is based on the
maximisation of between-class scatter over the within-class scatter [24, 25]. Thus,
each GP individual is evaluated according to its ability to separate particular
classes of data by using the following equation [25]:

2
fitness = = )" DN, (2.5)

(o1 + 3)

where u;, u, and a%, o-% denote the mean values and variances of the two
categories to be separated, respectively. p is a small value, e.g. 0.0005, which is
introduced as a penalty to the fitness function depending on the number of nodes
N of each evaluated individual. This allows a GP program to control the increase in
the size of GP individuals and, hence, the production of more simple solutions
[26]. Consequently, a GP individual with a larger fitness value is considered to be
more accurate in two-category discrimination.

2.3.2.5 Selection Procedure

The selection of individuals to produce successive generations plays an extremely
important role in GP. There are various fitness-based selection methods, amongst
which the tournament selection is recognised as the mainstream method for a GP
selection procedure [22]. The tournament selection operates on subsets of indi-
viduals in a population. A randomly chosen number of individuals, defined by the
tournament size, form a subset, where a selection competition is performed. Best
individuals from the subsets are then passed to the next level, where the compe-
tition is repeated. The tournament selection allows to adjust the selection pressure
[27], which is an objective measure to the characterise convergence rate of the
selection, i.e. the smaller the tournament size, the lower the pressure [22].
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2.4 Particle Swarm Optimisation

The standard particle swarm optimiser (SPSO) is a population-based algorithm
that was invented by Kennedy and Eberhart [9], which was inspired by the social
behaviour of animals such as fish schooling and bird flocking. Similar to other
population-based algorithms, such as GAs, SPSO can not only solve a variety of
difficult optimisation problems but also has shown a faster convergence rate than
other EAs for some problems [10]. Another advantage of SPSO is that it has very
few parameters to adjust, which makes it particularly easy to implement.

Angeline [28] pointed out that although SPSO may outperform other EAs in
early iterations, its performance may not be competitive as the number of gen-
erations is increased. Recently, investigations have been undertaken to improve the
performance of SPSO. Lgvbjerg et al. [29] presented a hybrid PSO model with
breeding and subpopulations. Kennedy and Mendes [30] studied the impacts of
population structures to the search performance of SPSO. Other investigations on
improving SPSO’s performance were undertaken using the cluster analysis [31]
and the fuzzy adaptive inertia weight [32]. SPSO has been used to tackle various
engineering problems as presented in [33].

The foundation of SPSO is stemmed on the hypothesis that social sharing of
information amongst conspecifics offers an evolutionary advantage [9], and the
SPSO model is rooted on the following two factors [9]:

1. The autobiographical memory, which remembers the best previous position of
each individual (P;) in a swarm.

2. The publicised knowledge, which is the best solution (P,) found currently by a
population.

Therefore, the sharing of information amongst conspecifics is achieved by
employing the publicly available information P, shown in Fig. 2.6. There is no
information sharing amongst individuals except that P, broadcasts the information
to the other individuals. Therefore, a population may lose diversity and is more

Fig. 2.6 Interaction between
particles and the best particle
gbest

The i, Particle
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likely to confine the search around local minima if committed too early in the
search to the global best found so far.

To overcome this weakness, ideas from biology science have been borrowed to
avoid early convergence and biologists have proposed four types of biological
mechanisms that allow animals to aggregate into groups: passive aggregation,
active aggregation, passive congregation and social congregation [34]. There are
different information sharing mechanisms inside these forces. It is found that the
passive congregation model is suitable to be incorporated in the SPSO model.
Inspired by this observation, a hybrid model of PSO with passive congregation is
presented in this book [11].

2.4.1 Standard Particle Swarm Optimisation

The population of SPSO is called a swarm and each individual is called a particle.
For the ith particle at iteration k, it has the following two attributes.

1. A current position in an N-dimensional search space X = (x*,,...,x* ...

9 Min

xf v), where x* € [l,,u,],1 <n<N,I, and u, are the lower and upper bounds

in
for the nth dimension, respectively.
2. A current velocity V&

vk = (vﬁl,.. WK ...,vﬁN)

> Vino
which is clamped to a maximum velocity

k(. k k k
Vmax - (Vmax,h te Vmax,n’ ] Vmax.N)'

In each iteration, the swarm is updated by the following equations [9]:

Vit = oV + ein (P} = X{) + cana (P — X7) (26)

Xt = xF 4 yi (2.7)

where P; is the best previous position of the ith particle (also known as pbest) and
P, is the global best position amongst all the particles in the swarm (also known as
gbest). They are given by the following equations:

- Pl' . f(X,)ZP,
Pi_{Xi D f(Xi) <P 28

P, € {Py,Pi,....Pu}|f(Py) = min(f(Po),f(P1),.. .S (Pm)) (2.9)
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where f is the objective function, m is the number of particles, r; and r, are the
elements from two uniform random sequence on the interval [0, 1] : r; ~ U(0, 1);
r, ~ U(0, 1) and w an inertia weight which is typically chosen in the range of [0,1].
A larger inertia weight facilitates the global exploration and a smaller inertia
weight tends to facilitate the local exploration to fine-tune the current search area
[35]. Therefore, the inertia weight w is critical for SPSO’s convergence behaviour.
A suitable value of w usually provides a balance between global and local
exploration abilities and consequently results in a better optimum solution. ¢; and
¢, are acceleration constants, which also control how far a particle moves in a
single iteration. The maximum velocity V. is set to be half of the length of the
search space.

2.4.2 Particle Swarm Optimisation with Passive Congregation

It is mentioned that SPSO is inspired by social behaviours such as spatial order,
more specially, aggregation such as bird flocking, fish schooling, or swarming of
insects. Each of these cases has stable spatio-temporal integrities of a group of
organisms: the group moves persistently as a whole without losing the shape and
density.

For each of these groups, different biological forces are essential for preserving
the group’s integrity. Parrish and Hamner [34] proposed mathematical models of
the spatial structure of animal groups to show how animals organise themselves. In
these models, aggregation sometimes refers to a grouping of the organisms by non-
social, external and physical forces. There are two types of aggregation: passive
aggregation and active aggregation. Passive aggregation is a passive grouping by
physical processes. One example of passive aggregation is the dense aggregation
of plankton in open water, in which the plankton are not attracted actively to the
aggregation but are transported passively there via physical forces such as water
currents. Active aggregation is a grouping by attractive resources, such as food or
space, with each member of the group recruited to a specific location actively.
Congregation, which is different from aggregation, is a grouping by social forces,
which is the source of attraction, in the group itself. Congregation can be classified
into passive congregation and social congregation. Passive congregation is an
attraction of an individual to other group members but where there is no display of
social behaviour. Social congregations usually happen in a group where the
members are related (sometimes highly related). A variety of inter-individual
behaviours are displayed in social congregations, necessitating active information
transfer [34]. For example, ants use antennal contacts to transfer information about
an individual identity or a location of resources [36].

From the definitions above, the third part of Eq. 2.6: car2(P§ — X}) can be
classified as either active aggregation or passive congregation. Since Py is the best
solution a swarm has found so far, which can be regarded as the place with most
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Fig. 2.7 Search direction of The best particle Py
the ith particle in SPSO

The iy, particle X; () — — — — — — — — — 2

Previous best position P;

food, we argue that it is better to classify C27‘2<P§ — Xl") as active aggregation.
From a biology point of view, the sharing of information amongst conspecifics is
achieved by employing the publicly available information gbest. There is no
information sharing amongst individuals except that ghest gives out the infor-
mation to the other individuals. Therefore, for the ith particle, the search direction
is only affected by 3 factors as shown in Fig. 2.7: the inertia velocity V¥, the best
previous position pbest, and the position of global best particle gbest. The popu-
lation is more likely to lose diversity and confine the search around local minima.
From our experiment results, the performance of SPSO is not sufficiently good
enough for high-dimensional and multi-model optimisation problems.

It has been discovered that in spatially well-defined congregations, such as fish
schools, individuals may have low fidelity to a group because the congregations
may be composed of individuals with little to no genetic relation to each other
[37]. Schooling fish are generally considered as a “selfish herd” [38], in which
each individual attempts to take the sweeping generalisation advantage from group
living, independent of the fates of neighbours [39]. In these congregations,
information may be transferred passively rather than actively [40]. Such asocial
types of congregations can be referred to as passive congregation. As SPSO is
inspired by fish schooling, it is, therefore, natural to ask if a passive congregation
model can be employed to improve the performance of SPSO. Here, we do not
consider other models such as passive aggregation, because SPSO is not aggre-
gated passively via physical processes. Furthermore, social congregation usually
happens when group fidelity is high, i.e. the chance of each individual meeting any
of the others is high [41]. Social congregations frequently display a division of
labour. In a social insect colony, such as an ant colony, large tasks are
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accomplished collectively by groups of specialised individuals, which is more
efficient than performing sequentially by unspecialised individuals [42]. The
concept of labour division can be employed by data clustering, sorting [43] and
data analysis [44].

Group members in an aggregation can react without direct detection of
incoming signals from an environment, because they can get necessary informa-
tion from their neighbours [34]. Individuals need to monitor both environment and
their immediate surroundings, such as the bearing and speed of their neighbours
[34]. Therefore, each individual in an aggregation has a multitude of potential
information from other group members that may minimise the chance of missed
detection and incorrect interpretations [34]. Such information transfer can be
employed in the model of passive congregation. Inspired by this perception, and to
keep the model simple and uniform with SPSO, a hybrid PSO with passive con-
gregation is proposed:

Vit = Vi + ein (P} = X7) + cana (P — XJ) + esrs(RY — XT) (2.10)

X = xF 4 v (2.11)

where R; is a particle randomly selected from the swarm, c; is the passive con-
gregation coefficient and r; is a uniform random sequence in the range (0,1):
r3~U(0,1). The interactions between individuals of PSOPC are shown in
Fig. 2.8, and the pseudo code for implementing PSOPC is illustrated in Table 2.3.

Fig. 2.8 Search direction of The best particle Py
the ith particle in PSOPC
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Table 2.3 Pseudo code for the implementation of PSOPC
Set k = 0;
Randomly initialise positions;
Randomly initialise velocities;
WHILE (the termination
conditions are not met)
FOR (each particle i in the

swarm)
Check feasibility: Check the feasibility of the current particle. If X is outside the
feasible region, then reset X; to the previous position X';
Calculate fitness: Calculate the fitness value f(X;) of the current particle;
Update pbest: Compare the fitness value of pbest with f(X;). If f(X;) is better
than the fitness value of pbest, then set pbest to the current
position X;
Update gbest: Find the global best position of the swarm. If f(X;) is better than
the fitness value of gbest, then gbest is set to the position of
the current particle X;
Update R;: Randomly select a particle from the swarm as R;;
Update velocities: Calculate velocities V; using Eq. 2.10;
Update positions: Calculate positions X; using Eq. 2.11;
END FOR
Setk=k+ 1;
END WHILE

2.5 Summary

This chapter presents a brief introduction to evolutionary computation and its
constitutive algorithms in order to provide a necessary background for the work
discussed in later chapters. The basics of three EAs, i.e. GA, GP and PSO, are
described, which are employed for identifying model parameters and evaluating
fault features. First, the principles of GA are described, as well as the imple-
mentation procedures of an SGA. Then, the foundation of GP is presented,
including the definition of terminals and functions, genetic operators, population
initialisation and selection procedures. Finally, the standard PSO algorithm is
introduced, followed by a description of an improved PSO algorithm.
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