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Abstract Segmentation is one fundamental aspect of vision-based motion analy-
sis, thus it has been extensively studied. Its goal is to group the data into clusters
based upon image properties such as intensity, color, texture, or motion. Most ex-
isting segmentation algorithms proceed by associating a feature vector to each pixel
in the image or video and then segmenting the data by clustering these feature vec-
tors. This process can be phrased as a manifold learning and clustering problem,
where the objective is to learn a low-dimensional representation of the underlying
data structure and to segment the data points into different groups. Over the past
few years, various techniques have been developed for learning a low-dimensional
representation of a nonlinear manifold embedded in a high-dimensional space. Un-
fortunately, most of these techniques are limited to the analysis of a single connected
nonlinear manifold. In addition, all these manifold learning algorithms assume that
the feature vectors are embedded in a Euclidean space and make use of (at least
locally) the Euclidean metric or a variation of it to perform dimensionality reduc-
tion. While this may be appropriate in some cases, there are several computer vision
problems where it is more natural to consider features that live in a Riemannian
space. To address these problems, algorithms for performing simultaneous nonlin-
ear dimensionality reduction and clustering of data sampled from multiple subman-
ifolds of a Riemannian manifold have been recently proposed. In this book chapter,
we give a summary of these newly developed algorithms as described in Goh and
Vidal (Conference on Computer Vision and Pattern Recognition, 2007 and 2008;
European Conference on Machine Learning, 2008; and European Conference on
Computer Vision, 2008) and demonstrate their applications to vision-based analy-
sis.
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1 Introduction

Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a low-
dimensional representation for a set of points lying in a nonlinear manifold embed-
ded in a high-dimensional space. This question of how to detect and represent low-
dimensional structure in high-dimensional data is fundamental to many disciplines
and several attempts have been made in different areas to address this question. For
example, the number of pixels in an image can be rather large, yet most computer
vision models use only a few parameters to describe the geometry, photometry and
dynamics of the scene. Since most datasets often have fewer degrees of freedom
than the dimension of the ambient space, NLDR is fundamental to many problems
in computer vision, machine learning, and pattern recognition.

When the data lives in a low-dimensional linear subspace of a high-dimensional
space, simple linear methods such as Principal Component Analysis (PCA) [26] and
metric Multi-Dimensional Scaling (MDS) [11] can be used to learn the subspace and
its dimension. However, when the data lies in a low-dimensional submanifold, its
structure may be highly nonlinear, hence linear dimensionality reduction methods
are likely to fail. This has motivated extensive efforts toward developing NLDR
algorithms for computing low-dimensional embeddings.

A huge family of such algorithms computes a low-dimensional representation
from the eigenvectors of a matrix constructed from the local geometry of the man-
ifold. Such algorithms include ISOMAP [42], Kernel PCA (KPCA) [38], locally
linear embedding (LLE) [35], and its variants such as Laplacian Eigenmaps (LE)
[5], Hessian LLE [14], Local Tangent Space Alignment (LTSA) [50], maximum
variance unfolding [47], and conformal eigenmaps [39]. A recent survey of many
of these algorithms can be found in [8]. Most of these NLDR techniques can be
categorized into two main groups: global and local techniques.

Global techniques attempt to preserve global properties of the data lying in a sub-
manifold, similar to what PCA attempts to preserve for data lying in a linear sub-
space. In addition, they are also capable of constructing a nonlinear transformation
between the high-dimensional data and the low-dimensional representation. Two
of the best-known examples of this family of algorithms are ISOMAP and KPCA.
ISOMAP attempts to preserve the geodesic distance between two data points on a
manifold by approximating it as the length of the shortest path in the graph connect-
ing the two points. KPCA reformulates linear PCA in a high-dimensional space via
the kernel trick. Rather than considering the covariance matrix, KPCA computes the
principal components of the kernel matrix. The kernel function allows KPCA to con-
struct nonlinear mappings from the high-dimensional space to the low-dimensional
space.

Local techniques are based on the preservation of local properties obtained from
small neighborhoods around the data points. The key idea of such techniques is that
by preserving local properties of the data, one can also retain global properties of
the data. LLE, LE, Hessian LLE and LTSA fall under this category of algorithms. It
has been proven that LLE is a special form of kernel principal component analysis
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(KPCA) [23]. However, unlike conventional KPCA where one defines a kernel func-
tion in order to map the input space to a higher dimensional feature space, deriving
the analytic form for the LLE kernel is not straightforward.

Although the goals of dimensionality reduction, classification and segmentation
have always been intertwined with each other, considerably less work has been done
on extending NLDR techniques for the purpose of clustering data living on different
manifolds. For linear manifolds, there are many existing subspace clustering meth-
ods including K-subspaces [25], Local Subspace Affinity [49], Mixtures of Prob-
abilistic PCA (MPPCA) [43], Generalized Principal Component Analysis (GPCA)
[45], Agglomerative Lossy Compression (ALC) [48], and spectral clustering [1,
10, 22]. K-subspaces [25] proceeds similarly to K-means: it is initialized with a
collection of K subspace bases of dimension d, and then it alternates between as-
signing points to their nearest subspace, and computing a subspace that minimizes
the sum-of-the-squares distance to all points in each cluster. MPPCA [43] applies
Expectation Maximization (EM) to a mixture of probabilistic PCAs. It assumes that
the distribution of the data inside each subspace is Gaussian and uses EM to learn
the parameters of the mixture model. GPCA [45] is an algebraic solution to subspace
clustering based on fitting a union of m subspaces with a polynomial of degree m.
The gradient of this polynomial at a point gives a vector normal to the subspace con-
taining that point. The subspace clustering problem is then equivalent to fitting and
differentiating a set of homogeneous polynomials. ALC [48] models each subspace
with a degenerate Gaussian, and iteratively merges pairs of points so as to minimize
the coding length needed to encode these points with a mixture of Gaussians. The
multi-way spectral clustering algorithm [10] applies spectral clustering to a multi-
way similarity that captures the curvature of a collection of points within an affine
subspace.

All the aforementioned subspace clustering methods are formulated specifically
for mixtures of linear manifolds, and thus they do not work in the presence of nonlin-
ear manifolds. Existing works that extend NLDR techniques to clustering nonlinear
manifolds include [7, 33, 40]. The work of [40] develops an EM-like extension of
ISOMAP for clustering multiple nonlinear manifolds. However, this method is very
sensitive to good initialization and is not a principled EM method as it uses heuris-
tics in the E-step to assign points to manifolds. The work of [33] applies LLE to a
manifold with m connected components. It shows that m eigenvalues of the matrix
M are zero and that the clustering of the data can be obtained from the correspond-
ing eigenvectors. However, this LLE clustering algorithm suffers from degeneracies
in the presence of linear subspaces. In [7], the authors proved that in spectral clus-
tering, it is possible to obtain a lower dimensional hypersphere representation via
an eigendecomposition of the affinity matrix. In particular, [7] shows that it is pos-
sible to find a low-dimensional embedding in spaces having a mixture of linear and
cyclic axes, and to cluster the data by repeated projection. However, the embedding
algorithm maps the data only to a mixed vector and toric space, with the linear or
cyclic nature of each axis determined from statistical tests. Also, the clustering is
done via an iterative method that requires several projections.

A significant amount of work [4, 17, 24, 29, 31] has also been done on clus-
tering data according to the dimensionality of the manifolds that contain the data
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rather than the manifolds themselves. For example, in human activity recognition,
the videos describing different activities such as walking, jumping, and running can
be described with a different number of parameters. Barbard and Chen [4] proposes
a new clustering algorithm that is based on the use of the fractal dimension and clus-
ters the data so that points in the same cluster are more self-affine among themselves
than points in different clusters. The dimension of a manifold is estimated using a
tensor voting scheme [31]. In [17], the local correlation dimension and density of a
point is estimated and used as the input to standard clustering techniques. In [29], a
maximum likelihood estimator of the intrinsic dimension of a dataset is derived by a
Poisson process approximation. This idea is extended in [24] by modeling the high-
dimensional sample points as a mixtures of Poisson processes, with regularizing
restrictions and spatial continuity constraints. By proceeding in a EM-like manner,
it is shown that it is possible to simultaneously estimate the soft clustering and the
intrinsic dimension and density of each cluster. Even though such methods have
proven to be efficient in clustering when the manifolds are of different dimensions,
it is common in computer vision problems that this assumption is violated. In mo-
tion segmentation, for example, the manifolds for two translational motions are of
the same dimension.

Chapter summary In this book chapter, we give a summary of the newly de-
veloped algorithms for performing simultaneous nonlinear dimensionality reduc-
tion and clustering of data sampled from multiple submanifolds of a Riemannian
manifold and demonstrate their applications to vision-based analysis. More specif-
ically, this chapter first reviews how to perform locally linear manifold clustering
and dimensionality reduction for data sampled from nonlinear manifolds using the
Euclidean metric as the distance between feature vectors and its limitations [18].
Unfortunately, such manifold clustering algorithms assume that the feature vectors
are embedded in a Euclidean space and use (at least locally) the Euclidean metric
or a variation of it to perform clustering. While this may be appropriate in some
cases, there are several computer vision problems where it is more natural to con-
sider features that live in a non-Euclidean space. For example, Grassmann manifolds
and Lie groups are used for motion segmentation and multibody factorization; sym-
metric positive semi-definite matrices are common in diffusion tensor imaging and
structure tensor analysis; and the statistical manifold, that is, the space of probabil-
ity density functions, is found in texture analysis. The second part of this chapter
shows a novel algorithm for clustering data sampled from multiple submanifolds of
a Riemannian manifold [19-21]. First, a representation of the data using general-
izations of local nonlinear dimensionality reduction algorithms from Euclidean to
Riemannian spaces is learnt. Such generalizations exploit geometric properties of
the Riemannian space, particularly its Riemannian metric. Then, assuming that the
data points from different groups are separated, it is shown that the null space of a
matrix built from the local representation gives the segmentation of the data. Finally,
the applications to various vision problems are shown.
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2 Review of Local Nonlinear Dimensionality Reduction Methods
in Euclidean Spaces

In this section, we review three local nonlinear dimensionality reduction algorithms
for data lying in a single manifold. Section 2.1 reviews the classical LLE, Lapla-
cian Eigenmaps, and Hessian LLE algorithms for a nonlinear manifold. Section 2.2
shows that it is possible that such NLDR algorithms become degenerate when the
data lies in a linear subspace.

2.1 NLDR for a Nonlinear Manifold

In this section, we review three local NLDR algorithms. Let X = {x; € M}!_, be
a set of n data points sampled from a d-dimensional manifold M embedded in
R?, d « D. We assume that the n points are k-connected, that is, for any two
points X;, X; € X there is an ordered sequence of points in X having x; and x; as
endpoints, such that any two consecutive points in the sequence have at least one
k-nearest neighbor in common. The goal of dimensionality reduction is to find a
set of vectors {y; € R? "'_» such that nearby points remain close and distant points
remain far.

Locally Linear Embedding (LLE) [36] assumes that the local neighborhood of a
point in the manifold can be well approximated by the affine subspace spanned by
the k-nearest neighbors of the point, and finds a low-dimensional embedding of the
data based on these affine approximations. Laplacian Eigenmaps (LE) [6] are based
on computing the low dimensional representation that best preserves locality instead
of local linearity in LLE. Hessian LLE (HLLE) [14] bears substantial resemblance
to LLE and LE, with the main difference being that the local neighborhood is rep-
resented by the tangent space at each point and the Laplacian matrix is replaced by
the Hessian matrix. The main steps of these local NLDR algorithms are as follows:

1. Nearest neighbor search: for each data point x; € X, find its k-nearest neighbors
(kNN) {x,-_/ }1;.=1 according to the Euclidean distance.

2. Construction of similarity matrix: construct a weighted graph whose elements
encode the local geometry of the data. Define a similarity matrix M based on
these weights. M is symmetric and positive semidefinite.

3. Sparse eigenvalue problem: obtain the embedding coordinates, that is, the
columns of Y = [yy,..., y,,]T e R4 from the d (generalized) eigenvectors
of the matrix M associated with its second to (d + 1)th smallest (generalized)
eigenvalues. The vector of all ones, 1 € R”, is a eigenvector of M associated with
eigenvalue 0.

We now describe the construction of M for each NLDR algorithm in greater detail.
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2.1.1 Calculation of M in LLE

1. Weight matrix: find a matrix of weights W € R"*" whose entries W;; minimize
the reconstruction error

n
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subject to the constraints (i) W;; = 0 if X; is not a k-nearest neighbor of x; and
(ii) Z?:l Wij=1LIn(l),x; =x; + Z'}zl W,-jx,'_x; is the linear interpolation of
x; and its kNN. The solution to this problem can be computed as
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where 1 € R” is the vector of all ones, and C; € RK*k ig the local Gram matrix
atx;, thatis, C;(j,1) = (x; — x;) - (X} — X;).
2. Objective function: find vectors {y; € Rd};’zl that minimize the error
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subject to the constraints (i) Y 7_; y; = 0 and (ii) % > y,‘y;r = I. The solution
to this optimization problem is given by the d eigenvectors of M = (I — W) T x
(I — W) associated with its second to (d + 1)th smallest eigenvalues.

2.1.2 Calculation of M in LE

1. Weight matrix: construct a matrix of weights W € R"*" where the entries of
W, W;;, measure the proximity between two points Xx; and Xx; subject to the
constraint W;; = 0 if x; is not a k-nearest neighbor of x;. A possible weight of
generating W is to use the heat kernel

Wij = exp(=Ix; — x;1%/0°). )
2. Objective function: find vectors {y; € Rd};’zl that minimize the error
¢(¥) = llyi — y;lI*Wi; = trace(Y T MY), ©)
ij

subject to the constraints (i) ¥ ™p1= Z?:l D;;y; = 0 (weighted low-dimens-
jonal coordinates centered at the origin) and (ii) YT DY = I (weighted low-
dimensional coordinates having unit covariance). In (5), M = D — W is the
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graph Laplacian matrix and D is a diagonal matrix whose entries are given by
Dii=>" i Wij- The solution to this optimization problem is given by the d gen-
eralized eigenvectors of (M, D) associated with its second to (d + 1)th smallest
generalized eigenvalues.

2.1.3 Calculation of M in HLLE

1. Tangent coordinates: for each data point x;, let {x;; }];zl be its kNN. Form the
D by D covariance matrix cov(x;) = % le‘: 1 (i, — X)) (xi; — x;) ", where X; is
the mean of the kNN. Perform an eigenanalysis of the matrix cov(x;) to obtain
the d eigenvectors {u, € RP }211=1 . The tangent coordinates of the kNN are given

by the d columns of the k x d matrix V given below, where p =1, ...,k and
g=1,....d

Vg = (xi, — %) 'ug = (x;, — i, ug). (6)

2. Objective function: the embedding vectors are obtained based on the null vectors
of amatrix M that indicates the Hessian quadratic cost. While we refer the reader
to [14] for details on the estimation of M, the basic principle is as follows. We
first locally estimate a Hessian operator /' at each point x; in the manifold in a
least squares sense. In particular, consider a smooth function f : M — R. We
evaluate the function at all kNN of a point x; in the manifold and stack these
entries into a vector f;. It can be shown that A'f; approximates the entries of the

2,

Hessian, whose (p, g)th entry is given by a\e—afv These local estimates are then
pP=rq

used to obtain an empirical estimate of the (i, j)th entry of M as

Mij=)_ > (1), (h),)- (M

The embedding coordinates are then found by selecting a basis for the space
spanned by d eigenvectors of M associated with its second to (d + 1)th small-
est eigenvalues with the restriction that it provides an orthonormal basis to a
specific fixed neighborhood N. Let U denote the n x d matrix associated with
the second to (d 4 1)th smallest eigenvectors where Uy, is the /th entry in the

rth eigenvector of M. The embedding coordinates is obtained as U R_%, where
Rys= ZjeN UjrUjs-

2.2 NLDR for a Single Subspace

Consider now the application of NLDR to a single k-connected linear manifold. As
the goal of NLDR is to unfold a low-dimensional manifold of a high-dimensional
space into a low-dimensional linear subspace, intuitively one would expect that if
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NLDR is applied to a dataset that is already a subspace of dimension d, the output
representation should again be a subspace of the same dimension.

We will first illustrate that one of the NLDR algorithms, namely LLE, becomes
degenerate when the data lies in a linear subspace. Proposition 1 [33] below shows
that when d is known, the low-dimensional representation is indeed a subspace of
dimension d, which is contained in the null space of the matrix M representing the
local geometry of the manifold. However, since the vector 1 is also in ker(M), some
degeneracies can show up when applying LLE to data lying in a linear subspace, as
shown by the following proposition in [33].

Proposition 1 Assume that the data points x; € RP lie in a subspace of RP of
dimension d < k — 1. Then the dimension of the null space of M is at least d + 1.

Proof Since the data lie in a subspace of R” of dimension d < k — 1, each point
{x;} can be reconstructed with zero error in (1), that is, for all i = 1,..., n, there
are W;; such that x; = Z'}:l Wiix;. If welet X € R"*P be the matrix whose rows
are the data points, then we have that WX = X, hence M X = 0. In other words, the
D n-dimensional vectors formed by taking each one of the D coordinates of the n
given data points are in the null space of M. Therefore, the null space of M is at least
d-dimensional, because rank(X) = d. On the other hand, since the data points live
in a subspace of dimension d, there exist a matrix 7' € RPxd TTT = I and vectors
{yi} such that x; = T'y; + m and ) _;_,y; =0, where m = %Z?:l x; € RP is the
mean of the data. Now, by construction, the vector of all ones 1 is also in ker(M),
because Y;_; Wi; = 1. This implies that X = YT T +1m" = MX =MYT" +
MIm" =0= MYT" =0= MYT'T =0; hence MY =0, where ¥ € R"*? is
a matrix whose rows are the {y;} vectors. Since in addition 27: 1¥i =0, we have
that 1TY =07, hence the vector 1 is linearly independent from the columns of Y.
Therefore, the null space of M is at least (d 4+ 1)-dimensional. O

From Proposition 1, we see that if we apply LLE to data lying in a subspace
of dimension d and choose the second to (d + 1)th smallest eigenvectors of M for
dimensionality reduction, we might not get the correct subspace reconstruction. This
is because the embedding eigenvectors (the columns of Y) may be mixed with the
vector 1, which is also a null vector of M and therefore, we cannot guarantee that 1
is the first smallest eigenvector given.

We will now illustrate how Proposition 1 is applicable for Laplacian eigenmaps
and HLLE as well. For the Laplacian eigenmaps, it is shown in [6] that the solution
that LLE finds is an approximation of the eigenfunctions of the iterated Laplace
Beltrami operator L> whereas LE attempts to find the eigenfunctions of the Laplace
Beltrami operator L. Note that eigenfunctions of L? coincide with those of L. There-
fore, depending on the approximation that is used for the graph Laplacian, it is also

possible that LE suffers from the same degeneracy. Finally, for Hessian LLE, as the
2 -

entries of the Hessian approximates 33 (-3/ v it is easy to see that when the function
rP=rq

f is linear, it becomes a null eigenfunction as well. Therefore, it is possible that the

embedding vectors are mixed with the vector 1 when we have linear manifolds for

LE and HLLE as well.
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3 Manifold Clustering and Dimensionality Reduction Using
the Euclidean Metric

This section presents an algorithm for simultaneous NLDR and manifold cluster-
ing. In Sect. 3.1, we review the algorithm for clustering nonlinear manifolds using
NLDR algorithms. This algorithm is based on the fact that the null vectors of M are
actually m membership vectors indicating the grouping of the data. In Sect. 3.2, we
show that these clustering algorithms based on NLDR can become degenerate when
applied to data lying in multiple linear subspaces. More specifically, we show that
if the data live in a k-separated union of m connected manifolds, of which m; <m
are linear subspaces of dimensions {d;};.!,, then, depending on the NLDR algorithm
used, the null space of M might contain m eigenvectors that give the segmentation
of the data and Z;"zl 1 di eigenvectors that give the embedding coordinates for the

subspaces.

3.1 Manifold Clustering and Dimensionality Reduction
Jor a k-Separated Union of k-Connected Nonlinear Manifolds

In this section, we review an extension of the NLDR algorithm for clustering a
union of m k-connected manifolds under the assumption that the manifolds are
k-separated, that is, no kNN of a data point in a manifold lies in one of the other
(m — 1) manifolds. The following proposition shows how NLDR (LLE, LE, and
HLLE) can be extended for clustering a k-separated union of m k-connected nonlin-
ear manifolds. The proposition follows from the block-diagonal properties of M in
the presence of multiple k-separated nonlinear manifolds. Polito and Perona [33] il-
lustrates this proposition for LLE only and make use of it to cluster different groups.
Notice that, contrary to intuition, the case of nonlinear manifolds is simpler than the
case of linear subspaces, as we will see in Sect. 3.2.

Proposition 2 Let {x;}7_, be a set of points drawn from a k-separated union of
m k-connected nonlinear manifolds of dimension d < k — 1. There exist m vectors
{v; };’-1:1 in the null space of M such that v corresponds to the jth group of points,
that is, v ; = 1 if the ith data point is in the jth manifold (x; € M), and v;; =0
otherwise (X; ¢ M ).

Proof If the data can be partitioned into m k-connected groups, then the matrix M
is block-diagonal with m blocks. This is because if points x; and x; belong to dif-
ferent groups, then they cannot be kNN of each other, hence M;; = 0. Therefore,
the matrix M is also block diagonal, and we can write it as M = diag(M ), where
M; € R"*" is the matrix for the jth group. Now, from the properties of the lo-
cal NLDR algorithms reviewed in Sect. 2, we know that each one of the m blocks
of M, has the vector 1 € R"/ in its null space. Therefore, there are m vectors {v;} in
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Algorithm 1: Unsupervised clustering and dimensionality reduction on nonlin-
ear manifolds
Given data points Xy, ..., X, € M

1. nearest neighbors: find the kNN of each data point x;

2. construction of M: for each NLDR algorithm, construct the appropriate M
on the entire data and compute a basis B for the null space of M

3. clustering: compute the segmentation of the data by applying K-means to
the rows of B

4. low-dimensional embedding: apply NLDR as described in Sect. 2.1 to each
group to obtain a low-dimensional embedding for each submanifold

ker(M), with each v; taking the values 1 and 0, indicating the group membership,
as claimed. O

Notice that when computing a basis B € R"*™ for ker(M ), we do not necessarily
obtain the set {v; ’}1: |» but rather linear combinations of them, including the constant
vector. Nevertheless, a generic linear combination of these membership vectors will
still contain the segmentation of the data. Hence, we can cluster the data into m
groups by applying a central clustering algorithm to the rows of B, for example,
K-means. Therefore, this algorithm can be seen as a spectral clustering algorithm
where the similarity matrix is obtained from the M matrix of NLDR. Algorithm 1
summarizes the dimensionality reduction and clustering algorithm for a union of
k-connected nonlinear manifolds.

3.2 Degeneracies for a k-Separated Union of k-Connected Linear
Manifolds

In this section, we illustrate the limitations of Algorithm 1 [18]. More precisely, we
will show that NLDR becomes degenerate when the data points {x;}7_, are drawn
from a union of m k-connected subspaces { M ; };’.1:1 of R with dimensions {d i ljn:l
[18]. We first define two different types of vectors, given as follows:

Definition 1 Membership vectors v; indicate the membership of each point for
manifold M. Thatis, v;; =1 if x; € M, and v;; = 0 otherwise. Note that v; is
ann x 1 vector.

Definition 2 Embedding vectors e; give the embedding coordinates for each man-
ifold M. We define e; as the n x d; matrix that contains the low-dimensional
coordinates of each manifold. That is,

- ) T T
€ = [0yt u i Ot yno] ®)
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From Propositions 1-2, we know that there are two types of vectors in the null
space of M: the embedding vectors coming from the coordinates and the member-
ship vectors coming from each one of the m connected components. However, it is
unclear if these vectors are linearly independent, and if one can recover the segmen-
tation of the data and a nonlinear embedding for each group from ker(M). That is
because an arbitrary vector in ker(M) is a linear combination of the embedding and
membership vectors. The following proposition addresses these issues in detail.

Proposition 3 Let {x;}!_, be a set of points drawn from a k-separated union of m
k-connected subspaces of dimensions dj <k —1,j=1,...,m. The null space of
M is of dimension at least m + Z';’zl dj and contains orthonormal zero-padded
vectors formed from the individual embedding {e;} and membership {v;} vectors.

Proof From Proposition 2, we know that M is block diagonal and can be writ-
ten as M = diag(M;), where M; € R"/*"/ is the matrix for the jth group and n;
is the number of points in the jth group. From Proposition 1, we also know that
the matrix M; has d; + 1 vectors in the null space: the vector of all ones and the
d; linearly independent columns of the matrix of coordinates Y; R" %4, That
is M [Y; 1] = 0. Therefore, the matrix ¥ = diag ([Y; 1x;x1)]) € R Cj=i dj+m)
is such that MY = 0. Furthermore, as Y is block diagonal and rank ([¥; 1]) =
dj + 1, we have that ¥ is of rank ZT:ldj + m, and so the dimension of
ker(M) is at least Y, d; + m. Also, the matrix of embedding vectors of the
jth group e; = [0, Y].T, 01" € R"*9 is orthogonal to its membership vector v =
[0, 11 nj)e 0] e R"*! Sincee ; and v; are zero-padded, they are always orthog-
onal to e; and v; for i # j. In addition, one can choose the embedding vectors €; to
be orthogonal to each other, because the matrix M is symmetric. Therefore, we can
assume that the vectors {vyi, ey, ..., V,,, €,} are orthonormal. O

Given a set of points {x; € RD};’ZI, it follows from the proof of Proposition 3,
ker(M) contains the orthonormal set of embedding vectors e; and membership vec-
tors v ;. More precisely, when the points {x;}?_, are drawn from a k-separated union
of m k-connected manifolds, we have,

1. for m nonlinear manifolds:
{v; ;"1=1 e ker(M) and dim(ker(M)) =m

2. for m linear manifolds of dimensions {d j}’/’?:l:

m
vy {ej)) eker(M) and  dim(ker(M)) =m+ ) d,
j=I



38 A. Goh

3. for m —m| nonlinear manifolds, and m linear manifolds of dimensions {d; };":1 1

my

(V™). {ej)"L ) eker(M) and dim(ker(M)) =m+ Y d,
j=1

Therefore, in the presence of linear manifolds, we cannot directly obtain the seg-
mentation of the data or an embedding for each one of the subspaces from ker(M),
since an arbitrary vector in ker(M) is a linear combination of both membership and
embedding vectors. This is a limitation of Algorithm 1; for this rest of this chapter,
we assume that the data does not lie on linear manifolds.

4 Manifold Clustering and Dimensionality Reduction Using the
Riemannian Metric

The NLDR techniques presented in Sects. 2 and 3.1 are applicable only in the pres-
ence of manifolds with unknown structure. Every operation is approximated by the
corresponding Euclidean operation as the metric is unknown. However, for Rieman-
nian manifolds with well-studied geometries, closed-form formulae for Riemannian
operations are often available. The question now is to extend NLDR techniques
for Riemannian manifolds in a way that takes into consideration the appropriate
Riemannian structure. In this section, we present an algorithm for clustering and di-
mensionality reduction on Riemannian manifolds. We first present a brief summary
of the theory of Riemannian manifolds in Sect. 4.1. For a more complete descrip-
tion, we refer the reader to [13]. Next, in Sect. 4.2, we illustrate how to extend man-
ifold clustering and dimensionality reduction algorithms to Riemannian manifolds
by adopting the framework in [21]. This framework has been applied to motion seg-
mentation in [21], diffusion tensor images in [19] and probability density functions
in [20].

4.1 Review of Riemannian Manifolds

In this section, we will give an overview of Riemannian theory and show how the
various operations such as interpolation on the manifold and computation of the
mean and principal components are carried out.

A smooth manifold is a topological space that is locally diffeomorphic to a Eu-
clidean space smooth function y (t) : R — M. Figure 1 shows an example of a
two-dimensional manifold. The tangent space of M at a point x € M, denoted as
TxM, is then defined as the span of the tangent vectors for all the possible curves
y passing through x. A Riemannian metric is a continuous collection of dot prod-
ucts (-, -)x. Using this metric, we define the length of a curve between two points
Xi,Xj € M as

1

b
Lo(y)= / (POl ), dt. ©)
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Fig. 1 An example of a
two-dimensional manifold.

The tangent plane at X;, dy i
together with the exponential
and logarithm maps relating
x; and X, are also shown
M

where y (a) =x; and y (b) = X;. A curve between Xx; and x; with minimum length is
called a geodesic. The distance between two points in the manifold is subsequently
defined as the length of the geodesic curve between them,

distxi, X)) = Ly(y),  v(O0) =x;, y(1) =x;. (10)

1

Let v be a unit-length tangent vector in Tx M, that is, ||V]x = (v, V) = 1. We
can then define the exponential map exp, : TxM — M, which maps each tangent
vector tv € Tx M to the point y (t) € M obtained by following the geodesic y ()
(parametrized with arc-length) passing through x with direction v for a distance 7.
Define the set Cx C M as the set of all the points x; = exp(fpv) such that y =
exp(tv) is a length-minimizing geodesic for ¢ € [0, #p]. The boundary of Cx is called
the cut locus, and, intuitively, it is the set of points for which the distance from x
stops to be a differentiable function of 7. The exponential map is therefore invertible
for all the points in the interior of Cx and we can define the logarithm map log, :
Cx — TxM as log, =expy 1 Note that for any X; € Cyx and X; = exp, (#v) we have
that (by definition),

[log (x|, = lltvllx = dist(x, x;) =1. (11)

Linear geodesic interpolation makes use of the exponential and logarithm maps and
is defined as X = eXPy, (w logxi (x;)), we [0, 1]. X is the linear interpolation at r = w
of x; and x;. Finally, we recall that the Riemannian metric, exponential and loga-
rithm maps depend on the point X under consideration, hence the subscripts reflect-
ing this dependency.

We will now briefly summarize how to calculate the mean and principal compo-
nents of data points lying in a manifold. As defined by Fréchet in [16] and used in
several recent works [15, 32], the intrinsic mean X is defined as the solution to the
following minimization problem

n n
X = arg minZdist(x, x,~)2 =arg minz || log, (x;) ||i (12)
xeM i=1 xeM i=1

Note that, unlike in the Euclidean case, in general there is no closed form for Xx.
Moreover, there is no guarantee that X exists or is unique. However, one can show
the existence and uniqueness of X [27] by assuming that the data lie in a small
enough neighborhood, that is, the maximum distance between any x; and X is small
enough. Furthermore, X can be computed as shown in Algorithm 2.
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Algorithm 2: Intrinsic mean

Given data points Xy, ..., X, € M, apredefined threshold €, maximum
number of iterations T’

1. initialize t = 1, X; = x; for arandom i, v # 0 € Ty, M
2. whilet < T or ||v|zx>¢€

(a) compute tangent vector v = ,ll ZLI log,—(r (xi)

(b) set X1 = expg, (¥)

Algorithm 3: Principal geodesic analysis
Given data points xp, ..., X, € M

. compute intrinsic mean X as in Algorithm 2

. calculate the tangent vectors v; = logi (x;)about X

. construct the sample covariance matrix cov(x) = % Y Vi V;r

perform eigenanalysis of the matrix cov(x), with the eigenvectors {u,'}l‘?l=1

giving the principal directions. {u; }le forms an orthonormal basis for Tz M

B LW =

Table 1 Comparison of Euclidean and Riemannian operations, where {x;}7_,, are data points
Operation Euclidean Riemannian
Subtraction x,_x; X; —X; log,, (x;)
Addition x; X; + xl_x; expy, (x,-_x;)
Distance dist(x; . X;) ISR = 1%, =%l [llogy, (%)) llx, = /TTogy, ;) Togy, (X)),
Linear interpolation X X; + wxi_x; expy, (wx,'_x;)
—

Mean X X =0 S Togg(xi) =0

. 1 n —_) —_) T 1 n . N T
Covariance cov(x) u 2i—1 (XX;)(XX;) o i1 (logg(x:)) (logg (x;))

Given X, the calculation of principal components on a Riemannian manifold is
not as straightforward as in the Euclidean case. It involves projecting a point onto
a geodesic curve, which is also defined as a minimization problem for which exis-
tence and uniqueness are not ensured [15]. Again, by making the assumptions that
the data lie in a small neighborhood, the projection can be shown to be unique. In
[15], it is shown that finding principal components boils down to doing PCA in the
tangent vectors log(x;) € Tz M about the mean X. This algorithm, known as Prin-
cipal Geodesic Analysis (PGA), is summarized in Algorithm 3. Table 1 compares
the standard operations in Euclidean and Riemannian spaces.



Riemannian Manifold Clustering and Dimensionality Reduction 41

4.2 Extending Manifold Clustering and Dimensionality Reduction
to Riemannian Manifolds

In this section, we will show how to extend manifold clustering and dimensionality
reduction to Riemannian manifolds. We assume here that the various Riemannian
operations are known and closed-form. First of all, notice that the information about
the local geometry of the manifold is essential only in the first two steps of each
algorithm and therefore, modifications are made only to these two stages. The key
issues are how to select the kNN and how to compute the matrix M representing
the local geometry. As shown in [21], the former is straightforward, while the latter
requires some thought. Given M, calculating the low-dimensional representation
remains the same as in the Euclidean case. We let X = {x; € IRD}I'.’Z1 be a set of n
data points sampled from a known Riemannian manifold.

4.2.1 Selection of the Riemannian ANN

The first step of any NLDR algorithm is the computation of the kNN associated with
each data point. We define the kNN of x; by incorporating the Riemannian distance,
that is, the kNN of x; are the k data points X that minimize ||logy (X;)|lx;-

4.2.2 Riemannian Calculation of M for LLE

The second step of LLE is to compute the matrix of weights W € R"*", In order
to do so, we will answer two main questions: (1) how does one express a point as
a linear combination of its neighbors? and (2) what is the reconstruction cost? First
of all, we know that from Sect. 4.1 that

n
RRiem,i = €XPy, (Z W;jlog,. (x j)) : (13)

j=1

is the geodesic linear interpolation of x; by {x; }?zl. Now, instead of minimizing
the Euclidean error, we rewrite (1) to minimize the Riemannian reconstruction error
and make use of the fact that exp and log are inverse mappings. Therefore, we have
n 2

> Wijlog, (xp| . (14)

j=1

n n
eRiem (W) = Z ” Ingl, (XRiem,i) ”,2(1 = Z

i=1 i=1

X

subject to W;; = 0if x; is not a kNN of x; and 3 _; W;; = 1. Using similar manipu-
lations as in the Euclidean case, the optimal weights are obtained as in (2), with the
local Gram matrix C; € R¥*k defined as

Ci(j. D) = (log, (x;), logy, (X)), - (15)

M isthen (I — W)T (I —W).
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4.2.3 Riemannian Calculation of M for LE

Here, instead of attempting to write each data point as a linear combination of
its kNN, we find a matrix of weights W € R"*" whose entries W;; measure the
proximity between two points x; and x; as in (4). Therefore, modifying LE for
Riemannian manifolds is less involved than in the case of LLE. Instead of using
exp(—|Ix; — X; I2/02) as in (4), we construct the weight matrix W using the Rie-
mannian distance as

distg; L X)2 log, . (x)]12
Wij:exp<— iStRiem (Xi, X)) ):exp(— [| Togy, ( ])||x1>7 (16)

o? o?

subject to the constraint W;; = 0 if x; is not a k-nearest neighbor of x;. As before,
M = D — W and D is a diagonal matrix, where D;; = Z/ Wij.

4.2.4 Riemannian Calculation of M for HLLE

The second step of HLLE involves computing the tangent coordinates for each x; by
applying Euclidean PCA to its neighbors. This implicitly assumes that these local
points lie in a subspace. This assumption is no longer valid if x; and its kNN lie
in a Riemannian manifold. From Sect. 4.1, we know that in this case, calculating
the principal geodesic components and the projection coordinates is not as simple
as doing Euclidean PCA. There is a need to incorporate the correct Riemannian
metric, mean and covariance matrix.

Again, let {x; j}l;:l denote the set of k-nearest neighbors of x;. First, we cal-
culate the intrinsic mean X; of the kNN (Algorithm 2). Next, we find the tangent
vectors v; = logg (X; ;) about X; and the geodesic principal directions {u, }Z=1 us-
ing PGA (Algorithm 3). Since {u, € RP }Zz | is an orthonormal basis for Tx, M, we
will rewrite the projection operator in (6) using the Riemannian metric. Thus, the
tangent coordinates of the kNN are given by the k x d matrix V, where

Vg =(1ogii(xi,p),uq)il_, p=1,....k,q=1,....,d. (17)

Once the tangent coordinates are found, the estimation of the Hessian matrix M is
the same as in the Euclidean case (7).

4.2.5 Calculation of the Embedding Coordinates

The last step of NLDR is to find a Euclidean low-dimensional representation of the
data points. As this step is independent of the Riemannian structure, one can find the
embedding coordinates as described in Sect. 2. That is, the embedding coordinates
are obtained based on the d (generalized) eigenvectors of the matrix M associated
with its second to (d + 1)th smallest (generalized) eigenvalues. Finally, notice that
if the Riemannian operations are available in closed-form, then extending NLDR
to Riemannian manifolds do not require significant additional computational com-
plexity.
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Algorithm 4: Unsupervised clustering and dimensionality reduction on Rie-
mannian manifolds
Given data points Xy, ..., X, € M

1. nearest neighbors: find the kNN of each data point x; according to the
Riemannian distance

2. construction of M: for each NLDR algorithm, construct the appropriate M
described in Sect. 4.2 on the entire data and compute a basis B for the null
space of M

3. clustering: compute the segmentation of the data by applying K-means to
the rows of B

4. low-dimensional embedding: apply NLDR as described in Sect. 4.2 to each
group to obtain a low-dimensional embedding for each submanifold

4.2.6 Extending Manifold Clustering to Riemannian Manifolds

We will now consider the case when we have data lying in m submanifolds of a Rie-
mannian space. Similar to what is done in the Euclidean space, we assume that the
data is distributed in a k-disconnected union of m k-connected submanifolds of M.
Notice that just as done in the calculation of the embedding coordinate, Algorithm 1
is independent of the Riemannian structure. Therefore, it is immediate to see that
they are applicable to m submanifolds, both linear and nonlinear, of a Riemannian
space. Algorithm 4 summarizes the dimensionality reduction and clustering algo-
rithm for m submanifolds of a Riemannian space.

5 Experiments

5.1 Application and Experiments on SPSD(3) [19, 21]

This section present an application of the theory developed in Sect. 4 to the space
of 3 by 3 symmetric positive semi-definite matrices SPSD(3). It is well known [3,
15, 32, 46] that the traditional Euclidean distance is not the most appropriate metric
for SPSD matrices as they lie on a Riemannian symmetric space. An example of
such data is the well-known structure tensor found in direct 2-D motion segmen-
tation from the image intensities without extracting features such as optical flow
or point correspondences. Under the assumption that all surfaces are Lambertian,
the optical flow (u, v) between two images of a sequence is related to the image
partial derivatives VI = (Iy, Iy, I;) by Lu + v + I, =0= VI (u,v,1) =0,
where (x, y) denotes pixel location and ¢ denotes time. Premultiplying by VI gives
an equation of the form (VIVIT)(u, v, 1) = 0, This system of linear equations in-
volves the spatial-temporal structure tensor (VIVIT). SPSD matrices also play an
important role in Diffusion Tensor Imaging (DTI). DTT is a 3-D imaging technique
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that measures the diffusion of water molecules in living tissues. Water diffusion
is represented mathematically with a symmetric positive semi-definite tensor field
T:R3 — SPSD(3) c R¥*3 that measures the diffusion in a direction d € R3 as
d'Td.

The goal is to automatically segment a set of SPSD matrices {T; € SPSD(r)};f:1
into different clusters, where different groups correspond to different 2-D motions
in a video or to different fiber bundles in DTI. There are many possible metrics
in SPSD(r) [3, 15, 28, 32, 46]. Each metric is derived from different geometrical,
statistical or information-theoretic considerations. The question of which one is the
best metric remains an active research area. The Riemannian metric proposed in

_1 _1
[32] distriem (T;, Tj) = || log(T; 2TjTl. )|, where || - || r is the Frobenius norm
and log(-) is the matrix logarithm, is used here. For this metric, the exponential

1 _1 L1
map is defined as expy, (V) = T; exp(T; *VT, *)T;, where exp(-) is the ma-
trix exponential and V € Tt,SPSD(r). The logarithm map is T;T; = logy, (T;) =
1 _1 1 1
T/ log(T, 2T T, 2)T2 The Gram matrix is Ci (j, 1) = (logr, (T}), logy, (T1))x;

trace(log(T 2T T 2)1og(T 2T1 2)) The geodesic linear interpolation TRlem,
of {T; € SPSD(r)}" about T with weights W;,...,W;, is given by

N\»—

exp(zj Wi log(T 2T T 2))T2

Our algorithm is tested on 2 D motion segmentation from two consecutive frames
of video sequences [21]. The spatial-temporal structure tensoris T = K %« (VIVI "),
where * is the convolution operator, K is a smoothing kernel (the Gaussian kernel is
commonly used), and VI = (I, Iy, I;) is the spatial-temporal image gradient. We
use the same data set as in [12]. Figure 2 shows two examples of moving patches
of homogeneously textured wallpaper in which the different regions cannot be dis-
tinguished on the sole basis of appearance. This is because the input frames contain
regions with the same intensity and texture with no clear edges or corners. Thus, all
results are obtained exclusively from the motion information. Figure 2(a) contains
two regions, the text region with the word “UCLA” and the background. In Fig. 2(c),

(b) Results
HLLE

(c) Input frames (d) Results using level sets [43] LLE LE
HLLE

Fig. 2 2-D motion segmentation using the structure tensor [21]
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there are three overlapping circles, each with its own motion, and the background.
As shown in Figs. 2(b) and 2(d), LLE yields the best results among all the alge-
braic methods, distinguishing the text “UCLA” and the three circles. As none of the
NLDR methods incorporates a smoothness constraint (as done in level set methods),
it is of no surprise that the level set method produces a cleaner segmentation. Nev-
ertheless, it is immediate that our algorithm provides a very good initialization for
iterative techniques such as level sets.

The next set of experiments is done on real video sequences [21]. The first video
involves a camera tracking a car going along a road, as shown in Fig. 3(a). There are
three different motion groups found in the two consecutive frames. The first group
contains mostly the pixels of the car, the second group contains the background
pixels where the camera movement is apparent (e.g., edges and corners), and the
last group contains the background pixels with the aperture problem (e.g., middle of
the road). The second video of a car is taken with a stationary camera, as shown in
Fig. 3(c). There are two different motion groups in this case, the first group being the
car and the second group being the background. The last video, shown in Fig. 3(e),
is taken from the Hamburg Taxi sequence. In this dataset, the moving taxi forms the
first group and the stationary background forms the second group. From Figs. 3(b),
3(d), and 3(f), it is clear that LLE is able to segment the different groups, LE gives
a reasonable segmentation but suffers from artifacts, whereas the performance of
HLLE performance is poor.

Our algorithm is also tested in the segmentation of the corpus callosum and the
cingulum from real DTI data [19]. The size of the entire DTI volume of the brain is

(a) Input frames (b) Segmentation results: LLE, LE,
HLLE

==~

(c) Input frames

HLLE

(e) Input frames (f) Segmentation results: LLE, LE,
HLLE

Fig. 3 2-D motion segmentation on real video sequences [21]
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128 x 128 x 58 voxels and the voxel size is 2 x 2 x 2 mm. From the visualization
of the tensor data, we know the approximate location of each cingulum bundle in
the left and right hemispheres. Hence, we reduce the input volume to the algorithm
by focusing in this location. In addition, we also mask out voxels with fractional
anisotropy below a threshold of 0.2 in order to separate white matter from the rest
of the brain. Also, tensors at adjacent voxels within a fiber bundle are similar (sim-
ilar eigenvectors and eigenvalues), while tensors at distant voxels could be very
different, even if they lie in the same bundle. In order to account for this fact, the
kNN {D()cj)}lj‘t1 of a tensor D(x;) at x; subject to ||x; — x;|| < R is chosen. The
value of the spatial radius is set to R = 10 and the number of nearest neighbors to
k =30.

Figure 4 shows the results of the left hemisphere. Figure 4(a) shows the sagit-
tal slices used and the ellipsoid visualization of the tensors. The corpus callosum
is the bundle with the red tensors pointing out of the plane and resembles the let-
ter ‘C’. The cingulum, which is significantly smaller, is the bundle left to the corpus
callosum with the green tensors oriented vertically. The corpus callosum and the cin-
gulum are clustered around different centers. Figure 4(b) shows the results of LLE.
The corpus callosum forms a distinct cluster (in red). Figure 4(c) shows the results
of LE. Even though it appears that the cingulum forms a distinct group, the corpus
callosum is merged into the same group as the tensors in the background. HLLE
(not shown) failed to produce any reasonable segmentation of the fiber bundles.

As our algorithm does not incorporate any smoothness constraint, the segmenta-
tion is noisier compared to energy minimization methods such as in [30]. However,
for the segmentation of the cingulum bundle in [30], a significant effort was required
to manually remove voxels in the corpus callosum before running their respective
algorithms. Our algorithm, on the other hand, is automatic. Hence, an immediate
use of our algorithm is that the output could be used as an automatic initialization
for such algorithms.

5.2 Application and Experiments on the Space of Probability
Density Functions

This section present an application of the theory developed in Sect. 4 to the space
of probability density functions. The class of constrained non-negative continuous
functions under study here is the set of pdfs defined below. Without loss of general-
ity, we can assume that these functions are defined on the interval [0, T']. Therefore,
the set P of pdfs is given by

T
'P={p:[0, T]—>]R|Vs,p(s)20,/ p(s)ds:l}. (18)
0

The question of how to regard the space of pdfs as a differential manifold en-
dowed with a Riemannian metric and a family of affine connections has a long his-
tory behind it. Nevertheless, it remains an active and important research area. Treat-
ing statistical structures as geometric structures has the advantage that geometric
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(b) Segmentation results of the five sagittal slices using LLE

(c) Segmentation results of the five sagittal slices using LE

Fig. 4 Segmenting the corpus callosum and the cingulum [19]. The first row shows the visualiza-
tion of the data in five sagittal slices and the tensor at each voxel is represented by an ellipsoid. The
second row shows the clustering result given by LLE. The third row shows the clustering result
given by LE

structures remain invariant under coordinate transforms. Rao [34] first introduces
the Riemannian structure formed by the statistical manifold where each point in
the manifold denotes a pdf. In addition, [34] also shows that the Fisher—Rao metric
determines a Riemannian metric. The Fisher—Rao metric is later shown to be the
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unique intrinsic metric on the statistical manifold in [9]. This study of probability
and information via differential geometry is known as information geometry. The
reader is referred to the seminal work of [2] for a complete description.

We will consider the manifold PP of pdfs on the interval [0, 7']. For any point
D; € P, the Fisher—Rao metric is defined as

T
(4;.9:1)p; 2/0 q;(s)q;(s) ds, (19)

P (s)

where ¢ ;,q; € Tp,(P) are tangent vectors and T, (P) is the set containing the
functions tangent to P at the point p;. This representation turns out to be extremely
difficult to work with as ensuring the geodesic between two elements lies on P is
not easy [41].

Even though the space P turns out to be difficult to work with, we know that it
is not the only possible representation for pdfs and in addition, we also know that
the Fisher—Rao metric is the only metric that is invariant to re-parameterizations
(essentially coordinate transforms) of the functions [9]. There are many different
re-parameterizations of pdfs that are equivalent representations. Depending on the
representation, the resulting Riemannian structure can have varying degrees of com-
plexity and numerical techniques may be required to compute geodesics on the
manifold. Therefore, the natural question to ask now is, is it possible to use a re-
parameterization such that the resulting manifold is simple and the Riemannian op-
erations are easy, preferably closed-form, to compute? Once an efficient representa-
tion is found, the corresponding Fisher—Rao metric, which depends on the tangent
vector, will then be used as the Riemannian metric. In a recent work [41], it is proved
that by using the square-root representation, the resulting manifold is a unit sphere
in a Hilbert space with the Fisher—Rao metric being the usual > metric. Therefore,
the various Riemannian operations such as geodesics, exponential maps, logarithmic
maps are available in closed form. This is one of the most efficient representation
found to date.

The square-root density function is defined as ¥ = ,/p, where ¥ is assumed to
be nonnegative to ensure uniqueness. The space of such functions is defined as:

T
- {w:[o, T]—>]R|Vs,1/r(s)20,/ l/fz(s)ds:l}. (20)
0

From (20), it is easy to see that the functions ¥ lie on a unit sphere. In addition,
W forms a convex subset of the unit sphere. The advantage of choosing the square-
root density becomes immediately obvious, as many of the Riemannian expressions
for the unit sphere are well-known and closed-form. By making use of the represen-
tation in (20), we can rewrite (19) and obtain the Fisher—-Rao metric as

T
(Vjs Vidy, =/0 vi(s)vi(s)ds, 2n

where v, vk € Ty, ¥ are tangent vectors. Now, for any two functions ¢;, ¢ ; € ¥,
the geodesic distance between these two points on a unit sphere is simply the angle
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between them, that is,
T
dist(wﬁ,»,wj):cos‘<~/f,-,¢j>=cos‘( fo wl-(sw,-(s)ds), (22)

where (-, -) is the normal dot product between points in the sphere under the 12
metric.
From the differential geometry of the sphere, the exponential map is defined as

expy, (v) = cos([IVlly, ) ¥; + sin(Ivlly,) (23)

Ivily,”
where v € Ty, (¥) is a tangent vector at ¥, and Ivlly, = /{V,V)y, =

( fOT v(s)v(s)ds) % In order to ensure that the exponential map is a bijective func-
tion, we restrict |||y, € [0, 7]. The logarithm map from ¥; to ¥ ; is then given
by

u

(L u(s)u(s) ds)?

. »
Vv, =log, (b,) = cos ™y, ¥ ;). (24)

withu="; = (¥;, ¥ ).

We test the algorithm in the segmentation of different textures [20]. From the
Columbia-Utrecht Reflectance and Texture Database (CUReT) found at http:/
www 1.cs.columbia.edu/CAVE//software/curet/, we obtain samples of different tex-
tures and each grayscale image contains only one texture. In order to construct a
histogram that reflects the texture statistics in an image, we will calculate what is
commonly known as fextons [44]. This is done by first applying a filter bank to all
images in the training set. We use the Schmid [37] filter banks shown in Fig. 5. This
will provide us with a feature vector f(x, y) of dimension 13 at each pixel. Next, we
apply k-means to all the vectors in the entire dataset to get 30 cluster centers, also
known as the textons. For each image in the dataset, we then compute a histogram
that contains the number of pixels corresponding to each one of these 30 bins. This
is done by assigning a pixel (x, y) to bin i if the feature vector f(x, y) is closest to
cluster centeri =1, ..., 30, according to the Euclidean distance in RI3,

We test our algorithm on 4 sets of data containing 2 different textures each. There
are 92 images in each texture class. In these experiments, the number of nearest
neighbors is set to 10. Figure 6 shows these 4 sets with a typical example of the 2
different textures and the corresponding histograms in each set. Table 2 shows the
misclustering percentage of LLE and LE for each set.

Finally, we test our algorithm on a set of data containing 3 different textures.
Figure 7 shows a typical example of the different textures and the corresponding
histograms in each set. The error produced by LLE in clustering is 5.43% whereas

LE is significantly higher at 30.07%.
EENEEDEEEEEE0E

Fig. 5 Schmid filter bank that we use to generate the textons and in turn the histograms
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Set 1 Set 2

Rough Plastic Leather Painted Spheres Limestone

Histogram of Painted Spheres 04 Histogram of Limestone

Ribbed Paper Human Skin Insulation

Histogram of Human Skin Histogram of Crumpled Paper

Histogram of Insulation

0.15 0.1
0.08
0.1 0.06]
0.05! 0.04
0.02 0.02)
C.0 10 20 30 00 10 20 30 00 10 20 30 00 10 20 30

Fig. 6 Textures and corresponding histograms used in the two-class clustering experiments [20]

Table 2 Misclustering rates

in % for two-class Algorithm Set 1 Set 2 Set 3 Set 4
segmentation
Riemannian LLE 0 0 1.63 0
Riemannian LE 0 0 19.68 22.9

6 Conclusion and Open Research Problems

An algorithm for simultaneous NLDR and clustering of data sampled from multiple
submanifolds of a Riemannian manifold is presented. We focused our investigation
on the three NLDR algorithms, which computes a low-dimensional embedding from
the eigenvectors of a matrix M that depends on the local properties of the data. It
is important for the user to note that, it is possible that these algorithms become
degenerate if the construction of a matrix M, which captures the local geometry
of the data, is done in the presence of linear manifolds. Presently, there are several
open research problems. First of all, notice that the various Riemmanian operations
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Felt

Polyester Terrycloth

Histogram of Felt Histogram of Polyester Histogram of Terrycloth

0.15
0.08 0.08
0.06 0.1 0.06
0.04 0.04
0.05
0.02 0.02
0 0 0
0 10 20 30 0 10 20 30 0 10 20 30

Fig. 7 Textures and corresponding histograms used in the three-class clustering experiment [20]

are assumed to be known and closed-form. This is not true for generic cases and
there is a question of how one would be able to perform a similar analysis when
the Riemannian operations need to be solved in an iterative manner. The next open
problem that future research efforts are focusing on is to address the assumption that
data lying on different manifolds do not intersect each other. Finally, there is also a
need to construct a large-scale version of the algorithms presented in order to handle
large datasets.
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