
Chapter 2
PID Control

The use of Proportional-Integral-Derivative (PID) controllers for integrating pro-
cesses with dead time is discussed in this chapter. Since PID controllers are the
most adopted controllers in industry and there are many different design methods,
only those techniques specialised for IPDT processes are discussed in this chap-
ter. After having introduced PID controllers, identification methods suitable to be
applied in an industrial context are presented. Both open-loop and (relay-feedback-
based) closed-loop techniques are considered. Then, tuning methods are explained.
Without aiming at presenting all the tuning methods proposed in the literature, dif-
ferent approaches are highlighted with the purpose of showing how the problem can
be tackled from different points of view. After having presented empirical tuning
rules, analytical design techniques are explained, in particular those based on the
Internal Model Control. Then, frequency domain approaches are discussed. Subse-
quently, techniques based on optimisation criteria are presented, in particular those
based on the optimisation of integral criteria and on H∞ loop shaping. Note that the
classification done hereafter is subjective because, actually, there might be overlap
between the different methods considered (for example, the Internal Model Control
strategy is analytical, but, at the same time, it minimises integral criteria).

2.1 PID Controllers

2.1.1 Basic Principles

PID controllers are the most adopted controllers in industrial settings owing to their
relative ease of use and the satisfactory performance they are capable to provide
for the great majority of processes. Indeed, the cost/benefit ratio they can achieve is
difficult for other kinds of controllers to compete with. Because of their widespread
use, many techniques have been proposed for their design, namely, for the tuning of
the parameters and for the implementation of additional functionalities that improve
their performance; see for example [6, 83, 132].

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0_2, © Springer-Verlag London Limited 2011

9

http://dx.doi.org/10.1007/978-0-85729-070-0_2


10 2 PID Control

Fig. 2.1 Standard unity-feedback control scheme

A PID controller consists of the sum of three control actions, namely, a control
action proportional to the control error, a control action proportional to the inte-
gral of the control error, and a control action proportional to the first derivative of
the control error. Indeed, the proportional action implements the typical operation
of increasing the control variable when the control error is large (with appropriate
sign). The integral action is related to the past values of the control error and al-
lows the reduction to zero of the steady-state error when a step reference signal is
applied or a constant load disturbance d occurs. The derivative action is based on
the predicted future values of the control error and has therefore a great potential
in improving the control performance as it can anticipate an incorrect trend of the
control error and counteract for it.

In its basic form, the control action can be expressed as

u(t) = Kp

(
e(t) + 1

Ti

∫ t

0
e(v) dv + Td

d

dt
e(t)

)
, (2.1)

where e(t) = r(t)− y(t) is the control error (see Figure 2.1), Kp is the proportional
gain, Ti is the integral time constant, and Td is the derivative time constant. The
corresponding transfer function is

C(s) = U(s)

E(s)
= Kp

(
1 + 1

Tis
+ Tds

)
. (2.2)

Actually, the transfer function (2.2) is not proper. In order to make it proper, a filter
is usually added to the derivative term (note that this also reduces the detrimental
effect of the high-frequency measurement noise), so that

C(s) = U(s)

E(s)
= Kp

(
1 + 1

Tis
+ Tds

1 + Td

N
s

)
, (2.3)

where the value of N generally assumes a value between 1 and 33, although in the
majority of the practical cases, its setting falls between 8 and 16 (usually 10) [1].
Alternatively, the whole control action can be filtered, yielding the following transfer
function:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
1

Tf s + 1
, (2.4)

where the time constant Tf has to be selected so that the first-order filter does not
influence the dynamics of the PID controller significantly and the high-frequency
noise is filtered appropriately at the same time.
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It is worth noting at this point that there are other possible configurations for a
PID controller. In fact, in addition to Expression (2.2), which is called the ideal form
(or non-interacting form), the three control actions can also be implemented in the
so-called series or interacting form, namely (the filter is omitted for simplicity),

C(s) = K ′
p

(
T ′

i s + 1

T ′
i s

)
(T ′

ds + 1), (2.5)

or, alternatively, in parallel form as

C(s) = Kp + Ki

s
+ Kds. (2.6)

Translation formulae can be employed to determine the values of the parameters
of an equivalent PID controller in a given form starting from the parameters of the
PID controller in another form. However, it has to be stressed that the ideal form
is more general than the series form because the controller can be designed with
complex conjugate zeros.

2.1.2 Improvements

Modifications of the basic control law (2.1) are usually implemented to cope with
practical issues. For example, the derivative action is often applied to the process
output y instead of to the control error, so that an impulse in the control signal is
avoided when a step signal is applied to the set-point. In this case, the derivative
action ud(t) is expressed as

ud(t) = −Kp

Td

d

dt
y(t). (2.7)

Thus, a general formula for the derivative action can be written as

ud(t) = Kp

Td

(
γ

d

dt
r(t) − d

dt
y(t)

)
, (2.8)

where γ = 1 if the derivative action is applied to the control error and γ = 0 if the
derivative action is applied to the process output.

Further, a set-point weight can be applied also to the proportional action in order
to reduce the overshoot in the set-point step response (this is done at the expense of
an increase of the rise time), so that the proportional action up(t) is expressed as

up(t) = Kp

(
βr(t) − y(t)

)
, (2.9)

where the value of β is selected in the interval [0,1]. The use of a set-point weight
is particularly useful when specifications on both set-point following and load dis-
turbance rejection tasks have to be addressed at the same time. Indeed, a fast load



12 2 PID Control

Fig. 2.2 Two-degree-of-freedom PID control scheme

Fig. 2.3 Equivalent two-degree-of-freedom PID control scheme

disturbance rejection is achieved with a controller that provides a large bandwidth,
which, in turn, gives an oscillatory set-point step response. By using a set-point
weight, the control scheme represented in Figure 2.2 is actually implemented with

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
(2.10)

and

Csp(s) = Kp

(
β + 1

Tis
+ γ Tds

)
. (2.11)

It appears that the load disturbance rejection does not depend on the weight β

and therefore can be addressed separately from the set-point following task. Thus,
the PID parameters can be selected to achieve a high load disturbance rejection
performance, and then the set-point following performance can be recovered by
suitably selecting the value of the parameter β . An equivalent control scheme is
shown in Figure 2.3, where

F(s) = 1 + βTis + γ TiTds2

1 + Tis + TiTds2
. (2.12)

Here it is more apparent that the set-point weight is able to smooth the (step) set-
point signal in order to damp the response to a set-point change.

If these modifications of the basic control law are considered, the general so-
called ISA form (or beta–gamma) PID control law can be derived:

u(t) = Kp

(
βr(t) − y(t) + 1

Ti

∫ t

0
e(τ ) dτ + Td

(
d(γ r(t) − yf (t))

dt

))
,

Td

N

dyf (t)

dt
= y(t) − yf (t),

(2.13)

where β ∈ [0,1] and γ ∈ {0,1}.
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Fig. 2.4 The back-calculation anti-windup scheme

Finally, the integrator windup phenomenon has to be avoided. When a set-point
change is applied, the control variable might reach and remain at the actuator satu-
ration limit during the transient response. In this case the system operates as in the
open-loop case because the actuator is at its maximum (or minimum) limit, regard-
less of the process output value. The control error decreases more slowly than in the
ideal case (where there is no saturation limits), and therefore the integral term be-
comes large (it winds up). Thus, even when the value of the process variable attains
that of the reference signal, the controller still saturates due to the integral term, and
this generally leads to large overshoots and long settling time. In order to avoid this,
an anti-windup strategy should be implemented. This can be done according to the
so-called conditional integration technique, where the integral action is frozen when
the actuator saturates and, at the same time, the control error and the control variable
have the same sign, or according to the so-called back-calculation approach shown
in Figure 2.4, where the integral action is reduced by a term proportional to the sat-
uration level of the actuator. The parameter Tt , called the tracking time constant,
determines the amount of reduction of the integral term.

2.2 Identification

System identification is a topic that has been and is extensively investigated, and
many solutions have been proposed in the literature that can be applied in gen-
eral to industrial processes. In the following sections, methodologies that have been
specifically devised for the estimation of the parameters of a integral process are
presented, by considering open-loop and closed-loop techniques that can be easily
applied in practical cases. Simple continuous-time models are considered because
these are commonly employed for the tuning of PID controllers.

2.2.1 Open-loop Identification

Open-loop identification techniques are based on the evaluation of the response of
the process to particular signals. They have to be applied starting from an equilib-
rium point of the system.
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Fig. 2.5 Identification based on the impulse response

2.2.1.1 Using an Impulsive Input

In general, the most employed open-loop identification methods used for industrial
system are based on the evaluation of a step response. However, in the case of inte-
gral processes, which are not asymptotically stable, the step response would tend to
infinity, and this may not be acceptable in practice. An alternative sensible procedure
is to apply an impulse to the system. Consider the IPDT system

P(s) = K

s
e−Ls (2.14)

at a steady state (denote the output value as y0) and apply an impulse of ampli-
tude Δu and duration Δt as the input signal. This is shown in Figure 2.5 together
with the corresponding output. The dead time L can be estimated by considering
the time interval between the step transition and the time instant when the process
output leaves its previous value, namely, y > y0 (without loss of generality, it has
been assumed that Δu > 0 and K > 0). It should be noted that in practice the mea-
surement noise needs to be taken into consideration. A simple sensible solution is
to define a noise band NB [8] (whose amplitude should be equal to the amplitude of
the measurement noise) and to rewrite the condition as y > y0 + NB. The value of
K can then be derived, by considering that the value of the process output variation
Δy is equal to the area of the impulse input multiplied by K , as

K = Δy

ΔuΔt
. (2.15)

The estimation of the parameter K is based just on the steady-state value of the
process output, and therefore it is easy to cope with measurement noise. Obviously,
the estimation will be perfect when the process dynamics are represented perfectly
by expression (2.14). This is not the case if the true process dynamics are different.
For example, consider the process

P(s) = 1

s(s + 1)
e−0.5s . (2.16)

If the open-loop impulse response (plotted as a solid line in Figure 2.6) is evaluated,
the following IPDT model is obtained (note that the noise-free case is considered
for the sake of simplicity):

P(s) = 1

s
e−0.5s , (2.17)
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Fig. 2.6 Application of the identification method based on the impulse response. Dotted line:
impulse input. Solid line: process response. Dashed line: response of the identified model

which gives the impulse response plotted as a dashed line in Figure 2.6. It turns out
that the identification procedure has not captured the dynamics represented by the
pole in s = −1, and the two responses are therefore somewhat different.

2.2.1.2 Using a Square Wave Input

The gain K can be identified via applying a square wave u(t) with period P and
amplitude Δu centred around a nominal value u∗ [75]. Since the input function u

is discontinuous at the time instants td = P/2,P ,3P/2, . . . , the output response is
continuous but not differentiable at these time instants. The gain K can be therefore
computed as

K = ẏ(t+d ) − ẏ(t−d )

Δu
, (2.18)

where ẏ(t+d ) and ẏ(t−d ) are respectively the time derivatives of the process output
from the right and the left. The situation is shown in Figure 2.7, where the process
P(s) = 0.1/s is taken as an example (the dead time is omitted as it does not affect
the identification of K). The main advantage of the method is that, by evaluating the
gain at each discontinuity time instant, a time-varying gain can be estimated, and this
fact can be exploited in the design of the controller (see [75] for an example related
to a batch distillation column). However, it has to be taken into account that the
differentiation procedure is very sensitive to the measurement noise and therefore
data should be appropriately filtered before applying it.
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Fig. 2.7 Application of the identification method based on a square wave input

Fig. 2.8 Relay-feedback control scheme

2.2.2 Closed-loop Identification

Closed-loop identification techniques are usually based on the use of a relay feed-
back controller or, alternatively, on the evaluation of the response to a set-point
change. Different methods in these contexts are presented hereafter.

2.2.2.1 Based on the Relay Feedback Methods

The closed-loop identification techniques employed for industrial processes are typ-
ically based on a relay-feedback experiment [151] (see Figure 2.8). The rationale of
the use of the relay-feedback controller is to evaluate the obtained process output
oscillation in order to obtain a nonparametric model of the process [3], namely its
ultimate gain Ku and the ultimate frequency ωu, in analogy with the original idea of
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the ultimate sensitivity experiment of Ziegler and Nichols [166], where the control
system is led to the stability limit. Then, starting from these parameters, a transfer
function of the process can be determined, if necessary.

Standard Relay-feedback Method The original relay-feedback experiment pro-
posed in [3] involves the use of a standard symmetrical relay in order to generate a
persistent oscillatory response of the process output. Denoting by h the amplitude of
the relay and by A the amplitude of the output oscillations, the value of the ultimate
gain can be calculated, by applying the describing function theory, as

Ku = 4h

πA
, (2.19)

while the value of the ultimate period Pu = 2π/ωu is simply the period of the ob-
tained output oscillation. It appears that only the amplitude h of the relay has to be
selected by the user. This should be done in order to provide an output oscillation
of sufficient amplitude to be well distinguished from the measurement noise, but at
the same time it should not be too high so that the process is perturbed as less as
possible (and the normal production is not interrupted). Indeed, it is worth stressing
that the estimation of the output oscillation is sensitive to the measurement noise
and therefore some filtering techniques have to be applied [140]. In addition to the
advantage of having just one parameter to be selected by the user and of being per-
formed in closed-loop, so that the process is kept close to the set-point value, the
main valuable feature of this identification technique is that the identification exper-
iment can start also if the process is not at an equilibrium point. Further, possible
load disturbances that might occur during the experiment can be detected easily by
the change to asymmetric pulses in the control variable.

In any case, because of the adoption of the describing function theory, the ob-
tained values of the ultimate gain and ultimate period are approximated. As an ex-
ample, if the process

P(s) = 1

s
e−0.2s (2.20)

is considered, the result obtained by employing a relay-feedback controller is shown
in Figure 2.9 (note that a set-point step equal to one has been applied at time t = 0).
By noting that h = 1 and A = 0.205, the parameters obtained by applying the iden-
tification procedure are (see (2.19)) Ku = 6.21 and Pu = 0.82, while the true ones
are Ku = 7.85 and Pu = 0.80. Actually, the slight difference is usually acceptable if
the parameters are employed for the tuning of a PID controller.

The transfer function (2.14) can be determined from the estimated values of the
ultimate gain and ultimate period by using the following expressions [26]:

L = 0.25Pu, (2.21)

K = 4A

hPu

. (2.22)

When these are applied to the previous example, then L = 0.2 and K = 1, which
are equal to the true values.
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Fig. 2.9 Example of a relay-feedback identification experiment. Dashed line: control variable.
Solid line: process variable

Fig. 2.10 Biased relay with hysteresis

Biased Relay with Hysteresis A biased relay with hysteresis (see Figure 2.10)
can also be employed effectively for the estimation of a process transfer function
(2.14) [59]. In fact, under an asymmetrical biased relay feedback test (see Fig-
ure 2.11), the output response of an IPDT system converges to a limit cycle de-
scribed as

y+(t) = K(h + h0)t + K(h − h0)t0, t ∈ [
0,P +]

,

y−(t) = K(h − h0)(t + t0) + K(h + h0)P
+, t ∈ [0,P −], (2.23)

where y+(t) denotes the monotonically ascending part for t ∈ [0,P −], correspond-
ing to t ∈ [P +,Pu] in the limit cycle, while y−(t) denotes the monotonically de-
scending part for t ∈ [P +,Pu], and Pu = P + + P − is the oscillation period. Based
on these analytical expressions, the process parameters can be determined by eval-
uating an experiment with a biased relay with hysteresis feedback controller. In
particular, the process dead time L can be determined as the time interval to attain
the positive peak A+ of the process output response from a relay switch point in a
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Fig. 2.11 Experiment with a biased relay with a hysteresis feedback controller

negative half period P − of the relay, and the process gain K can be determined as

K = A+ − A−

(h + h0)P + . (2.24)

The use of a biased relay is particularly useful if the system to be estimated is
a second-order integral process plus dead time (SOIPDT) described by the transfer
function

P(s) = K

s(T s + 1)
e−Ls. (2.25)

In this case, the analytical expression of the limit cycle can be written as

y+(t) = K(h + h0)(t − T ) + K(h − h0)t0 + 2Kh0T Ee−t/T , t ∈ [
0,P +]

,

y−(t) = K(h − h0)(t + t0 − T ) + K(h + h0)P
+ + 2Kh0T Fe−t/T , t ∈ (0,P −],

(2.26)
where

E = 1 − e−P−/T

1 − e−Pu/T

and

F = 1 − e−P+/T

1 − e−Pu/T
.

Based on these expressions, the times to attain the extreme values of y+(t) and
y−(t), denoted respectively as tP+ and tP− , can be determined as

tP+ = T ln
2h0E

h + h0
(2.27)
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and

tP− = T ln
2h0F

h − h0
. (2.28)

Denote the time interval to reach the minimum of y+(t) from the initial relay switch
point in a positive half period of the relay as t∗

P+ ; then

tP+ = t∗
P+ − L, (2.29)

and

tP− = t∗
P− − L, (2.30)

where t∗
P− is the time interval to reach the maximum of y−(t) from the initial relay

switch point in a negative half period of the relay. By (2.29) and (2.30), we have

tP+ − tP− = t∗
P+ − t∗

P− . (2.31)

Substitute (2.27) and (2.28) into (2.31); then

ln
h0 − h

h0 + h
+ ln

1 − e−P−/T

1 − e−P+/T
= t∗

P+ − t∗
P−

T
. (2.32)

Note that the process response at the oscillation frequency can be formulated as

P(jωu) =
∫ Pu

0 y(t)e−jωut dt∫ Pu

0 u(t)e−jωut dt
= Aue

jϕu . (2.33)

Substitute the process model (2.25) into (2.33); then

K

ωu

√
T 2ω2 + 1

= Au (2.34)

and

−Lωu − π

2
− arctan(T ωu) = ϕu. (2.35)

It can be easily derived that

K = Auωu

√
T 2ω2 + 1 (2.36)

and

L = − 1

ωu

[
ϕu + π

2
+ arctan(T ωu)

]
. (2.37)

In case L/T > 1, y+(t) can decrease monotonically for t ∈ [0,P +], while y−(t)

can increase monotonically for t ∈ [0,P −]. Thus, there exists

t∗
P+ = t∗

P− = L. (2.38)
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Fig. 2.12 Experiment for the estimation of a SOIPDT process

In this case, the process time constant can be derived from (2.37) as

T = 1

ωu

tan

(
−Lωu − π

2
− ϕu

)
, (2.39)

and the process gain can be determined straightforward from (2.36). However, the
value of T cannot be determined from (2.39) if

tan

(
−Lωu − π

2
− ϕu

)
< 0. (2.40)

The algorithm for the identification of the SOIPDT process (2.25) can be sum-
marised as follows [59]:

1. Measure P +, P −, t∗
P+ , and t∗

P− from the limit cycle.
2. Compute P(jωu) from (2.33).
3. Compute the process dead time from (2.38) and check whether (2.40) is satisfied.

If yes, go to step 6.
4. Compute the process time constant T from (2.39) and check whether L/T < 1

is satisfied. If yes, go to step 6.
5. Determine the process gain K from (2.36). If both (2.40) and L/T < 1 are not

satisfied, then terminate.
6. Determine T from (2.32) by applying the Newton–Raphson iteration method.

Set T = t∗
P+ (or T = t∗

P− ) as the initial estimation of T .
7. Determine the process gain K from (2.36).
8. Determine the process dead time L from (2.37).

As an example of this algorithm, the process (2.16) is considered. The result of the
application of the biased relay feedback control scheme is shown in Figure 2.12. The
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following parameters are obtained: t∗
P+ = 0.8, t∗

P− = 1.76, P + = 2.04, P − = 6.14,
Pu = 8.18, (namely, ωu = 0.77), Au = 1.04. By applying the algorithm, the process
parameters are estimated correctly.

An alternative approach for the estimation of the parameters of a SOIPDT pro-
cess has been proposed in [35]. The method is based on the application of the relay
feedback controller to a first-order-plus-dead-time (FOPDT) process described by
the following transfer function:

P(s) = K

T s + 1
e−Ls. (2.41)

In this case, the process parameters can be estimated by applying the following
formulae, which are based again on the describing function analysis:

K = a0

u0
, (2.42)

T = Pu

2π A+−A−
2

√
K2

(
α2 + β2

) −
(

A+ − A−
2

)2

, (2.43)

L = Pu

2π

[
π − tan−1

(
2πT

Pu

)
+ tan−1

(
α

β

)]
, (2.44)

where

α = −4h0ε

π A+−A−
2

, (2.45)

β = h

π A+−A−
2

(√(
A+ − A−

2

)2

− (a0 − ε)2 +
√(

A+ − A−
2

)2

− (a0 + ε)2

)
,

(2.46)

and a0 and u0 are the values of the DC components of the oscillations at the process
output and input. In case the process is described by a SOIPDT transfer function,
in principle it is sufficient to differentiate the output of the relay and then apply the
preceding formulae (2.42)–(2.44). Obviously, differentiating the relay output gives
impulses at the zero crossings that are not acceptable in practical cases because of
the actuator constraints. In order to cope with this problem, the ideal impulses can
be substituted by pulses with finite amplitude and short pulse width. Actually, this
introduces an approximation that might significantly affect the estimation result.

It is worth stressing that, when a relay feedback controller is employed, some fil-
tering techniques should be applied because the estimation of the output oscillation
is sensitive to the measurement noise. Furthermore, the use of an asymmetrical relay
represents a sort of disturbance to the process since it causes the operating point to
drift.

2.2.2.2 Based on the Closed-loop Step Responses

A closed-loop identification method which is an alternative to the use of a relay
feedback controller consists of evaluating the set-point step response of the IPDT
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process (2.14) with simple proportional controller C(s) = Kp [115]. In this case,
the closed-loop transfer function is (see Figure 2.1)

Y(s)

R(s)
= K ′e−Ls

s + K ′e−Ls
, (2.47)

where

K ′ = KpK. (2.48)

By using a first-order Padè approximation, namely e−Ls ∼= (1−0.5Ls)/(1+0.5Ls),
Expression (2.47) can be rewritten as

Y(s)

R(s)
= K ′(1 + 0.5Ls)e−Ls

0.5 L
K ′ s2 + ( 1

K ′ − 0.5L)s + 1
(2.49)

or, equivalently,

Y(s)

R(s)
= K ′(1 + 0.5Ls)e−Ls

τ 2
e s2 + 2τeζ s + 1

(2.50)

with

τe =
√

L

2K ′ (2.51)

and

ζ =
√

K ′
2L

(
1

K ′ − L

2

)
. (2.52)

The effective time constant τe and the damping coefficient ζ of the closed-loop
system can be estimated by considering the closed-loop response parameters yM1,
ym1, yM2, y∞ (namely, the first peak value, the first minimum value, the second peak
value, and the steady-state value) and Δt as shown in Figure 2.13. In particular, the
following formulae can be employed [26]:

ζ = − ln yM2−y∞
yM1−y∞√

4π2 + (
ln yM2−y∞

yM1−y∞
)2

, (2.53)

or, alternatively,

ζ = − ln y∞−ym1
yM1−y∞√

π2 + (
ln y∞−ym1

yM1−y∞
)2

, (2.54)

and

τe = Δt

π

√
1 − ζ 2. (2.55)
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Fig. 2.13 Experiment for the estimation of a SOIPDT process

The values of L and K ′ (and consequently of K) can be eventually determined,
by solving Equations (2.51) and (2.52), as

L = 2.828Δt

π

√
0.5 + ζ 2 −

√
ζ 2

(
1 + ζ 2

)√
1 − ζ 2, (2.56)

K = 1.414π

Δt
√

1 − ζ 2

√
0.5 + ζ 2 −

√
ζ 2

(
1 + ζ 2

)
. (2.57)

It is worth noting that the value of the proportional gain of the controller has to
be sufficiently high to provide an oscillatory set-point step response.

As an illustrative example of application of the identification procedure, consider
process (2.20). If a proportional feedback controller Kp = 5 is employed, the re-
sulting set-point step response is shown in Figure 2.13 with yM1 = 1.5, ym1 = 0.76,
yM2 = 1.11, and y∞ = 1. By applying either (2.53) or (2.54) we have ζ = 0.23, and,
as a consequence, from (2.56), (2.57), and (2.48) the resulting values of the process
parameters are K = 1.09 and L = 0.23. The slight discrepancy between the true and
estimated values is due to the Padè approximation.

2.3 Tuning Methods

A large number of tuning methods have been proposed in literature over the last
seventy years. They are based on different approaches and aim at solving different
control problems. In fact, as it has already been mentioned in Section 2.1, there are
different (possibly conflicting) control tasks that have to be addressed in practical
cases. In particular, set-point following and/or load disturbance rejection are usu-
ally of main concern. In general, a good load disturbance rejection performance is
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achieved with a high-gain controller, which gives an oscillatory set-point step re-
sponse on the other side. If both specifications have to be considered, the problem
can be solved by employing a set-point weight. It is worth stressing at this point
that, although the use of a set-point weight yields a two-degree-of-freedom control
system, its use is addressed in this part of the book because the two controllers (C
and F ) in Figure 2.3 are actually strongly correlated. In Part II of the book, in a
context different from PID controllers, the two controllers are designed separately
in a two-degree-of-freedom scheme.

In addition to the performance in the set-point following and/or load disturbance
rejection tasks, the performance in the filtering of measurement noise, the robustness
of the control scheme and the control effort have to be considered as well in the
selection of the PID parameters. For this reason, it is difficult to make the best choice
among the many tuning rules that are available.

In the following subsections, instead of providing a comprehensive review of all
the tuning rules that are available for integral processes (see [83] for this purpose),
different approaches with the aim of showing the peculiarities of integral processes
are highlighted.

2.3.1 Empirical Formulae

Empirical formulae for the tuning of the PID controllers have been devised soon
after PID controllers appeared in the industry at the beginning of the last century.
The most well-known formulae are those devised by Ziegler and Nichols in the
1940s [166]. There are two kinds of formulae that are based respectively on the
parametric model (2.14) and on the nonparametric model given by the ultimate gain
Ku and the ultimate frequency ωu. They are shown in Tables 2.1 and 2.2, respec-
tively. It is worth noting that the Ziegler–Nichols tuning rules aim at providing a
good load disturbance rejection performance (in particular, a quarter decay ratio in
the load disturbance step response), and this implies that the damping ratio of the
closed-loop system is in general too low to achieve a satisfactory set-point following
performance (namely, the step response is too oscillatory with a big overshoot). As
already mentioned, this issue can be addressed by employing a set-point weight for
the proportional action. As an example, consider the process

P(s) = 0.0506

s
e−6s . (2.58)

By applying the PID controller tuning rule shown in Table 2.1, the parameters are
Kp = 3.95, Ti = 12, and Td = 3. The resulting set-point and load disturbance re-
jection step response is shown in Figure 2.14 as a solid line. If a set-point weight
β = 0.4 is employed, the result obtained is the one shown with a dashed line. If Ta-
ble 2.2 is used to determine the PID parameters (note that Ku = 5.19 and Pu = 24),
the parameters are Kp = 3.11, Ti = 12, and Td = 3. The corresponding results (ob-
tained again with and without the set-point weight) are plotted in Figure 2.15. As
it can be easily expected by evaluating the controller parameters, the method based
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Table 2.1 Ziegler–Nichols tuning rules based on a parametric
model

Controller Kp Ti Td

P 1
KL

– –

PI 0.9
KL

3L –

PID 1.2
KL

2L L
2

Table 2.2 Ziegler–Nichols tuning rules based on a non-
parametric model

Controller Kp Ti Td

P 0.5Ku – –

PI 0.4Ku 0.8Pu –

PID 0.6Ku 0.5Pu 0.125Pu

Fig. 2.14 Results obtained with the Ziegler–Nichols tuning rules based on a parametric model of
the process. Solid line: PID controller with no set-point weight. Dashed line: PID controller with
set-point weight

on the nonparametric model of the process provides a less oscillatory response. In
any case, the use of a set-point weight is actually essential in reducing the excessive
overshoot that occurs because of the aggressive tuning conceived to achieve a fast
load disturbance rejection.

2.3.2 Analytical Methods

In contrast to empirical tuning rules, analytical methods are based on the determina-
tion of the controller parameters by exploiting explicitly the expressions that involve
the transfer function of the closed-loop system.
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Fig. 2.15 Results obtained with the Ziegler–Nichols tuning rules based on a nonparametric model
of the process. Solid line: PID controller with no set-point weight. Dashed line: PID controller with
set-point weight

Fig. 2.16 The general Internal Model Control scheme

Fig. 2.17 The equivalent unity-feedback control scheme

2.3.2.1 Internal Model Control

Internal Model Control (IMC) [76] is a well-known control design approach where
the trade-off between nominal performance and robustness is explicitly addressed.
This is obtained by including a model of the process in the controller implemen-
tation, according to the scheme of Figure 2.16, where P̃ denotes the model of the
process P , and the controller Q determines the value of the control variable u. Note
that this scheme is equivalent to the unity-feedback scheme of Figure 2.1 by simply
selecting (see Figure 2.17)



28 2 PID Control

C(s) = Q(s)

1 − P̃ (s)Q(s)
. (2.59)

The design of the controller is in general performed by considering Q(s) =
Q̃(s)F (s) and by selecting Q̃(s) in order to achieve an optimal performance for
a given input disregarding the model uncertainties (namely, by considering P̃ (s) =
P(s)) and input constraints. Then, F(s) is selected as a low-pass filter of an appro-
priate order in order to achieve robust stability and robust performance. In particular,
Q̃(s) can be determined to minimise the integrated square error (ISE)∫ ∞

0
e2(t) dt. (2.60)

This is obtained by factoring the model P̃ (s) into two parts:

P̃ (s) = P̃+(s)P̃−(s), (2.61)

where P̃+(s) is the all-pass portion of the transfer function (P̃+(0) = 1) including
all the RHP zeros and delays of P̃ (s), having the form

P̃+(s) = e−Ls
∏
i

−αis + 1

αis + 1
, (2.62)

where α−1
i are all the RHP zeros, and L is the dead time.

Alternatively, if it is desired to minimise the integrated absolute error (IAE)∫ ∞

0

∣∣e(t)∣∣dt, (2.63)

P̃+(s) in the factorisation (2.61) should be chosen as

P̃+(s) = e−Ls
∏
i

(−αis + 1). (2.64)

Then, Q̃(s) = ˜
P −1− (s). At this point, F(s) has to be selected in order to have a

proper controller Q(s). With the inclusion of the filter, the transfer function of the
closed-loop system of Figure 2.16 becomes P(s)Q̃(s)F (s) (again, by considering
P̃ (s) = P(s)). Thus, in order to achieve a null steady-state error in the presence of
a step set-point signal, it has to be F(0) = 1. In this context, a natural choice is to
select

F(s) = 1

(λs + 1)n
, (2.65)

where the order n is such that the controller Q(s) is proper. In order to have a null
steady-state error when a ramp signal is applied to the set-point, in addition to the
requirement F(0) = 1, the following expressions needs to be satisfied as well:

d

ds

(
P̃ (s)Q(s)

)∣∣∣∣
s=0

= 0
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Table 2.3 IMC-based PID tuning rules

Approximation KpK Ti Td Tf Comments

e−Ls ∼= 1 − Ls
2(L+λ)

2L2+4λL+λ2 2(L + λ) – Lλ2

2L2+4λL+λ2 ISE optimal

e−Ls ∼= 1 − Ls L+2λ

(L+λ)2 L + 2λ – – IAE optimal

e−Ls ∼= 1− L
2 s

1+ L
2 s

3L+2λ

2L2+4λL+λ2 3L + 2λ
2L(L+λ)
3L+2λ

Lλ2

2L2+4λL+λ2 ISE optimal

e−Ls ∼= 1− L
2 s

1+ L
2 s

2
L+λ

2(L + λ)
L(L+2λ)
2(L+λ)

– IAE optimal

or, equivalently,

d

ds

(
P̃+(s)F (s)

)∣∣∣∣
s=0

= 0.

A possible solution is

F(s) = (2λ − P̃ ′+(0))s + 1

(λs + 1)2
. (2.66)

By restricting the analysis to IPDT processes (2.14), it has to be stressed that, in
order to have a null steady-state error with a constant load disturbance, it is nec-
essary for the controller to have a pole at the origin. This corresponds to having a
null steady-state error when a ramp signal is applied to the set-point, and therefore
the filter transfer function (2.66) has to be considered. Then, if the dead time is
approximated as

e−Ls ∼= 1 − Ls (2.67)

and the IMC design procedure is applied, C(s) becomes a PI controller with or
without an output filter, respectively, depending on whether the factorisation (2.62)
or (2.64) is applied. If the dead time is approximated as

e−Ls ∼= 1 − L
2 s

1 + L
2 s

, (2.68)

then C(s) becomes a PI controller with or without an output filter, respectively,
depending on whether the factorisation (2.62) or (2.64) is applied. Thus, the ap-
plication of the IMC design naturally yields the tuning rules shown in Table 2.3
[108], where the only parameter to be selected by the user is λ, which handles the
trade-off between aggressiveness and robustness (and control activity). Indeed, in-
creasing the value of λ implies that the closed-loop time constant increases and the
robustness of the control system to plant/model mismatch increases. Conversely, de-
creasing the value of λ implies that the speed of response increases but the system
is less robust. Different practical recommendations for the choice of λ have been
proposed in the literature. For example, the advice λ > L/4 or λ > L/2 is given in
[108] corresponding to the factorisation form (2.62) or (2.64), while the suggestion
λ = L

√
10 is given in [2]. It is worth stressing that if the PID controller has a form
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Fig. 2.18 Results obtained with the IMC-based tuning rules. Solid line: λ = 6. Dashed line:
λ = 18.97

different from the output filtered ideal one (2.4), simple conversion formulae can be
employed [15].

As an illustrative example, consider again process (2.58). By applying the tun-
ing rule that yields a PID controller with an output filter and by initially selecting
λ = L = 6, the parameters are Kp = 2.35, Ti = 30, Td = 4.8, and Tf = 0.86. The
response to a set-point and load disturbance step signals is shown in Figure 2.18 as a
solid line. Conversely, by selecting λ = L

√
10 = 18.97, it is Kp = 1.25, Ti = 55.95,

Td = 5.36, and Tf = 2.43. The corresponding set-point and load disturbance step
responses are plotted again in Figure 2.18 as a dashed line. As expected, a bigger
value of λ yields a less aggressive and more robust control system, namely, the
overshoot in the set-point step response is reduced, the rise time is increased, and
the control effort is reduced as well. Conversely, a more sluggish load disturbance
response is obtained.

2.3.2.2 Matching the Coefficients of the Closed-loop Transfer Function

If just the set-point following performance is addressed, a simple method to tune
the PID controller is to match the coefficients of the numerator and denominator
polynomial of the closed-loop transfer function [14]. If an IPDT process transfer
function (2.14) is considered and a PID controller (2.2) is employed, the closed-
loop transfer function from the set-point r to the output y is

Y(s)

R(s)
= (K1q + K2 + K3q

2)e−q

q2 + (K1q + K2 + K3q2)e−q
, (2.69)

where

q = Ls, (2.70)



2.3 Tuning Methods 31

K1 = KpKL, (2.71)

K2 = K1L

Ti

, (2.72)

K3 = K1
Td

L
. (2.73)

By using the first-order Padè approximation for the exponential term at the denom-
inator, Expression (2.69) becomes

Y(s)

R(s)
= (K1q + K2 + K3q

2)(1 + 0.5q)e−q

(1 + 0.5q)q2 + (K1q + K2 + K3q2)(1 − 0.5q)
. (2.74)

By imposing that this closed-loop transfer function is equal to one, it results

K1 = 1, (2.75)

K2 = 0, (2.76)

K3 = 0.5, (2.77)

that is (see (2.71)–(2.73)),

Kp = 1

KL
, (2.78)

Ti = ∞, (2.79)

Td = 0.5L. (2.80)

Indeed, a PD controller results. This is in accordance with the intuition that a pole at
the origin of the complex plane to ensure a null steady-state error is already present
in the process transfer function. In order to employ the integral action in any case
(for example to cope with possible load disturbances), it is sufficient to impose that
the closed-loop transfer function (2.74) is equal to α > 1 (note that if α = 1, the
same tuning rules as before are obtained). This is reasonable because the steady-
state error will be zero in any case (because of the presence of the integrator) and
because with a PI or PID controller an overshoot occurs in any case in the set-
point step response. Thus, by considering α as a tuning parameter, the following
expressions are obtained:

(1 − α)K1 + 0.5(1 + α)K2 = 0, (2.81)

0.5(1 + α)K1 + (1 − α)K3 = α, (2.82)

(1 + α)K3 = α, (2.83)

which yields

Kp = 1

KL

4α2

(1 + α2)
, (2.84)
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Ti = 0.5L

(
1 + α

α − 1

)
, (2.85)

Td = 0.25L

(
1 + α

α

)
. (2.86)

If a PI controller is considered, by following the same reasoning as before the fol-
lowing rules are obtained:

Kp = 1

KL

2α

1 + α
, (2.87)

Ti = 0.5L

(
1 + α

α − 1

)
. (2.88)

It appears that all the PID parameters depend on the value of α which has to be
selected conveniently. In [14] it is suggested to choose α = 1.25, namely, for the
PID controller:

Kp = 1.2346

KL
, (2.89)

Ti = 4.5L, (2.90)

Td = 0.45L. (2.91)

As an illustrative example of the method, consider the process (2.58). By applying
(2.89)–(2.91) the following parameters are determined: Kp = 4.067, Ti = 27, and
Td = 2.7. The resulting set-point and load disturbance unit step responses are shown
as a solid line in Figure 2.19. They are compared with the results obtained by using
a PI controller with Kp = 3.66 and Ti = 27 (see (2.87)–(2.88)), shown as a dashed
line, and with the results obtained by using a PD controller with Kp = 3.29 and
Td = 3 (see (2.78)–(2.80)), shown as a dotted line. In the cases where the derivative
action has been employed, a first-order filter has been applied, but its time constant
has been selected so that its dynamics are actually negligible (note that the derivative
filter has not been considered explicitly in the derivation of the tuning rules). This
explains the large spikes in the control signal (no saturation of the actuator has been
considered in order to avoid biasing the result). Further, as expected, the use of the
PD controller provides a better set-point step response but exhibits a steady-state
error in the presence of a constant load disturbance. The PID controller performs
better than the PI controller, but a large overshoot appears in all of the cases.

2.3.2.3 Direct-synthesis-based Design

With respect to the method described in Section 2.3.2.2, an increase in the perfor-
mance can be expected if a filtered PID controller (possibly with set-point weight)
is employed. In this context, the method based on direct synthesis proposed in [107]
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Fig. 2.19 Results obtained with the method based on matching the coefficients of the closed-loop
transfer function. Solid line: PID controller. Dashed line: PI controller. Dotted line: PD controller

can be applied. In fact, if the scheme of Figure 2.1 is considered and if an appro-
priate desired closed-loop transfer function is selected, then the controller transfer
function determined analytically has the required structure. Indeed, if the IPDT pro-
cess (2.14) is considered and the desired closed-loop transfer function is selected
as (

Y(s)

R(s)

)
d

= (ηs + 1)e−Ls

(λs + 1)2
, (2.92)

then, the corresponding controller transfer function can be determined as

C(s) = 1

P(s)

(
Y(s)
R(s)

)
d

1 − (
Y(s)
R(s)

)
d

= s

K

(ηs + 1)

[(λs + 1)2 − (ηs + 1)e−Ls] . (2.93)

By applying the first-order Padè approximation e−Ls ∼= (1− L
2 s)/(1+ L

2 s) and by
selecting η = 2λ+L, from (2.93) an output-filtered PID controller (2.4) is obtained,
where

Kp = 2λ + 1.5L

K(λ2 + 2λL + 0.5L2)
, (2.94)

Ti = 2λ + 1.5L, (2.95)

Tf = 0.5λ2L

λ2 + 2λL + 0.5L2
. (2.96)

The same method can be applied also to SOIPDT processes (2.25). In this case,
the desired closed-loop transfer function has to be selected as

(
Y(s)

R(s)

)
d

= (η2s
2 + η1s + 1)e−Ls

(λs + 1)3
, (2.97)
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so that the controller is obtained as

C(s) = 1

P(s)

(
Y(s)
R(s)

)
d

1 − (
Y(s)
R(s)

)
d

= s(T s + 1)

K

(η2s
2 + η1s + 1)

[(λs + 1)3 − (η2s2 + η1s + 1)e−Ls] .
(2.98)

By using again a first-order Padè approximation, the controller transfer function
becomes a PID controller in series with a lead/lag compensator:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
(as + 1)

(bs + 1)
, (2.99)

where

Kp = η1

K(3λ2 + 1.5λL + 0.5η1L − η2)
, (2.100)

Ti = η1, (2.101)

Td = η2

η1
, (2.102)

Tf = 0.5λ2L

λ2 + 2λL + 0.5L2
, (2.103)

a = 0.5L, (2.104)

b = 0.5λ3L

T (3λ2 + 1.5λL + 0.5Lη1 − η2)
, (2.105)

η1 = 3λ + L, (2.106)

η2 = (0.5L − T )λ3 + (3T 2 − 1.5LT )λ2 + 3LT 2λ + 0.5L2T 2

T (0.5L + T )
. (2.107)

It appears that for both IPDT and SOIPDT processes, there is just one tuning
parameter λ which handles the trade-off between aggressiveness and robustness. In
[107] it is suggested to select λ in the range [0.8L,3L]. Furthermore, it is suggested
to use the set-point weight β in the range of 0.3–0.4 to reduce the overshoot in the
step response.

As an illustrative example, by considering again process (2.58), the following
parameters are determined, by applying (2.94)–(2.96) with λ = L = 6: Kp = 3.29,
Ti = 21, Td = 2.57, Tf = 0.86. The set-point weight has been fixed to 0.3. The re-
sulting set-point and load disturbance unit step responses are shown in Figure 2.20.

2.3.3 Frequency-domain Methods

Tuning methods can also be developed by considering the frequency response of the
system. Some examples are presented in the following subsections.



2.3 Tuning Methods 35

Fig. 2.20 Results obtained with the direct-synthesis-based design method

2.3.3.1 Based on the Maximum Peak-resonance Specification

The method proposed in [101] is based on a specification of a maximum peak res-
onance and is derived from the analysis of the Nichols chart of the series of the
controller and of the process. In fact, with an integral process, the open-loop fre-
quency response presents a phase maximum (see Figure 2.21). In this context, the
controller parameters can be selected such that this maximum is located on the right-
most point of the ellipse corresponding to the selected maximum peak resonance.
Thus, the method can handle at the same time the maximum peak overshoot and the
minimum phase and gain margins.

By considering a SOIPDT process (2.25) and a PI controller

C(s) = Kp

(
1 + 1

Tis

)
, (2.108)

specifying that the phase maximum (achieved at the frequency ωmax) of the open-
loop frequency response L(s) = C(s)P (s) is located at the right most point
(Amax, φmax) of the contour corresponding to the desired maximum peak reso-
nance Mr , yields the following system of three equations and three unknowns
(Kp,Ti,ωmax):

∂argL(jω)

∂ω

∣∣∣∣
ω=ωmax

= 0, (2.109)

argL(jωmax) = φmax, (2.110)∣∣L(jωmax)
∣∣ = Amax. (2.111)
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Fig. 2.21 Example of a Nichols chart for an integral process in series with a PI controller

A simple expression of the solution of this system can be obtained by approximating
the arctan(x) as

arctan(x) ∼=
{

π
2 − 1

x
if x > 1,

x if x ≤ 1.
(2.112)

In this way the following expressions are obtained:

Ti = 16(T + L)

(2φmax + π)2
, (2.113)

Kp = TiAmax

K

[
T 2

i ω6
max + ω4

max

T 2
i ω2

max + 1

] 1
2

, (2.114)

ωmax =
[

1

Ti(T + L)

] 1
2

. (2.115)

In order to achieve a good compromise between the set-point following and the
load disturbance rejection performance, it is suggested to select Mr = 5 dB (which
corresponds to Amax = 1.21 and φmax = −2.55 rad). If a PID controller is employed,
it has to be selected with transfer function

C(s) = Kp

(
Tis + 1

Tis

)
Tds + 1

Tf s + 1
, (2.116)

so that, by selecting Td = T (namely, by applying a pole-zero cancellation), the
previous case is obtained, where the time constant of the open-loop system is given
by Tf .
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Fig. 2.22 Results obtained with the direct synthesis-based design method based on maximum
peak-resonance specification

A particular interesting case is that given by IPDT processes, where T = 0. The
tuning rules (2.113)–(2.115) are simplified significantly, and they can be related di-
rectly (possibly in an automatic tuning context) to the ultimate gain Ku and ultimate
frequency Pu of the process as [102]

Kp = 0.34Ku, (2.117)

Ti = 1.04Pu. (2.118)

The same process (2.58) is employed as an illustrative example. By applying
the proposed method, a PI controller with Kp = 1.75 and Ti = 25 (ωmax = 0.082)
is determined. The resulting set-point and load disturbance unit step responses are
plotted in Figure 2.22, while the Nichols chart is shown in Figure 2.21. Obviously,
the overshoot in the set-point step response can be reduced by employing a set-point
weight.

2.3.3.2 Based on the Minimisation of the Maximum Resonance Peak Value

An approach similar to that of Section 2.3.3.1 has been (previously) proposed in
[122]. The approach starts by considering the fact that decreasing the integral time
constant in a PI controller for an IPDT process implies that the stability margin of
the system decreases as well. Thus, there is a minimum value of the integral time
constant below which a reasonable damping cannot be achieved for a given system.
The design method consists therefore in specifying the maximum resonance peak
value and then in determining the smallest integral time constant for which this
value is attained. If an IPDT process with a PI controller is considered, the system
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of equations (2.109)–(2.110) can be solved analytically without approximating the
arctan function with expression (2.112). Thus,

ωmax = 1

Ti

[
Ti − L

L

] 1
2

, (2.119)

and, as a consequence,

argL(jωmax) = −π − L

Ti

(
Ti

L
− 1

) 1
2 + arctan

(
Ti

L
− 1

) 1
2

. (2.120)

In [122] it is suggested to select Mr = 2 dB, which corresponds to φmax =
−2.23 rad. With this value, by solving argL(jωmax) = φmax, it results

Ti

L
= 8.75, (2.121)

from which the value of the integral time constant Ti is determined. The proportional
gain can be selected at this point in order for the resulting resonance peak value to
be at a minimum. By applying this procedure to several numerical cases it has been
found that the value of Kp that provides this result can be expressed as a function
of the dead time and of the gain of the process:

Kp = 0.487

KL
. (2.122)

If process (2.58) is considered, by applying the tuning rules (2.121)–(2.122), we
have Ti = 52.5 and Kp = 1.6. The resulting set-point and load disturbance unit step
responses are plotted in Figure 2.23.

2.3.3.3 Based on the Specification of the Desired Control Signal

An original approach, based on the specification of the desired control signal, has
been proposed in [139]. Basically, for an IPDT process (2.14), the technique consists
in selecting the transfer function between the set-point r and the control variable u

as

Q(s) := U(s)

R(s)
= s

K

(2ξτ + L)s + 1

τ 2s2 + 2ξτs + 1
, (2.123)

where the time constant τ is chosen as

τ = αL. (2.124)

It has to be stressed at this point that if a step signal of amplitude Ar is applied to
the set-point, transfer function (2.123) implies that the desired control signal has an
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Fig. 2.23 Results obtained with the method based on the minimisation of the maximum resonance
peak value

initial change of (2αξ + 1)Ar/(α
2KL) and then decays exponentially to zero fol-

lowing a second-order system response with normalised time constant α and damp-
ing factor ξ . Given a desired damping factor (which is suggested to be either 0.707
or 1), this fact can be obviously exploited for the selection of the design parameter
α in order to address the actuator constraints.

Given Q(s), the desired closed-loop transfer function between the set-point r and
the output y becomes H(s) := Q(s)P (s), and the corresponding desired open-loop
transfer function becomes

W(s) = H(s)

1 − H(s)
= (2αξ + 1)Ls + 1

α2L2s2 + 2αξLs + 1 − [(2αξ + 1)Ls + 1]e−Ls
e−Ls.

(2.125)
By considering now the PID controller transfer function (2.2), which can be rewrit-
ten as

C(s) = c2s
2 + c1s + c0

s
, (2.126)

where

Kp = c1, Ti = c1/c0, Td = c2/c1, (2.127)

the actual open-loop transfer function is given by

C(s)P (s) = c2s
2 + c1s + c0

s

K

s
e−Ls. (2.128)
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With the aim of matching G(s) with the actual open-loop transfer function
(2.128), the following transfer function can be defined (s = jω):

M(jω) = jωH(jω)

P (jω)
. (2.129)

This implies that the frequency domain error between L(jω) and the actual open-
loop transfer function is zero if

M(jω) = c2(jω)2 + c1(jω) + c0. (2.130)

If two straight lines are employed to fit the real part MR(jω) of M(jω) against
ω2 and the imaginary part MI(jω) of M(jω) against ω through two frequencies
ω1 and ω2, then the coefficients c0, c1, and c2 can be determined analytically (note
that, once the parameters α and ξ are selected, Expression (2.129) is known). The
two frequencies can be conveniently selected as ω1 = 2π/Ts and ω2 = 2ω1, where
Ts is the desired closed-loop settling time, chosen as (6α + 1)L [138]. The solution
is

c0 = MR(ω1) − MR(ω2)

3
+ MR(ω1), (2.131)

c1 = MI(ω1)

ω1
, (2.132)

c2 = MR(ω1) − MR(ω2)

3ω2
1

, (2.133)

from which the PID parameters can be easily derived from (2.127). At this point, it
is worth considering the scaled Laplace transform ŝ = sL (which naturally leads to a
scaling in the time domain with a normalised time variable t̂ = t/L) and normalised
frequencies ω̂1 = ω1L and ω̂2 = ˆ2ω1. The corresponding transfer function M(jω̂)

is therefore independent of the process parameters, and therefore the (scaled) PID
parameters depend only on ξ and α. By considering the selected values of ξ = 0.707
and ξ = 1 and by interpolating the results for different values of α, the following
tuning rules can be derived (the PID parameters are then conveniently rescaled):

ξ = 0.707:

Kp = 1

KL

1

0.7138α + 0.3904
, (2.134)

Ti = L(1.4020α + 1.2076), (2.135)

Td = 1

KL

1

1.4167α + 1.6999
; (2.136)

ξ = 1:

Kp = 1

KL

1

0.5080α + 0.6208
, (2.137)
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Fig. 2.24 Results obtained with the method based on the specification of the desired control signal
(tuning rules (2.134)–(2.136)). Solid line: α = 1. Dashed line: α = 2

Ti = L(1.9885α + 1.2235), (2.138)

Td = 1

KL

1

1.0043α + 1.8194
. (2.139)

If a PI controller has to be employed, it is sufficient to substitute Td = 0 in the above
tuning rules.

The same process (2.58) is considered as an illustrative example. By applying the
tuning rules (2.134)–(2.136) with α = 1, the parameters Kp = 2.98, Ti = 15.66, and
Td = 1.93 are obtained, while with α = 2, we obtain Kp = 1.81, Ti = 24.07, and
Td = 1.32. The results related to the set-point and load disturbance step response are
shown in Figure 2.24. Conversely, if the tuning rules (2.137)–(2.139) are considered,
we obtain Kp = 2.92, Ti = 19.27, and Td = 2.12 for α = 1 and Kp = 2.01, Ti =
31.20, and Td = 1.57 for α = 2. The corresponding results are shown in Figure 2.25.
It can be seen that the parameter α can handle effectively the trade-off between
aggressiveness and control effort.

2.3.4 Optimisation-based Methods

Tuning rules can be also obtained by minimising a suitable objective function. Meth-
ods developed in this context are explained hereafter.

2.3.4.1 Minimisation of the Integral Criteria

Significant attention has been paid by researchers in order to find the tuning of a
PID controller that minimises integral performance criteria. This is, in fact, a way to
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Fig. 2.25 Results obtained with the method based on the specification of the desired control signal
(tuning rules (2.137)–(2.139)). Solid line: α = 1. Dashed line: α = 2

consider, at the same time, different control specifications, such as a small overshoot
and a short settling time. In general, time-moment weighted integral performance
indexes are considered. They are defined as

Jn(θ) =
∫ ∞

0
tn

[
e(t; θ)

]2
dt, n = 0,1,2, (2.140)

where θ = [Kp,Ti, Td ] is the vector of (PID) parameters to be selected to min-
imise (2.140), and e(t) is the system error. Note that J0(θ) is denoted as the ISE
(Integrated Square Error) criterion, while J1(θ) and J2(θ) are known respectively
as the ITSE and ISTE criteria. A methodology for the determination of tuning for-
mulae which relate the ideal PID coefficients (see (2.2)) to the process parameters
K and L (see (2.14)) in order to minimise the objective functions (2.140) has been
proposed in [128]. To this purpose, genetic algorithms [74], which are known to
provide a global optimum of a problem in a stochastic framework, have been em-
ployed. Specifically, many simulations have been performed for different values of
the parameter L (obviously, a different value of K results in a simple scaling of
the proportional gain) and for different optimisation problems, i.e., considering step
changes both in the set-point and in the load disturbance and minimising the three
adopted integral criteria (2.140). The optimal PID coefficients found by the genetic
algorithms [74] in the different cases have then been analytically interpolated in or-
der to derive suitable tuning rules. These are reported in Table 2.4 for the optimal
set-point response and in Table 2.5 for the optimal load disturbance rejection. The
symbol ‘–’ which appears in Table 2.4 means that no integral action is required for
that case, which is intuitive since the presence of an integrator in the plant assures
by itself a zero steady-state error for set-point step changes and adding another in-
tegrator in the open-loop transfer function makes the achievement of an acceptable
robustness more difficult. From these results it appears that increasing the value of
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Table 2.4 PID tuning rules for optimal set-point response

ISE ITSE ISTE

Kp
1.03
KL

0.96
KL

0.90
KL

Ti – – –

Td 0.49L 0.45L 0.45L

Table 2.5 PID tuning rules for optimal load disturbance response

ISE ITSE ISTE

Kp
1.37
KL

1.36
KL

1.34
KL

Ti 1.49L 1.66L 1.83L

Td 0.59L 0.53L 0.49L

Fig. 2.26 Results obtained with the method based on the optimisation of integral performance
indexes for set-point following task. Solid line: ISE. Dashed line: ITSE. Dash-dot line: ISTE

n from 0 to 2 in the performance index (2.140) implies that the PID gains have to
be decreased.

As an illustrative example, if the set-point following task for process (2.58) is
considered, by applying the tuning rule of Table 2.5, Kp = 3.39 and Td = 2.94 are
obtained for the ISE performance index, Kp = 3.16 and Td = 2.70 are obtained
for the ITSE performance index, and Kp = 2.96 and Td = 2.94 are obtained for
the ISTE performance index. The results related to both the set-point following and
load disturbance rejection task are shown in Figure 2.26 (unit step signals are ap-
plied in both cases). It appears that, as expected, a steady-state error emerges in the
presence of a constant load disturbance because there is no integral action in the
controller. Conversely, if the load disturbance task is considered, by applying the
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Fig. 2.27 Results obtained with the method based on the optimisation of integral performance
indexes for load disturbance rejection task. Solid line: ISE. Dashed line: ITSE. Dash-dot line:
ISTE

tuning rule of Table 2.5, Kp = 4.51, Ti = 8.94, and Td = 3.54 are obtained for the
ISE performance index, Kp = 4.48, Ti = 9.96, and Td = 3.18 are obtained for the
ITSE performance index, and Kp = 4.41, Ti = 10.98, and Td = 2.94 are obtained
for the ISTE performance index. The results again relating to both the set-point fol-
lowing and load disturbance rejection tasks are shown in Figure 2.27. As expected,
the controller designed for the load disturbance rejection is more aggressive than the
controller designed for the set-point following task.

2.3.4.2 Minimisation of an H∞ Performance Index

A tuning methodology based on the optimisation of an H∞ criterion has been pro-
posed in [154]. By considering the Internal Model Control scheme of Figure 2.16
and the associated standard unity-feedback control scheme of Figure 2.1 where
C(s) = Q(s)/(1 − P(s)Q(s)) (see also Figure 2.17), when perfect modelling is
assumed, the sensitivity transfer function is

S(s) = 1

1 + C(s)P (s)
= 1 − P(s)Q(s), (2.141)

and the complementary sensitivity transfer function is

H(s) = C(s)P (s)

1 + C(s)P (s)
= P(s)Q(s). (2.142)
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The transfer function matrix M(s) from the reference input r and the load distur-
bance input d to y and u is therefore

M(s) =
[
H(s) P (s)S(s)

Q(s) −H(s)

]
. (2.143)

The closed-loop system is internally stable if all the transfer functions in M(s) are
stable, which implies that Q(s) is stable and satisfies the following constraints:

lim
s→0

S(s) = lim
s→0

[
1 − P(s)Q(s)

] = 0, (2.144)

lim
s→0

d

ds
S(s) = lim

s→0

d

ds

[
1 − P(s)Q(s)

] = 0. (2.145)

Then, a SOIPDT process (2.25), where the dead time is approximated by a first-
order Taylor series, is considered:

P(s) = K(1 − Ls)

s(T s + 1)
. (2.146)

The optimal performance criterion to be minimised by the control system is selected
as ∥∥Γ (s)S(s)

∥∥∞, (2.147)

where Γ (s) is a weighting function selected as

Γ (s) = 1

s
, (2.148)

which implies that the closed-loop system input is a step signal.
If Q̃(s) = Q(s) (namely, the filter F(s) is neglected), minimising (2.147) yields

Γ (s)
(
1 − P(s)Q̃(s)

) = L, (2.149)

and therefore the optimal Q̃(s) is determined as

Q̃(s) = s(T s + 1)

K
. (2.150)

It appears that, in order to make Q(s) proper, however, a filter F(s) has to be
employed.

If T = 0 (namely, an IPDT process is considered), it can be verified that a first-
order filter does not satisfy the asymptotic tracking requirement. Thus, the filter is
selected as the second-order transfer function

F(s) = as + 1

(λs + 1)2
, (2.151)
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Fig. 2.28 Results obtained with method based on the minimisation of an H∞ performance index.
Solid line: λ = 6. Dashed line: λ = 12

where, according to (2.145), a = 2λ + L. Thus, by considering Q(s) = Q̃(s)F (s)

and C(s) = Q(s)/(1 − P(s)Q(s)) a PI controller is obtained with

Kp = 2λ + L

K(λ + L)2
, (2.152)

Ti = 2λ + L. (2.153)

By applying the same reasoning, if a SOIPDT model is considered, the filter can
be selected as

F(s) = as + 1

(λs + 1)3
, (2.154)

where a = 3λ+L is determined from (2.145). The resulting controller is an output-
filtered PID controller (2.4) with

Kp = 3λ + L + T

K(3λ2 + 3λL + L2)
, (2.155)

Ti = 3λ + L + T , (2.156)

Td = (3λ + L)T

3λ + L + T
, (2.157)

Tf = λ3

3λ2 + 3λL + L2
. (2.158)

As in IMC, the user-chosen parameter λ can handle the trade-off between ag-
gressiveness and robustness. As an example, if the process (2.58) is considered, the
PI controller with Kp = 2.47 and Ti = 18 is obtained from the tuning rules (2.152)–
(2.153) by selecting λ = L = 6, while for λ = 2L = 12, the parameters Kp = 1.83
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and Ti = 30 are obtained. Results related to the set-point and load disturbance step
response are shown in Figure 2.28.

2.4 Conclusions

In this chapter, the use of PID controllers for the control of integral processes has
been addressed. After an introduction on PID controllers, it has been shown that this
kind of controllers can be employed effectively for both the set-point following and
load disturbance rejection tasks, especially if the control requirements are not too
tight. Both open-loop and closed-loop techniques for the estimation of the process
parameters have been described. Then, starting from the model obtained, different
approaches have been presented for the tuning of the PID parameters with the aim
of showing that the tuning problem can be tackled from different viewpoints, each
with specific features.
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