Preface

This book is an extension of different lectures given by the authors during many
years at the University of Nice, at the University of Stuttgart in 1990, and the Uni-
versity of Bordeaux in 2000 and 2001. Large parts of the first four chapters are of
master level and contain various examples and exercises, partly posed at exams.
However, the infinite-dimensional set-up in Chapter 2 requires several tools and
results from the theory of linear operators. A brief description of these tools and
results is given in Appendix A.

Bifurcation theory forms the object of many different books over the past 30
years. We refer, for instance, to [4, 58, 17, 38, 29, 30, 39, 51, 110, 84, 16, 10, 79] for
some references covering various topics, going from elementary local bifurcations
to global bifurcations and applications to partial differential equations. In this book
we restrict our attention to the study of local bifurcations. Starting with the simplest
bifurcation problems arising for ordinary differential equations in one and two di-
mensions, the purpose of this book is to describe several tools from the theory of
infinite-dimensional dynamical systems, allowing to treat more complicated bifur-
cation problems, as for instance bifurcations arising in partial differential equations.
Such tools are extensively used to solve concrete problems arising in physics and
natural sciences.

In a parameter-dependent physical system, for example, modelized by a differ-
ential equation, the presence of a bifurcation corresponds to a topological change
in the structure of the solution set (which may break its symmetry in the case of a
system invariant under some symmetry group). Such a change may imply the occur-
rence of new solutions, or the disappearance of certain solutions, or may indicate a
change of stability of certain solutions. Local bifurcation theory allows one to de-
tect solutions and to describe their geometric (including symmetries) and dynamic
properties. During the last decades the use of bifurcation theory, and in particular of
the methods presented in this book, led to significant progress in the understanding
of nonlinear phenomena in partial differential equations, including hydrodynamic
problems, structural mechanics, but also pattern formation, population dynamics,
or questions in biophysics. For instance, in the classical Couette—Taylor problem
describing flows between two coaxial rotating cylinders (briefly presented in Sec-
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tion 5.1.2), the theory was not only a qualitative one, but also sufficiently quanti-
tative to allow prediction of numerical values of the parameters, where new flows,
such as “ribbons,” were expected to be observed. These were indeed later observed
experimentally [117]. This predictive power of the local theory appeared again in
water wave theory, where new forms of “solitary waves,” with damping oscilla-
tions at infinity, were found (see Section 5.2.1), or in the propagation of interfaces
between metastable states, where new types of fronts were constructed (see Sec-
tion 5.2.2).

In this book we focus on two specific methods that arise in the analysis of local
bifurcations in infinite-dimensional systems, namely the center manifold reduction
and the normal form theory. Center manifolds provide a powerful method of anal-
ysis of such systems, as they allow one to reduce, under certain conditions, the
infinite-dimensional dynamics near a bifurcation point to a finite-dimensional dy-
namics, described by a system of ordinary differential equations. An efficient way
of studying the resulting reduced systems is with the help of normal form theory,
which consists in suitably transforming a nonlinear system, in order to keep only the
relevant nonlinear terms and to allow easier recognition of its dynamics. The com-
bination of these two methods led over the recent years to significant progress in the
understanding of various problems arising in applied sciences, and in particular in
the study of nonlinear waves. A common feature of many of these problems is the
presence of symmetries, as for instance reversibility symmetries. It turns out that
both the center manifold reduction and the normal form transformations preserve
symmetries, allowing then an efficient treatment of such problems. In addition, they
provide a detailed comprehensive study near a singularity in the solution set of the
system, which might also orient a numerical treatment of such problems.

The book is organized as follows. We start in Chapter 1 with a presentation of the
simplest bifurcations for one- and two-dimensional ordinary differential equations:
saddle-node, pitchfork, Hopf, and steady bifurcations in the presence of a simple
symmetry group. The purpose of this particular choice is to also introduce the reader
to some of the techniques and notations used in the next chapters. Chapter 2 is de-
voted to the center manifold theory. This is the core tool used all throughout this
book. We present the center manifold reduction for infinite-dimensional systems,
together with simple examples and exercises illustrating the variety of possible ap-
plications. The aim is to allow readers who are not familiar with the subject to use
this reduction method simply by checking some clear assumptions. Chapter 3 is con-
cerned with the normal form theory. In particular, we show how to systematically
compute the normal forms in concrete situations. We illustrate the general theory
on different bifurcation problems, for which we provide explicit formulas for the
normal form, allowing one to obtain quantitative results for the resulting systems.
In Chapter 4 the normal form theory is applied to the study of reversible bifurca-
tions, which appear to be of particular importance in applications, as this is shown
in Chapter 5. We focus on bifurcations of codimension 1, i.e., bifurcations involving
a single parameter, which arise generically for systems in dimensions 2, 3, and 4. In
all cases, we give the normal forms and collect some known facts on their dynam-
ics. Finally, in Chapter 5 we present some applications of the methods described
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in the previous chapters. Without going into detail, for which we refer to the liter-
ature, we discuss hydrodynamic instabilities arising in the Couette—Taylor and the
Bénard—Rayleigh convection problems and the questions of existence of traveling
water waves, of almost planar waves in reaction-diffusion systems, and of traveling
waves in lattices. The proofs (few being original) of some of the results in Chapters 2
and 3, and some of the normal form calculations in Chapters 3 and 4, are given in
the Appendix. The Appendix is completed by a brief collection of results from the
theory of linear operators used in Chapters 2, 3, and 5, and a short introduction to
basic Sobolev spaces.

Historical Remark

Many authors refer to the work of C. G. J. Jacobi from 1834, on equilibria of self-
gravitating rotating ellipsoids [71], as a first reference in the field of bifurcation
theory. However, it seems that the first serious works on bifurcation problems were
by Archimedes and Apollonios over 200 years BCE. Archimedes studied the equilib-
ria of a floating paraboloid of revolution [107]. In today’s terminology his results
would correspond to a pitchfork bifurcation which breaks a flip symmetry, or to a
steady bifurcation with O(2) symmetry, when taking into account the invariance un-
der rotations about the paraboloid axis. Apollonios studied the extrema of the length
of segments joining a point of the plane to a given conic [74]. The number of solu-
tions changes from one to three in crossing the envelope of the normals to the conic.
Here again, due to the symmetry of the conic, we have an example of a pitchfork
bifurcation. Finally, it seems that the French word “bifurcation” was introduced by
Poincaré in 1885 [103].

Notational Remark

We adopt Arnold’s notation [4] to distinguish classes of real matrices L with the
same Jordan form by indicating the eigenvalues of L and the length of their Jordan
chain (e.g., i when L has a pair of simple complex eigenvalues +iw, 0> when L
has a double zero eigenvalue with a Jordan block of length 2, (iw;)(iw,) when L
has two pairs of complex eigenvalues +iw, and +iw,, and so on).

Remark on Numbering

Each of the five chapters of this book is numbered with Arabic numerals. Sections
and subsections are numbered within chapters. The sections are identified by two
numbers, the number of the chapter and the number of the section in the chapter
(e.g., Section 1.2 is the second section in Chapter 1). The subsections are identified
by three numbers, the number of the chapter, the number of the section, and the
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number of the subsection (e.g., Section 1.2.1 is the first subsection in Section 1.2 of
Chapter 1).

Equations are numbered within sections and identified by only two numbers: the
number of the section inside the chapter (omitting the number of the chapter), and
the number of the equation inside the section (e.g., equation (2.1) is the first equation
in the second section of the current chapter). When referring to an equation, we only
give the number; e.g., equation (2.1), if the equation is in the current chapter, but
also mention the number of the chapter if the equation is in a different chapter, e.g.,
equation (2.1) in Chapter 2.

Definitions, hypotheses, theorems, lemmas, corollaries, remarks, and exercises
are numbered together within sections, and identified by two numbers, just as the
equations. Figures are numbered independently within sections and identified also
by two numbers, just as equations.
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