
Chapter 2
Models for Perfect Repair

2.1 Introduction

According to the definition given by Ascher and Feingold [2], a repairable system
is understood to be a system which, after failure, can be restored to a functioning
condition by some maintenance action other than replacement of the entire system.
Replacing the entire system may be an option, but it is not the only one. In this part
of the book, we will assume that the description of the system state at any time is
reduced to two levels: operative and failed. More detailed specifications of the
state space are considered in Part III of the book.

Model deterioration (performance) of a repairable system can be tackled in
several different ways. On the one hand, the interest may lie mainly in modeling
the number of failures suffered by the system up to time t. If N(t) is the number of
failures of a repairable system occurring in the interval (0, t], the most appropriate
approach is to consider the counting process given by {N(t), t C 0} as model
deterioration. Attention is usually focused on the expected value, variance, and
probability distribution of N(t). The homogeneous Poisson process (HPP) is the
counting process most frequently used throughout the extensive literature on the
subject. HPP may also be characterized in terms of the random length of the times
between two consecutive failures, exponentially distributed with the same
parameter.

Data from repairable systems are usually given as times between failures
T1, T2, … . A common assumption made is that these failure times are independent
and identically distributed, with distribution F. This assertion implies that after a
failure, the system behavior is exactly the same as if it were new; thus, a perfect
repair maintenance action is being carried out in the system environment.
As explained in Kijima [26], in practice, the perfect repair assumption may be
reasonable for systems with one structurally simple unit.

When F denotes a general family of distributions, the sequence {T1, T2, …} is
referred to as a renewal process (RP). Therefore, the HPP may be seen as a
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particular case of RP. Of course, there is an evident duality between ‘‘time
domain’’ and ‘‘counts domain’’, i.e., {N(t) C k} if and only if {T1 ? T2 +
_ ? Tk B t}. Putting this into words, there have been at least k renewals until
time t if and only if the kth renewal has occurred before t.

Another general assumption made when using a counting process to model the
time-evolution of a repairable system is that the time-to-repair is negligibly small
compared to its time-to-failure. In many practical applications, where it is rea-
sonable to expect that the system is not under repair for long in relation to its
operating time, this assumption is fairly realistic. Otherwise, the system is not
feasible.1 So, in a case where it is assumed that the system is repaired and put into
new operation immediately after the failure, the deterioration model will be given
by an Ordinary Renewal Process (ORP).

On the other hand, there are some situations where one is interested in esti-
mating other important measures such as availability (unavailability) of the sys-
tem, which is the probability that the system is functioning at a given time. In this
case, the modeling tool indicated is the Alternating Renewal Processes (ARP)
where operative periods alternate with repair periods. Within the scope of an ARP,
data collected consist of a sequence of alternating lifetimes and repair times, i.e.
(T1, R1), (T2, R2), …, where T1, T2, … are the successive lifetimes of the system
and these are independent and identically distributed (i.i.d.) with CDF F; and
R1, R2, …, the corresponding repair times, which are i.i.d. with CDF G. It is also
assumed that Ti and Ri are independent, for any i = 1, 2, …. Every random length
obtained as a lifetime plus a repair time is called a renewal cycle. Repairable
system data are collected to estimate among other measures, quantities such as:

• The distribution of lifetimes (respectively, repair times);
• The expected number of renewals in an interval (0, t], which is the renewal

function;
• The probability that the system is operative at a given time t, which is the

instantaneous availability;
• The proportion of time the system is in a functioning condition, which is the

steady state or limiting availability.

Inference studies are carried out without assuming any particular functional
form for distribution functions F and G. We therefore use a nonparametric
approach. From a given data set, empirical estimators are constructed for the
performance measures of a repairable system whose time evolution is modeled by
an ORP or an ARP and we also obtain smooth estimators based on kernel func-
tions. The implicit bandwidth parameter is derived by means of data-driven pro-
cedures, specifically bootstrap techniques, which prove very easy to implement
and give very good results, as pointed out in the simulation examples included.

1 Sometimes one may let ‘‘operating time’’ be the time parameter; or possibly ‘‘number of
cycles’’ or ‘‘number of kilometers’’ (for cars). Then, repair times are 0 in these time axes.
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2.2 Ordinary Renewal Process

In this section, we study probabilistic models for systems where after the
occurrence of a random event (failure), at a random time, everything in the system
starts over at the beginning. So, we consider systems under perfect repair main-
tenance policies, which means that the system operating state is restored to ‘‘as
good as new’’ conditions after failure. This approach is appropriate for systems
such as light bulbs or thermometers, where the occurrence of failures implies the
substitution of the entire system, not being available partial repairs to recover the
system function. Furthermore, if a reliability system is understood as a set of
components or elementary parts, renewal processes are plausible models for the
time behavior of the parts better than for the whole system, since after a failure
occurs in a component, the replacement of the component is usually carried out,
instead of repair.

Under perfect repair models, at time t = 0 a repairable system is put into
operation and is functioning. At each failure time, the system is replaced by a new
one of the same type. This process is repeated along time, and the replacement
time is considered negligible. As a result, a sequence of lifetimes or random
variables which are independent and identically distributed is obtained. Renewal
processes have been extensively used by many researches interested in reliability
(Barlow and Proschan [3] or Rausand and Hoyland [36] are classical references),
the most simple case being the Homogenous Poisson Process (HPP), where the
random time between successive renewals has an exponential distribution.

2.2.1 The Renewal Function

Renewal theory arises from the study of stochastic systems whose time evolution
appear as successive life cycles. A life cycle is a time interval during which the
system is functioning. At the start of every interval, the system is stochastically
reinitiated. In this section, we introduce the main features that characterize an
ordinary renewal process, paying special attention to the renewal function.

As stated above, an ORP may be represented by means of a sequence of random
independent and identically distributed variables {Tk;k = 1, 2, …} (we will con-
sider only non-negative variables) or equivalently by means of the counting pro-
cess {N(t); t C 0}, where N(t) = max{k: T1 ? T2 ? _ ? Tk B t}, that is, the
number of renewals occurring in the interval (0, t]. Let F denote the CDF common
to all Tk, and let us define S0 = 0 and Sk = T1 ? T2 ? _ ? Tk, for k = 1, 2, …,
as the so-called waiting times, making it obvious that P{N(t) C k} = P{Sk B t}.
This random quantity, Sk is obtained as the sum of k independent random vari-
ables, so that its CDF, which we call Fk, is given by the k-fold Stieltjes-convolution
of F for k C 1, that is,
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FðkÞ ¼ PfSk� tg ¼ Fðk�1Þ � FðtÞ ¼
Z t

0

Fðk�1Þðt � uÞdFðuÞ:

The main objective in renewal theory is to derive the properties of N(t), in
particular its expected value, which is called the renewal function.

Definition 2.1 (Renewal Function) Let F(t) = P{T B t} be the CDF of the life-
time of a repairable system with perfect and instantaneous repair. Let {N(t), t C 0}
be the corresponding renewal counting process. The renewal function is defined as

MðtÞ ¼ E NðtÞ½ �; for t� 0:

It is easy to check the following equalities

MðtÞ ¼ E NðtÞ½ � ¼
X1
k¼1

PfNðtÞ� kg ¼
X1
k¼1

PfSk � tg ¼
X1
k¼1

FðkÞðtÞ:

It can also be stated that M(t) \? for all 0 B t \?. Furthermore, the
expression above may be given via the following integral representation

MðtÞ ¼ FðtÞ þ
Z t

0

Mðt � uÞdFðuÞ ¼ FðtÞ þMðtÞ � FðtÞ; for t� 0; ð2:1Þ

which is a particular case of a wider class of equations called renewal equations,

WðtÞ ¼ vðtÞ þ
Z t

0

Wðt � uÞdFðuÞ ¼ vðtÞ þWðtÞ � FðtÞ; for t� 0;

where v(t) and F(t) are known, whereas W(t) is an unknown function. In other
words, M(t) satisfies the renewal equation given by (2.1), and moreover, it is the
unique solution that is bounded on finite intervals.

Closed form analytic expressions for F(k) are not generally available, special
cases are Erlang and Normal distributions. Based on a central result of renewal
theory, the key renewal theorem (there exists an extensive literature over the
subject, see for instance [37]), simple asymptotic approximations can be obtained
in the case where E[T] = l\? and Var[T] = r2 \?,

lim
t!1

MðtÞ � t

l

� �
¼ r2

2l2
� 1

2
:

This expression suggests the following asymptotic expression for the renewal
function
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M1ðtÞ ¼
t

l
þ r2

2l2
� 1

2
:

With these considerations, the following estimator for the renewal function, valid
for large values of t, may be defined,

bM1ðtÞ ¼ t

bl þ
br2

2bl2
� 1

2
;

where bl and br are estimators of l and r respectively, based on data recorded up to
time t. Nevertheless, in certain application areas such as reliability engineering, the
interest is rather in the initial part of the life of a device, that is, for t [ [0, 3l], see
Frees [13] and Gertsbakh and Shpungin [17], where the estimation problem
becomes more difficult. It seems natural to estimate the renewal function based on
a sum of estimators of the convolutions of F, that is, we define

bMðtÞ ¼X
j

k¼1

bF ðkÞðtÞ ð2:2Þ

where the number of terms in the summation, the parameter j, has to be deter-
mined. Various ways have been proposed by different authors in the literature on
the subject.

2.2.2 Nonparametric Estimation of the k-Fold Convolution
of Distribution Functions

The problem of dealing with the function M involves estimating k-fold convolution
functions, which is not an easy task. Recently, a number of authors have tackled
the problem, revealing the inherent difficulty in most cases. Below, we present
some of these. Let T1, T2, …, Tn be non-negative independent random variables,
with cumulative distribution function F. Let F (k) be the k-fold convolution func-
tion of F.

2.2.2.1 The Empirical Convolution Function

Frees [14] defines two alternative estimators of the renewal function. The first is
based on the sum of the convolutions without replacing the empirical distribution
function, and the second, called the empirical renewal function, is obtained as
the renewal function of the empirical distribution corresponding to F. Let us
introduce the estimators of the convolutions which Frees defines for constructing

estimators of type bMðtÞ as given above.
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If {i1, i2, …, ik} is a subset of size k of {1, 2, …, n}, then an estimator of
F(k)(t) is

bF ðkÞC1 ðtÞ ¼
1

n
k

� �X
ðn; kÞ

I Ti1 þ Ti2 þ � � � þ Tik � tð Þ; ð2:3Þ

where
P

(n, k) denotes the sum over all
n
k

� �
different index combinations

{i1, i2, …, ik} of length k. The estimator (2.3) is a U-statistic and therefore it can
be established that, for each k C 1, and for each t C 0, that

bF ðkÞC1 ðtÞ �! FðkÞðtÞ; almost surelyða:s:Þ:

Moreover, it is an unbiased minimum-variance estimator of F(k)(t). Based on the

estimator in (2.3), Frees obtained the uniform consistency of bMC1ðtÞ a.s. in
compact intervals [0, t], on the assumption that the number of terms in (2.2),
j = n and that T has a positive mean and finite variance. The asymptotic normality

of bMC1ðtÞ is also proven under some moment conditions.
The drawback of this estimator is the considerable number of computations

needed to evaluate it, even though Frees introduced the design parameter
j B n. Schneider et al. [39] propose a new algorithm to compute the Frees esti-
mator in order to reduce the computation time. They define a family of charac-
teristic functions based on the sample that can be determined recursively, and then

use Fourier transforms to recover the distributions bF ðkÞC1 ðtÞ.
An alternative estimator of M(t) is defined in the Concluding Remarks section

in Frees [14]. In this case, F(k)(t) is estimated by means of the k-fold convolution
of the empirical distribution function obtained from T1, T2, …, Tn,

bF ð1ÞC2 ðtÞ ¼
1
n

Xn

i¼1

I Ti� tð Þ ð2:4Þ

for k = 1, which is the empirical distribution function, and

bF ðkÞC2 ðtÞ ¼
Z
bF ðk�1Þ

C2 ðt � uÞdbF ð1ÞC2 ðuÞ: ð2:5Þ

Although bF ðkÞC2 ðtÞ is a biased estimate of F(k)(t) (for k C 2), it is the nonparametric
maximum likelihood estimator. It can also be expressed as

bF ðkÞC2 ðtÞ ¼
1

nk

X
i1;i2;���;ik

I Ti1 þ Ti2 þ � � � þ Tik � tð Þ;
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bF ðkÞC2 ðtÞ is a V-statistic and is closely related to bF ðkÞC1 ðtÞ, in fact, under some con-

ditions for F it is possible to show that bMC2ðtÞ, the estimator of M(t) based on (2.4)

and (2.5), is also consistent and has the same asymptotic distribution as bMC1ðtÞ.
The computation of this estimator is also tackled by Schneider et al. [39]. They

designate bMC2ðtÞ the empirical renewal function. Although this estimator is not
easy to compute, these authors propose solving the following renewal equation

bMC2ðtÞ ¼ bF ð1ÞC2 ðtÞ þ
Z
bMC2ðt � uÞdbF ð1ÞC2 ðuÞ: ð2:6Þ

They propose an efficient method that consists of solving a discretized version of
Eq. (2.6), given by

bMd
C2ðrÞ ¼ bF ð1ÞC2;dðrÞ þ

Xr

j¼1

bMd
C2ðr � jÞ bF ð1ÞC2;dðjÞ � bF ð1ÞC2;dðj� 1Þ

� �
:

This method involves approximating the empirical distribution by a lattice dis-
tribution. The statistical properties of the estimator in (2.6), i.e. consistency and
asymptotic normality, are discussed in Grübel and Pitts [19].

More recently, From and Li [15] construct, among other things, nonparametric

confidence intervals for F(k)(t) based on the estimator bF ðkÞC2 ðtÞ. First of all, they give
a numerical procedure for approximating the k-fold convolution of F starting with
the empirical distribution function. Next, they obtain the asymptotic distribution offfiffiffi

n
p bF ðkÞC2 ðtÞ � FðkÞðtÞ
h i

as a Normal law with mean 0 and derive an estimator of the

variance. Finally, they give the expression of an approximate 100(1 - a)% con-
fidence interval for F(k)(t). However, as the authors admit, the computational
burden is again very high.

2.2.2.2 The Histogram-Type Estimator

Markovich [29] investigates a histogram-type estimator of the renewal function
similar to the first Frees estimator. This estimator is based on a new estimator of
the k-fold convolution function, where, in contrast to the Frees estimators, only
one combination of adjacent renewal times Ti is used.

To describe the estimator, let [r] be the integer part of a real number r. Let
Sk = T1 ? T2 ? _ ? Tk, for k = 1, 2, …, the waiting times, as defined previ-
ously. The estimation of P{Sk \ t }, i.e. the k-fold convolution function of F, is
obtained as an empirical distribution function based on an artificially constructed
sample of the random variable Sk, from the initial data set of renewal times. For
example, to estimate P{S2 \ t} = F(2)(t), proceed as follows. Construct the values

si
2 ¼

P2i
q¼2i�1 Tq, for i ¼ 1; 2; . . .; n2 ¼ n

2

	 

.
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This procedure produces a sample of size n2 of the random variable S2. The
associate empirical distribution function is then obtained as

bF ð2ÞHT ¼
1
n2

Xn2

i¼1

I si
2� t

� �
:

In a similar way, continue with k C 3. Define the sequence

si
k ¼

Xki

q¼1þkði�1Þ
Tq; for i ¼ 1; 2; . . .; nk ¼

n

k

h i
:

and construct

bF ðkÞHT ¼
1
nk

Xnk

i¼1

I si
k� t

� �
: ð2:7Þ

Note that nk = 1 for k [ n/2; thus, the estimator above is defined for k B n/2.
The estimator of the renewal function based on (2.7) is therefore given by

bMHTðk;jÞ ¼
Xj

k¼1

bF ðkÞHTðtÞ: ð2:8Þ

In the notation, the dependence of the number of terms in the summation is
highlighted. The convergence properties of the estimator in (2.8) are investigated
in Markovich [29]. The method is based on exploring the error termP1

k¼jþ1 FðkÞðtÞ. To do this, some information about F, is required, such as the
existence of a moment generating function. The number of terms j in (2.8) can
be determined by two alternative methods. One is to obtain j, as a function of the
sample size n, in order to provide the a.s. uniform convergence of the estimator to
the true renewal function for small t. The results are established for both light- and
heavy-tailed renewal time distributions. The other is to use a plot method to
determine a desirable value for j. The histogram-type estimator is plotted versus j

for fixed t. Then, based on the uniform convergence of the bMHTðt; jÞ to M(t), j is
selected according to

j� ¼ arg min j : bMHTðt; jÞ ¼ bMHTðt; jþ 1Þ; j ¼ 1; 2; . . .; n� 1
n o

:

Compared to Frees estimate, the histogram-type method gives a more computa-
tionally tractable estimator. Moreover, Markovich [29] shows that although
bMHTðt; jÞ has a greater bias than bMC1ðtÞ, the mean squared error is smaller.
Markovich and Krieger [30] present an alternative data-dependent selection of j
based on a bootstrap method similar to the one we will develop in a subsequent
section.
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2.2.2.3 Monte-Carlo Estimators

The next group of estimators of the k-fold convolution function of F is based on
works by Brown et al. [5] and Gertsbakh and Shpungin [17], who use numerical
Monte-Carlo methods to approximate the convolution functions of type F(k)(t) =

P{T1 ? T2 ? _ ? Tk B t }, where Ti are random variables with known CDF, F,
for i = 1, 2, …, k.

The underlying idea is that the expected value of a random variable may be
approximated by generating a large number of samples of the variable and com-
puting the average value toward the samples. Once again, let T1, T2, …, Tn be a
realization of a renewal process N(t), so that we have a sequence of non-negative
independent random variables with CDF F, unknown. Let F(k) be the k-fold
convolution function of F. Starting with a random sample from distribution F, our
objective is to adapt the k-fold convolutions approximated by the authors cited
above. The function Fi’s that they use to define their respective procedures are
replaced by an empirical distribution based on the sample information. Or,
equivalently, the role of each random variable Ti, with known distribution F, is

developed by a random variable si with distribution function bF , for i = 1, 2, …, k.

• The Crude Monte-Carlo estimator, bF ðkÞCMC . The first estimator is easy to imple-
ment and is obtained according to the following steps:

– Simulate N random samples of size k, from the distribution bF , i.e. the
empirical distribution function. Let t1

j , t2
j , …, tk

j be a realization of the jth
sample, for j = 1, 2, …, N;

– Define uðjÞðtÞ ¼ I t j
1 þ t j

2 þ . . .þ t j
k � t

� �
, for j ¼ 1; 2; . . .;N;

– Define bF ðkÞCMCðtÞ ¼ 1
N

PN
j¼1 uðjÞðtÞ.

• The Brown estimator, bF ðkÞB . Next, the approximation given by Brown et al. [5] is
adapted to the present case. It is obtained according to the following.

– Define the random variable

ZkðtÞ ¼
bF t �

Pk�1
i¼1 si

� �
; s1 þ s2 þ � � � þ sk�1� t

0; otherwise

(
ð2:9Þ

where sj are considered as independent random variables with distribution

function bF :
– It is easy to prove that E ZkðtÞ½ � ¼ bF ðkÞC2 ðtÞ, the estimator of the k-fold con-

volution function given in (2.5),where expectation is with respect to bF .
– Generate N independent random variables as Zk(t) defined by (2.9). Denote the

jth replication by Zk
j and approximate the value of the k-fold convolution by

bF ðkÞB ðtÞ ¼
1
N

XN

j¼1

Z j
kðtÞ:
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2.2.2.4 Kernel Estimator and Bandwidth Parameter Estimation

Let us now propose a family of smooth estimators for the successive k-fold con-
volution functions generated from a distribution function F, based on kernel-type
estimators. First, given T1, T2, …, Tn, a random sample of i.i.d. with CDF F,
define an estimator of F by means of

bFðt; hÞ ¼ 1
n

Xn

i¼1

W
t � Ti

h

� �
;

where W(x) = $-?
x w(u) du, [32] with w a kernel function in the context of

nonparametric estimation, usually taken to be a non-negative, symmetric function
that integrates to one, and h is a bandwidth parameter that controls the amount of
smoothness (also called smoothing parameter). For our own particular conve-
nience (see [16]), we will consider

bFSðt; hÞ ¼
1
n

Xn

i¼1

U
t � Ti

h

� �
; ð2:10Þ

where UðuÞ is the Gaussian kernel, that is U t�Ti
h

� �
represents, for each

i = 1, 2, …, n, the distribution function of a Normal law with mean Ti and
standard deviation h. In order to estimate the k-fold convolution function of F, we
can consider the following estimator

bF ðkÞS1 ðt; hÞ ¼
1
nk

Xn

i1¼1

� � �
Xn

ik¼1

U
t � Ti1

h

� �
� � � �ðkÞ �U t � Tik

h

� �
: ð2:11Þ

The convolution of the kernel functions in the expression (2.11) may be seen as the
distribution function of the sum of k independent Normal random variables with
standard deviation h, and means Ti1 ; Ti2 ; . . .; Tik , respectively. With the properties
of the Normal family, this is the distribution function of a Normal variable with
mean Ti1 þ Ti2 þ � � � þ Tik and standard deviation

ffiffiffi
k
p

h; therefore, it can be noted
that

bF ðkÞS1 ðt; hÞ ¼
1
nk

Xn

i1;i2;...;ik¼1

U
t � Ti1 þ Ti2 þ � � � þ Tikð Þffiffiffi

k
p

h

� �
: ð2:12Þ

On the other hand, for large k, the function in (2.12) is tractable only with difficulty
from a computational point of view and so we consider a more feasible expression
given by

bF ðkÞS2 ðt; hÞ ¼
1

n
k

� �X
ðn;kÞ

U
t � Ti1 þ Ti2 þ � � � þ Tikð Þffiffiffi

k
p

h

� �
; ð2:13Þ
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where
P
ðn;kÞ denotes the sum over all

n
k

� �
distinct subsets of size k,

{i1, i2, …, ik} of {1, 2, …, n}.
The kernel smoothing of the convolution functions requires the choice of a

bandwidth parameter. The general criterion for choosing a value for the smoothing
parameter, h, is to minimize some measure of the error of the kernel estimator.
One of the most popular measures of such error is the Mean Integrated Squared
Error (MISE), defined by

MISEðk; hÞ ¼ E

Z
FðkÞðtÞ � bF ðkÞS2 ðt; hÞ
h i2

dt

� �
: ð2:14Þ

So, in principle, expression (2.14) suggests that the choice of h seems to depend
on k. However, looking at the different k-fold convolution estimators, the parameter

h has been inherited in bF ðkÞS2 ðt; hÞ from the smooth estimator in (2.10). So the
definitive factor for selecting the bandwidth is to asymptotically minimize the
following:

MISEðhÞ ¼ E

Z
FðtÞ � bFSðt; hÞ
h i2

dt

� �
; ð2:15Þ

which reduces the problem to selecting the bandwidth for a smooth distribution
function estimation.

We follow the guidelines given in Hansen [21]. A manageable expression for
the asymptotic MISE (i.e. AMISE) may be obtained using Gaussian kernels. If
h
ffiffiffi
n
p
!1 as n ??

AMISE ¼ V

n
� h

n
ffiffiffi
p
p þ h4R1

4
þ O h4

� �
; ð2:16Þ

which is the result obtained by Jones [23] for the particular case of Gaussian
kernels.

The first term to appear in (2.16) does not depend on h;V ¼R1
0 FðuÞ 1� FðuÞð Þdu. Further, R1 ¼

R1
0 d2FðuÞð Þ2du is a measure of the rough-

ness of F, where d2 denotes the second derivative operator. This expression can be
generalized to

Rm ¼
Z1

0

dmþ1FðuÞ
� �2

du;

dm+1 being the operator indicating the derivative of order m ? 1, for m C 1. When
using Gaussian kernels, the AMISE is minimized for the value of h given by
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h0 ¼
1

n
ffiffiffi
p
p

R1

� �1
3

: ð2:17Þ

Obviously, the h0 in expression (2.17) is not known since it depends on the value
of R1 which, in turn, depends on the second derivative of F. Therefore, a plug-in
method is used to replace R1 in (2.17) with a consistent estimate [21].

If F is a Normal distribution with standard deviation r;R1 ¼ r34
ffiffiffi
p
p

ð Þ�1
, see

Hansen [21], and thus bh0;r ¼ br 4n�1ð Þ1=3
. This particular estimate of h is called the

reference bandwidth in Hansen [21]. It will be used later.
According to the plug-in rule developed by Hansen [21], (see Eq. (2.7) therein),

it is possible to define the estimator of Rm, for m C 1, obtained by Jones and
Sheather [24], as

bRmðbÞ ¼ �1ð Þm 1
n2

Xn

i;j¼1

d2m/b Ti � Tj

� �
; ð2:18Þ

where /b Ti � Tj

� �
is the pdf of a Normal variable with mean Tj and standard

deviation b, that is, it is a Gaussian kernel with bandwidth given by b. Jones and
Sheather [24] show that the optimal b, the one that minimizes the corresponding
AMISE, depends on Rm+1 by means of

bm Rmþ1ð Þ ¼
2mþ1

2C mþ 1
2

� �
pnRmþ1

 ! 1
2mþ3

:

This equation indicates that the b1 needed to estimate a value of R1, required for
the estimation of h0 in (2.17), depends on R2, which must also be estimated. For
estimating R2, a new bandwidth b2 will be involved that will depend on R3, and so
on. In other words, it could be expressed as

bR1 ¼ bR1 R2ð Þ ¼ bR1 bR2 R3ð Þ
� �

¼ � � � ¼ bR1 bR2 bR3 . . . bRm�1 Rmð Þ
� �� �� �

:

This relationship suggests the sequential plug-in rule proposed by Hansen [21],
which we detail below,

• Fix N C 1 and take bRNþ1 ¼ RNþ1
bho; r

� �
, by means of (2.18), with bho; r the

reference bandwidth;

• Obtain recursively, bRm�1 ¼ bRm�1 bRm

� �
, for m = 2, …, N;

• Finally, the estimated bandwidth bho;N , will result from substituting bR1 ¼
bR1 bRNþ1

� �
, obtained in the previous step, in Eq. (2.17).
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2.3 Alternating Renewal Process

Let us now consider that the renewal procedure is not an instantaneous event, in
such a way that the time to repair or replacement cannot be considered negligible.
In other words, we now think of a renewal cycle as a two-phase phenomenon,
whose duration is determined by two random variables, say, failure time plus
renewal time.

2.3.1 Introduction and Some Applications of the ARP
in Reliability

A single unit that evolves in time is considered. Only two states are observed for
the system: operative and failed. Let u(t) be, by the value zero versus one, the state
of the system at time t; thus,

uðtÞ ¼ 0; if the system is operative at time t
1; otherwise




Let T be the failure time and R the repair time, respectively. It is assumed that the
starting state of the system is operative. Many electrical devices respond to this
kind of functioning, for example light bulbs simply function or do not function.
T and R are completely unknown in the sense that we do not assume any functional
form for their distribution functions. In addition, we suppose once again that
perfect repairs are carried out on the system, that is, once the system has failed and
a repair has been completed, its behavior is exactly the same as if it were new.
Under these conditions, uðtÞ; t� 0f g is an Alternating Renewal Process (ARP).

Let F (f) and G (g) be the cumulative distribution (density) function corre-
sponding to the failure time T and repair time R, respectively, both of which are
supposed to be absolutely continuous. We do not assume any parametric distri-
bution family for T and R.

A renewal cycle duration is given by T ? R. Let H ¼ F � G , the CDF of
T ? R, where * denotes Stieltjes convolution product. The renewal function is

now obtained as MðtÞ ¼
P1

k¼1 HðkÞðtÞ, where HðkÞðtÞ ¼ H � . . .ðkÞ �H
� �

ðtÞ is the

k-fold convolution. In this case, H(k)(t)=P{‘‘k renewal cycles are completed in
(0, t]’’}=PfðT1 þ R1Þ þ ðT2 þ R2Þ þ � � � þ ðTk þ RkÞ� tg.

Alternating renewal processes have proved their usefulness as stochastic
models in many reliability applications. In fact, they have been widely used as
models for diverse phenomena in the engineering field. A typical example is the
analysis of a machine which periodically fails, undergoes a technical service,
which consists of replacement or perfect repair, and is put to work again. This
time, non-negligible repair or replacement times are taken into account.
An important application is described by Dickey [10], which includes an example
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that occurs frequently in nuclear safety systems, where a component is continu-
ously monitored with attention to pressure conditions. When the failure is detected,
the component is repaired. This situation may be analyzed by using an alternating
renewal process.

Another illustrative example where this type of stochastic process appears
particularly suitable for modeling is in air-conditioning loads on electrical power
systems, as provided by Mortensen [31].

Di Crescenso [9] gives a generalization of the telegrapher’s random process, a
stochastic process that describes a motion on the real line characterized by two
alternating velocities with opposite directions, where the random times separating
consecutive reversals of direction perform an ARP. The telegrapher’s random
process has wide applications in diverse areas such as physics, for describing
fluorescence intermittency, for example, or in finance, for describing stock prices.

Chen and Yuan [7] calculate performance measures, such as expected value and
variance of the transient throughput and the probability that measures the delivery
in time for a balanced serial production with no interstage buffers. The work is
based on two fundamental assumptions: that each machine alternates between
normal and failed, and that up times and down times are i.i.d.; therefore, an ARP is
considered.

Bernardara et al. [4], present a new model of rain in time. The alternation of
meteorological states (namely, wet and dry) is represented by a strict ARP with a
Generalized Pareto law of wet and dry periods.

Vanderperre and Makhanov [40] introduce a robot safety device system con-
sisting of a robot with internal safety device. The goal is to obtain the availability
measures of the system. The system is characterized by the following safety shut-
down rule: ‘‘Any repair of the failed safety device requires a shut-down of the
operative robot’’. On the other hand, the safety unit must not operate if the robot is
under repair. The system is attended to by two different repair men, and any repair
is supposed to be perfect and general. The safety device has a constant failure rate
and a general repair time. Both the lifetime and the repair time of the robot are
general.

The goal in this section is to obtain a nonparametric estimator for the perfor-
mance measures of a repairable system modeled by a general ARP. In particular,
we are interested in estimating the point availability and the long-run availability.

2.3.2 Availability Measures of a Repairable System

Availability is probably the most usual measure for the effectiveness of a repairable
system. It was defined by Barlow and Proschan [3] as ‘‘the probability that the
system is operating at a specified time t’’, which means that the system has not
failed in the interval (0, t] or it has been restored after failure so that it is operational
at time t. This measure does not tell us how many times the system has failed before
t, the availability of a system just quantifies the chance of finding the system
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operative when it is required. So, availability measures concern both reliability and
maintainability properties of the system and increase with improving either time to
failure or maintenance conditions.

Different types of availability measures can be established according to
underlying criterions, such as time interval considered and the relevant types of
maintenance policies. Next, we present different coefficients of availability for
single or one-unit system.

• Instantaneous or Point Availability, A(t)
Instantaneous availability is the probability that the system will be operational at
a given time, t, that is

AðtÞ ¼ P uðtÞ ¼ 0½ �:

When renewals or repairs are not being carried out in the system, the point
availability reduces to the reliability function, A(t) = P{T [ t}.
In case of repairable systems, availability incorporates maintainability infor-
mation, and therefore, the operative state of a system at an arbitrary time t is
guaranteed if either the system has not failed until t or it has successively failed
and been repaired and it is functioning properly since the last repair which
occurred at time u, 0 \ u \ t. As a consequence, it is easy to see that

AðtÞ ¼ PfT1 [ tg þ
X1
k¼1

Z t

0

dP
Xk

i¼1

Ti þ Rið Þ� u

( )
PfTkþ1 [ t � ug

¼ 1� FðtÞ þ
Z t

0

X1
k¼1

dHðkÞðuÞð1� Fðt � uÞÞ

¼ 1� FðtÞ þ
Z t

0

1� Fðt � uÞð ÞdMðuÞ

¼ 1� FðtÞ þMðtÞ � 1� FðtÞð Þ:

We will return to this expression in Sect. 2.3.5.
• Average Availability;AavðtÞ

This measure gives the proportion of time that the system is available for use.
It is calculated as the average value of the point availability function over
a period (0, t],

AavðtÞ ¼
1
t

Z t

0

AðuÞdu;

which may be interpreted as the average proportion of working time of the
system over the first t time units in which the system is operative.
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• Steady State Availability; A
The steady state or limiting availability is the most commonly used availability
measure. It gives the long-run performance of a repairable system and is defined
as the limit of the instantaneous availability function as time approaches infinity,
that is

A ¼ lim
t!1

AðtÞ:

As a consequence of the key renewal theorem, an important and useful
expression for A can be derived. Classical renewal theory (see [37]) establishes
that since 1 - F is a bounded function, and, as reasoned previously, it is verified
that A(t) = 1 - F(t) ? M(t)*(1 - F(t)), then, point availability is the unique
solution of the equation A(t) = 1 - F(t) ? H(t) *A(t) that is bounded on finite
intervals. So, by the key renewal theorem, it is deduced, under mild conditions
over H, that

lim
t!1

AðtÞ ¼ 1
E T þ R½ �

Z1

0

ð1� FðtÞÞdt ¼ E½T �
E½T� þ E½R� :

In other words, it is derived the expression so celebrated in reliability literature
that states that

A ¼ MTTF

MTTF þMTTR
;

where MTTF (MTTR) denotes mean time to failure (repair).
In practical applications, it is acceptable that point availability approaches its
limiting value after a time period. Thus, it can be thought that after a reasonable
period of time the system availability is almost invariant with time. However, in
many practical cases, the interest is not in a so long period of time in which a
steady situation may have been reached. Consider, for instance, that the useful
life of any electrical device, from a user viewpoint, could be much shorter than
the time the system availability reaches such a steady value.

Other definitions for the availability of a repairable system could be introduced
if we distinguish between different types of maintenance strategies, more
explicitly, if we consider only corrective downtime (inherent availability) or if
shutdowns are scheduled for preventive maintenance (achieved availability). The
most complex case is when all experienced sources of downtime are considered,
such as administrative downtime, logistic downtime, preventive and corrective
maintenance downtime. The ratio of the system uptime and total time is then
defined as the operational availability, and it is the more realistic availability
measure in the sense that it is the one that the customer actually experiences. For
more details, see for example Kumar et al. [27].
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2.3.3 Nonparametric Estimation of Steady-State Availability

The problem of estimating the availability measures of a repairable system has
been extensively discussed in the recent literature. Many authors have dealt with
this topic in various situations, e.g. Ananda [1] constructs confidence intervals and
performs hypotheses testing for the long-run availability of a parallel system with
multiple components that have exponential failure and repair times.

Phan-Gia and Turkkan [33] consider a gamma alternating renewal system and
obtain several results with regard to the availability function. Although they do not
carry out an estimation study of point availability, they do obtain interesting results
on the variable representing the random proportion of time that the system is on
during a renewal period.

Claasen et al. [8] consider a two unit standby system where random variables
involving time duration, i.e. lifetime, repair time, and warm up time for the repair
facility, are considered as exponential laws. They obtain an estimator of the
steady-state availability under such conditions.

Finally, Hwan Cha et al. [22] and Ke & Chu [25] conduct some procedures for
obtaining confidence intervals for the steady-state availability of a repairable system.

The long-run performance of a repairable system is assessed in terms of steady-
state availability, which was defined in the previous section as

A ¼ lim
t!1

P uðtÞ ¼ 0f g;

the probability that the system is functioning at a large time t. In ARP, it is well
known that

A ¼ MTTF

MTTF þMTTR
;

where, as defined previously, MTTF = E[T] and MTTR = E[R].
The aim of this section is to conduct inferences on A based on distribution-free

estimators of failure and repair time. Let us consider a system that is activated and
functioning at time t = 0, and replaced by a new one whenever it fails. We
observe such a system in a fixed time interval [0,s] and let (T1, R1),
(T2, R2), …, (Tn, Rn) be the registered sample, where T1, T2, …, Tn are the
observed lifetimes of the system, which are i.i.d. with CDF F, E[Ti] = lT [ 0 and
Var(Ti) = rT

2. Likewise, R1, R2, …, Rn are the observed repair times, which are
i.i.d. with CDF G, E[Ri] = lR [ 0 and VarðRiÞ ¼ r2

R.
The natural estimator of A is given by

bA ¼ T

T þ R
;

where T and R represent the sample means of the T’s and R’s, respectively.
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Let us now derive the asymptotic distribution of bA, in order to obtain an
asymptotic confidence interval for A. To do so, we consider the following function

f ðx; yÞ ¼ x

xþ y
;

and the Taylor series to first order around the point (a, b), which is given as

f ðx; yÞ ¼ f ða; bÞ þ fxða; bÞ x� að Þ þ fyða; bÞ y� bð Þ;

where the subscripts denote the respective partial derivative. Let us consider the
last expression for values x ¼ T; y ¼ R; a = lT and b = lR . As we know,

ffiffiffi
n
p

T � lT

� �
�!d N 0; r2

T

� �

and

ffiffiffi
n
p

R� lR

� �
�!d N 0; r2

R

� �
;

where �!d denotes convergence in distribution. Thus, we can write

bA ¼ lT

lT þ lR
þ lR

lT þ lRð Þ2
T � lT

� �
þ lT

lT þ lRð Þ2
R� lR

� �
;

or equivalently,

ffiffiffi
n
p bA � A
� �

¼
ffiffiffi
n
p lR

lT þ lRð Þ2
T � lT

� �
þ

ffiffiffi
n
p lT

lT þ lRð Þ2
R� lR

� �
:

Evaluating the above limits in this expression and using the Delta method, we can
obtain

ffiffiffi
n
p bA � A
� �

�!d N 0; r2
A

� �
;

where

r2
A ¼

l2
Rr2

T þ l2
Tr2

R

lT þ lRð Þ4
:

Let br2
T ¼ 1

n

Pn
i¼1 Ti � T
� �2

and br2
R ¼ 1

n

Pn
i¼1 Ri � R
� �2

, these being the estimators
of r2

T and r2
R, respectively. Then we can estimate the variance of the limiting

availability by means of

br2
A ¼

R
2br2

T þ T
2br2

R

T þ R
� �4 :
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It can be seen that br2
A�!

a:s:
r2

A, as n??. For a given confidence level 1 - a, an
approximate large sample 100(1 - a)% confidence interval for A can be given by

bA � z a
2

br2
Affiffiffi
n
p ; bA þ z a

2

br2
Affiffiffi
n
p

� �
;

with z a
2

being the quantile of order 100ð1� a
2Þ% of N(0,1).

2.3.4 Smooth Estimation in the ARP

2.3.4.1 Kernel Estimation

Suppose that the system has been observed up to the nth cycle of the alternating
renewal process. During the observation period, we have recorded
0 = S0 \ S1 \ S2 \_\ Sr, the sequence representing the successive arrival
times. For the sake of simplicity in our exposition, we assume that the initial state
of the system is operative, and also that the last event recorded is a repair of the
system. Under these assumptions, we have no loss of generality, and there exists
n such that r = 2n.

Let us define the following alternative and independent sequences:

Tj ¼ S2j�1 � S2j�2; j ¼ 1; 2; . . .; n;

that is, the failure times sequence, and

Rj ¼ S2j � S2j�1; j ¼ 1; 2; . . .; n;

the repair times sequence. In other words, we have on the one hand, T1, T2, …, Tn

the successive lifetimes of the system, which are i.i.d. with CDF F. On the other
hand, R1, R2, …, Rn, the corresponding repair times, are i.i.d. with CDF G. We
also assume that Ti;Rif g are independent, and therefore we have an ARP.

Since the distribution functions F and G are considered to be absolutely
continuous, let f and g denote the corresponding density functions. It is possible to
give nonparametric estimators of F and G, respectively, based on kernel estimator
functions. That is, define

bF t; h1ð Þ ¼ 1
n

Xn

i¼1

W1
t � Ti

h1

� �
; ð2:19Þ

and

bG t; h2ð Þ ¼ 1
n

Xn

i¼1

W2
t � Ri

h2

� �
; ð2:20Þ
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where WjðxÞ ¼
R x
�1 wjðuÞdu, with wj a kernel function in the context of non-

parametric estimation [32], and hj a bandwidth parameter or smoothing parameter
that we need to determine, for j = 1, 2.

Remark Given that T and R are non-negative random variables, exponential kernel

functions could be used (see Guillamón et al. [20]). That is, w1ðuÞ ¼ ð1=tÞe�u=t

I½0;þ1ÞðuÞ and w2ðuÞ ¼ ð1=rÞe�u=rI½0;þ1ÞðuÞ, with t and r being the observed mean
values of failure and repair times, respectively, and I½0;þ1ÞðuÞ ¼ 1, for
u [ [0, ? ?) and 0, otherwise. One important advantage of using this kind of
kernels, which are asymmetric, is that the bias that arises when estimating near the
origin is considerably reduced. Nevertheless, we use mainly the Gaussian kernel in
our simulation studies.

With respect to the smoothing parameter, we suggest the use of two different
values, h1 and h2, in the definition of the respective estimators for F and G, since in
general, failure and repair times are expected to have different ranges.

2.3.4.2 A Bootstrap Method for Choosing the Bandwidth

One of the most important aspects of kernel estimation is the choice of smoothing
parameter. Many different proposals have been made to address this dilemma (see
Sect. 2.2.2.4). There exists a vast literature on the use of bootstrap methods for
selecting the bandwidth.

Bootstrap resampling techniques were introduced by Efron [11]. One of the
earliest references on the subject is the work by Cao [6], who introduced a smooth
bootstrap for choosing the bandwidth in kernel density estimation. The method,
which exhibited a reasonably reliable behavior, has been subsequently extended to
confront the problem of bandwidth selection in other contexts, hazard rate esti-
mation, for instance, and under different sampling schemes, in particular, in the
presence of censoring in González-Manteiga et al. [18].

These techniques have already been developed in many reliability applications,
producing very good results, see for example, Phillips [34, 35], Marcorin and
Abackerli [28] and Gámiz and Román [16]. In all cases, bootstrap techniques
reveal significant improvements in estimation compared to traditional techniques.
In this section, we present a method based on bootstrap resampling to select the
smoothing parameters involved in the kernel estimators of the distribution func-
tions in an ARP.

The bandwidth parameter, h ¼ h1; h2ð Þ0, can be selected as the minimizer of the
mean integrated squared error. In this context of the ARP, we define the following
MISE

MISEðhÞ ¼ MISE h1;Fð Þ þMISE h2;Gð Þ; ð2:21Þ
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where the MISEs on the right-hand side are the usual mean integrated squared
errors associated with both kernel distribution estimators, this term having been
defined previously in Eq. (2.15) as

MISEðh1;FÞ ¼ E

Z
bFðt; h1Þ � FðtÞ
h i2

dt

� �
:

This expression is obviously unknown, since we do not have the distribution for
which the expectation of (2.21) is calculated. Therefore, we describe below a
procedure to approximate the MISE in (2.21). This is based on a bootstrap method
that consists of imitating the random procedure from which the original sample is
drawn, and so we replace the role of the true distribution functions F and G by
estimators of the type given by (2.19) and (2.20). In other words, we use the
smoothed bootstrap method, where the bootstrap sample is obtained from the
estimated values of the distributions F and G. Next, we describe an algorithm for
realizing ARP trajectories that imitate the original sample. This algorithm is based
on the embedded Markov chain. It can be explained as follows:

Let h be bandwidth parameters.

Algorithm Smoothed Bootstrap for ARP

Step 1. Put m = 0, s0 = 0;

Step 2. Generate random variable T� 	 bF �; h1ð Þ and set t ¼ T�ðxÞ;
Step 3. Put m = m ? 1 and sm = sm-1 ? t. If m C 2n then end;

Step 4. Generate random variable R� 	 bG �; h2ð Þ and set r ¼ R�ðxÞ;
Step 5. Put m = m ? 1 and sm = sm-1 ? r. If m C 2n then end, otherwise

continue to Step 2.

Once the bootstrap sample is drawn, consider the bootstrap version of the
estimators in (2.19) and (2.20), F� t; h1ð Þ and G� t; h2ð Þ, for which we have replaced
the original sample by the bootstrap sample in the expressions (2.19) and (2.20).
Now, define the bootstrap estimate of the mean integrated squared error by

MISE�ðhÞ ¼ MISE� h1;Fð Þ þMISE� h2;Gð Þ;

that is,

MISE�ðhÞ ¼ E�

Z
bF�ðt; h1Þ � bF t; h1ð Þ
h i2

dt

� �
þ E�

Z
bG�ðt; h2Þ � bG t; h2ð Þ
h i2

dt

� �

The minimizer of the above function is the bootstrap bandwidth selector. Although
MISE�ðhÞ can be written in terms of the original sample and, therefore, from a
theoretical viewpoint no resampling is needed, an explicit expression is quite hard
to obtain (see Cao [6]). Therefore, in practice, Monte-Carlo methods are proposed
to calculate the values of MISE�ðhÞ.

The resampling procedure consists in drawing B bootstrap samples in the fol-

lowing way: for each bootstrap sample, b, a replication of bF� t; h1ð Þ and bG� t; h2ð Þ
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are obtained, i.e. bF�b t; h1ð Þ and bG�b t; h2ð Þ, so that the bootstrap estimation of the
standard error may be obtained as the sample mean of the bootstrap samples

dMISE�ðhÞ

¼ 1
B

XB

b¼1

Z
bF�b t; h1ð Þ � bF t; h1ð Þ
h i2

þ bG�b t; h2ð Þ � bG t; h2ð Þ
h i2

� �
dt

� �
: ð2:22Þ

The integral in (2.22) is approximated by numerical methods if necessary.
Finally, we choose the vector of bandwidths, hboot that minimizes the expression
(2.22).

In order to perform the resampling procedure, it is necessary to start with a pilot

bandwidth h0 ¼ h0
1; h

0
2

� �0
as the initial value and the bootstrap bandwidth

parameters are achieved by means of the following iterative method [20]:

dMISE�ðh jÞ

¼ 1
B

XB

b¼1

Z
bF�b t; h j

1

� �
� bF t; hj�1

1

� �h i2
þ bG�b t; h j

2

� �
� bG t; hj�1

2

� �h i2
� �

dt

� �
;

where bF�b t; h j
1

� �
and bG�b t; h j

2

� �
are the estimators of the ARP distributions based on

the bootstrap sample with h j as bandwidth vector value; and, bF t; hj�1
1

� �
and

bG t; hj�1
2

� �
are the estimators based on the original sample and with parameter h j-1,

the one that minimizes the dMISE� at the previous iteration.
Thus, starting with a pilot bandwidth h0, the idea is to find the value of h1 that

minimizes dMISE�ðh jÞ, for j = 1; then make j = j ? 1 and repeat the procedure
until an appropriate convergence criterion is achieved, that could be, for example
that two consecutive h j�1 and h j are close enough.

To illustrate this, we apply the method to an alternating renewal process where
the failure (repair) times have been simulated from a particular parametric dis-
tribution family.

Example Weibull Lifetime and Lognormal Repair Time

First, we consider a system that evolves in time, passing through successive up and
down states. The lengths of the up periods are considered to be random variables
with Weibull distribution with scale parameter 20 and shape parameter 2. On the
other hand, it is known that the Lognormal distribution is a suitable model for the
repair times in many cases. We consider a two-parameter Lognormal distribution for
the repair time, where the mean log time is chosen as 2 and the standard deviation of
the log time is 1.5. Under these conditions, we have simulated 100 renewal cycles,
each consisting of an up period plus a down period. We have applied the smoothed
method obtaining the curves given in Fig. 2.1. The bootstrap approximation for the
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vector of bandwidths is given by hboot = (3.159268, 4.543223)0. These values have
been obtained after performing the iterative procedure of the previous section. To do
this, we needed a pilot vector of bandwidths to initiate the procedure. We have
considered as initial values of the bandwidth parameters the plug-in values sug-

gested in Hansen [21] and given by bh0;r ¼ br 4n�1ð Þ1=3
, where n is the sample size

and br is the sampling standard deviation. In our example, we have obtained as initial
vector of bandwidths hini = (3.314656, 18.96642)0. We stopped when the differ-
ence between the values of the h0s estimated in two consecutives iterations is below
10-2. This convergence was attained after 8 iterations. The results are presented in
Fig. 2.1. The solid line in each graph represents the theoretical cumulative distri-
bution function of the Weibull and Lognormal distribution. We have not included
the estimator based on the initial value in the left panel, since the difference with the
curve obtained with the bootstrap approximation of the bandwidth is not appreciated
in the graph. The estimators show a lower precision near the origin. This problem
can be solved by means of local estimation procedures or the use of suitable
asymmetric kernels; however, this issue will not be addressed here.

2.3.5 Smooth Estimation of the Availability Function

Let H = F * G, the CDF of a renewal cycle duration, where * denotes Stieltjes
convolution product, and MðtÞ ¼

P1
k¼1 HðkÞðtÞ, where HðkÞðtÞ ¼ H � ðkÞ��� � H

� �
ðtÞ is

the k-fold convolution.
As shown in classical renewal theory (see Sect. 2.3.2), the availability function

satisfies the following renewal type equation,
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AðtÞ ¼ 1� FðtÞ þ
Z t

0

1� Fðt � uÞð ÞdMðuÞ ¼ 1� FðtÞ þMðtÞ � 1� FðtÞð Þ

ð2:23Þ

which is generally not easy to evaluate.
The estimation of the availability is now based on kernel estimators of the

functions F and G defined in expressions (2.19) and (2.20), respectively, hence

bA t; hð Þ ¼ 1� bF t; h1ð Þ þ bM t; hð Þ � 1� bF t; h1ð Þ
� �

ð2:24Þ

where bMðt; hÞ ¼P1k¼1
bH ðkÞðt; hÞ. Expression (2.24) depends on h ¼ h1; h2ð Þ0, the

bootstrap bandwidth parameters for estimating F and G, respectively, obtained
previously.

The aim is to give the value of the above expression for the availability. For this
purpose, note that the most tedious problem to arise in expression (2.23) is that of
deriving the renewal function M(t), and therefore we proceed as follows. First, we
approximate the value of M(t) by plug-in into the expression of M (given above),
the functions F and G by their respective exponential kernel estimator as explained
in the previous section, that is (2.19) and (2.20), respectively.

So, for estimating the k-fold convolution function H (k)(t) we have the following
expression

bH ðkÞn t; hð Þ ¼ 1
n2k

Xn

i1;...;ik ;j1;...;jk

W1
t � Tik

h1

� �
� � � � �W1

t � Tik

h1

� �

�W2
t � Rj1

h2

� �
� � � � �W2

t � Rjk

h2

� �
ð2:25Þ

for k = 1, 2, …; where Timf g and Rjm

� �
are the observed failure and repair times;

hboot ¼ h1; h2ð Þ0 is the bootstrap bandwidth vector and, W1 and W2 represent the
CDF of an exponential random variable with scale parameters t and r, respec-
tively, i.e. the observed sample means. For each i, j = 1, 2, …, n, the convolution
into the sum can be viewed as the CDF of the sum of two independent random
variables, one with exponential distribution with scale parameter h1t and location
Ti, and the other with scale h2r and location Rj. So, these convolutions can be
obtained analytically (we have used the package distr [38] of R for that purpose).

Given that we have chosen exponential kernel functions, the convolutions that
appear in expression (2.25) can be simplified as follows

bH ðkÞn t; hð Þ ¼ 1
n2k

Xn

i1;...;ik ;j1;...;jk

W1
t � Ti1 þ � � � þ Tikð Þ

h1

� �

�W2
t � Rj1 þ � � � þ Rjk

� �
h2

� �
;
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where W1 and W2 are respectively, the distribution functions of the corresponding
Gamma family.

To conclude, the number of terms, k0, considered in M(t) can be determined by
the normal approximation of the number of renewals in (0, t], that is, if
Yi = Ti ? Ri is the length of a renewal cycle k0 ¼ min k : P Y1 þ Y2 þ � � � þ½f
Yk � t� � eg, with e fixed small enough.

Example Kernel Estimation of the Renewal Function

To study the empirical performance, we carried out the following simulation study.
Let Y1, Y2, …, Yn be the length of n = 10 renewal cycles, each obtained by means
of a life period simulated from a CDF Weibull with scale b = 1 and shape a = 2,
plus a down period simulated from a CDF Weibull with scale b = 1 and shape
a = 0.5. Next, we applied the bootstrap procedure as indicated above to estimate
the distributions associated with the ARP.

A computational procedure that gives the value of the renewal function M(t0)
for a fixed t0 may be implemented by means of some functions working in R. First,
the method approximates the number of significant terms in M(t0), i.e. k0 (defined
above); and then it uses the convolution function of gamma distributions, which is
implemented in the package distr of R, to obtain the probability distribution

functions that appear in the successive bH ðkÞ. Some of the results are displayed in
Table 2.1.

The bootstrap approximation of the bandwidth involved in these calculations is
given by h = (0.0505,0.1304)0. The numbers in parentheses express the values of
M(t0) provided by using the functions that approximate the convolution of abso-
lutely continuous distributions, performed in the package distr of R. These values
are used here for reference.

In any case, from a computational point of view, expression (2.24) is extremely
awkward to evaluate, so in Sect. 2.3.7, we propose a slightly more feasible
procedure.

2.3.6 Consistency of the Bootstrap Approximation
of the Availability Function

The Laplace transform may be used to prove the consistency of the estimate
defined in (2.24), which is established in terms of the unavailability function, that
is, U(t) = 1 - A(t).

Table 2.1 Kernel estimation of the renewal function

t0 1 3 5 6 7 10 15

bM t0ð Þ 1.0042
(1.2869)

1.5492
(2.2393)

2.4998
(3.0631)

2.9183
(3.4552)

3.3512
(3.8391)

4.57678
(4.9550)

6.8928
(6.6132)
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Taking the Laplace transform on both sides of Eq. (2.23), with the properties of
the Laplace transform, we obtain

bU� s; hð Þ ¼ 1
s
� bA� s; hð Þ ¼ 1

s
� 1� bf � s; h1ð Þ

s 1� bf � s; h1ð Þbg� s; h2ð Þ
h i ; ð2:26Þ

where bf � s; h1ð Þ and bg� s; h2ð Þ represent respectively the Laplace transform of the
kernel densities, which are

bf � s; h1ð Þ ¼ w� sh1ð Þ 1
n

Xn

i¼1

e�sTi

and

bg� s; h2ð Þ ¼ w� sh2ð Þ 1
n

Xn

i¼1

e�sRi ;

given that we have used the same kernel function, W, in the estimation of F and G.
In the above expressions, w� shj

� �
is the Laplace transform of the function

w = dW, say the derivative of W, evaluated in shj, j = 1, 2. That is, w�ðsÞ ¼R1
0 e�stwðtÞdt. We assume that the kernel function w is such that its Laplace

transform exists for s [ 0 (which is valid in the case of Gaussian or exponential
kernels, for example).

Considering expression (2.26), we find that

bU� s; hð Þ ¼ 1
s
�

1� bw� sh1ð Þ 1
n

Pn
i¼1 e�sTi

s 1� bw� sh1ð Þ 1
n

Pn
i¼1 e�sTi

� � bw� sh2ð Þ 1
n

Pn
i¼1 e�sRi

� �	 
 : ð2:27Þ

If the Laplace transform f * does exist, we find that f �ðsÞ ¼ E e�sT½ �. Since {Ti} are
i.i.d. with density function f, by the strong law of large numbers, for any s for
which the above expectation exists,

1
n

Xn

i¼1

e�sTi �!a:s: f �ðsÞ as n!1;

and the same argument is valid for establishing that

1
n

Xn

i¼1

e�sRi �!a:s: g�ðsÞ as n!1:

Moreover, for fixed s, since hj ? 0 as n??, with the properties of the Laplace
transform, we obtain w� shj

� �
! 1, for j = 1, 2. In conclusion, from (2.27), we

obtain
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bU� s; hð Þ �! 1
s
� 1� f �ðsÞ

s 1� f �ðsÞg�ðsÞ½ � :

The right-hand side of the last expression corresponds to the Laplace transform of
the unavailability function U(t).

The unavailability function may be considered as a defective measure, so that
we can apply the extended continuity theorem of the Laplace transform for
measures (see [12]), according to which, if Hn is a measure with the Laplace
transform un, for n = 1, 2, …, and un(s)? u(s) for s [ 0, then u is the Laplace
transform of a measure H and Hn? H, and this convergence is for each bounded
interval of continuity of H.

In conclusion, we deduce the uniformly strong consistency of the estimator of
availability given by (2.23), that is, for all t [ R+,

sup
t2½0;s�

bA t; hð Þ � AðtÞ
���

����!a:s: 0; as n!1:

The Laplace transforms described above, all correspond to defective distributions

since, as can easily be checked, for any n ¼ 1; 2; . . .; lims!0 bU� s;hð Þ 6¼ 1. This
result may be established by means of the following limit

lim
s!0

sbA� s; hð Þ ¼ h1 þ tn

h1 þ tnð Þ þ h2 þ rnð Þ ; ð2:28Þ

which is independent of the kernel function w. Here, tn and rn represent the mean
sample values.

By the properties of the Laplace transform, we find that lims!0 sbA� s; hð Þ ¼
limt!1 bA t; hð Þ. Taking this property together with (2.28), we obtain via our kernel
estimator of the availability, an expression for asymptotic availability which is
congruent with the known result that establishes that

lim
t!1

AðtÞ ¼ MTTF

MTTF þMTTR
;

where MTTF denotes the mean time to failure and MTTR, the mean time to
repair.

Example: Exploring Exponential Kernel Functions

The estimation procedure above may also be carried out by considering the
sample information given by the observed times between failures, i.e.
Yi = Ti ? Ri, for i = 1, 2, …, n. Let H(t) denote the theoretical cumulative
distribution function; in this case, kernel estimation of the availability function
would have the following Laplace transform

bA� s; hð Þ ¼
1� w� s; h1ð Þ 1

n

Pn
i¼1 e�sTi

s 1� w� s; h2ð Þ 1
n

Pn
i¼1 e�sYi

	 
 :
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If we consider an exponential kernel function, the last expression is of the form

bA� s;hð Þ ¼
1� 1

sh1þ1

� �
1
n

Pn
i¼1 e�sTi

s 1� 1
sh2þ1

� �
1
n

Pn
i¼1 e�sYi

h i :

We can approximate the above exponential functions by their Taylor expansions,
obtaining, for s near 0, that

bA� s; hð Þ ¼
1� 1�stn

sh1þ1

� �

s 1� 1�syn
sh2þ1

� �h i ;

where tn is the mean failure time and yn is the mean duration of a renewal cycle,
that is yn ¼ tn þ rn . Easy computations lead to

bA� s; hð Þ ¼ h1 þ tn

h2 þ yn

sh2 þ 1
s sh1 þ 1ð Þ

� �
;

and, by inverting this expression, we obtain an estimator of the availability by the
following

bA t;hð Þ ¼ h1 þ tn

h2 þ yn
1þ h2

h1
� 1

� �
e�

t
h1

� �
;

which is valid for large values of t, given the equivalence between the values of the
Laplace transform of a function, in this case A*, near the origin, and the asymptotic
values of the function, say A.

2.3.7 Bootstrap Estimate of the k-Fold Convolution
of a Distribution Function

In Sect. 2.2.2.4, a kernel estimator for the k-fold convolution function was defined.
There, a plug-in bandwidth selector was suggested, based on the asymptotic form
of the mean integrated squared error (MISE).

In this section, we use a procedure based on bootstrap techniques similar to
those in Sect. 2.3.4, in order to find the value of h that minimizes the MISE. As in

Sect. 2.2.2.4, the particular form of bF ðkÞS2 ðt; hÞ for all k C 2 reduces the problem of
finding a bandwidth for any k to the first step, that is for k = 1. So, the optimi-
zation problem is stated as finding the value of h that minimizes

MISEðhÞ ¼ E

Z
FðtÞ � bFS2ðt; hÞ
h i2

dt

� �
:

Using a similar rationale to that given in Sect. 2.3.4.2, the bootstrap bandwidth
parameter is achieved by means of the following iterative method
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dMISEðhjÞ ¼ 1
B

XB

b¼1

Z
bF�b t; h j
� �

�dFS2 t; hj�1
� �h i2

dt


 �
:

We carry out a smoothed bootstrap to obtain bootstrap samples in the observation
interval, which is determined, as above, by the occurrence of the nth renewal, the
size of the original sample.

Algorithm Smoothed Bootstrap

Step 1. Put m = 0 and s0 = 0;

Step 2. Generate random variable T� 	 bFð�; hÞ and set t ¼ T�ðxÞ;
Step 3. Put m = m ? 1 and sm = sm-1 ? t. If m C n then end, otherwise continue

to Step 2.

Example: Kernel Estimation of the k-fold Convolution of a Distribution Function

To illustrate, we now consider the following simulation study. Let T1, T2, …, Tn

be the lengths of n = 10 simulated renewal cycles, i.i.d. with CDF Weibull with
scale parameter b = 1 and shape parameter a = 3. We construct the estimator
bFk

S2ðt; hÞ, as defined in Eq. (2.13), for k = 2, 3, 4, 5, 6, 7, and obtain the corre-
sponding values for t in [0, 10]. The approximation of bandwidth is obtained by
bootstrap techniques in the first step, that is for k = 1, which gives the value
hboot = 0.2786. The results are displayed in the figures below. We compared our
results to those obtained with the estimator proposed by Frees [14], that is, MC1

which is defined in Sect. 2.2.2.1 based on Eq. (2.3), and found that the kernel
estimator gives greater accuracy. We made use once again of the distr package
provided by the R programming system in order to approximate, for
k = 2, 3, 4, 5, 6, 7, the convolution functions, unfeasible in theory, for the Wei-
bull distribution F with scale parameter b = 1 and shape parameter a = 3. We use
the functions performed under R as reference values to contrast the accuracy of the
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Fig. 2.2 Nonparametric estimation of the k-fold convolution, for k = 2, 3
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two estimators. The bootstrap curve captures the ‘‘theoretical’’ behavior better than
Frees’s curve, as can be appreciated from Figs. 2.2, 2.3, 2.4.
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