
Chapter 2
Complex Numbers

2.1 Introduction

Complex numbers have been described as the ‘king’ of numbers, probably because
they resolve all sorts of mathematical problems where ordinary real numbers fail.
For example, the rather innocent looking equation

1 + x2 = 0

has no real solution, which seems amazing when one considers the equation’s sim-
plicity. But one does not need a long equation to show that the algebra of real num-
bers is unable to cope with objects such as

x = √−1.

However, this did not prevent mathematicians from finding a way around such an
inconvenience, and fortuitously the solution turned out to be an incredible idea that
is used everywhere from electrical engineering to cosmology. The simple idea of
declaring the existence of a quantity i, such that i2 = −1, permits us to express the
solution to the above equation as

x = ±i.

All very well, you might say, but what is i? What is mathematics? One could also
ask, and spend an eternity searching for an answer! i is simply a mathematical object
whose square is −1. Let us continue with this strange object and see how it leads us
into the world of rotations.

2.2 Complex Numbers

A complex number has two parts: a real part and an imaginary part. The real part
is just an ordinary number that may be zero, positive or negative, and the imaginary
part is another real number multiplied by i. For example, 2+3i is a complex number
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6 2 Complex Numbers

where 2 is the real part and 3i is the imaginary part. The following are all complex
numbers:

2, 2 + 2i, 1 − 3i, −4i, 17i.

Note the convention to place the real part first, followed by i. However, if i is as-
sociated with a trigonometric function such as sin or cos, it is usual to place i in
front of the function: i sin θ or i cos θ , to avoid any confusion that it is part of the
function’s angle.

All that we have to remember is that whenever we manipulate complex numbers,
the occurrence of i2 is replaced by −1.

2.2.1 Axioms

The axioms defining the behaviour of complex numbers are identical to those asso-
ciated with real numbers. For example, given two complex numbers z1 and z2 they
obey the following rules:
Addition:

Commutative z1 + z2 = z2 + z1

Associative (z1 + z2) + z3 = z1 + (z2 + z3) .

Multiplication:

Commutative z1z2 = z2z1

Associative (z1z2) z3 = z1 (z2z3)

Distributive z1 (z2 + z3) = z1z2 + z1z3

(z1 + z2) z3 = z1z3 + z2z3.

2.3 The Modulus

The modulus of a complex number a + bi is defined as
√

a2 + b2. For example, the
modulus of 3+4i is 5. In general, the modulus of a complex number z is written |z|:

z = a + bi

|z| =
√

a2 + b2.

We’ll see why this is so when we cover the polar representation of a complex num-
ber.
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2.4 Addition and Subtraction

Given two complex numbers:

z1 = a + bi

z2 = c + di

z1 ± z2 = (a ± c) + (b ± d) i

where the real and imaginary parts are added or subtracted, respectively. For exam-
ple:

z1 = 5 + 3i

z2 = 3 + 2i

z1 + z2 = 8 + 5i

z1 − z2 = 2 + i.

2.5 Multiplication by a Scalar

A scalar is just an ordinary number, and may be used to multiply a complex number
using normal algebraic rules. For example, the complex number a +bi is multiplied
by the scalar λ as follows:

λ (a + bi) = λa + λbi

and a specific example:

2 (3 + 5i) = 6 + 10i.

2.6 Product of Two Complex Numbers

The product of two complex numbers is evaluated by creating all the terms alge-
braically, and collecting up the real and imaginary terms:

z1 = a + bi

z2 = c + di

z1z2 = (a + bi) (c + di)

= ac + adi + bci + bdi2

= (ac − bd) + (ad + bc) i

which is another complex number. For example:
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z1 = 3 + 4i

z2 = 5 − 2i

z1z2 = (3 + 4i) (5 − 2i)

= 15 − 6i + 20i − 8i2

= 15 + 14i + 8

= 23 + 14i.

Remember that the addition, subtraction and multiplication of complex numbers
obey the normal axioms of algebra. Also, the multiplication of two complex num-
bers, and their addition always results in a complex number, that is, the two opera-
tions are closed.

2.7 The Complex Conjugate

A special case exists when we multiply two complex numbers together where the
only difference between them is the sign of the imaginary part:

(a + bi) (a − bi) = a2 − abi + abi − b2i2

= a2 + b2.

As this real value is such an interesting result, a −bi is called the complex conjugate
of a + bi. In general, the complex conjugate of

z = a + bi

is written either with a bar z̄ symbol or an asterisk z∗ as

z∗ = a − bi

and implies that

zz∗ = a2 + b2 = |z|2.

2.8 Division of Two Complex Numbers

The complex conjugate provides us with a mechanism to divide one complex num-
ber by another. For instance, consider the quotient

a + bi

c + di
.

This can be resolved by multiplying the numerator and denominator by the complex
conjugate c − di to create a real denominator:
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a + bi

c + di
= (a + bi) (c − di)

(c + di) (c − di)

= ac − adi + bci − bdi2

c2 + d2

=
(

ac + bd

c2 + d2

)
+

(
bc − ad

c2 + d2

)
i.

Another special case is when a = 1 and b = 0:

1

c + di
= (c + di)−1 =

(
c

c2 + d2

)
−

(
d

c2 + d2

)
i

which is the inverse of a complex number.
Let’s evaluate the quotient:

4 + 3i

3 + 4i
.

Multiplying top and bottom by the complex conjugate 3 − 4i we have

4 + 3i

3 + 4i
= (4 + 3i) (3 − 4i)

(3 + 4i) (3 − 4i)

= 12 − 16i + 9i − 12i2

25
= 24

25
− 7

25
i.

2.9 The Inverse

Although we have already discovered the inverse of a complex number, let’s employ
another strategy by declaring

z1 = 1

z

where z is a complex number.
Next, we divide both sides by the complex conjugate of z to create

z1

z∗ = 1

zz∗ .

But we have previously shown that zz∗ = |z|2, therefore,

z1

z∗ = 1

|z|2
and rearranging, we have

z1 = z∗

|z|2 .

In general

1

z
= z−1 = z∗

|z|2 .
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As an illustration let’s find the inverse of 3 + 4i

1

3 + 4i
= (3 + 4i)−1

= 3 − 4i

25

= 3

25
− 4

25
i.

Let’s test this result by multiplying z by its inverse:

(3 + 4i)

(
3

25
− 4

25
i

)
= 9

25
− 12

25
i + 12

25
i + 16

25
= 1

which confirms the correctness of the inverse.

2.10 The Complex Plane

Leonhard Euler (1707–1783) (whose name rhymes with boiler) played a significant
role in putting complex numbers on the map. His ideas on rotations are also used
in computer graphics to locate objects and virtual cameras in space, as we shall see
later on.

Consider the scenario depicted in Fig. 2.1. Any number on the number line is
related to the same number with the opposite sign via a rotation of 180°. For exam-
ple, when 2 is rotated 180° about zero, it becomes −2, and when −3 is rotated 180°
about zero it becomes 3.

But as we know that i2 = −1 we can write

−n = i2n.

If we now regard i2 as a rotation through 180°, then i could be a rotation through
90°!

Figure 2.2 shows how complex numbers can be interpreted as 2D coordinates
using the complex plane where the real part is the horizontal coordinate and the

Fig. 2.1 Rotating numbers
through 180° reverses their
sign
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Fig. 2.2 The graphical representation of complex numbers

imaginary part is the vertical coordinate. The figure also shows four complex num-
bers:

p = 1 + 2i, q = −2 + i, r = −1 − 2i, s = 2 − i

which happen to be 90° apart. For example, the complex number p in Fig. 2.2 is
rotated 90° to q by multiplying it by i:

i (1 + 2i) = i + 2i2

= −2 + i.

The point q is rotated another 90° to r by multiplying it by i:

i (−2 + i) = −2i + i2

= −1 − 2i.

The point r is rotated another 90° to s by multiplying it by i:

i (−1 − 2i) = −i − 2i2

= 2 − i.

Finally, the point s is rotated 90° back to p by multiplying it by i:

i (2 − i) = 2i − i2

= 1 + 2i.

2.11 Polar Representation

The complex plane provides a simple mechanism to represent complex numbers
graphically. This in turn makes it possible to use a polar representation as shown
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Fig. 2.3 Polar representation
of a complex number

in Fig. 2.3 where we see the complex number z = a + bi representing the oriented
line r . The length of r is obviously

√
a2 + b2, which is why the modulus of a com-

plex number has the same definition. We can see from Fig. 2.3 that the horizontal
component of z is r cos θ and the vertical component is r sin θ , which permits us to
write

z = a + bi

= r cos θ + ri sin θ

= r (cos θ + i sin θ) .

Note that i has been placed in front of the sin function.
The angle θ between r and the real axis is called the argument and written arg(z),

and in this case

arg(z) = θ.

One of Euler’s discoveries concerns the relationship between the series for expo-
nential e, sin and cos:

eiθ = cos θ + i sin θ

which enables us to write

z = reiθ .

We are now in a position to revisit the product and quotient of two complex
numbers using polar representation. For example:

z = r (cos θ + i sin θ)

w = s (cosφ + i sinφ)

zw = rs (cos θ + i sin θ) (cosφ + i sinφ)

= rs
(
cos θ cosφ + i cos θ sinφ + i sin θ cosφ + i2 sin θ sinφ

)

= rs
(
(cos θ cosφ − sin θ sinφ) + i (sin θ cosφ + cos θ sinφ)

)

and as
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Fig. 2.4 The product of two complex numbers

cos (θ + φ) = cos θ cosφ − sin θ sinφ

sin (θ + φ) = sin θ cosφ + cos θ sinφ

zw = rs
(
cos (θ + φ) + i sin (θ + φ)

)
.

So the product of two complex numbers creates a third one with modulus

|zw| = rs

and argument

arg(zw) = arg(z) + arg(w) = θ + φ.

Let’s illustrate this with an example. Figure 2.4 shows two complex numbers

z = 1 + i, w = 2i

therefore,

|z| = √
2, arg(z) = 45°

|w| = 2, arg(w) = 90°

|zw| = 2
√

2

arg(zw) = 135°

which is another complex number −2 + 2i.

2.12 Rotors

The above observations imply that multiplying a complex number by another, whose
modulus is unity, causes no scaling. For example, multiplying 3 + 4i by 1 + 0i

creates the same complex number, unscaled and unrotated. However, multiplying
3 + 4i by 0 + i rotates it by 90° without any scaling.
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Fig. 2.5 Rotating a complex
number about another
complex number

So to rotate 2 + 2i by 45° we must multiply it by

cos 45° + i sin 45° =
√

2

2
+

√
2

2
i

(√
2

2
+

√
2

2
i

)
(2 + 2i) = √

2 + √
2i + √

2i + √
2i2

= 2
√

2i.

So now we have a rotor to rotate a complex number through any angle. In general,
the rotor to rotate a complex number a + bi through an angle θ is

Rθ = cos θ + i sin θ.

Now let’s consider the problem of rotating 3 + 3i, 45° about 2 + 2i as shown
in Fig. 2.5. From the figure, the result is z ≈ 2 + 3.414i, but let’s calculate it by
subtracting 2 + 2i from 3 + 3i to shift the operation to the origin, then multiply the
result by

√
2/2 + √

2/2i, and then add back 2 + 2i:

z =
(√

2

2
+

√
2

2
i

)(
(3 + 3i) − (2 + 2i)

) + 2 + 2i

=
(√

2

2
+

√
2

2
i

)
(1 + i) + 2 + 2i

=
√

2

2
+

√
2

2
i +

√
2

2
i −

√
2

2
+ 2 + 2i

= 2 + (2 + √
2)i

≈ 2 + 3.414i

which is correct. Therefore, to rotate any point (x, y) through an angle θ we convert
it into a complex number x + yi and multiply by the rotor cos θ + i sin θ :
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x′ + y′i = (cos θ + i sin θ) (x + yi)

= (x cos θ − y sin θ) + (x sin θ + y cos θ) i

where (x ′, y′) is the rotated point.
But as we shall see in Chap. 4, this is the transform for rotating a point (x, y)

about the origin:
[
x′
y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
.

Before moving on let’s consider the effect the complex conjugate of a rotor has
on rotational direction, and we can do this by multiplying x +yi by the rotor cos θ −
i sin θ :

x′ + y′i = (cos θ − i sin θ) (x + yi)

= x cos θ + y sin θ − (x sin θ + y cos θ) i

which in matrix form is
[
x ′
y′

]
=

[
cos θ sin θ

− sin θ cos θ

][
x

y

]

which is a rotation of −θ .
Therefore, we define a rotor Rθ and its conjugate R†

θ as

Rθ = cos θ + i sin θ

R†
θ = cos θ − i sin θ

where Rθ rotates +θ , and R†
θ rotates −θ . The dagger symbol ‘†’ is chosen as it is

used for rotors in multivectors, which are covered later.

2.13 Summary

There is no doubt that complex numbers are amazing objects and arise simply by
introducing the symbol i which squares to −1. It is unfortunate that the names
‘complex’ and ‘imaginary’ are used to describe them as they are neither complex
nor imaginary, but very simple. We will come across them again in later chapters
and see how they provide a way of rotating 3D points.

In this chapter we have seen that complex numbers can be added, subtracted,
multiplied and divided, and they can even be raised to a power. We have also come
across new terms such as: complex conjugate, modulus and argument. We have also
discovered the rotor which permits us to rotate 2D points.

In the mid-19th century, mathematicians started to look for the 3D equivalent
of complex numbers, and after many years of work, Sir William Rowan Hamilton
invented quaternions which are the subject of a later chapter.
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2.13.1 Summary of Complex Operations

Complex number

z = a + bi where i2 = −1.

Addition and subtraction

z1 = a + bi

z2 = c + di

z1 ± z2 = (a ± c) + (b ± d) i.

Scalar product

λz = λa + λbi.

Modulus

|z| =
√

a2 + b2.

Product

z1z2 = (ac − bd) + (ad + bc) i.

Complex conjugate

z∗ = a − bi.

Division

z1

z2
=

(
ac + bd

c2 + d2

)
+

(
bc − ad

c2 + d2

)
i.

Inverse

z−1 = z∗

|z|2 .

Polar form

z = r (cos θ + i sin θ)

r = |z|
θ = arg(z)

z = reiθ .

Rotors

Rθ = cos θ + i sin θ

R†
θ = cos θ − i sin θ.
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