Chapter 2

Overview of Recent Research in Distributed
Multi-agent Coordination

This chapter overviews recent research results in distributed multi-agent coordina-
tion. Distributed coordination of multiple autonomous agents, including unmanned
aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned under-
water vehicles (UUVs), has been a very active research topic in the systems and
controls society. The recent research results in distributed multi-agent coordination
are roughly categorized as consensus, distributed formation control, distributed op-
timization, distributed task assignment, distributed estimation and control, and in-
telligent coordination. A short discussion is given to propose several future research
directions and problems that deserve further investigation.

2.1 Introduction

Control theory can be dated back to the beginning of last century when the Wright
brothers made their first flight in 1903. Since then, control theory has received more
and more attention, especially during the World War II when control theory has been
developed and applied to fire-control systems, missile navigation and control, and
various electronic devices. Over the past several decades, modern control theory
has been developed due to the booming of spacecraft technology and large-scale
systems.

During the development of the control theory, control of a single system has
relatively matured and many control methodologies have been developed, such as
proportional-integral-derivative (PID) control, adaptive control, intelligent control,
and robust control. In the past two decades, the control of multiple interconnected
systems has drawn more and more attention because many benefits can be obtained
when replacing a solo complicated system with several simple systems. Two ap-
proaches are commonly used for the control of multiple interconnected systems:
a centralized approach and a distributed approach. The centralized approach is based
on the assumption that a powerful central station is available to control a group of
systems. Essentially, the centralized approach is a direct extension of the traditional
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single-system based control methodology. Instead, the distributed approach does
not require the existence of a central station with a tradeoff that this approach is
far more complex than the centralized one. However, the distributed approach is
more promising due to inevitable physical constraints, such as limited communica-
tion/sensing range, low bandwidth, and large number of systems involved.

Recently, the control of a group of autonomous agents including UAVs, UGV,
and UUVs, has been investigated intensively from different perspectives. The main
control objective is to have the agents work together in a cooperative fashion. Here
cooperative refers to the close relationship among all agents in the team with in-
formation sharing playing an important role. Distributed coordination of multiple
autonomous agents has become an active research topic because many advantages
can be achieved accordingly, such as robustness, adaptivity, flexibility, and scalabil-
ity.

The study of distributed control of multiple autonomous agents was motivated
by the work in distributed computing [183], management science [70, 302], and
physics [295]. In controls society, the pioneer work was given in [292, 293] where
an asynchronous agreement problem was studied for distributed decision making
problems. In what follows, [90, 132, 200, 214, 247] studied consensus algorithms
under various information flow constraints. Several recent special issues on dis-
tributed coordination from 2004 to 2009 include IEEE Transactions on Automatic
Control (Vol. 49, No. 9, 2004), IEEE Transactions on Control Systems Technol-
ogy (Vol. 15, No. 4, 2007), Proceedings of the IEEE (Vol. 94, No. 4, 2007), ASME
Journal of Dynamic Systems, Measurement, and Control (Vol. 129, No. 5, 2007),
International Journal of Robust and Nonlinear Control (Vol. 17, No. 10-11, 2007),
International Journal of Adaptive Control and Signal Processing (Vol. 21, No. 2—
3, 2007), IET Control Theory and Applications (Vol. 1, No. 2, 2007), and SIAM
Journal on Control and Optimization (Vol. 48, No. 1, 2009).

In this chapter, we overview recent research results in distributed multi-agent
coordination from 2006 to 2009." For research results before 2006, the readers are
referred to [169, 207, 215, 250]. We roughly categorize the recent research results
based on the following directions:?

1. Consensus/agreement/synchronization/rendezvous. In this direction, various
problems have been investigated towards driving a group of agents to some com-
mon state. In many cases, the four words can be used without discrimination.

2. Distributed formation control.? Distributed formation control refers to the behav-
ior that the agents form a certain geometrical configuration through local inter-
action with/without a group reference.

! Here we primarily focus on the results that appeared in major control/robotics journals although
many results might have appeared in other fields or in conferences.

2 Note that the classification is by no means complete, and the overview will by no means cover
all recent research results.

3 In fact, consensus can be considered a special case of formation control. We have explicitly
overviewed consensus because consensus, a fairly basic problem in distributed multi-agent coor-
dination, has received significant research attention, and therefore deserves special attention in the
overview.
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3. Distributed optimization. As is known to us, optimization always plays an impor-
tant role in both theoretical study and practical applications. Significant effort has
been put into this research topic upon the birth of control theory. Optimization in
distributed multi-agent coordination has been studied under both individual and
global objectives.

4. Distributed estimation and control. In order to tackle distributed coordination
problems, it is, sometimes, assumed that some global information is available to
each individual agent. This assumption disobeys the virtue of distributed multi-
agent coordination. As an alternative, distributed estimation and control method-
ologies have been proposed in which some unknown global information can be
estimated locally.

5. Distributed task assignment. An interesting problem involved in sensor/robotic
networks is to achieve task assignment in a distributed fashion. Examples include
task/resource allocation, coverage control, and scheduling.

6. Intelligent coordination. The term intelligent coordination refers to the coordi-
nated behavior of a group of agents with intelligence. In this problem, research
has been conducted towards introducing intelligent mechanisms into traditional
coordination problems or investigating the behavior of a group of intelligent
agents from the perspective of coordination.

2.2 Consensus

Consider a group of n agents with single-integrator dynamics given by
() =wu(t), i=1,...,n 2.1

where r;(t) € R and u;(t) € R are, respectively, the state and the control input
associated with the sth agent. Here for simplicity of presentation we have assumed
that all agents are in a one-dimensional space. However, all results hereafter are
still valid for the high-dimensional space by introduction of the Kronecker product.
A common consensus algorithm for (2.1) is given by

wi(t) =Y aij[ri(t) = ri(t)], (2.2)
j=1

where a;; is the (4, j)th entry of the adjacency matrix A associated with the graph G
characterizing the interaction among the n agents. The objective of (2.2) is to reach
or achieve consensus, i.e., for all 7;(0) and all ¢,j = 1,...,n, |ri(t) —r;(t)] — 0
as t — oo. The main idea behind (2.2) is that each agent’s state is driven towards the
states of its neighbors (see Lemmas 1.3—1.5 for some convergence results on con-
sensus). In the following, we will overview the recent research results in consensus
according to different research problems.
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2.2.1 Delay Effect

It can be observed that the consensus algorithm (2.2) assumes that each agent can
obtain the states of its neighbors without time delay. This assumption poses an obvi-
ous limitation because time delay appears in every practical system and, therefore,
deserves consideration in the consensus problem. In particular, two types of time de-
lays, i.e., communication delay and input delay, have been considered in the existing
literature. When there exists communication delay, (2.2) becomes

’U,l(t) = Z aij [’I“j (t — T’LJ) — Ti(t)], (23)

where T;; represents the communication delay from the jth agent to the ith agent.
When there exists input delay, (2.2) becomes

’U,l(t) = i aij [T‘j (t — Tp) — ’I“i(t — Tp)], (24)

where T), represents the input delay. It is worth mentioning that the communication
and input delays might be time-varying and there might exist both communication
and input delays. In addition to time delay, it is also important to consider packet
dropouts when the agents exchange information. Fortunately, consensus with packet
dropouts can be considered a special case of consensus with time delay because old
information needs to be used in the presence of packet dropouts. The main problem
involved in consensus with time delay is to study the effect of time delay in terms
of whether consensus can be reached ultimately, also called consensusability [186].

In order to study the delay effect on consensus, the authors in [214] present
conditions on the maximum allowed time delay without damaging consensus in
a continuous-time setting. In particular, it is shown that the maximum allowed time
delay is bounded by a threshold determined by the out-degree of the interaction
graph. The authors in [309] study the discrete-time case and present necessary
and/or sufficient conditions under both fixed and switching interaction graphs. Fur-
ther studies are given in [310], which shows that bounded communication delay will
not affect the consensusability. Different from the analysis in [214, 309, 310] where
matrix theory and the properties of row-stochastic matrices are frequently used, the
authors in [290] study the effect of both the communication delay and the input
delay on the consensusability based on the frequency-domain analysis. It is shown
that the communication delay does not affect the consensusability while the input
delay does. In a similar manner, consensus with time delay is studied for systems
with different dynamics, i.e., (2.1) replaced with other complex system dynamics,
under different scenarios [23, 41, 57, 61, 173, 178, 195, 285, 291, 298, 300, 318],
including average consensus where a group of agents reaches the average of their
initial states [23, 285], consensus over complex networks [41, 173, 300], and robust
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consensus [178, 291]. The main tools in the stability analysis include Lyapunov
functions [41, 173], passivity [318], and contraction [298].

2.2.2 Convergence Speed

Convergence speed is another interesting topic in the study of the consensus prob-
lem. Convergence speed is used to characterize how fast consensus is reached. Us-
ing (2.2) for (2.1), if the graph G is undirected, the worst-case convergence speed is
determined by [214] as

rTLr
min —Fs = A2(L), 2.5
r#£0, & 17r=0 ||r||? 2(£) 23)
where 1 2 [71,...,ma)T, L is the Laplacian matrix, and \2(L) represents the sec-

ond smallest eigenvalue of L. In order to increase the convergence speed, the authors
in [148] propose an iterative algorithm to maximize the second smallest eigenvalue
of a state-dependent Laplacian matrix by employing a semidefinite programming
solver. In addition to the second smallest eigenvalue of the Laplacian matrix, a com-
monly used definition of the convergence speed is given by [216, 308]

lim {Hr(t)r*”} ?, (2.6)

t—oo & r(t)F#r* ||T(0) — 7"*”

1>

p

where r* € R” represents the final consensus equilibrium, which is given by 01,
where o is a constant real number. To achieve the fastest convergence speed, the
corresponding optimization problem becomes max,,, ;) p- In [308], the authors cast
the problem of finding the fastest convergence speed into a semidefinite program-
ming problem. In [150], the authors study the problem of reaching the fast average

consensus, i.e., r* = %171 in (2.6). In particular, the authors proposed two
numerical solutions: the qth-order spectral norm minimization and gradient sam-
pling. The convergence speed defined in (2.6) is studied in both the deterministic
and stochastic settings. In the deterministic setting, [5, 6, 216] study the conver-
gence speed and present the estimate or the lower bound of the convergence speed.
On the other hand, [3, 115, 331] study the convergence speed in a stochastic setting.
In particular, the authors in [331] study the per-step convergence factor, which can
be considered the measurement of the convergence speed.

2.2.3 Stochastic Setting

Existing research on the consensus problem is mainly conducted under the assump-
tion that the interaction graph is deterministic. However, due to the existence of
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communication failures, packet dropouts, and unstable communication channels, it
is of great importance to study the consensus problem in a stochastic setting where
the interaction graph evolves according to some random distributions, for example,
binomial distribution.

In the deterministic setting, consensus is reached if all agents ultimately reach
an agreement on some common state. In the stochastic setting, consensus is reached
almost surely (respectively, in the mean square sense or with probability one) if all
agents reach an agreement on some common state almost surely (respectively, in the
mean square sense or with probability one). Consensus over a stochastic network
is first studied in [115]. Sufficient conditions on the interaction graph is given to
guarantee consensus with probability one and the rate of convergence is also studied.
The authors in [3, 128, 185, 232, 286, 305, 328] continue the study of the consensus
problem over a stochastic network in different settings. In particular, more general
results on consensus in the stochastic setting are given in [3, 232, 286, 305]. The
authors in [286] present necessary and sufficient conditions to guarantee consensus
almost surely. Note that the condition in [286] is analogous to that in [200, 247] with
the exception that the conditions and results are in the stochastic setting. Note that
the properties of the row-stochastic matrices play a crucial role in the convergence
analysis.

2.2.4 Complex Systems

In addition to the study of the consensus problem for systems with simple dynamics,
for example, single-integrator dynamics, double-integrator dynamics, or general lin-
ear systems [172, 294], consensus for complex systems is also an interesting topic
and has received significant research attention. Here we use the term consensus for
complex systems to refer to the study of the consensus problem when the system
dynamics are nonlinear [15, 55, 60, 64, 66, 71, 76, 77, 123, 177, 208, 258, 267, 277,
320, 321, 329, 330, 333] or the consensus algorithm itself is nonlinear [67, 129,
130]. The main system dynamics studied in the consensus problem include oscilla-
tors [60], complex networks [321, 329], nonholonomic mobile robots [76], passive
systems [333], and rigid bodies [15, 64, 208, 239, 258]. Similar to the consensus
algorithms proposed for systems with simple dynamics, the consensus algorithms
proposed in these papers are also based on the state differences with an exception
that some additional terms are required to ensure consensus. Note that although
the objective is also to guarantee the agreement on the final states, the problem is
more complicated due to the nonlinearity of the closed-loop systems. In addition,
the properties of row-stochastic matrices might not be applied to the convergence
analysis. The main control techniques and approaches used in the stability analy-
sis include adaptive control [329], pinning control [55], dissipativity theory [277],
nonsmooth analysis [66, 76, 129], and Lyapunov functions [15, 60, 64, 76, 208,
258].
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2.2.5 Quantization

Consensus under quantization has been studied recently with the motivation from
digital signal processing. Here quantized consensus refers to consensus when the
measurements are digital rather than analog. Therefore, the information received by
each agent is digital. In [143], a quantized gossip algorithm is proposed and the
convergence analysis is studied. In particular, the bound of the convergence time
for a fully connected undirected graph is shown to be polynomial in the number
of agents. In [48], the authors introduce coding/decoding strategies in quantized
consensus and show that the convergence rate depends on the accuracy of the quan-
tization but not the coding/decoding strategies. In [165, 166], quantized consensus
is studied via gossip algorithms under an undirected connected interaction graph. In
addition, both the lower and upper bounds of the convergence time are investigated.

2.2.6 Sampled-data Setting

Consensus in a sampled-data setting, here called sampled-data consensus, has been
investigated recently with the motivation from the fact that the system dynamics are
normally continuous while the measurements and control inputs might only be made
in a discrete-time setting. Sampled-data consensus is mainly investigated in [33, 36,
99, 101, 116, 312, 313]. Consensus for single-integrator dynamics is studied in a
sampled-data setting under both fixed and switching interaction graphs in [312, 313]
where necessary and/or sufficient conditions are presented to guarantee consensus.
Consensus for double-integrator dynamics is studied in a sampled-data setting un-
der both fixed and switching interaction graphs in [33, 36, 99, 101, 116]. Various
approaches, including Lyapunov theory [116], matrix theory [33], infinite product
of row-stochastic matrices [36], and linear matrix inequalities [99, 101], have been
used to determine necessary and/or sufficient conditions to guarantee consensus.

2.2.7 Finite-time Convergence

Reaching consensus in a finite time, here called finite-time consensus, has been stud-
ied recently. For a group of n agents with dynamics given in (2.1), the objective is
to design u;(t) such that r;(t) = r;(t) for t > T, where T is a constant. Here T is
also called the consensus time. Finite-time consensus for single-integrator dynamics
in a continuous-time setting is solved in [66, 130, 138, 311]. Finite-time consen-
sus for double-integrator dynamics in a continuous-time setting is studied in [297].
It is well known that linear consensus algorithms normally guarantee exponential
or asymptotical convergence but not finite-time convergence. Hence, an important
characteristic in the proposed finite-time consensus algorithms is the introduction of
the signum function.
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2.2.8 Asynchronous Effect

In most existing research of the consensus problem, it is assumed that all agents
update their states synchronously. Note that the synchronized update requires a syn-
chronized clock for a group of agents. However, the synchronized clock might not
exist in real applications. This motivates the study of consensus algorithms with
asynchronous updates. That is, each agent updates its state disregard of the up-
date times of the other agents. In [310], consensus for single-integrator dynam-
ics is studied with asynchronous updates and time delays by using the properties
of row-stochastic matrices. The authors in [43] solve asynchronous consensus for
single-integrator dynamics using matrix theory and graph theory. On the other hand,
paracontracting theory is employed in [89] to solve asynchronous consensus for
single-integrator dynamics.

2.3 Distributed Formation Control

Formation control has been a very interesting research topic in the controls society
where a certain geometric pattern is formed with/without a group reference. The
group reference, sometimes also called a leader or a virtual leader, represents the
objective of interest for the whole group. Formation control without a group refer-
ence, here called formation producing, refers to the behavior that a group of agents
achieves some geometric pattern in the absence of any group reference. Formation
control with a group reference, here called formation tracking, refers to the behav-
ior that a group of agents achieves a desired geometric formation and follows the
group reference. In the following, we will overview recent research results in forma-
tion control, including formation producing, formation tracking, connectivity main-
tenance, and controllability, in the context of distributed multi-agent coordination
with local interaction.

2.3.1 Formation Producing

We overview the existing literature based on different approaches used in the stabil-
ity analysis.

2.3.1.1 Matrix Theory Approach

Due to the nature of multi-agent systems, matrix theory has been used frequently
in the stability analysis of formation producing. In [226], the authors propose a
cyclic-pursuit-based strategy and show that different behaviors for a group of agents,
i.e., converging to a single point, a circle, or a logarithmic spiral pattern, can be
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achieved by changing a common offset angle. The stability analysis relies on char-
acterizing the eigenvalues of a circulant matrix in the closed-loop system. Moti-
vated by [226], Cartesian coordinate coupling is introduced to consensus algorithms
in [244] to achieve three different collective motions: rendezvous, move on circu-
lar orbits, or follow logarithmic spiral curves. In [187], the collective motion for
nonholonomic robots is studied for a cyclic pursuit model. In [153], the authors use
complex polynomials to represent the space of permutation-invariant multi-robot
formations, where the roots of the complex polynomials correspond to the configu-
rations of the robots in the formation. In [273], cooperative multi-agent formation is
studied based on parallel estimation-based decentralized control. In addition, nec-
essary conditions on the interaction graph are presented to guarantee the stability of
simultaneous parallel estimation and control.

2.3.1.2 Lyapunov-based Approach

Another important approach used in formation producing is the Lyapunov-based
approach, where the system stability can be proved by finding a proper Lyapunov
function. In [77], the formation feasibility and velocity alignment problem is inves-
tigated. In [78], the inverse agreement problem is studied, where the team mem-
bers are forced to disperse in the workspace. In particular, the minimum distance
between every pair of agents is larger than a specific lower bound. In [223], the
circular collective motion on a sphere is studied under both fixed and switching
interaction graphs. In [69, 170, 202, 289], flocking of a group of agents is inves-
tigated in different cases under fixed and switching interaction graphs, where a
group of agents moves cohesively and the inter-agent collision is avoided. In [97],
the Queue-formation structure is investigated in the formation producing problem,
where the communication load can be reduced by dividing the information flow
into two subgroups: the fast time scale and the slow time scale. In [82], the au-
thor studies formation producing with bounded control. In [327], the authors pro-
pose control laws to steer particles to an invariant pattern corresponding to a con-
stant orbit value characterizing the curve of the trajectory and constant separa-
tions.

2.3.1.3 Graph Rigidity Approach

Graph rigidity has been an important approach in formation producing. For a given
number of agents, the edges in the interaction graph are closely related to the
shape of the formation. Therefore, distributed controllers can be designed to guar-
antee desired edge distances. In [213], graph rigidity is used to achieve formation
producing for a group of agents under an undirected interaction graph. In [117],
the authors study the construction and transformation of two-dimensional persis-
tent graphs, where persistence is a generalization of rigidity in directed graphs.
Through primitive operations, the minimally persistent formation can be obtained



32 2 Overview of Recent Research in Distributed Multi-agent Coordination

from any other one while minimal persistence is preserved throughout the reorga-
nization process. Further study on formation producing using graph rigidity and
persistence can be found in [157, 319] where a nonlinear control law [319] and a
gradient-based control law [157] are designed such that a rigid formation can be
obtained.

2.3.1.4 Receding Horizon Approach

Receding horizon control (RHC), also called model predictive control (MPC), has
been introduced in the formation producing problem. RHC is essentially a finite-
horizon optimization problem. In [86, 87], the authors investigate distributed for-
mation producing via distributed RHC. In [96], a distributed RHC approach is used
to solve formation producing in the presence of time delay.

2.3.2 Formation Tracking

Although formation control without a group reference is interesting, it is some-
times more meaningful to study formation control in the presence of a group
reference that represents the objective of interest for the whole group. We also
overview the existing literature based on the approaches used in the stability analy-
sis.

2.3.2.1 Matrix Theory Approach

In [45, 240], a special case of formation tracking for single-integrator dynamics
in the presence of a time-varying group reference is studied in both continuous-
time and discrete-time settings. In [233], formation tracking is solved through
a two-level consensus approach where agents reach an agreement on the virtual
leader’s state at one level and are guaranteed to converge to the desired forma-
tion about the virtual leader at the other level. In [149], target-capturing formation
control based on a cyclic pursuit strategy is proposed and studied for nonholo-
nomic mobile robots. In particular, collision avoidance is shown to be achieved
as well. In [236], a general framework is presented to design cooperative con-
trol strategies for a group of dynamical systems by studying the properties of the
augmentation of reducible and irreducible nonnegative matrices. In addition, the
approach can be applied to multiple heterogeneous systems. In [255], formation
control with a constant final velocity is studied through ring coupling. In [307],
the authors study synchronization of a group of agents on some desired signal
that has the same dynamics as the agents and is available to only a portion of the
agents.
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2.3.2.2 Potential Function Approach

Potential functions have been used frequently in the formation tracking problem,
where a controller is designed based on the gradient of the corresponding potential
function. By properly choosing the potential function, the desired group behavior
can be guaranteed. Motivated by the results in [212], the authors in [280] extend the
flocking study in [212] to the case when there exists a group reference. That is, a
group of agents moves cohesively with the group reference and inter-agent collision
is avoided. In particular, the state information of the group reference is assumed to
be available to all agents. In [268], flocking is studied under the assumption that the
group reference’s acceleration is known to each agent. In [83], formation control of
a group of nonholonomic mobile robots is solved by using a bump function and a
potential function. In addition, collision avoidance mechanism is introduced without
requiring switching control even if the robots have limited sensing ranges.

2.3.2.3 Lyapunov-based Approach

In [299], the authors study conditions for distributed tracking in dynamic networks
in the presence of different types of leaders, which has potential applications in biol-
ogy, e.g., in evolutionary processes and disease propagation. In [84, 85], formation
control of multiple nonholonomic mobile robots is solved by model transformation
with/without uncertainties. In [104], coordinated path following of a group of agents
is studied in the presence of communication losses and time delays. In particular,
the authors derive conditions such that the path following errors are driven to a small
neighborhood of zero. In [218], three nonlinear leader—follower formation control
algorithms based on, respectively, full state feedback, robust state feedback, and
output feedback, are proposed to solve the formation control problem for a group
of nonholonomic mobile robots. In [180], synchronization of a group of spacecraft
on elliptical orbits is solved by using a nonlinear adaptive controller. In [51], a dis-
tributed control law is designed for nonhonolomic mobile robots to achieve a circu-
lar motion around a stationary or moving beacon. In [224], a distributed coordina-
tion algorithm is proposed to guarantee convergence of agents to a set of trajectories
that moves along closed curves.

2.3.2.4 Other Approaches

In addition to the aforementioned approaches, there are also some other approaches
used to achieve formation tracking. Formation producing and formation tracking are
studied in [91] via partial differential equations. In [113], leader-following forma-
tion control is solved without the measurement of the leader’s velocity. In particular,
an observer is designed to estimate the leader’s velocity. In [75], formation tracking
of nonholonomic mobile robots is solved by using neural networks. The control law
is designed by using a backstepping technique and is based on the integration of
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the signum function. Collision avoidance is considered as well. In [14], formation
tracking is solved when the constant velocity of the leader is available to a portion
of the followers by using an adaptive control design.

2.3.3 Connectivity Maintenance

In both consensus and formation control problems, it is often assumed that the inter-
action graph satisfies certain conditions. For example, the interaction graph is con-
nected or has a directed spanning tree. Note that a communication model is often
distance-based. That is, two agents can communicate with each other only if their
distance is smaller than a certain threshold. In order to guarantee that consensus
or formation control can be achieved ultimately, connectivity maintenance mecha-
nism has also been studied recently. The connectivity maintenance mechanism is
mainly studied in [98, 133, 269, 279, 282, 324, 325]. The main approach used is
to define artificial potentials in a proper way such that if two agents are neighbors
at a certain time instant, they will always be neighbors afterwards. In [133], con-
sensus with connectivity maintenance is solved when the weights for the edges of
the interaction graph are defined properly. In [98], rendezvous of a group of agents
with connectivity maintenance is solved based on a perimeter minimizing algorithm.
In [282], a controller based on a properly designed potential function is proposed
to solve rendezvous of a group of nonholonomic robots with connectivity mainte-
nance. In [279, 324, 326], connectivity maintenance for flocking of a group of agents
is studied based on properly designed potential functions.

2.3.4 Controllability

Controllability in distributed multi-agent coordination has been an interesting re-
search topic recently. A multi-agent system is controllable if each agent in the sys-
tem can be steered to a certain position by controlling one agent in the system,
which is also called the leader. In [288], the author studies the controllability of
multi-agent systems in the present of a leader. Necessary and sufficient conditions
are presented based on the eigenvalues of a submatrix of the Laplacian matrix. In-
terestingly, it is further shown that increasing the algebraic connectivity does not
necessarily increase the controllability. Further results on controllability of multi-
agent systems are presented from a graph-theoretical perspective. In [134, 135],
necessary conditions on the controllability are presented. In particular, equitable
partitions are introduced in [134] to improve the controllability results presented
in [135]. In [237], the authors investigate the relationship between the network sym-
metry structure and the controllability. Note that [134, 135, 237, 288] focus on the
fixed interaction graph case. Different from [134, 135, 237], the authors in [137,
181] study the controllability of multi-agent systems under a switching interaction
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graph. In particular, the authors in [137] take time delays into account and derive
sufficient conditions for controllability.

2.4 Distributed Optimization

Optimization is an important issue in the systems and controls society. The main
objective of optimization is to find the optimal strategy under some given cost func-
tion. Optimization in distributed multi-agent coordination has been studied recently
in two directions, namely, convergence speed and cost functions. One important
problem studied in consensus is the convergence speed, which characterizes how
fast consensus can be achieved. We refer the readers to Sect. 2.2.2 for the problem.
In addition to the fastest convergence speed that is studied as the objective to opti-
mize, various cost functions including both individual cost functions and global cost
functions are also studied as the objectives to optimize.

2.4.1 Individual Cost Functions

In this case, the cost function for one agent is defined based on its own and its
neighbors’ states. In [260, 261], a semi-distributed optimal control problem is stud-
ied in the presence of finite-horizon individual cost functions in both leaderless and
leader-following cases. In [140], finite-time optimal consensus with input and linear
state constraints is solved by using a primal decomposition and subgradient method.
In [19], a nonlinear consensus protocol is proposed such that a group of agents can
reach an agreement on certain functions of all agents’ initial states. Meanwhile, it
is shown that the proposed consensus protocol is optimal with respect to certain in-
dividual cost functions. In [105], the authors study the coordination problem of a
group of robots working under a collision avoidance constraint, where each individ-
ual robot strives to optimize its own objective—the elapsed time. The problem is
solved based on the notion of Pareto optimality.

2.4.2 Global Cost Functions

In this case, the cost function depends on information of the whole group. In [124],
the authors study an optimal control problem with free final time and partially con-
strained final states, which mimics some behaviors in foraging trail optimization.
In [188], the authors study optimal sensor placement and motion coordination. The
main problem is to maximize a particular class of global cost functions. In [107],
mission planning of a group of unhabitated underwater vehicles is solved via a re-
ceding horizon mixed-integer constrained quadratic optimal control problem, which
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is then partitioned into smaller subproblems and solved in a parallel and distributed
manner using a distributed Nash-based game approach. In [257], the authors study
consensus in terms of the extrema of some global cost function. In particular, con-
sensus and anticonsensus (balance) can be achieved via, respectively, maximizing
and minimizing the cost function. In [127], the authors study the optimal coordina-
tion problem with formation pattern and collision avoidance constraints by minimiz-
ing a global cost function. Through a case study, it is shown that the solution is opti-
mal for sufficiently close starting and final positions. In [26], an optimal distributed
control problem is studied via the study of an infinite-horizon linear-quadratic reg-
ulator (LQR) problem. Then a distributed controller is constructed by analyzing the
properties of the local LQR problem. In addition, the relationship among stability,
robustness, and the spectrum of a certain matrix is presented as well. In [203], the
authors also study an infinite-horizon LQR problem. Different from [26], a special
class of operators, called spatially decaying operators, is introduced. In [35], the
authors study an optimal linear consensus problem from an infinite-horizon LQR
perspective. Different from [26, 203], the authors in [35] show that the optimal in-
teraction graph corresponds to a complete directed graph. Different from [26, 35,
203] where an infinite-horizon cost function is used, the authors in [95] propose co-
operative control algorithms to minimize a finite-horizon global cost function that
includes both the regulation and cooperation objectives. In [142], the authors study a
formation controller design so that some desired properties can be optimized. In par-
ticular, through the use of a dynamic protocol, formations of real robots are shown
to move significantly faster and with greater precision. In [74], minimization of the
total travel distance or the minimax distance that the agents must travel is solved
using convex optimization.

2.5 Distributed Task Assignment

Distributed task assignment refers to the study of task assignment of a group of
agents in a distributed manner, which can be roughly categorized as coverage con-
trol, scheduling, and surveillance.

2.5.1 Coverage Control

Recently, coverage control has been an active research direction in mobile sensor
networks. The main objective is to properly assign the mobile sensors’ motion in
order to maximize the detection probability. Let () be a convex space with ¢ rep-
resenting the distribution density function, which denotes the probability that some
event takes place over @) [68]. Let there exist a group of n mobile sensors whose
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locations are given by P 2 [p1, .-, DPn], Where p; denotes the location of sensor .
Note that the sensor performance at a point ¢ degrades with respect to the distance
llg — p:||- Then use a nondecreasing differentiable function f can be used to de-
scribe the sensor performance. The coverage control problem is essentially to find a
local controller for each mobile sensor such that the cost function

JéZ/f(Hq—piH)(b(CI)dq

is minimized.* A complete distributed, scalable coverage control strategy is de-
rived in [68]. In addition, the closed-loop system is adaptive and asynchronous.
Several further results about coverage control have also been presented recently.
In [131], precise coverage control with collision avoidance is studied under fully
and partially connected interaction graphs. In [100], the connection between cov-
erage control and consensus under a cyclic interaction graph is studied. Both the
coverage control problem and the average consensus problem can be considered a
special class of the distributed optimization problems. In [167], the coverage control
of a network of robotic agents with limited-range communication and anisotropic
sensing capabilities is studied. By approximating the expected-value objective func-
tion, a gradient-based distributed coverage control algorithm is developed. Differ-
ent from [68, 100, 131, 167], the authors in [204] study the optimal sensor place-
ment problem via minimizing the trace of a weighted covariance matrix. In par-
ticular, the optimization problem can be converted to a convex optimization prob-
lem.

2.5.2 Scheduling

Distributed scheduling refers to the scheduling of a group of agents in a dis-
tributed manner. In [139], the authors study the optimal scheduling sequence to
fuel a group of UAVs via dynamic programming. In [94], a coordination strat-
egy based on task-load balancing is proposed under a fixed interaction graph.
In [197], the distributed adaptive scheduling is solved by choosing the task tim-
ings as the consensus variable. In [22], the authors solve task assignment for
flocking by using a metric routing algorithm. In [9], the authors study the effi-
cient routing problem when a group of autonomous vehicles must visit multiple
targets generated by a random process. Control strategies are presented to mini-
mize the expected time between the time when a target appears and the time when
an agent visits the target. Further results are also presented to understand the ef-
fect of the inter-agent communication and the knowledge of the stochastic pro-
cess.

4 Note that coverage control can be treated as an optimization problem.
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2.5.3 Surveillance

Distributed surveillance means the monitoring of a certain area by using a group of
agents coordinated in a distributed fashion. In [151], a perimeter surveillance prob-
lem is studied and experimental results on multiple UAVs are presented to show
the effectiveness. In [198], the authors propose a distributed cooperative control al-
gorithm to drive a group of autonomous vehicles to patrol some area that exceeds
the communication and sensing capabilities of the vehicles. In addition, a proper
distribution of the vehicles is achieved within a finite time. In [106], a cooperative
surveillance problem for a group of UAVs is studied in the presence of unstable
communications, time delays, uncertainty in target locations, and imperfect vehicle
search sensors. Different from the problems studied in [106, 151, 198], the authors
in [227] study a scenario where a group of robots moves towards their individual
targets without collision. In [314], the authors study a cooperative search problem
where a group of UAVs are used to find the targets in an unknown environment. In
particular, an opportunistic-cooperative-learning based distributed strategy is pro-
posed to solve the problem and the bounds of the search time are presented. In [93],
the authors study the distribution of a group of heterogeneous vehicles over a certain
space that includes several areas in the presence of uncertainty. Scalable allocation
strategies are developed to guarantee a desired vehicle distribution in these areas.
In [226], different behaviors for a group of vehicles, namely, converging to a sin-
gle point, a circle, or a logarithmic spiral pattern, are shown to be achieved for a
cyclic pursuit model by changing a common offset angle. In addition, by changing
the common offset angle based on the locally available information, the paths of the
vehicles can be guaranteed to cover a certain area. In [287], the authors study a co-
operative sensor placement problem in which a group of mobile sensors is deployed
to monitor multiple stationary targets. The cost function used in [287] is nonlinear
and nonsmooth.

2.6 Distributed Estimation and Control

Due to the absence of global information that can be used to achieve group coordi-
nation, distributed estimation and control has received significant attention recently.
Under the distributed estimation and control framework, the first problem is to de-
sign distributed local estimators such that some global information can be estimated
in finite/infinite time. The second problem is to design distributed local controllers
based on the local estimator such that the closed-loop system is stable. It is worth-
while to emphasize that the closed-loop system with both distributed estimators and
controllers is much more complicated than that with only distributed controllers.

In [315], the authors present a unified framework of distributed estimation and
control to solve a distributed coordination problem. Both proportional-like and
proportional-and-integral-like distributed estimation algorithms are proposed and
analyzed. In [184], the unified distributed estimation and control framework in [315]
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is applied to environmental modeling and experimental results are presented as a
proof of concept. In [184, 315], it is assumed that no noisy signal exists in the mea-
surements. In [278], the authors study overlapping distributed estimation by using
a consensus-like approach in the presence of white noise. The proposed approach
is based on a synergy between local Kalman filters and a dynamic consensus strat-
egy for the agents. In [28], the authors consider the distributed estimation problem,
where each sensor has some noisy linear measurement of some unknown parame-
ter. By using a consensus-like diffusion scheme, the local estimate of each node will
finally converge to the true parameter. In [205], the authors study the accuracy of
position estimation for groups of mobile robots performing cooperative localization
in the presence of white noise. In [332], the authors study cooperative tracking of a
type of nonlinear robots. In particular, cooperative sensors are used to estimate the
relative posture. In [234], radar position estimation and configuration optimization
are studied via the minimization of position errors. In addition to the state estima-
tion in the aforementioned papers, the authors in [73] investigate the estimation of
a spatially distributed process via the minimization of expected state estimation er-
rors.

2.7 Intelligent Coordination

In traditional coordination problems, it is often assumed that each agent responds
to local information. This assumption is simple and, therefore, the complexity of
the closed-loop system is low. Recently, distributed coordination in the presence
of intelligence, referred to as intelligent coordination, has been studied from dif-
ferent perspectives, especially from economy, social science, and management sci-
ence. The main feature in intelligent coordination is that each agent is intelligent,
and therefore chooses the best possible response based on its own objective. We
overview existing results in two aspects: pursuer-invader problem and game the-
ory.

2.7.1 Pursuer—invader Problem

In the pursuer—invader problem, there exist a group of pursuers and one invader.
The objective of the pursuers is to find and track the invader while the objective of
the invader is to escape the pursuers. In [40], the authors study the pursuer—invader
problem and presented a five-phase controller to solve this problem. In [25], the au-
thors study the pursuer-invader problem for Dubins-like vehicles when the velocity
of the invader is bounded. Similar to [40], the authors propose a five-phase con-
troller to solve the problem. The discrete-time case of the pursuit-evasion problem
in [25] is studied in [24].
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2.7.2 Game Theory

Recently, game theory is also introduced to distributed multi-agent coordination.
In [112], formation control is studied via a linear-quadratic (LQ) Nash differential
game and a RHC-based approach is used. In [296], the authors study the problem
of learning Markov games using learning automata. In [88], the authors propose
and study multi-agent systems with symbiotic learning and evolution (Masbiole)
based on symbiosis in the ecosystem. It is further shown that Masbiole can escape
from the Nash equilibria. In [301], the authors study the role of cooperation in a
coupling game. By adding cooperation, it is shown that benefits can be increased.
In [21], the authors study consensus with unknown but bounded disturbances. Due
to the existence of unknown but bounded disturbances, the local controller under a
traditional consensus protocol is bounded. The authors propose a lazy rule, where
each agent chooses the minimal control input based on the traditional consensus
algorithm. In [20], a consensus-like protocol is derived in noncooperative games.
Under the proposed protocol, it is shown that the players converge to the unique
Pareto optimal Nash equilibrium.

2.8 Discussion

We have reviewed the recent research in distributed multi-agent coordination. The
main objective of this overview is to briefly summarize the state-of-the-art in dis-
tributed multi-agent coordination. In addition to the aforementioned theoretical re-
sults, many experiments are also conducted to validate the theoretical results, for
example, [7, 16, 118, 159, 211, 251]. Although the theoretical study and experi-
mental validation have solved many problems in distributed multi-agent coordina-
tion, there are still a number of research problems that deserve further investigation.
We summarize these problems as follows:

e Quantization effect in distributed coordination problems. Most existing research
focuses on the study of distributed coordination problems by assuming that both
control inputs and measurements are continuous analog values. However, the use
of digital signal processing technique requires digital inputs and measurements.
Therefore, it is important and meaningful to investigate the quantization effect in
distributed coordination problems. Note that although the quantization effect has
been studied in some coordination problems, the quantization effect still deserves
further consideration in many other distributed coordination problems.

e Optimization with both individual and global cost functions. The optimization
problem in distributed multi-agent coordination has been studied in the presence
of either an individual or a global cost function. In real systems, each individ-
ual agent has both local and global objectives with corresponding individual and
global cost functions. Therefore, optimization of the combined objectives is more
realistic and meaningful. Another interesting problem is to investigate the rela-
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tionship between the individual cost function and the global cost function. One
interesting problem is how to balance the individual cost function and the global
cost function.

o Intelligent coordination. Intelligent coordination has potential applications in not
only engineering but also in economics, social science, etc. Although several
research problems have been studied recently, there are still many open questions,
especially the understanding of group behavior in the presence of intelligence.
One interesting problem is how we can interpret complex networks and stabilize
the complex networks in the presence of intelligence.

e Competition and cooperation. Right now, most research is conducted based on
local cooperation but not competition. This poses an obvious limitation because
competition also plays an important role in group coordination in reality. For
example, due to the lack of competition, the final consensus equilibrium using
the traditional consensus algorithms is limited to a weighted average of the initial
states. One interesting question is how to introduce competition to distributed
coordination to represent more realistic scenarios.

o Centralization and decentralization. Note that decentralization shows obvious
benefits over centralization, such as scalability and robustness. However, decen-
tralization also has its own drawbacks. One drawback is that each agent cannot
effectively predict the group behavior based on only local information. Accord-
ingly, the group behavior cannot be controlled in some sense. As an interesting
example of this drawback, economic crisis can be used to illustrate the disad-
vantages of decentralization. One interesting question is how we can balance
decentralization and centralization to improve the system performance.

2.9 Notes

For further literature review on distributed multi-agent coordination and related
problems, see [8, 17, 27, 49, 53, 58, 63, 84, 102, 132, 169, 193, 207, 215, 222,
235, 248, 250, 265, 270, 274, 306, 315] and references therein.
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