Chapter 11
Hilbert Functions

Abstract. A well-studied and important numerical invariant of a
graded ideal over a graded polynomial ring S is the Hilbert function.
It gives the sizes of the graded components of the ideal.

The Hilbert function encodes important information (for exam-
ple, dimension and multiplicity). Hilbert’s insight was that it is de-
termined by finitely many of its values.

In many recent papers and books, Hilbert functions are studied
using clever computations with binomials; we mention the binomial-
approach briefly and avoid such computations whenever possible. In-
stead our arguments are founded upon Macaulay’s key idea in 1927:
There exist highly structured monomial ideals - lex ideals - which at-
tain all Hilbert functions. Lex ideals play an important role in many
results on Hilbert functions. The pivotal property is that a lex ideal
grows as slowly as possible.

Another exciting direction of research is to parametrize all graded
ideals in S with a fixred Hilbert function, and then study their (com-
mon) properties and the structure of the parameter space. Lex ideals
play crucial role in Hartshorne’s Theorem that Grothendieck’s Hilbert

scheme is connected.

40 Notation

Let W be a graded finitely generated R-module. It decomposes as a
direct sum of its components W = @,>0 W,. Its Hilbert function is
defined by ¢ — dim; W,. We denote

(Wl = dimy(W,).
Recall that the Hilbert series of W is
Hilby () =Y _ dimy, (W) t7.

q>0
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Throughout this chapter V stands for a graded finitely generated
S-module.

41 Lex ideals

Macaulay’s Theorem 41.7 characterizes the Hilbert functions of graded
ideals in S. The theorem is well-known and has many applications.
The key idea is that each Hilbert function is attained by a lex ideal.
Lex ideals are highly structured: they are defined combinatorially
and it is easy to derive the inequalities characterizing their Hilbert
functions. They play other important roles; for example,
o Hartshorne’s [Hartshorne 2] proof that the Hilbert scheme is con-
nected uses lex ideals in an essential way.
o The homological properties of lex ideals are combinatorially trac-
table by Theorem 41.9. This leads to results in Section 47, show-
ing that the lex ideals have greatest Betti numbers.

Notation and Definition 41.1. Recall that S, is the k-vector space
spanned by all monomials in S of degree q. So, Sy is the k-vector
space spanned by the variables. We order the variables lexicograph-
ically by 1 > ... > x,. We denote by >, the degree-lex order
on the monomials, that is, m >, m’ if either deg(m) > deg(m’) or
deg(m) = deg(m’) and m is lex-greater than m’. Sometimes we say
lex-last instead of lex-smallest.

We say that A, is an S;-monomial space if it can be spanned
by monomials of degree g. We denote by {4,} the set of monomi-
als (non-zero monomials in S;) contained in A,. The cardinality of
this set is |4, = dimy A,. By S1A4, we mean the k-vector subspace
(Ag)q+1 of Sgy1, (where (Ay) is the ideal generated by the elements
in A,).

The lex-segment M, , of length p in degree ¢ is defined as
the k-vector space spanned by the lex-greatest p monomials in ;.
An S,-monomial space M, is lex in S, if there exists a p such that
M, = M, ,. The monomial space 0 is lex in .S, by convention. For a
monomial space Ag, we say that M A,| 18 its Sy -lexification.



41 Lex ideals 161

For an S,-monomial space A, sometimes we say for simplicity
that A, is a monomial space in S, or a monomial space; in the latter
case the index ¢ indicates that A, C S,.

An S,-monomial space T, is greater lexicographically than
an S,-monomial space A, if when we order the monomials in {77}
and {A,} lexicographically, and then compare the two ordered sets
lexicographically, we get that the first ordered set is greater.

Proposition 41.2. If a monomial space M, is lex in S, then S1M,
is lex in Sqy1.

Proof. Let m € M, be a monomial and let © ¢, ;m be a monomial
in S;+1. We have to show that v € S1M,. Write z;m = m'z, where
z is the lex-last variable that divides x;m, and m' = = It follows
that m’ >jep m, so m’ € M,.

Similarly write u = u’y, where where y is the lex-last variable
that divides u, and v’ = % Since u'y = u =g T;m = m’z, it follows

that u' >, m'. As m’ € M, and M, is lex, we get that v’ € M,.
Therefore, u = yu’ € S1M,. |

Proposition 41.3. Let L be a monomial ideal in S. The following
conditions are equivalent.
(1) For each ¢ > 0, we have that L, is lex.
(2) If m is a monomial, such that m >je, m’ and deg(m) = deg(m')
for some monomial m’ € L, then m € L.
(3) Let p be a number, such that L has no minimal monomial gen-
erators in degrees > p. For each q¢ < p, we have that L, is lex.
(4) Let L be minimally generated by the monomials ly, ... .. If mis
a monomial, m =, l; and deg(m) = deg(l;) for some 1 <i <,
then m € L.

Proof. (1) < (2) and (3) = (4) by the definition of lex-segment.
We will show that (4) = (3) by induction on the degree gq.
Suppose that L, is lex; we will prove that L,y is lex as well.
If L has no minimal monomial generators of degree ¢ + 1, then
by Proposition 41.2 it follows that L,y is lex.

If u is the lex-last minimal monomial generator of L of degree
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g+ 1, then by Proposition 41.2 and (4) it follows that L,; is the lex
monomial space in S; whose end (that is, whose lex-last monomial)
is u.

(1) = (3). By 41.2 it follows that (3) implies (1). |

Definition 41.4. A monomial ideal L is lex (or lexicographic) if it
satisfies the equivalent conditions in Proposition 41.3.

We usually use (4) in order to show that a given ideal is lex. On
the other hand, (1) is the condition usually used in proofs.

Example 41.5. By (4), theideal (22, 2172, 2173, 23, 573, v323, 2323,

Tox$, 29) is lex in k[zq, xo, 73]

We are ready to discuss Macaulay’s Theorem 41.7, which char-
acterizes the Hilbert functions of graded ideals in S.

Proposition 41.6. The following properties are equivalent.
(1) Let A, be an Sy-monomial space and Ly be its lexification in S,.
Then |51Lq ‘ < |51Aq |
(2) For every graded ideal J in S there exists a lex ideal L with the
same Hilbert function.

The key property of lex ideals is expressed in (1) above: among
all subspaces of the same dimension, the lex monomial space generates
as little as possible in the next degree.

Proof. We will prove that (1) and (2) are equivalent. (2) implies (1).
Assume that (1) holds. We will prove (2). We can assume that J is
a monomial ideal by Grobner basis theory. For each ¢ > 0, let L, be
the lexification of J,. By (1), it follows that L = @,>¢ L, is an ideal.
By construction, it is a lex-ideal and has the same Hilbert function as
J in all degrees. O

In Section 45, we will prove that (1) holds which will establish
Macaulay’s Theorem.

Macaulay’s Theorem 41.7. The equivalent properties in Proposi-
tion 41.6 hold.
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We say that an S;-monomial space A, is Borel if whenever a
monomial z;m € Ay and 1 <4 < j it follows that z;m € A,.

Exercise 41.8. Every lex ideal is Borel.
This yields the following result.

Theorem 41.9. The minimal graded free resolution of a lex ideal is
the Eliahou-Kervaire resolution.

42 Compression

Compression is a technique, introduced by Macaulay in order to study
Hilbert functions.

Let 1 < ¢ < n be an integer. An S,;-monomial space C, can be
written uniquely in the form

{Cy= 1 =¥7{Ly}

0<j<q

where L; is a monomial space in the ring S/x;.

We say that C; is i-compressed if each L; is lex in S/z;. Fur-
thermore, we say that Cy is S,-compressed (or compressed) if it is
i-compressed for all 1 < ¢ < n.

A monomial ideal P is i-compressed if P, is i-compressed for
all ¢ > 0. The ideal is compressed if P, is compressed for all ¢ > 0.

Example 42.1. [Mermin-Peeva 2, Example 3.2] We give an example
of an ideal P which is compressed but not lex. Consider

P = (a3, a%b,a’c, ab?, abe, b3, b?¢)

in kla,b,c] with a > b > c.

Proposition 42.2. If a monomial space C, is i-compressed in Sy,
then S1Cy is i-compressed in Sq1.
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Proof. Consider the disjoint union {Cq} = [[,<,<, 297{L;} where
each L; is lex in (S/xz)] In the next degree g + 1 we get the disjoint

union

{(i¢y= [ =7 4L+ (Su/w)Lia}.

0<j<q+1

Since both L; and (S1/x;)L;j—1 are lex (S/x;);-monomial spaces, it
follows that L; + (Si/x;)L;_1 is the longer of these two lex monomial
spaces. O

Exercise 42.3. Let P be a monomial ideal and p be a number, such
that P has no minimal monomial generators in degrees > p. If P, is
i-compressed for every 0 < g < p, then P is i-compressed.

Exercise 42.4. If an S;-monomial space Ly is lex, then it is Sg-
compressed.

Structure Lemma 42.5.
(1) If a monomial space Cy is compressed and n > 3, then Cy is
Borel.

(2) If n <2, then every monomial space is compressed.

Proof. We will prove (1). Recall that a monomial m’ € S is said to
xr; m

be in the big shadow of a monomial m € S if m’ = for some x;

Lj
dividing m and some i < j. Let m € {C,} and m’ be a monomial in its
Zr;m

big shadow. Hence m’' = for some z; dividing m and some ¢ < j.

Tj
As n > 3, there exists an index 1 < p < n such that p # i,j. Note
that the monomials m and m' have the same p-exponents. Since C,
is p-compressed and m’ =, m, it follows that m’ € {C,}. Therefore,
C, is Borel. O

Construction 42.6. Fix an 1 <7 < n. Let A; be an S;-monomial
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space with disjoint union

(A= T =7y
0<j<q
where each U, is a monomial space in (S/x;);. Foreach 0 < j < g, let
L; be the lexification of the space U; in (S/x;);. The S;,-monomial
space Cy defined by

{cy=TI «7{L)}

0<j<q
is the i-compression of A,. Clearly, |Cy| = |4,]|.

Example 42.7. Let A, be the S;-monomial space spanned by {2,
1973, 73, 1314 }. We have the disjoint union

{As} = 23{1} [ [ wa{ms} [ {2, wsaa}

so Uy is spanned by {22, w324}, U; is spanned by {z3}, and Uy is
spanned by {1}. Therefore Ly is spanned by {2%, x123}, L1 is spanned
by {z1}, and Lg is spanned by {1}. The 2-compression of Aj is

{Co} = a3{1} [[ wo{an} [] 1{?, 125} .

Lemma 42.8. Let A, be an Sy-monomial space. Fiz an 1 <1i < n.
Let C, be the i-compression of A,. We have that |Cy| = |A,| and
|Squ| < ’SlAq|-

Proof. We use induction on the number of variables, and assume that
Theorem 41.7(1) holds for n — 1 variables.

Suppose that A, is not i-compressed. Set z = z; and n = 5;/z.
Use the notation in Construction 42.6. We have the disjoint unions

{SlAq} = H Zq_j+1{U]' + nU]-_l}
0<j<q+1

{SlC'q} = H Zq_j+1{Lj +nLj_1}.
0<j<q+1
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We will show that
‘L] + l’le_l‘ = max{ |LJ|, ‘l’le_l‘ }

< maX{ U, InUj 1| } < |Uj +nUj].

The first equality above holds because both L; and nL;_; are lex
(S/z);-monomial spaces, so L; + nL;_; is the longer of these two
lex monomial spaces. The last inequality is obvious. The middle
inequality holds since: by construction L;_; is the lexification of U;_1,
so |Lj_1| = |Uj—1| and by induction on the number of variables we
can apply Macaulay’s Theorem 41.7 to the ring S/z.

Thus, |L; + nL;_1| <|U; +nU;_4] for each j. This implies the
desired inequality [S1C,| < |S14,]. O

Compression Lemma 42.9. (Clements-Lindstrom) Let A, be an
Sq-monomial space. There exists a compressed monomial space Ty, in
Sy such that |T,| = |Aq| and |S1Ty| < |S144].

Proof. Suppose that A, is not i-compressed for some 1 < i < n. Let
C, be the i-compression of A,. By the above lemma, we have that
[Cql = |Aq] and [S1Cq| < [S14,].

Note that {C,} is greater lexicographically than {A,}. If C,
is not compressed, we can apply the argument above. After finitely
many steps in this way, the process must terminate because at each
step we construct a lexicographically greater S,-monomial space. Thus,
after finitely many steps, we reach a compressed monomial space. [l

43 Multicompression

In this section we describe a multigraded version of the technique of
compression.

Let A C {z1,...,2,}; its complement is A° = {x1,...,2,}\ A.
Denote by &, the direct sum over all monomials m in the variables
in A°. An S;,-monomial space C, can be written uniquely in the form

C, = @ m Vo,

m
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where V,,, is a monomial space in the ring k[A] = k[z; | z; € Al.

We say that C; is A-multicompressed if each V,,, is lex in k[A].

Furthermore, we say that C, is (j)-multicompressed if it is
A-multicompressed for every set A of size j. We say that C; is mul-
ticompressed if it is A-multicompressed for every set A.

A monomial ideal P is A-multicompressedif P, is A-multicom-
pressed for all ¢ > 0. The ideal is (j)-multicompressed if P, is
(j)-multicompressed for all ¢ > 0.

Example 43.1. Let A = {z1,z3} C {21,22,23,24} and C be
spanned by the monomials

2 2 2
Loy, X122, L1, L1X3, Ty, L1T4,T2T4

We have the decomposition

{Co} = 23{1} [ [ wo{an} [T Ha?, wras} [ 23{1}
HCL’4{£U1}HCL’2£L’4{1}.

We see that

{Vzg} = {1}7 {Vrz} = {xl}a
{Vaz} = {1}, {Vi} = {21, 2123},
{(Vesoud = {1}, {Vau} = {21}

are all lex, so Cy is {1, x3}-compressed.

Exercise 43.2. If C, is A-multicompressed in Sq, then S1Cy is
A-multicompressed in Sqy1.

Exercise 43.3. Let P be a monomial ideal and p be a number, such
that P has no minimal monomial generators in degrees > p. If P, is
A-multicompressed for every 0 < q < p, then P is A-multicompressed.
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Exercise 43.4. If L, is lex, then it is A-multicompressed for every

set A.

Exercise 43.5. If A’ is a subset of A and Cy is A-multicompressed
in Sy, then Cy is A’-multicompressed.

Exercise 43.6. If C, is (j)-multicompressed, then it is (i)-multicom-
pressed for every i < j.

Structure Theorem 43.7. [Mermin]
(1) A monomial space Cy is Borel if and only if it is (2)-multicom-
pressed.
(2) A monomial space Cy is lex if and only if it is (3)-multicom-
pressed.

Proof. First, we prove (1).
Let Cy be (2)-multicompressed. We will prove that it is Borel.
Let 2;m’ € Cy be a monomial and fix an 1 < i < j. Set A = {z;,z,}.

Write :U]m = xfz’m so that m is not divisible by either z; or z;.

J
s+1t1
J

Since V,,, is lex, it follows that $f+1$§ L' e {V,,}. Hence z;m’ € Cy.
Let Cy be a Borel monomial space. We will prove that it is (2)-

Hence z; E {Vin}. The monomial z; is lex-greater than z$x!

g

multicompressed. Fix a set A = {z;,z;} with 1 <7 < j. We will show

that each V, is lex. Let xjz} € Vp,. Let aﬁf+hx;_h be a monomial

that is lex-greater than xjx. Since zjzim € C,; and C, is Borel, it

follows that :L‘erhx;*hm € C,. Hence forhx;*h € V,,,. Therefore, V,,,
is lex.

Now, we prove (2). If C; is lex then it is (3)-multicompressed by
Exercise 43.4. Suppose that C; is (3)-multicompressed. We will show
that it is lex. By (1) and Exercise 43.6, it follows that C, is Borel.

Let u = z{" ... 29" be a monomial in C. Let v = 2" ... z5" be
a monomial that is lex—greater than v. We will show that v € C;. Let
7 be minimal so that a; # ¢;. Then a; < ¢; since v is lex-greater than

aq—1

u. Set w =z .. 27" and e = deg(ai .. x0) = aip1 + ..+ an.
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Since u € Cy, we can use that C, is Borel in order to conclude that
wrixi € Cq. Set A = {xj,x41,2,}. Then zi'xf , € Vi, As
Cy is {z, zi41, z, }-multicompressed, it follows that V,, is lex. The

a;+1, e—

. 1 - a; e a;+1,_e—1
monomial x;*""xf " is lex-greater than x; xf,,, so z;"" x;" € V.

Hence wz T a¢~! € C,. As C, is Borel it follows that v € C,. |

The following is an immediate corollary.

Structure Theorem 43.8. [Mermin)]
(1) If n < 3, then every monomial space is multicompressed.
(2) If n =3, then the multicompressed monomial spaces are exactly
the Borel spaces.
(3) If n > 3 then the multicompressed monomial spaces are exactly
the lex spaces.

The following lemma is proved similarly to the Compression
Lemma 42.9.

Lemma 43.9. Let A C {z1,...,z,}. Let A, be an S;-monomial

space. There exists an A-compressed monomial space Ty in Sy such
that |T,| = |A4| and |S1T,| < [S14,].

Lemma 43.10. Fiz a1l < j <n—1. Let A; be an Sy;-monomial
space. There ezists a (j)-compressed monomial space Cy in Sy such
that |Cy| = |A4| and |S1C,| < |S14,].

Proof. Apply Lemma 43.9 repeatedly if necessary. O

44 Green’s Theorem

Green’s Theorem describes the change in the Hilbert function when
we factor out a generic form.

For a monomial m define

max(m) = max{i | z; divides m}

min(m) = min{i | z; divides m}.
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For an S,-monomial space A, set
1i(Aq) = ‘ {m e {A,}| max(m) < i and 27 does not divide m }

ti(Ag) = | {m € {Ag} | max(m) < i} |.

Lemma 44.1. (Bigatti) If an S,-monomial space B, is Borel, then
{S1By} is the set

B=1]] zi{m e {B,} |max(m) <i}

i=1
and
(1B} | = > ti(By).
i=1
Proof. Let w € {B,}. For j > max(w) we have that zjw € B. Let

j < max(w). Then v = ij € By. So, Tjw = Tpax(w)v € B. U

Tmax(w)

Lemma 44.2. Let A, be a Borel S;-monomial space. Its n-compres-
sion Cy is Borel.

Proof. We use the notation in Construction 42.6. Consider the disjoint

unions

{4 = [T =7{u;}

0<j5<q

{Cy= T «%7{L}.

0<j<q
Since A, is Borel, it follows that
(S1/2n)U; € Ujsr -

We use induction on the number of variables, and assume that The-
orem 41.7(1) holds for n — 1 variables. Since |L;| = |U;|, by Theo-
rem 41.7(1) it follows that

[(S1/2n) Lj| < [(S1/20)Uj| < |Ujsa| = |Ljpa]-
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As both (S/z,)L; and L;i; are lex monomial spaces, we conclude
that (S1/2,)L; C Ljt1. Let 2277 m be a monomial in C, and m € Lj;.
Then for each 1 < i < n we have that ;m € (S1/x,)L; C Lj;1, so
i7" z;m € C,. If x, divides m, then for each 1 < ¢ < p we have
that % € L; since L; is lex. We proved that C,; is Borel. |

The main work for proving the Generalized Green’s Theorem 44.5
is in the following lemma.

Lemma 44.3. Let C; be an n-compressed Borel S;-monomial space,
and let Ly be a lex monomial space in S, with |L,| < |Cy|. For each
1<i<n and each 1 < j we have the inequality

rij(Lq) < 1ij(Cy).

Proof. Note that both L, and C, are Borel and n-compressed.

First, we consider the case i = n. Clearly, 1, 411(Lq) = |L,| <
|Cy|l = Tn,g+1(Cy). We induct on j decreasingly. Suppose that the
inequality 7y, j+1(Lq) < 74 ;+1(Cy) holds by induction.

If {C,} contains no monomial divisible by z7 then

T, (Lq) < Tnjr1(Lg) <7 ji1(Cyq) = 10,(Cy) -

Suppose that {C,} contains a monomial divisible by x7,. Denote by

e = x7'...x%, with e, > j, the lex-last monomial in C, that is
divisible by x7 .

Let 0 < p < j — 1. Let the monomial v = z{* ...z, " 'aP €

S, be lex-greater than e. Since C, is Borel, it follows that w =

en—p

n—1 €, —

T € C,. This is the lex-last monomial that is lex-greater

than e and z,, divides it at power p. Since C, is n-compressed and v
is lex-greater (or equal) than w, it follows that v € C.
For a monomial u, we denote by x7 ¢ u the property that z7
does not divide u. By what we proved above, it follows that
(%)
{ue {Cq}|$¥z Fu, ures et =[{ue {Sq}|$¥z E U, Uler €}
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Therefore,

Tn,j(Lq)
= Hue{Le} o) ¢ u, wmien e} + [{u € {Lg} 2], & u, u <iew €}
< Hu € {S}laf, ¢ u, umies e} + {u € {Lg} | 2], ¢ u, u <ieq €}
< Hue{Sq}lad & u, umiea e} + {u € {Lg} | u <1ea €}
< Hu € {Shlaf, ¢ u, umies e} + {u € {Co} | u <1ea €}
= Hu e {Sg} o] ¢ u, urieo e} + [{u € {Cy} [, & u, u <iew €}
= {ue {Co}la], ¢ u, wmiex e} + {u € {Co} | 2], ¢ u, u <iew e}
=7n,(Cq);
for the third inequality we used the fact that L, is a lex monomial
space in S, with |Lg| < |Cy]; for the equality after that we used the
definition of e; for the next equality we used (x). Thus, we have the

desired inequality in the case ¢ = n.
In particular, we proved that

() Tn1(Lg) < 7n1(Cy) -

Finally, we prove the lemma for all ¢ < n. Both {C,/x,} and
{Ly/x,} are lex monomial spaces in S, /x,, since C; is n-compressed.
By (**) the inequality 7,1(Lq) < 7,,1(Cy) holds, and it implies the
inclusion {C,/x,} D {Ly/z,}. The desired inequalities follow since

ri,i(Cq) = 1,5 (Co/ (Tig1,- - Tn))
ri,j(Lq) = T,‘7]‘(Lq/(1’i+1,...,$n)) . |:|

Comparison Theorem 44.4. Let B, be a Borel monomial space in
Sq. Let Ly be a lex monomial space in Sy with |L,| < |By|. We have
the inequalities

ti(Lq) < ti(Bq)
ri,i(Lq) < 1i5(Bg) -
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for each 1 <i<n and each 1 < j.

Proof. First, note that t;(A,) = r; 4+1(A4,) for any monomial space
A,. Thus, it suffices to prove the inequalities 7; j(Lq) < r;;(Bg).

We prove the inequalities by decreasing induction on the number
of variables n. Let Cj; be the n-compression of B,. Since Cy is Borel
and n-compressed by Lemma 44.2, we can apply Lemma 44.3 and we
get

ri,j(Lq) < 1i,5(Cy)
for each 1 < 7 < n and each 1 < j. It remains to compare ri,j(C’q)
and r; j(By). For i = n, we have equalities 7, ;(Cy) = 1y, ;(By). Let
i <n. Then r; ;(Cy) =1 ,;(Cy/xy) and r; ;(By) = 14 ;(Bg/y), where
Cy/xy = Ly is lex and B, /x,, = U, is Borel in S/z,,. So, by induction
the desired inequalities hold. O

Generalized Green’s Theorem 44.5. Let B, be a Borel monomial
space in Sy. Let L, be a lex monomial space in Sy with |Ly| < |By|.
The inequality

dimye (Sq/(Lq + ) S4-5)) = dimy (S4/(By + 2}, 5,-5))
holds for each 1 < j <q.

Proof. Note that the desired inequality is equivalent to

Tn,j(Lq) < 7 j(By) -

It holds by Theorem 44.4. |

Assume char(k) = 0. Let I be a graded ideal in S and R = S/I.
Fix an integer j. The affine space R; is irreducible, so every non-
empty Zariski-open subset is dense. We say that a property P holds
for a generic j-form if there exists a nonempty Zariski-open subset
U C R; such that the property P holds for every j-form in U.

Lemma 44.6. Assume char(k) = 0. Suppose that I is a graded ideal
in S and R = S/I. Fiz integers i and j. Let

t = max{dimy (g R;) | g € R;}
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There exists a non-empty Zariski-open setUd C R; such that dimy(h R;)
=t for every generic j-form h € U.

Proof. Let
U= {U S RJ‘ dlmk('URz) :t} - Rj.

Choose a basis fi,...,f, of R; and a basis gi1,...,9. of R;. The
elements f,g, span R;;;, so we can choose a subset that is a basis.
Write v = lepga ap fp, where the coefficients o, ..., q, are in k.
The multiplication map v : R; — R;4; has a matrix M whose entries
are linear forms in ay,...,a,. A j-form v is in U if and only if the
matrix M has a non-zero (¢ x t)-minor. When we vary v, we can think
of aq, ..., q, as indeterminates which take values in k. Therefore, the
complement of V' (I;(M)) is a Zariski-open set (here I;(M) is the ideal
generated by all (¢ x t)-minors of M, and V (I;(M)) is the set on which
all elements in I; (M) vanish). a

Exercise 44.7. Assume char(k) = 0. Let I be a graded ideal in S and
R = S/I. Fiz integers i and j. Let a = min{dimy((R/g);)|g € R;}.
Then dimg((R/h);) = a for a generic j-form h.

In Exercise 44.8 and Green’s Theorem 44.9 by a generic j-form,
we mean a j-form generic in the sense of Exercise 44.7.

Exercise 44.8. Assume char(k) = 0. Fiz an integer j. Then xJ, is a
generic j-form for every Borel ideal in S.

The following result is a straightforward corollary of Theorem 44.5
and Exercise 44.8.

Green’s Theorem 44.9. (Herzog-Popescu), [Gasharov] Assume that
char(k) = 0. Let B, be a Borel monomial space in S,. Let Ly be a
lex monomial space in S, with |Ly| < |By|. Let g be a generic form
of degree j > 1. The inequality

dimy. (Sq/(Lq +9S4;) > dimy, (S,/(By+95,-5)

holds.
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Green’s Hyperplane Restriction Theorem 44.10. [Green)]
Assume char(k) = 0. Let J be a graded ideal in S, and L be the lex
ideal with the same Hilbert function as J. Let h be a generic linear
form. For every q > 0 we have

dimy, (S/(L, h))q > dimy, (S/(J, h))q .

Proof. Assume that we work in generic coordinates, so we can take
x, = h. Note that when we take the initial ideal with respect to
revlex order we get in(J,x,) = (in(J), x,). Therefore, we can replace
J by B = in(J). By Theorem 28.4, the ideal B is Borel. Hence,
Theorem 44.5 yields the desired result. |

Green’s Theorem holds without the restriction char(k) = 0, see
[Gasharov].

45 Proofs of Macaulay’s Theorem

We are ready to prove Macaulay’s Theorem 41.7; namely, we will
prove that (1) in Proposition 41.6 holds. It is straightforward that
(1) holds if n < 2. Consider the case n > 3. Applying Lemma 43.10,
we conclude that there exist a (2)-multicompressed monomial space
C, such that |Cy| = |4,| and [51C,| < |S14,]. By Theorem 43.7 it
follows that Cy is Borel. Let L, be the lex monomial space for which
|Cyq| = |Lq|. We will prove that |S1Lg| < [S1Cy].

We will present two different proofs. The former uses Green’s
Theorem. The latter uses the structure theorem for compressed ideals.
A third proof by induction is given in [Mermin-Peeva].

Proof.
First Proof. This proof uses Green’s Theorem. The monomial space

C, is Borel. For an S,-monomial space D, recall that ¢;(D,) = ’ {me

{D,;}| max(m) <i} ‘ . We apply Lemma 44.1 to conclude that

(5100} | = Y00 md |(5iLg) | = 3 k).

= i=1
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Finally, we apply Theorem 44.4 and get | {S1Lq}| < [{51C,} |.

Second Proof. (Mermin) This proof is by compression. Let n > 3. Ap-
plying Lemma 43.10, we conclude that there exist a (3)-multicompressed
monomial space Cy such that |C,| = |A4,| and |S1Cy| < [S14,4]. By
Theorem 43.7 it follows that Cj, is lex, and we are done.

Suppose that n = 3. Let L, be the lex S;-monomial space such
that |L,| = |Cy|. As both L, and C, are Borel, we have

|Squ| = ‘Cq| + ‘Cq N k[, z2]| + |Cq N kz1]|
’Squ| = ‘Lq‘ + |Lq N K[z, z2]| + |Lq N k[z4]|

by Lemma 44.1. Note that |L,| = |Cy| by construction, and |Cy N
Kloall = 1Ly 0 Kloall = 1 as {Cy () Kfoa]} = {Lq 0 Klaa]} = af.
Therefore, we need to prove that |L, N k[z1,z2]| < |Cyq N k[z1, x2]|.
We will show that if a monomial v € L, is not in Cy, then v ¢ k[zy, z3].
Assume the opposite: let v = z{z§ € L, and v ¢ Cy. As L, # C,

we conclude that there exists a monomial 2% z§ 2§ € C, that is lex-
smaller than v. Hence o’ < a. Since C, is Borel, it follows that v € C,
which is a contradiction. a

46 Compression ideals

Proposition 41.6 makes it possible to work in our arguments by fo-
cusing on only two consecutive degrees at a time (instead of dealing
with the whole ideal). In this section we show that the compressions
can be assembled into an ideal.

Construction 46.1. Fix an 1 <7 < n. Let A be a monomial ideal
in S. For each ¢ > 0, let C; be the i-compression of A,. We call
C = ®o<q O, the i-compression of A.

As a corollary of Macaulay’s Theorem, we will prove the following
result.

Proposition 46.2.  Let A be a monomial ideal in S and fix an
1 <i<n. Its i-compression C' is an ideal.
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Proof. We use the following notation. For each ¢ > 0 we have a
disjoint union

{Ag = II «I7{U}y

0<j<q

where each U} is a monomial space in (S/z;);. Let

{cy=II «I7{Lh

0<j<q

be the i-compression of A,. Thus, L? is the lexification of U]f’ inS/x;.
The i-compression of A is C' = @g<4 Cy.

Fixag>0anda0<j<gq Letmec xg_ij be a monomial.
We will prove that S1m € C.

We will show that (S1/z;) LT C L?ﬂ. Both (S /x;)Lj and L?ﬁ
q+1
j+1

it suffices to show that [(S1/z;)L]| < |L5ﬁ\ This first inequality
below follows from Macaulay’s Theorem, and the second inequality

are lex monomial spaces. So, in order to show that (S1/2;)Lj C L

holds since A is an ideal:
|(S1/2:) LI < |(S1/a)UR| < [US| = L3

Since (S1/x;)Lj C L;’ﬁ, it follows that (Sy/z;)m € C.

It remains to prove that z;m € C. We will show that L] C L?H.
Both LY and L;H are lex monomial spaces in (S/x;);. So, in order
to show that LY C L?H it suffices to show that |Lj| < |L§’+1\. Since

A is an ideal, we have that U C UJ‘-’H. Hence
+1 41
LI = U < U™ = LT .

The inclusion L] C L?H implies that z;m € C. |

We will see that the situation is similar for multicompression.

Construction 46.3. Fix a set A C {z1,...,2,}. An S;-monomial
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space A, can be written uniquely in the form

A, :@ m Uy,

m

where U, is a monomial space in the ring k[A] = k[z; | x; € A]. For
each m, let L,, be the lexification of the space U,, in k[A]. The
monomial space C; defined by

Cq:@ m Ly,

is the A-compression of A,. Clearly, |C,| = |4,].
Let A be a monomial ideal in S. For each ¢ > 0, let C, be the
A-compression of A;. We call C' = @p<, C,; the A-compression of

A.

The following result can be proved similarly to Proposition 46.2.

Proposition 46.4. Let A be a monomial ideal in S and fix a set
A CA{z1,...,z,}. The A-compression C of A is an ideal.

47 Ideals with a fixed Hilbert function

The problem “What can be said about the properties of ideals with a
fixed Hilbert function?” has received a lot of attention. Evans raised
the problem to study the properties of the Betti diagrams of all graded
ideals in S with a fixed Hilbert function; since the problem is very
complex in general, people focused on maximal and on minimal Betti
numbers. We will show that a lex ideal attains the greatest Betti
numbers among all ideals with a fixed Hilbert function.

For simplicity, we assume throughout this section that char(k) =
0. If M is a monomial ideal, then G(M); stands for the set of mono-
mials of degree j in the minimal system of monomial generators of M,
and furthermore we denote by |G(M);| the number of monomials in
G(M);.
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Let J be a graded ideal in S. By Macaulay’s Theorem 41.7, there
exists a lex ideal L with the same Hilbert function as J. The next
result follows by Proposition 41.6.

Proposition 47.1. For every j > 0, the number of elements of degree
J in a minimal system of homogeneous generators of J is < |G(L),].

This property extends to all graded Betti numbers as follows.

Theorem 47.2. (Bigatti, Hulett) Assume char(k) = 0. Let J be a
graded ideal in S. If L is the lex ideal with the same Hilbert function
as J, then

b7 (J) < b2y (L)  for all i, j.

Remark 47.3. It is proved in [Pardue| that Theorem 47.2 holds
without the assumption char(k) = 0.

Note that the minimal free resolution and the Betti numbers of a
lex ideal are given by the Eliahou-Kervaire resolution, see Section 28.
Recall that for an S,-monomial space A, we set

ti(Ag) = | {m € {4} | max(m) <i}|.

Set

wi(Aq) = ti(Ag) — ti1(Ay) = | {m € {Ag}| max(m) = i}].

Lemma 47.4. If M is a Borel ideal in S, then bej(M) is equal to

i (") - won (270 - S wan (),

p=1 p=1

Proof. By Corollary 28.12, we have that

b, (M) = > <max(7?)_1):

meG(M); p

Z wicon;) ("),

7
1
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e G(M); = {M;} \ {S1 M;_1}
we obtain
biS:i+j(M) = Zn: up(Mj)<p; 1) B - up(S1 Mj_1) (p; 1> )

p=1 p=1
Furthermore, since M is Borel, by Lemma 44.1 we have
{S1 M1} =[] 2p{m € {M;_1}| max(m) < p},
p=1

and hence wu,(S1 M;_1) = t,(M;_1). Therefore,

75 (M)
= 32 (000 a0 ) (7 1) = St (V)
_ ) <n 1) _: tp(M])<];:11) - pz: tp(M]—l)(p; 1>

Proof of Theorem 47.2.  We will present the proof in [Chardin-Gasha-
rov-Peeva]. Let M be the generic initial ideal of J with respect to a
fixed term order (say, revlex). It is Borel, by Theorem 28.4. Thus,
there exists a Borel ideal M with the same Hilbert function as J such
that
b7 i1 (J) < b8, (M) for all d,j.

Both M and L are Borel ideals. Use the formula for the Betti

numbers in Lemma 47.4 and apply 44.4 to obtain the inequalities

bf,iﬂ(M) < bf,m(L)- t

Theorem 47.5. There is an upper bound on the reqularities of all
graded ideals with a fixed Hilbert function.
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Proof. By Remark 47.3, it follows that the regularity of the lex ideal
with that Hilbert function is the smallest upper bound. O

Problem 47.6. [Geramita-Harima-Shin| Does there exist an ideal
that has greatest graded Betti numbers among all Gorenstein artinian
graded ideals with a fized Hilbert function?

Next, we will discuss the following question: Assume char(k) =
0. Let J be a graded ideal in S and let L be the lex ideal with the same
Hilbert function. How do the graded Betti numbers of J and L differ?
We would like to obtain more precise information than Theorem 47.2.

The Hilbert function can be computed from the graded Betti
numbers by Theorem 16.2 and we get

50 i (Z1)07(S/ ) ¢
B TR

Zdlmk(S/J)] tj

=0

3520 Lio ()07, (S/L) ¥
(10 |

7=0

These equalities imply that the graded Betti numbers bf: ;(8/J) and
bf ;(S/L) are related as described below.

Given a sequence of numbers {c, ,}, we obtain a new sequence
by a cancellation as follows: fix a ¢, and choose p < t so that
one of the numbers is odd and the other is even; then replace ¢, 4
by ¢p.q — 1, and replace ¢; 4 by ¢,y — 1. The equalities above imply
that the graded Betti numbers bf: ;(S/J) are related to the graded
Betti numbers bf: ;(S/L) by a sequence of cancellations. This has been
observed and applied in order to study the Betti diagrams of ideals

with a fixed Hilbert function. Recall the definition of a consecutive
cancellation in Section 22.

Theorem 47.7. [Peeva 2| Let J be a graded ideal and L be the lex
ideal in S with the same Hilbert function. The graded Betti numbers
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b7 ;(S/J) can be obtained from the graded Betti numbers by ;(S/L) by
a sequence of consecutive cancellations.

Extending Hartshorne’s method [Hartshorne] Pardue proved the
next result. There, by a sequence of deformations we mean a compo-
sition of deformations (applied one after another).

Theorem 47.8. [Pardue] Every two graded ideals in a polynomial
ring with the same Hilbert function are connected by a sequence of
deformations over A}.

More precisely, in the notation of 47.7 Pardue proved that J and
L are connected by a sequence of deformations of the following three
types:
(1) generic change of coordinates
(2) deformation between an ideal and an initial ideal; see Theo-
rem 22.8
(3) polarization and then factoring out generic hyperplane sections;
more precisely, applying oy, defined in [Pardue, Section 4].
We are ready to prove Theorem 47.7.

Proof. The graded Betti numbers are preserved under (1). For (2) we
apply Theorem 22.9. By Theorem 21.10, we have that (3) preserves
the graded Betti numbers as well. O

Theorem 47.7 can be used in order to prove that certain Hilbert
functions are not attained within a given class of ideals.

It should be noted that the there are many examples where the
existence of possible consecutive cancellations does not imply the ex-
istence of an ideal for which those cancellations are realized.

Corollary 47.9. Let L be a lex ideal. Suppose that L does not have
two minimal monomial generators in consecutive degrees. If J is a
graded ideal with the same Hilbert function as L, then J has the same
graded Betti numbers as L.

The following can be explored.

Open-Ended Problem 47.10. (folklore) Let J be a graded ideal in
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S and let L be the lex ideal with the same Hilbert function. Which con-
secutive cancellations occur as cancellations when we are comparing
the graded Betti numbers of L and J, in the case when some additional
properties of J (e.g. monomial, artinian, Gorenstein, compressed) are
assumed?

Example 47.11. In contrast to Theorem 47.2, there exist examples
where no ideal attains smallest Betti numbers among the ideals with
a fixed Hilbert function. The following examples are proved in [Dodd-
Marks-Meyerson-Richert| and were noted by Gelvin-LaVictore-Reed-
Richert. Let

J = (z122, 123, Tok3, T3Ta, T3L5, T3T6, T4Ts) -

Then:
(1) Among the graded ideals with the same Hilbert function as J,
there exists no ideal with smallest Betti numbers.
(2) Among the squarefree monomial ideals with the same Hilbert
function as J, there exists no ideal with smallest Betti numbers.

48 Gotzmann’s Persistence Theorem

Gotzmann’s Persistence Theorem is a major result on Hilbert func-
tions. It shows that once an ideal achieves minimal growth then it

grows minimally forever after.

Gotzmann’s Persistence Theorem 48.1. (Gotzmann) Let J be
a graded ideal in S, and L be the lex ideal with the same Hilbert
function as J. Suppose that q is an integer such that the following
two conditions are satisfied:

(1) J is generated in degrees < q.

(2) dimy(Jg41) = dimg(S1Lg).

We have that

for all i > 1. Equivalently, L is generated in degrees < q.

Proof. The proof is from [Gahsarov-Murai-Peeva 2]. It uses consec-
utive cancellations. Assumption (2) means that L has no minimal
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generator in degree ¢+ 1. We will show that L has no minimal mono-
mial generator in degree ¢+2. Assume the opposite, then we have that
b7 ,412(S/L) # 0. On the other hand, we know that J does not have

a minimal monomial generator in degree ¢ + 2, so bqu +2(8/J) = 0.
Since b7, 5(5/J) = 0 is obtained from b7 ,,,(S/L) # 0 by consecu-
tive cancellations by Theorem 47.7, it follows that b5 ,,,(S/L) # 0.

The ideal L is Borel, so the minimal free resolution of S/L is the
Eliahou-Kervaire resolution 28.6. Since L does not have a minimal
monomial generator in degree ¢ + 1, it follows that b3, ,(S/L) = 0.
This is a contradiction.

We proved that L does not have a minimal monomial generator
in degree ¢+2. Therefore, dimy (J,42) = dimy(S1Lg+1). The theorem
holds by induction on degree. O

Example 48.2. Consider the ideal J = (y2,2?) in A = k[z,y, z]. We
will compute the lex ideal L with the same Hilbert function as J. The
k-vector space J has basis 32, z2. Hence the k-vector space Lo has ba-

2 3

sis #2, xy. The k-vector space Js has basis 12, vz, y%z, 22, 2%y, 23,

3 2

so it is 6-dimensional. Therefore, L3 has basis 3, 2%y, x22, 2y?, vyz,

xz%. So far we have found that the lex ideal has minimal generators
2% zy, x22.

The k-vector space (A/J), has basis 2%, 23y, 232, 2%yz. Hence
the k-vector space (A/L)4 has basis 32, y?22, yz3, z%. Therefore, L,
is spanned by A;Ls and 3.

In degree 5, the k-vector space (A/J)s has basis 2%, zty, 1%z, 23y2.
Hence, the k-vector space (A/L)s has basis y322,4%23, yz*, 2°. There-
fore, Ls is spanned by A;L4. Thus, L has no minimal generators in
degree 5.

By Gotzmann’s Persistence Theorem 48.1 it follows that L =
(2, 2y, w22, y4).

Gotzmann’s Regularity Theorem 48.3. Let J be a graded ideal
in S. Let q be an integer such that the following two conditions are
satisfied:

(1) J is generated in degrees < q.
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(2) dimk(Jqul) = dimk(S’qu).
Then regg(J) < g.

Proof. By Remark 47.3, Corollary 28.13, and Theorem 48.1 we get
regg(J) <regg(L) <gq. a

Let J be a graded ideal in S, and L be the lex ideal with the
same Hilbert function as J. We say that J is a Gotzmann ideal if

the equality
dlmk(Sl Jq) = dlmk(Squ)

holds for every ¢ > 0.

Exercise 48.4. Let J be a graded ideal in S, and L be the lex ideal
with the same Hilbert function as J. The ideal J is Gotzmann if and

only if J and L have the same number of minimal generators.

Theorem 48.5. (Herzog-Hibi) Let J be a graded Gotzmann ideal
in S, and L be the lex ideal with the same Hilbert function as J. We
have equalities of graded Betti numbers

b5 ;(S/J) = b7 ;(S/L)  for alli,j > 0.

Proof. Let p be the smallest degree in which L has a minimal mono-
mial generator. For ¢ > p, denote by J(g) the ideal generated by all
monomials in J of degree < ¢. Similarly, denote by L(q) the ideal
generated by all monomials in L of degree < q. By Gotzmann’s Per-
sistence Theorem 48.1, for each ¢ > p the ideals J(q) and L(q) have
the same Hilbert function. Furthermore, by Remark 47.3 it follows
that the graded Betti numbers of S/L(q) are greater or equal to those
of S/J(q).

All Betti numbers in the proof are over S. By Theorem 16.2 the
graded Betti numbers b; ;(S/T') for a homogeneous ideal T and its
Hilbert function are related by

L Xt Yo (CDbu(S/T) ¢

> dimg(S/T) D

=0
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Therefore, for each ¢ > p we have that

n

(+) z:ZX—U(mA&U@D—mA&m@»>ﬂ:o,

7=0 i=0

By induction on ¢ we will show that the graded Betti numbers
of S/L(q) are equal to those of S/J(q).

First, consider the case when ¢ = p. By the Eliahou-Kervaire
resolution, it follows that L(p) has a p-linear minimal free resolution,
that is, b; ;(S/L(p)) = 0 for j # i+ p — 1. Since the graded Betti
numbers of S/L(p) are greater or equal to those of S/J(p), it follows
that b; ;(S/J(p)) = 0 for j # i+p—1. By (*) we obtain the equalities
of graded Betti numbers

b1 (S/T(p)) = bis(S/L(p)) for alli,j.

Suppose that the claim is proved for q. Now, we consider the
ideals L(q+ 1) and J(q+ 1). For j < i+ ¢, we have that

bi ;(S/L(q+1)) = bi;(S/L(q)) = bi,;(5/T(q)),

where the first equality follows from the Eliahou-Kervaire resolution
and the second equality holds by induction hypothesis. As J(q +
1)s = J(q)s for s < g by construction, and since b; ;(S/J(¢q)) = 0
for j > i+ g, we conclude that b; ;(S/J(q+ 1)) = b; ;(S/J(q)) for
7 <1+ q. Hence,

b@j(S/L((] + 1)) = bw(S/J(q + 1)) for j<i+gq
b; ;(S/L(q¢+ 1)) =0 for j > i+ ¢, by the Eliahou-Kervaire resolution.

Since the graded Betti numbers of S/L(q + 1) are greater or equal to
those of S/J(q+ 1), we conclude that

i (S/L(g+1)) for j <i+gq
i.i(S/L(g+1))=0forj >i+gq.
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By (%) it follows that

5 (1) (Brsra$/(0) s/ L@ ) 49 = 0.

=0

Hence
b;j(S/J(q+1)) =b;;j(S/L(g+1)) foralli,j,

as desired. 0

Let J be a graded ideal in S. We say that J is componentwise
linear if for every ¢ > 0 the ideal generated by J, has a g¢-linear
minimal free resolution. By Theorem 48.5, we have that a Gotzmann

ideal is componentwise linear.

49 Numerical versions

Since lex ideals are highly structured, it is easy to derive the inequal-
ities characterizing their Hilbert functions. As an application, we
discuss numerical versions of some results proved earlier.

Note that by convention (§) = 0 if a < b.

Lemma 49.1. Let q be a positive integer. For every p € N there
exist numbers sq > ... > s1 > 0 such that

p= () (o) e ()

Proof. The proof is by induction. Set

e ()51}

If p = (sq‘?), then set s; = i — 1 for each 1 < ¢ < ¢. Suppose that

p— (s;) > (. By induction, we can find s, > ... > s; > 0 such that

()G )
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It remains to show that s, > s,_1. Assume the opposite. Then we
obtain

()= ()= () -6)
()= )

which is a contradiction. O

This is called the ¢’th Macaulay representation of p. The
numbers sq,...,s, are called the ¢'th Macaulay coefficients of p.

Example 49.2. The 3’rd Macaulay representation of 14 is

5 3 1
14 = .
<3) * <2) i <1>
Exercise 49.3. The q’th Macaulay coefficients of p are unique.

Set 0(9 = 0 and
(@) _ Sq+1 Sq_1—|—1 s1+1
P <q—|—1 + g—1+1 et 1+1)/)°
Proposition 49.4. Let L be an ideal generated by a lex segment in
S,. If p=dimy (S/L), then dimy, (S/L)1 = p'?.
Proof. Set j = min{i|xz! ¢ L}. We have that the monomials
{u € S, is a monomial |u <je, 2] } = klzj,..., 2],

are non-zero monomials in (S/L),. The number of such monomials is

dlmkk/‘[l']”xn}q — (n_(]]+Q> — <5;)a

where s; = n — j + ¢. Furthermore,

(@j s an){ulu Rjee 2§ 4 } = klrg, . 20]em
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are non-zero monomials in (S/L)441. The number of such monomials

, n—j+q+1 sq+1
d klx;, ... = = .
1My [1'], 755n]q+1 ( q+1 > (q+1

18

Let m be the lex-greatest monomial in S, but not in L. Hence
atq _, €L and (1? 1 e M > len :r: . Set

D:{UE{Sq}|mtlezu>_lez .'L‘j[}

F={ue{S}|zf ez u}.

All monomials in D are divisible by x;_1, so we can write D = x;_1D’.
Now,

dimy, (S/L)q = [D'| + | 7|
dlmk; (S/L)q+1 = |(ZL‘J, ,le‘n)l D,| + ‘(l'], ,Zlfn)l .7:|

We showed that |F| = (sq) and |[(zj,...,z, 1 F| = (S‘ZH) By induc-
tion on the degree, we have that

D= (") (T
e (q—1>+ +<1

871-1-1 81+1
e xzan D=1 .
(e = (7 e (7))

In order to finish the proof, we need to verify that s,,...,s; are

and

the Macaulay coefficients, that is, we have to verify that s, > ... > s;.
The inequalities s,—; > ... > s; hold by induction. So we have to
check that s, > s4_1.

We have that s, = n—j+gq, where j = min{i| 2] ¢ L }. Similarly,
Sg—1 =n—c+ (¢ — 1), where

c=min{i|z!" ¢ D'} = minf{i|z; 2" ¢ D}

= min{i|z; 129 ¢ L,i>j}.
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Therefore, ¢ > j. Hence sq—1 =n—c+qg—1<n—j+q=s, O

The above proposition and Macaulay’s Theorem imply the fol-
lowing result.

Numerical Version of Macaulay’s Theorem 49.5. Let J be a
graded ideal in S. Then

dimy, (S/J);11 < (dimy, (S/);)9 for j>0.

Similarly, the above proposition and Gotzmann’s Persistence
Theorem 48.1 imply the following result.

Numerical Version of Gotzmann’s Theorem 49.6. Let J be a
graded ideal in S. Let q be an integer such that the following two
conditions are satisfied:

(1) J is generated in degrees < q.

(2) dimy (S/)g11 = (dimy (S/.7),) .

Then

dimy, (8/) ;41 = (dimy (/7)) for j > q.

Numerical Version of Gotzmann’s Regularity Theorem 49.7.
Let J be a graded ideal in S. Let q be an integer such that the following
two conditions are satisfied:

(1) J is generated in degrees < q.

(2) dimg (S/J)g11 = (dimy (S/.7),) .
Then regg(J) < gq.

Let « = {ap, a1, ...} be a sequence of non-negative integer
numbers. We say that « is a Macaulay sequence if ag = 1 and

g1 < ozé,q> for each ¢ > 1.

Corollary 49.8. Let a ={ap =1, a1 < n, ag, ...} be a sequence
of non-negative integer numbers. There exists a graded ideal J in S
with dimy, (S/J); = «; for all i > 0, if and only if, o is a Macaulay
sequence.
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Proof. Note that ag = 1 as Sy = k. Furthermore, oy < n since
dimy S = n.

Suppose that there exists a graded ideal J in S with dimy, (S/J);
= oy for all i« > 0. By Macaulay’s Theorem, there exists a lex ideal
L with dimy (S/L); = «; for all i > 0. Applying Proposition 49.4
we conclude that if L has no minimal monomial generators in degree

g + 1 then we have the equality oy = a§q>

the inequality ogy1 < Ozéq).

, and otherwise we have

Suppose that a is a Macaulay sequence. Let L, be the lex seg-
ment in S, such that dimy (S/L), = «,. By Proposition 49.4, it
follows that L, 2 S1 Ly. Hence L = ®4>0 L4 is an ideal. It has the
desired Hilbert function. O

Corollary 49.9. Let J be a graded ideal in S. The Hilbert polyno-
mial of S/J has the form

t+ t+ a,— t+
hs/J(t)z( CL‘1’>+< % 1)+...+< “1).
aq Ag—1 aq

for some ag > ... > a; > 0.

Proof. Let L be the lex ideal with the same Hilbert function as J.
Let ¢ be the maximal degree in which L has a minimal monomial
generator. Denote by N the ideal generated by L,. It follows that
dimy, (J;) = dimy (N;) for i > ¢q. Hence S/J and S/N have the same
Hilbert polynomial.

Let s, > ... > s1 > 0 be the Macaulay’s coefficients of the ¢’th
Macaulay representation of the number dimy, (S/N),.

By Proposition 49.4, it follows that the Hilbert polynomial of
S/N is

Sqg+t Sqg—1 1+ 1 s1+1t
h t)y=("1 a . .
sn(g+1) <q+t>+<q—1+t>+ +<1+t>

Set a; = s; — i for each 7. Hence

t+q+aq t+q—1+a, t+1+am
h t) = .
s/ (a+1) ( g+t >+( g1+t )T T 14
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Therefore,

t+a t+ a,_ t+a
hs/N(t)Z( . q>+< tq 1)+...+( . 1)
:<t—|—aq>+<t+aq_1>+H.+(t+a1).
Qg Qg—1 a1

Corollary 49.10. Suppose that the field k is infinite. Let
g(t) =a t" + ...+ art + ag
g(t)
(L=t
is equal to Hilbg, ;(t) for some graded Cohen-Macaulay J if and only

g(1) #0, and a; € Z for alli. There exists ap € N such that

if ag, a1 <n, ..., a, s a Macaulay sequence of positive numbers.

t
Proof. Let Hilbg, ;(t) = (1—32%' If S/J is Cohen-Macaulay,

then by 20.1 there exists a regular sequence of linear forms of length
dim(S/J). Hence, g(t) is the Hilbert series of an artinian graded
quotient of S. Therefore, ag,a; < n,...,a, is a Macaulay sequence of
positive numbers.

On the other hand, suppose that ag,a; < n,...,a, is a Macaulay
sequence of positive numbers. Therefore, there exists an artinian
graded quotient S/J of S with Hilbert series g(t). |

The following problems have been studied, cf. [Valla].

Problems 49.11.
(1) Characterize the Hilbert functions of graded artinian Gorenstein
quotients of S.
(2) Characterize the Hilbert functions of graded Cohen-Macaulay do-
mains that are quotients of S.
(3) Characterize the Hilbert functions of sets of points in uniform
position.

A problem of this type is also the Eisenbud-Green-Harris Con-
jecture, discussed in Section 53. Another conjecture of this type is



50 Hilbert functions over quotient rings 193

Froberg’s conjecture.

Froberg’s Conjecture 49.12. (Froberg) Let fi,..., f. be generic
forms in S of degrees ay,...,a,, and let T = (f1,..., fr). The Hilbert
series of ST is

[Ticic, (1 —1%)
a-o0 |

Hilbg,r (t) =

where | | means that a term c;t* in the series is omitted if there exists
a term cjtj with j < and negative coefficient c;. (Here r > n is the
interesting case, since for r < n we have that fi,..., f. is a regular

sequence. )

Set Oy =0 and

Sqg— 1 Sg—1 — 1 s1—1
p<q>:<qq )+(qq—1 >+"'+< 1 >

Exercise 49.13. Let L be an ideal generated by a lex segment in S,.
If p=dimy, (S/L),, then

dimy, (S/(L,2n)), = Pig) -

Green’s Hyperplane Restriction Theorem 44.10 and 49.13 imply
the next result.

Numerical Version of Green’s Hyperplane Restriction The-
orem 49.14. Let J be a graded ideal in S, and h be a generic linear
form. If p = dimy, (S/J),, then

dimy, (S/(J,h))q < p(gy -

50 Hilbert functions over quotient rings

The main idea in Macaulay’s Theorem is that every Hilbert function
is attained by a lex ideal. One can wonder for what quotient rings this
idea works out. If I is a monomial or toric ideal, then we can define
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the notion of a lex ideal in the quotient ring R = S/I. There might be
other classes of rings for which one can introduce a meaningful notion
of lex ideals, that is, find a class of ideals which attain all Hilbert
functions and which are defined in a nice way (and call such ideals lex
ideals).

It is easy to find quotient rings over which Macaulay’s Theorem
does not hold. For example, there exists no lex ideal with the same
Hilbert function as the ideal (ab) in the quotient ring kla, b]/(a?b, ab?)
by [Mermin-Peeva 2, Example 2.13]. Since the trouble is sometimes in
the degrees of the minimal generators of I, it makes sense to relax the
problem to Problem 50.1(1). Furthermore, in view of Hartshorne’s
Theorem that every graded ideal in S is connected by a sequence of
deformations to a lex ideal, it is natural to raise Problem 50.1(2).
Problem 50.1(3) is motivated by Theorem 47.2 which shows that a
lex ideal attains the greatest graded Betti numbers among all graded
ideals in S with the same Hilbert function.

Open-Ended Problems 50.1. [Mermin-Peeva, Mermin-Peeva 2]

(1) Let p be the maximal degree of an element in a minimal homo-
geneous system of generators of I. Find classes of graded ideals
I so that every Hilbert function over R = S/I of a graded ideal
generated in degrees > p is attained by a lex ideal.

(2) Let J be a graded ideal in R, and L be a lex ideal with the same
Hilbert function. When is J connected to L by a sequence of
deformations? What can be said about the structure of the Hilbert
scheme that parametrizes all graded ideals in R with the same
Hilbert function as L?

(3) Let J be a graded ideal in R, and L be a lex ideal with the same
Hilbert function. Find conditions on R and/or J so that the
Betti numbers of J over R are less than or equal to those of L.

Furthermore, one can also ask for generalizations or extensions of
the Gotzmann’s Persistence Theorem and the Lex-Plus-Powers Con-
jecture.

Open-Ended Problem 50.2. (Peeva) Find classes of graded ideals
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I so that Gotzmann’s Persistence Theorem holds over R.

Open-Ended Problem 50.3. [Mermin-Peeva] Let J be a graded
ideal in R, and L be a lex ideal with the same Hilbert function in R.
Denote by J and L the preimages of J and L in S. Find conditions
on R and/or J so that the Betti numbers of J over S are less than or

equal to those of L. (We say that Lisa lex-plus-I ideal.)

As we have seen in Section 51, Hilbert functions over an exterior
algebra coincide with f-vectors of simplicial complexes. The situation
over an exterior algebra is well-studied and we have the following
results.

Theorem 50.4. Let E be a standard graded exterior algebra on n
variables of degree one.

(1) (Kruskal-Katona) For every graded ideal in E there exists a lex
ideal with the same Hilbert function.

(2) [Peeva-Stillman 3] The Hilbert scheme, that parametrizes all graded
ideals with a fixed Hilbert function, is connected. Fach graded
ideal in E is connected by a sequence of deformations to the lex
ideal with the same Hilbert function.

(3) [Aramova-Herzog-Hibi 2| Fach lex ideal in E attains mazimal
Betti numbers among all graded ideals with the same Hilbert
function.

(4) [Mermin-Peeva-Stillman] Each lez-plus-(z%,...,22) ideal in S
attains maximal Betti numbers among all graded ideals contain-
ing (z3,...,22) and with the same Hilbert function.

(5) [Aramova-Herzog-Hibi 2] Gotzmann’s Persistence Theorem holds
over E.

51 Squarefree ideals plus squares

In this section, we study how the Hilbert function and the minimal
free resolution change when we add the squares of the variables to a
squarefree monomial ideal. This relates to (4) in Theorem 50.4.

Throughout the section A is a simplicial complex on the vertex
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set {z1,...,2n}. Set ¢ = dim(A) + 1.
The Stanley-Reisner ideal (in S) of A is
IA = (ZL‘Z‘1 l’lp|{l'll,,$zp} ¢ A)

Fach squarefree monomial ideal in S is the Stanley-Reisner ideal of
some simplicial complex on vertex set {x1,...,z,}.

The Stanley-Reisner ring of A is Ra = S/Ia. The ring

Qa =Ra/(z1,...,220) = S/(Ia + (a1,...,2}))

is closely related to Ra. We say that In+(2%,...,22) is a squarefree-

rrn

plus-squares ideal.

First, we study how the Hilbert function changes when we add
the squares of the variables to a squarefree monomial ideal.

Construction 51.1. Consider the correspondence
@ :xy - x5, — the face with vertices {z;,,...,2;,} .

from the set of squarefree monomials in n variables to the faces of the
simplex on n vertices. Clearly, ¢ is a bijection.

The f-vectorof Ais (f_1, fo,..., fe—1), where f; is the number
of faces of dimension ¢ in A. Note that f_; = 1, since a simplicial
complex has one empty face. The polynomial f(t) = > ;<. fi—1t"
is called the f-polynomial. o

Proposition 51.2.
Hilbg, (t) = Y fioat' = f(t).

0<i<c

Proof. The bijection in Construction 51.1 induces the bijection

v : the monomials in Qa = Ra/ (22,...,22) — the faces of A.
a

Proposition 51.3.
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Proof. Let m be a squarefree monomial in Qa of degree i. Denote
supp(m) = {zj|x; divides m}. All monomials in S with the same
support as m are monomials in Ra and they are exactly the monomials

%

1=ty

in mklxj|z; € supp(m)]; hence they contribute to Hilbg, (%).

Therefore,

Hilbr, (t) = > fiz (11)@‘ = Hilbg,, (%)

O

Theorem 51.4. If A and A’ are simplicial complexes on n vertices,
then

HﬂbRA (t) = HﬂbRA, (t) S HﬂbQA (t) = HﬂbQA, (t) .

Theorem 51.5.
dim(Ra) = dim(A) + 1.

Proof. We have that

t _ ti(l_t)cfi
-~ 2 A

Hilbg, () = > fi1

0<i<e 0<i<e
; — . h(t)
Set h(t) = > gcice fim1t'(1 —1)°7". Then Hilbg, (t) = e and
h(1) = f.—1 # 0. Hence dim(Ra) = ¢ = dim(A) + 1. |

Recall that the polynomial h(t) above is called the h-polynomial.

Corollary 51.6. h(t) = (1 —t)°- f(%)

Next, we study how the Betti numbers change when we add the
squares of the variables to a squarefree monomial ideal.

Theorem 51.7. Let N be a squarefree ideal. Set P(i) = (23,...,2%)

Pk

and P(0) = 0. For each 0 < i < n, the mapping cone of the short
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exact sequence

0— S/((N+P(i)) : xiﬂ)iﬁ/(NJrP(z‘)) — S/(N+P(i+1)) — 0
yields a minimal free resolution of S/(N + P(i+1)).

This theorem shows how to obtain the Betti numbers of N +

(22,...,22) starting from the minimal free resolution of N and adding

the squares one after another. At each step, we use a mapping cone.
Proof. First, note that

(N + P(0) :a2,) = (N + P@) : 2i41)
because the ideal N 4 P(i) is squarefree on the variable x;,1. Thus,
the sequence above is exact.

Since the ideal N + P(i) is squarefree on the variable x;,1, by
Taylor’s resolution, it follows that the Betti numbers of S/ (N + P(i))
are concentrated in multidegrees not divisible by «Z, ;. On the other
hand, the first map in the short exact sequence is multiplication by

z? +1- Therefore, there can be no cancellations in the mapping cone.
Hence, the mapping cone yields a minimal free resolution. O

The disadvantage of the above theorem is that we may change
the Hilbert function by adding some (but not all) of the squares.
That is, if N and N’ are two squarefree ideals with the same Hilbert
function, then N 4 P(i) and N+ P(i) may not have the same Hilbert
function. There are examples, when N + (22) and N’ + (22) have
different Hilbert functions. For example, consider the polynomial ring
kla,b,c,e] and let T be the ideal generated by the squarefree cubic
monomials; the ideal N = (ab, ac,bc) + T is squarefree Borel and the
ideal N" = (ab, ac,ae)+T is squarefree lex. The ideals N and N’ have
the same Hilbert function, but N + (a?) and N’ + (a?) have different
Hilbert functions. The next theorem shows how to use mapping cones
while preserving the Hilbert function.

Fora o C{z1,...,2,}, we set X, = Hzi@ ;.

Theorem 51.8. [Mermin-Peeva-Stillman] Let P = (z%,...,22) and
N be a squarefree monomial ideal.
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(1) We have the long exact sequence
0 — ®|g)=n S/(N: Xg)&

— Boj=i S/(N :%X,) 5 Bjgjmi1 S/(N :1%X5) — ...

Y1

— Olgj=1 5/(N :Xs) = B1<j<n §/(N = 35) —
— ®jo|=0 S/(N :x,) =S/N — S/(N+P) — 0

with maps ; the Koszul maps for the sequence 3,...,x2, and

o CA{l,...,n}.
(2) S/(N + P) is minimally resolved by the iterated mapping cones
from (x).
(3) Each of the ideals (N : x,) in (1) is a squarefree monomial ideal.
(4) For the graded Betti numbers of S/(N + P) we have

bya(S/(N+ P)) = 3 (Z bpi,s2i(5/(N5Xa))>-

0<i<p Mo|=i
Proof. First, note that (N : x2) = (N : x,,) is squarefree since N is
squarefree.

By Construction 14.1 and Theorem 14.7, the exact Koszul com-

plex K for the sequence 22, ..., 22 has the form

0—>69|0|:n A

— Dio|=i S Bloj=im1 S — ...

$P1
= Blgj=1 S = B1gj<n S —

— B|g|=0 S=8—>S8/P —0.

Write K = K’ & K”, where K’ consists of the components of K in
all multidegrees m ¢ N, and K" consists of the components of K in
all multidegrees m € N. Note that both K’ and K" are exact by 3.7.
We will show that (x) coincides with K'.

By 14.1, K is an exterior algebra on variables eq,...e,. Let
mej, A ... Aej be an element in K; and m be a monomial. The
multidegree of the variable e; is l‘?; hence, the multidegree of me;, A
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... Nej, is mar:f1 :173 Now, mej, A ... ANej, € K’ if and only if

ma? ...x5 ¢ N, if and only if ma;, ... 2;, ¢ N, if and only if m ¢

(N :xj, ...zj,). Therefore,

K; - @\a\:i S/(N : Xa)

mej, N...Nej,—m€eS/(N:xj ...x;)

is an isomorphism. We proved (1).
We will prove (2). Denote by V; the kernel of ¢; : K, — K/ _;.
We have the short exact sequence

0—=Vi— @gj= /(N :%x5) = Vi_1 — 0.

Each of the ideals (N : x,) is squarefree. By Corollary 26.10, the Betti
numbers of @, —; S/(INV : X,) are concentrated in squarefree multide-
grees. On the other hand, the entries in the matrix of the map ¢;
are squares of the variables. Therefore, there can be no cancellations
in the mapping cone. Hence, the mapping cone yields a minimal free
resolution.

(4) follows from (2). |

Furthermore, the following result is proved in [Mermin-Peeva-
Stillman)].

Proposition 51.9. Let N and N’ be two squarefrec monomial ideals
with the same Hilbert function. Fiz an integer 1 < p < n. The graded
modules ®|o=p (N : Xg) and ®|5|=p (N : X,) have the same Hilbert
function.

Proposition 51.10. Let N be a squarefree monomial ideal, and A
be its Stanley-Reisner simplicial complex. Let o C {1,...,n}. The
Stanley-Reisner simplicial complex of (N : X4) is

stara(o) ={Tr € A|TUoc € A},
(recall 36.17).
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Proof.
stara(o) ={r € A|TUoc € A}
={rC{1,...,n}|lem(x;,%,) ¢ N}
={rC{l,...,n}|x,x, ¢ N}
={rC{l,....,n}|x, ¢ (N :x,)}
={rC{l,....,n}|x, ¢ (N :x,)}.

52 Clements-Lindstrom rings

Counting faces of simplicial complexes (that is, counting in an exterior
algebra) naturally generalizes to counting in multicomplexes. This
leads to considering Clements-Lindstréom rings, which have the form
P=S5/(xi",...,xp"),
where 2 < a; < ... < a,. We will prove the analogue of Theo-
rem 50.4(1), that is, we will prove that Macaulay’s Theorem holds
over P. The remaining parts (2)-(5) of Theorem 50.4 hold over P as
well and are proved in [Gasharov-Murai-Peeva 2| and [Mermin-Murai.

The notions of a P;-monomial space, compression, Borel, and lex
ideals easily extend over P. For example, we say that a Pj-monomial
space B, is Borel if whenever a non-zero monomial z;m € B, and
1 <4 < j it follows that z;m € B, (note that x;m = 0 is possible
since P is a quotient ring).

We will need some lemmas. Minor modifications in the proofs of
Structure Lemma 42.5, Lemma 44.1, the Comparison Theorem 44.4,
Compression Lemma 42.9, and Proposition 41.6 lead to the following
analogs (listed below) over P of these results. See [Mermin-Peeva] for
detailed proofs.

Structure Lemma 52.1. If a P;-monomial space Cy is compressed
and n > 3, then C, is Borel.
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Lemma 52.2. If a P;-monomial space By is Borel, then

{PBY| = Y ria-a(By).
=1

Comparison Theorem 52.3. Let B, be a Borel monomial space in
P,. Let L, be a lex monomial space in P, with |Ly| < |B,|. Then

7ij(Lq) <1ij(Byg)

for each 1 <i<n and each 1 < j < q;.

Compression Lemma 52.4. Let A, be a P;-monomial space. There
exists a compressed monomial space T, in P, such that |T,;| = |A,]
and ‘Pqu| < ’PlAq‘

Proposition 52.5. The following properties are equivalent.
(1) Let A, be a Pyj-monomial space and Ly be its lexification in P,.
Then |P1Lq‘ < ‘PlAq‘
(2) For every graded ideal J in P there exists a lex ideal L with the
same Hilbert function.

Using the above results we will prove Macaulay’s Theorem over
the Clements-Lindstrom ring P.

Clements-Lindstrém’s Theorem 52.6. Let P = S/(z{",..., z%"),
where 2 < a1 < ... < a,. For every graded ideal in P there exists a

lex ideal with the same Hilbert function.

Proof. We will prove that (1) in Proposition 52.5 holds. We will use the
argument in the first proof of Macaulay’s Theorem from Section 45.

An easy calculation shows that the theorem holds provided n = 2
and we do not have as < ¢+ 1 < a;. But a; < as by assumption, so
the theorem holds for n = 2.

Consider the case n > 3. Applying 52.4, we conclude that there
exist a compressed monomial space C, such that |C,| = |A,| and
|P1Cy| < |P1A4|. By Lemma 52.1 it follows that C, is Borel. Let L, be
the lex monomial space for which |C,| = |L,|. We apply Lemma 52.2
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to conclude that

‘{Plcq}‘ = Zn: Tia;-1(Co)
=1

‘{Pqu}‘ = ria1(Ly).
=1

IN

Finally, we apply Theorem 52.3 and get the inequality ‘ {P,L,} ‘
[ {P1C} . a

53 The Eisenbud-Green-Harris Conjecture

The most exciting currently open conjecture on Hilbert functions is
the Eisenbud-Green-Harris Conjecture. It is wide open.

The Eisenbud-Green-Harris Conjecture 53.1. [Eisenbud-Green-
Harris 1, Eisenbud-Green-Harris 2] Let N be a graded ideal in S
containing a mazrimal homogeneous reqular sequence in degrees 2 <
e1 < --- < e,. There exists a monomial ideal T such that N and
T+ (x5, -+, xt") have the same Hilbert function.

A monomial ideal L + (z7*,...,z¢") is called lex-plus-powers
if it is the preimage of a lex ideal in S/(z{*,...,z5). By Clements-
Lindstréom’s Theorem 52.6, it follows that the conjecture can be stated
equivalently as follows.

Conjecture 53.2. Let N be a graded ideal containing a maximal

homogeneous regular sequence in degrees 2 < ey < --- < e,. There
exists a lex-plus-powers ideal L + (x7, ..., xt") with the same Hilbert
function.

The original conjecture gives a numerical characterization of the
Hilbert functions of graded ideals containing a maximal homogeneous
regular sequence in degrees 2 < e; < --- < e,. It is well known that
the numerical characterization is equivalent to the existence of a lex-
plus-powers ideal L+ (x7", ..., z5") with the same Hilbert function as
the ideal V.
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Another equivalent formulation of the conjecture is:

Conjecture 53.3. Let f1,..., fn be a maximal homogeneous reqular
sequence in S in degrees 2 < e < --- < e,. Let N be a graded
ideal in the complete intersection ring S/(f1,...,fn). There exists a
lex ideal L in the Clements-Lindstrom ring S/(z{',...,x) with the

same Hilbert function as N.

The conjecture is especially interesting in the case e; = ... =
en = 2 when the regular sequence consists of quadrics.

Next, we focus on problems based on the idea that the lex ideal
has the greatest Betti numbers among all ideals with a fixed Hilbert

function.

Conjecture 53.4. Suppose that k is an infinite field (possibly, one
should also assume char(k) = 0). Let N be a graded ideal con-
taining a homogeneous regular sequence f1,..., fn in S in degrees
2<e <--- < e, Suppose that there exists a lex-plus-powers ideal
L+ (5, -+, x8) with the same Hilbert function. Then:

(1) The Betti numbers of N over S/(fi,...,fn) are less than or
equal to those of L over S/(xf',...,x¢"), (where N and L are
the images of N and L in the corresponding complete intersection
Tings).

(2) The LPP Conjecture (the lex-plus-powers conjecture).
(Evans) The Betti numbers of N over S are less than or equal

to those of L + (z5*,...,x5).

The first part of the conjecture is about infinite resolutions,
whereas the second part is about finite ones.

The LPP Conjecture was inspired by the Eisenbud-Green-Harris
Conjecture. [Francisco-Richert] is an expository paper on the LPP

Conjecture.
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