
Chapter II

Hilbert Functions

Abstract. A well-studied and important numerical invariant of a
graded ideal over a graded polynomial ring S is the Hilbert function.
It gives the sizes of the graded components of the ideal.

The Hilbert function encodes important information (for exam-
ple, dimension and multiplicity). Hilbert’s insight was that it is de-
termined by finitely many of its values.

In many recent papers and books, Hilbert functions are studied
using clever computations with binomials; we mention the binomial-
approach briefly and avoid such computations whenever possible. In-
stead our arguments are founded upon Macaulay’s key idea in 1927:
There exist highly structured monomial ideals - lex ideals - which at-
tain all Hilbert functions. Lex ideals play an important role in many
results on Hilbert functions. The pivotal property is that a lex ideal
grows as slowly as possible.

Another exciting direction of research is to parametrize all graded
ideals in S with a fixed Hilbert function, and then study their (com-
mon) properties and the structure of the parameter space. Lex ideals
play crucial role in Hartshorne’s Theorem that Grothendieck’s Hilbert
scheme is connected.

40 Notation

Let W be a graded finitely generated R-module. It decomposes as a
direct sum of its components W = ⊕q≥0Wq. Its Hilbert function is
defined by q → dimkWq. We denote

|Wq| = dimk(Wq) .

Recall that the Hilbert series of W is

HilbW (t) =
∑

q≥0

dimk (Wq) tq .
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Chapter II HILBERT FUNCTIONS

Throughout this chapter V stands for a graded finitely generated
S-module.

41 Lex ideals

Macaulay’s Theorem 41.7 characterizes the Hilbert functions of graded
ideals in S. The theorem is well-known and has many applications.
The key idea is that each Hilbert function is attained by a lex ideal.
Lex ideals are highly structured: they are defined combinatorially
and it is easy to derive the inequalities characterizing their Hilbert
functions. They play other important roles; for example,

◦ Hartshorne’s [Hartshorne 2] proof that the Hilbert scheme is con-
nected uses lex ideals in an essential way.

◦ The homological properties of lex ideals are combinatorially trac-
table by Theorem 41.9. This leads to results in Section 47, show-
ing that the lex ideals have greatest Betti numbers.

Notation and Definition 41.1. Recall that Sq is the k-vector space
spanned by all monomials in S of degree q. So, S1 is the k-vector
space spanned by the variables. We order the variables lexicograph-
ically by x1 > . . . > xn. We denote by !lex the degree-lex order
on the monomials, that is, m !lex m′ if either deg(m) > deg(m′) or
deg(m) = deg(m′) and m is lex-greater than m′. Sometimes we say
lex-last instead of lex-smallest.

We say that Aq is an Sq-monomial space if it can be spanned
by monomials of degree q. We denote by {Aq} the set of monomi-
als (non-zero monomials in Sq) contained in Aq. The cardinality of
this set is |Aq | = dimk Aq. By S1Aq we mean the k-vector subspace
(Aq)q+1 of Sq+1, (where (Aq) is the ideal generated by the elements
in Aq).

The lex-segment Mq,p of length p in degree q is defined as
the k-vector space spanned by the lex-greatest p monomials in Sq.
An Sq-monomial space Mq is lex in Sq if there exists a p such that
Mq = Mq,p. The monomial space 0 is lex in Sq by convention. For a
monomial space Aq, we say that Mq,|Aq| is its Sq-lexification.
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41 Lex ideals

For an Sq-monomial space Aq sometimes we say for simplicity
that Aq is a monomial space in Sq or a monomial space; in the latter
case the index q indicates that Aq ⊆ Sq.

An Sq-monomial space Tq is greater lexicographically than
an Sq-monomial space Aq if when we order the monomials in {Tq}
and {Aq} lexicographically, and then compare the two ordered sets
lexicographically, we get that the first ordered set is greater.

Proposition 41.2. If a monomial space Mq is lex in Sq, then S1Mq

is lex in Sq+1.

Proof. Let m ∈Mq be a monomial and let u !lex xim be a monomial
in Sq+1. We have to show that u ∈ S1Mq. Write xim = m′z, where
z is the lex-last variable that divides xim, and m′ = xim

z . It follows
that m′ !lex m, so m′ ∈Mq.

Similarly write u = u′y, where where y is the lex-last variable
that divides u, and u′ = u

y
. Since u′y = u !lex xim = m′z, it follows

that u′ !lex m′. As m′ ∈ Mq and Mq is lex, we get that u′ ∈ Mq.
Therefore, u = yu′ ∈ S1Mq.

Proposition 41.3. Let L be a monomial ideal in S. The following
conditions are equivalent.
(1) For each q ≥ 0, we have that Lq is lex.
(2) If m is a monomial, such that m !lex m′ and deg(m) = deg(m′)

for some monomial m′ ∈ L, then m ∈ L.
(3) Let p be a number, such that L has no minimal monomial gen-

erators in degrees > p. For each q ≤ p, we have that Lq is lex.
(4) Let L be minimally generated by the monomials l1, . . . , lr. If m is

a monomial, m !lex li and deg(m) = deg(li) for some 1 ≤ i ≤ r,
then m ∈ L.

Proof. (1) ⇐⇒ (2) and (3) =⇒ (4) by the definition of lex-segment.
We will show that (4) =⇒ (3) by induction on the degree q.

Suppose that Lq is lex; we will prove that Lq+1 is lex as well.
If L has no minimal monomial generators of degree q + 1, then

by Proposition 41.2 it follows that Lq+1 is lex.
If u is the lex-last minimal monomial generator of L of degree
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Chapter II HILBERT FUNCTIONS

q+ 1, then by Proposition 41.2 and (4) it follows that Lq+1 is the lex
monomial space in Sq whose end (that is, whose lex-last monomial)
is u.

(1) =⇒ (3). By 41.2 it follows that (3) implies (1).

Definition 41.4. A monomial ideal L is lex (or lexicographic) if it
satisfies the equivalent conditions in Proposition 41.3.

We usually use (4) in order to show that a given ideal is lex. On
the other hand, (1) is the condition usually used in proofs.

Example 41.5. By (4), the ideal (x2
1, x1x2, x1x3, x

5
2, x

4
2x3, x

3
2x

2
3, x

2
2x

3
3,

x2x
6
3, x

9
3) is lex in k[x1, x2, x3].

We are ready to discuss Macaulay’s Theorem 41.7, which char-
acterizes the Hilbert functions of graded ideals in S.

Proposition 41.6. The following properties are equivalent.
(1) Let Aq be an Sq-monomial space and Lq be its lexification in Sq.

Then |S1Lq | ≤ |S1Aq |.
(2) For every graded ideal J in S there exists a lex ideal L with the

same Hilbert function.

The key property of lex ideals is expressed in (1) above: among
all subspaces of the same dimension, the lex monomial space generates
as little as possible in the next degree.

Proof. We will prove that (1) and (2) are equivalent. (2) implies (1).
Assume that (1) holds. We will prove (2). We can assume that J is
a monomial ideal by Gröbner basis theory. For each q ≥ 0, let Lq be
the lexification of Jq. By (1), it follows that L = ⊕q≥0 Lq is an ideal.
By construction, it is a lex-ideal and has the same Hilbert function as
J in all degrees.

In Section 45, we will prove that (1) holds which will establish
Macaulay’s Theorem.

Macaulay’s Theorem 41.7. The equivalent properties in Proposi-
tion 41.6 hold.
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42 Compression

We say that an Sq-monomial space Aq is Borel if whenever a
monomial xjm ∈ Aq and 1 ≤ i ≤ j it follows that xim ∈ Aq.

Exercise 41.8. Every lex ideal is Borel.

This yields the following result.

Theorem 41.9. The minimal graded free resolution of a lex ideal is
the Eliahou-Kervaire resolution.

42 Compression

Compression is a technique, introduced by Macaulay in order to study
Hilbert functions.

Let 1 ≤ i ≤ n be an integer. An Sq-monomial space Cq can be
written uniquely in the form

{Cq} =
∐

0≤j≤q
xq−ji {Lj}

where Lj is a monomial space in the ring S/xi.
We say that Cq is i-compressed if each Lj is lex in S/xi. Fur-

thermore, we say that Cq is Sq-compressed (or compressed) if it is
i-compressed for all 1 ≤ i ≤ n.

A monomial ideal P is i-compressed if Pq is i-compressed for
all q ≥ 0. The ideal is compressed if Pq is compressed for all q ≥ 0.

Example 42.1. [Mermin-Peeva 2, Example 3.2] We give an example
of an ideal P which is compressed but not lex. Consider

P = (a3, a2b, a2c, ab2, abc, b3, b2c)

in k[a, b, c] with a > b > c.

Proposition 42.2. If a monomial space Cq is i-compressed in Sq,
then S1Cq is i-compressed in Sq+1.
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Chapter II HILBERT FUNCTIONS

Proof. Consider the disjoint union {Cq} =
∐

0≤j≤q x
q−j
i {Lj} where

each Lj is lex in
(
S/xi
)
j
. In the next degree q+ 1 we get the disjoint

union

{S1Cq} =
∐

0≤j≤q+1

xq−j+1
i {Lj + (S1/xi)Lj−1} .

Since both Lj and (S1/xi)Lj−1 are lex (S/xi)j-monomial spaces, it
follows that Lj +(S1/xi)Lj−1 is the longer of these two lex monomial
spaces.

Exercise 42.3. Let P be a monomial ideal and p be a number, such
that P has no minimal monomial generators in degrees > p. If Pq is
i-compressed for every 0 ≤ q ≤ p, then P is i-compressed.

Exercise 42.4. If an Sq-monomial space Lq is lex, then it is Sq-
compressed.

Structure Lemma 42.5.
(1) If a monomial space Cq is compressed and n ≥ 3, then Cq is

Borel.
(2) If n ≤ 2, then every monomial space is compressed.

Proof. We will prove (1). Recall that a monomial m′ ∈ S is said to

be in the big shadow of a monomial m ∈ S if m′ =
xim

xj
for some xj

dividingm and some i ≤ j. Letm ∈ {Cq} andm′ be a monomial in its

big shadow. Hence m′ =
xim

xj
for some xj dividing m and some i ≤ j.

As n ≥ 3, there exists an index 1 ≤ p ≤ n such that p 
= i, j. Note
that the monomials m and m′ have the same p-exponents. Since Cq
is p-compressed and m′ !lex m, it follows that m′ ∈ {Cq}. Therefore,
Cq is Borel.

Construction 42.6. Fix an 1 ≤ i ≤ n. Let Aq be an Sq-monomial
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42 Compression

space with disjoint union

{Aq} =
∐

0≤j≤q
xq−ji {Uj}

where each Uj is a monomial space in (S/xi)j . For each 0 ≤ j ≤ q, let
Lj be the lexification of the space Uj in (S/xi)j . The Sq-monomial
space Cq defined by

{Cq} =
∐

0≤j≤q
xq−ji {Lj}

is the i-compression of Aq. Clearly, |Cq| = |Aq|.

Example 42.7. Let A2 be the S2-monomial space spanned by {x2
1,

x2x3, x
2
2, x3x4}. We have the disjoint union

{A2} = x2
2{1}
∐

x2{x3}
∐

1{x2
1, x3x4}

so U2 is spanned by {x2
1, x3x4}, U1 is spanned by {x3}, and U0 is

spanned by {1}. Therefore L2 is spanned by {x2
1, x1x3}, L1 is spanned

by {x1}, and L0 is spanned by {1}. The 2-compression of A2 is

{C2} = x2
2{1}
∐

x2{x1}
∐

1{x2
1, x1x3} .

Lemma 42.8. Let Aq be an Sq-monomial space. Fix an 1 ≤ i ≤ n.
Let Cq be the i-compression of Aq. We have that |Cq| = |Aq| and
|S1Cq| ≤ |S1Aq| .

Proof. We use induction on the number of variables, and assume that
Theorem 41.7(1) holds for n− 1 variables.

Suppose that Aq is not i-compressed. Set z = xi and n = S1/z.
Use the notation in Construction 42.6. We have the disjoint unions

{S1Aq} =
∐

0≤j≤q+1

zq−j+1{Uj + nUj−1}

{S1Cq} =
∐

0≤j≤q+1

zq−j+1{Lj + nLj−1} .
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Chapter II HILBERT FUNCTIONS

We will show that

|Lj + nLj−1| = max
{
|Lj |, |nLj−1|

}

≤ max
{
|Uj |, |nUj−1|

}
≤ |Uj + nUj−1| .

The first equality above holds because both Lj and nLj−1 are lex
(S/z)j-monomial spaces, so Lj + nLj−1 is the longer of these two
lex monomial spaces. The last inequality is obvious. The middle
inequality holds since: by construction Lj−1 is the lexification of Uj−1,
so |Lj−1| = |Uj−1| and by induction on the number of variables we
can apply Macaulay’s Theorem 41.7 to the ring S/z.

Thus, |Lj + nLj−1| ≤ |Uj + nUj−1| for each j. This implies the
desired inequality |S1Cq| ≤ |S1Aq|.

Compression Lemma 42.9. (Clements-Lindström) Let Aq be an
Sq-monomial space. There exists a compressed monomial space Tq in
Sq such that |Tq| = |Aq| and |S1Tq| ≤ |S1Aq|.

Proof. Suppose that Aq is not i-compressed for some 1 ≤ i ≤ n. Let
Cq be the i-compression of Aq. By the above lemma, we have that
|Cq| = |Aq| and |S1Cq| ≤ |S1Aq| .

Note that {Cq} is greater lexicographically than {Aq}. If Cq
is not compressed, we can apply the argument above. After finitely
many steps in this way, the process must terminate because at each
step we construct a lexicographically greater Sq-monomial space. Thus,
after finitely many steps, we reach a compressed monomial space.

43 Multicompression

In this section we describe a multigraded version of the technique of
compression.

Let A ⊂ {x1, . . . , xn}; its complement is Ac = {x1, . . . , xn}\A.
Denote by ⊕m the direct sum over all monomials m in the variables
in Ac. An Sq-monomial space Cq can be written uniquely in the form

Cq =
⊕

m

mVm,
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43 Multicompression

where Vm is a monomial space in the ring k[A] = k[xi |xi ∈ A].
We say that Cq is A-multicompressed if each Vm is lex in k[A].
Furthermore, we say that Cq is (j)-multicompressed if it is

A-multicompressed for every set A of size j. We say that Cq is mul-

ticompressed if it is A-multicompressed for every set A.
A monomial ideal P isA-multicompressed if Pq isA-multicom-

pressed for all q ≥ 0. The ideal is (j)-multicompressed if Pq is
(j)-multicompressed for all q ≥ 0.

Example 43.1. Let A = {x1, x3} ⊂ {x1, x2, x3, x4} and C2 be
spanned by the monomials

x2
2, x1x2, x

2
1, x1x3, x

2
4, x1x4, x2x4 .

We have the decomposition

{C2} = x2
2{1}
∐

x2{x1}
∐

1{x2
1, x1x3}

∐
x2

4{1}
∐

x4{x1}
∐

x2x4{1} .

We see that

{Vx2
2
} = {1}, {Vx2} = {x1},

{Vx2
4
} = {1}, {V1} = {x2

1, x1x3},

{Vx2x4} = {1}, {Vx4} = {x1}

are all lex, so C2 is {x1, x3}-compressed.

Exercise 43.2. If Cq is A-multicompressed in Sq, then S1Cq is
A-multicompressed in Sq+1.

Exercise 43.3. Let P be a monomial ideal and p be a number, such
that P has no minimal monomial generators in degrees > p. If Pq is
A-multicompressed for every 0 ≤ q ≤ p, then P is A-multicompressed.
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Chapter II HILBERT FUNCTIONS

Exercise 43.4. If Lq is lex, then it is A-multicompressed for every
set A.

Exercise 43.5. If A′ is a subset of A and Cq is A-multicompressed
in Sq, then Cq is A′-multicompressed.

Exercise 43.6. If Cq is (j)-multicompressed, then it is (i)-multicom-
pressed for every i ≤ j.

Structure Theorem 43.7. [Mermin]
(1) A monomial space Cq is Borel if and only if it is (2)-multicom-

pressed.
(2) A monomial space Cq is lex if and only if it is (3)-multicom-

pressed.

Proof. First, we prove (1).

Let Cq be (2)-multicompressed. We will prove that it is Borel.
Let xjm′ ∈ Cq be a monomial and fix an 1 ≤ i < j. Set A = {xi, xj}.
Write xjm′ = xsix

t
jm so that m is not divisible by either xi or xj .

Hence xsix
t
j ∈ {Vm}. The monomial xs+1

i xt−1
j is lex-greater than xsix

t
j .

Since Vm is lex, it follows that xs+1
i xt−1

j ∈ {Vm}. Hence xim′ ∈ Cq.
Let Cq be a Borel monomial space. We will prove that it is (2)-

multicompressed. Fix a set A = {xi, xj} with 1 ≤ i < j. We will show
that each Vm is lex. Let xsix

t
j ∈ Vm. Let xs+hi xt−hj be a monomial

that is lex-greater than xsix
t
j . Since xsix

t
jm ∈ Cq and Cq is Borel, it

follows that xs+hi xt−hj m ∈ Cq. Hence xs+hi xt−hj ∈ Vm. Therefore, Vm
is lex.

Now, we prove (2). If Cq is lex then it is (3)-multicompressed by
Exercise 43.4. Suppose that Cq is (3)-multicompressed. We will show
that it is lex. By (1) and Exercise 43.6, it follows that Cq is Borel.

Let u = xa1
1 . . . xan

n be a monomial in Cq. Let v = xc11 . . . xcn
n be

a monomial that is lex-greater than u. We will show that v ∈ Cq. Let
i be minimal so that ai 
= ci. Then ai < ci since v is lex-greater than
u. Set w = xa1

1 . . . x
ai−1
i−1 and e = deg(xai+1

i+1 . . . xan
n ) = ai+1 + . . . + an.
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44 Green’s Theorem

Since u ∈ Cq, we can use that Cq is Borel in order to conclude that
wxai

i x
e
i+1 ∈ Cq. Set A = {xi, xi+1, xn}. Then xai

i x
e
i+1 ∈ Vw. As

Cq is {xi, xi+1, xn}-multicompressed, it follows that Vw is lex. The
monomial xai+1

i xe−1
n is lex-greater than xai

i x
e
i+1, so xai+1

i xe−1
n ∈ Vw.

Hence wxai+1
i xe−1

n ∈ Cq. As Cq is Borel it follows that v ∈ Cq.

The following is an immediate corollary.

Structure Theorem 43.8. [Mermin]
(1) If n < 3, then every monomial space is multicompressed.
(2) If n = 3, then the multicompressed monomial spaces are exactly

the Borel spaces.
(3) If n > 3 then the multicompressed monomial spaces are exactly

the lex spaces.

The following lemma is proved similarly to the Compression
Lemma 42.9.

Lemma 43.9. Let A ⊂ {x1, . . . , xn}. Let Aq be an Sq-monomial
space. There exists an A-compressed monomial space Tq in Sq such
that |Tq| = |Aq| and |S1Tq| ≤ |S1Aq|.

Lemma 43.10. Fix a 1 ≤ j ≤ n − 1. Let Aq be an Sq-monomial
space. There exists a (j)-compressed monomial space Cq in Sq such
that |Cq| = |Aq | and |S1Cq| ≤ |S1Aq|.

Proof. Apply Lemma 43.9 repeatedly if necessary.

44 Green’s Theorem

Green’s Theorem describes the change in the Hilbert function when
we factor out a generic form.

For a monomial m define

max(m) = max{i |xi divides m}
min(m) = min{i |xi divides m} .

169



Chapter II HILBERT FUNCTIONS

For an Sq-monomial space Aq set

ri,j(Aq) =
∣
∣
∣ {m ∈ {Aq} | max(m) ≤ i and xji does not divide m }

∣
∣
∣

ti(Aq) =
∣
∣
∣ {m ∈ {Aq} | max(m) ≤ i}

∣
∣
∣ .

Lemma 44.1. (Bigatti) If an Sq-monomial space Bq is Borel, then
{S1Bq} is the set

B =
n∐

i=1

xi {m ∈ {Bq} |max(m) ≤ i }

and
∣
∣
∣ {S1Bq}

∣
∣
∣ =

n∑

i=1

ti(Bq) .

Proof. Let w ∈ {Bq}. For j ≥ max(w) we have that xjw ∈ B. Let

j < max(w). Then v = xj
w

xmax(w)
∈ Bq. So, xjw = xmax(w)v ∈ B.

Lemma 44.2. Let Aq be a Borel Sq-monomial space. Its n-compres-
sion Cq is Borel.

Proof. We use the notation in Construction 42.6. Consider the disjoint
unions

{Aq} =
∐

0≤j≤q
xq−jn {Uj}

{Cq} =
∐

0≤j≤q
xq−jn {Lj} .

Since Aq is Borel, it follows that

(S1/xn)Uj ⊆ Uj+1 .

We use induction on the number of variables, and assume that The-
orem 41.7(1) holds for n − 1 variables. Since |Lj | = |Uj |, by Theo-
rem 41.7(1) it follows that

|(S1/xn)Lj | ≤ |(S1/xn)Uj | ≤ |Uj+1| = |Lj+1| .
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44 Green’s Theorem

As both (S1/xn)Lj and Lj+1 are lex monomial spaces, we conclude
that (S1/xn)Lj ⊆ Lj+1. Let xq−jn m be a monomial in Cq and m ∈ Lj .
Then for each 1 ≤ i < n we have that xim ∈ (S1/xn)Lj ⊆ Lj+1, so
xq−j−1
n xim ∈ Cq. If xp divides m, then for each 1 ≤ c ≤ p we have

that xcm
xp

∈ Lj since Lj is lex. We proved that Cq is Borel.

The main work for proving the Generalized Green’s Theorem 44.5
is in the following lemma.

Lemma 44.3. Let Cq be an n-compressed Borel Sq-monomial space,
and let Lq be a lex monomial space in Sq with |Lq| ≤ |Cq|. For each
1 ≤ i ≤ n and each 1 ≤ j we have the inequality

ri,j(Lq) ≤ ri,j(Cq) .

Proof. Note that both Lq and Cq are Borel and n-compressed.
First, we consider the case i = n. Clearly, rn,q+1(Lq) = |Lq| ≤

|Cq| = rn,q+1(Cq). We induct on j decreasingly. Suppose that the
inequality rn,j+1(Lq) ≤ rn,j+1(Cq) holds by induction.

If {Cq} contains no monomial divisible by xjn then

rn,j(Lq) ≤ rn,j+1(Lq) ≤ rn,j+1(Cq) = rn,j(Cq) .

Suppose that {Cq} contains a monomial divisible by xjn. Denote by
e = xe11 . . . xen

n , with en ≥ j, the lex-last monomial in Cq that is
divisible by xjn.

Let 0 ≤ p ≤ j − 1. Let the monomial v = xa1
1 . . . x

an−1
n−1 x

p
n ∈

Sq be lex-greater than e. Since Cq is Borel, it follows that w =

xen−p
n−1

e

xen−p
n

∈ Cq. This is the lex-last monomial that is lex-greater

than e and xn divides it at power p. Since Cq is n-compressed and v
is lex-greater (or equal) than w, it follows that v ∈ Cq.

For a monomial u, we denote by xjn /∈ u the property that xjn
does not divide u. By what we proved above, it follows that
(∗)
∣
∣
∣{u ∈ {Cq} |xjn /∈ u, u !lex e }| = |{u ∈ {Sq} |xjn /∈ u, u !lex e }

∣
∣
∣ .
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Therefore,

rn,j(Lq)

= |{u ∈ {Lq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Lq} |xjn /∈ u, u ≺lex e }|

≤ |{u ∈ {Sq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Lq} |xjn /∈ u, u ≺lex e }|

≤ |{u ∈ {Sq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Lq} | u ≺lex e }|

≤ |{u ∈ {Sq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Cq} | u ≺lex e }|

= |{u ∈ {Sq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Cq} |xjn /∈ u, u ≺lex e }|

= |{u ∈ {Cq} |xjn /∈ u, u !lex e }|+ |{u ∈ {Cq} |xjn /∈ u, u ≺lex e }|
= rn,j(Cq) ;

for the third inequality we used the fact that Lq is a lex monomial
space in Sq with |Lq| ≤ |Cq|; for the equality after that we used the
definition of e; for the next equality we used (∗). Thus, we have the
desired inequality in the case i = n.

In particular, we proved that

(∗∗) rn,1(Lq) ≤ rn,1(Cq) .

Finally, we prove the lemma for all i < n. Both {Cq/xn} and
{Lq/xn} are lex monomial spaces in Sq/xn since Cq is n-compressed.
By (**) the inequality rn,1(Lq) ≤ rn,1(Cq) holds, and it implies the
inclusion {Cq/xn} ⊇ {Lq/xn}. The desired inequalities follow since

ri,j(Cq) = ri,j
(
Cq/(xi+1, . . . , xn)

)

ri,j(Lq) = ri,j
(
Lq/(xi+1, . . . , xn)

)
.

Comparison Theorem 44.4. Let Bq be a Borel monomial space in
Sq. Let Lq be a lex monomial space in Sq with |Lq| ≤ |Bq|. We have
the inequalities

ti(Lq) ≤ ti(Bq)

ri,j(Lq) ≤ ri,j(Bq) .
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44 Green’s Theorem

for each 1 ≤ i ≤ n and each 1 ≤ j.

Proof. First, note that ti(Aq) = ri,q+1(Aq) for any monomial space
Aq. Thus, it suffices to prove the inequalities ri,j(Lq) ≤ ri,j(Bq).

We prove the inequalities by decreasing induction on the number
of variables n. Let Cq be the n-compression of Bq. Since Cq is Borel
and n-compressed by Lemma 44.2, we can apply Lemma 44.3 and we
get

ri,j(Lq) ≤ ri,j(Cq)

for each 1 ≤ i ≤ n and each 1 ≤ j. It remains to compare ri,j(Cq)
and ri,j(Bq). For i = n, we have equalities rn,j(Cq) = rn,j(Bq). Let
i < n. Then ri,j(Cq) = ri,j(Cq/xn) and ri,j(Bq) = ri,j(Bq/xn), where
Cq/xn = Lq is lex and Bq/xn = Uq is Borel in S/xn. So, by induction
the desired inequalities hold.

Generalized Green’s Theorem 44.5. Let Bq be a Borel monomial
space in Sq. Let Lq be a lex monomial space in Sq with |Lq| ≤ |Bq|.
The inequality

dimk

(
Sq/(Lq + xjn Sq−j)

)
≥ dimk

(
Sq/(Bq + xjn Sq−j)

)

holds for each 1 ≤ j ≤ q.

Proof. Note that the desired inequality is equivalent to

rn,j(Lq) ≤ rn,j(Bq) .

It holds by Theorem 44.4.

Assume char(k) = 0. Let I be a graded ideal in S and R = S/I.
Fix an integer j. The affine space Rj is irreducible, so every non-
empty Zariski-open subset is dense. We say that a property P holds

for a generic j-form if there exists a nonempty Zariski-open subset
U ⊆ Rj such that the property P holds for every j-form in U .

Lemma 44.6. Assume char(k) = 0. Suppose that I is a graded ideal
in S and R = S/I. Fix integers i and j. Let

t = max{dimk(g Ri) | g ∈ Rj}
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There exists a non-empty Zariski-open set U ⊆ Rj such that dimk(hRi)
= t for every generic j-form h ∈ U .

Proof. Let
U = { v ∈ Rj | dimk(vRi) = t} ⊆ Rj .

Choose a basis f1, . . . , fa of Rj and a basis g1, . . . , gc of Ri. The
elements fpgq span Ri+j , so we can choose a subset that is a basis.
Write v =

∑
1≤p≤a αpfp, where the coefficients α1, . . . , αa are in k.

The multiplication map v : Ri → Ri+j has a matrix M whose entries
are linear forms in α1, . . . , αa. A j-form v is in U if and only if the
matrix M has a non-zero (t× t)-minor. When we vary v, we can think
of α1, . . . , αa as indeterminates which take values in k. Therefore, the
complement of V (It(M)) is a Zariski-open set (here It(M) is the ideal
generated by all (t×t)-minors of M , and V (It(M)) is the set on which
all elements in It(M) vanish).

Exercise 44.7. Assume char(k) = 0. Let I be a graded ideal in S and
R = S/I. Fix integers i and j. Let a = min{dimk((R/g)i) | g ∈ Rj}.
Then dimk((R/h)i) = a for a generic j-form h.

In Exercise 44.8 and Green’s Theorem 44.9 by a generic j-form,
we mean a j-form generic in the sense of Exercise 44.7.

Exercise 44.8. Assume char(k) = 0. Fix an integer j. Then xjn is a
generic j-form for every Borel ideal in S.

The following result is a straightforward corollary of Theorem 44.5
and Exercise 44.8.

Green’s Theorem 44.9. (Herzog-Popescu), [Gasharov] Assume that
char(k) = 0. Let Bq be a Borel monomial space in Sq. Let Lq be a
lex monomial space in Sq with |Lq| ≤ |Bq|. Let g be a generic form
of degree j ≥ 1. The inequality

dimk

(
Sq/(Lq + g Sq−j

)
≥ dimk

(
Sq/(Bq + g Sq−j

)

holds.
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Green’s Hyperplane Restriction Theorem 44.10. [Green]
Assume char(k) = 0. Let J be a graded ideal in S, and L be the lex
ideal with the same Hilbert function as J . Let h be a generic linear
form. For every q ≥ 0 we have

dimk

(
S/(L, h)

)

q
≥ dimk

(
S/(J, h)

)

q
.

Proof. Assume that we work in generic coordinates, so we can take
xn = h. Note that when we take the initial ideal with respect to
revlex order we get in(J, xn) = (in(J), xn). Therefore, we can replace
J by B = in(J). By Theorem 28.4, the ideal B is Borel. Hence,
Theorem 44.5 yields the desired result.

Green’s Theorem holds without the restriction char(k) = 0, see
[Gasharov].

45 Proofs of Macaulay’s Theorem

We are ready to prove Macaulay’s Theorem 41.7; namely, we will
prove that (1) in Proposition 41.6 holds. It is straightforward that
(1) holds if n ≤ 2. Consider the case n ≥ 3. Applying Lemma 43.10,
we conclude that there exist a (2)-multicompressed monomial space
Cq such that |Cq| = |Aq | and |S1Cq| ≤ |S1Aq|. By Theorem 43.7 it
follows that Cq is Borel. Let Lq be the lex monomial space for which
|Cq| = |Lq|. We will prove that |S1Lq| ≤ |S1Cq|.

We will present two different proofs. The former uses Green’s
Theorem. The latter uses the structure theorem for compressed ideals.
A third proof by induction is given in [Mermin-Peeva].

Proof.
First Proof. This proof uses Green’s Theorem. The monomial space

Cq is Borel. For an Sq-monomial spaceDq recall that ti(Dq) =
∣
∣
∣ {m ∈

{Dq} | max(m) ≤ i }
∣
∣
∣ . We apply Lemma 44.1 to conclude that

∣
∣
∣ {S1Cq}

∣
∣
∣ =

n∑

i=1

ti(Cq) and
∣
∣
∣ {S1Lq}

∣
∣
∣ =

n∑

i=1

ti(Lq) .
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Finally, we apply Theorem 44.4 and get
∣
∣ {S1Lq}

∣
∣ ≤
∣
∣ {S1Cq}

∣
∣.

Second Proof. (Mermin) This proof is by compression. Let n > 3. Ap-
plying Lemma 43.10, we conclude that there exist a (3)-multicompressed
monomial space Cq such that |Cq| = |Aq | and |S1Cq| ≤ |S1Aq|. By
Theorem 43.7 it follows that Cq is lex, and we are done.

Suppose that n = 3. Let Lq be the lex Sq-monomial space such
that |Lq| = |Cq|. As both Lq and Cq are Borel, we have

|S1Cq| = |Cq|+ |Cq ∩ k[x1, x2]|+ |Cq ∩ k[x1]|
|S1Lq| = |Lq|+ |Lq ∩ k[x1, x2]|+ |Lq ∩ k[x1]|

by Lemma 44.1. Note that |Lq| = |Cq| by construction, and |Cq ∩
k[x1]| = |Lq ∩ k[x1]| = 1 as {Cq ∩ k[x1]} = {Lq ∩ k[x1]} = xq1.
Therefore, we need to prove that |Lq ∩ k[x1, x2]| ≤ |Cq ∩ k[x1, x2]|.
We will show that if a monomial v ∈ Lq is not in Cq, then v /∈ k[x1, x2].
Assume the opposite: let v = xa1x

c
2 ∈ Lq and v /∈ Cq. As Lq 
= Cq

we conclude that there exists a monomial xa
′

1 x
c′
2 x

e′
3 ∈ Cq that is lex-

smaller than v. Hence a′ ≤ a. Since Cq is Borel, it follows that v ∈ Cq,
which is a contradiction.

46 Compression ideals

Proposition 41.6 makes it possible to work in our arguments by fo-
cusing on only two consecutive degrees at a time (instead of dealing
with the whole ideal). In this section we show that the compressions
can be assembled into an ideal.

Construction 46.1. Fix an 1 ≤ i ≤ n. Let A be a monomial ideal
in S. For each q ≥ 0, let Cq be the i-compression of Aq. We call
C = ⊕0≤q Cq the i-compression of A.

As a corollary of Macaulay’s Theorem, we will prove the following
result.

Proposition 46.2. Let A be a monomial ideal in S and fix an
1 ≤ i ≤ n. Its i-compression C is an ideal.

176



46 Compression ideals

Proof. We use the following notation. For each q ≥ 0 we have a
disjoint union

{Aq} =
∐

0≤j≤q
xq−ji {Uqj }

where each Uqj is a monomial space in (S/xi)j . Let

{Cq} =
∐

0≤j≤q
xq−ji {Lqj}

be the i-compression of Aq. Thus, Lqj is the lexification of Uqj in S/xi.
The i-compression of A is C = ⊕0≤q Cq.

Fix a q ≥ 0 and a 0 ≤ j ≤ q. Let m ∈ xq−ji Lj be a monomial.
We will prove that S1m ∈ C.

We will show that (S1/xi)L
q
j ⊆ Lq+1

j+1. Both (S1/xi)L
q
j and Lq+1

j+1

are lex monomial spaces. So, in order to show that (S1/xi)L
q
j ⊆ Lq+1

j+1

it suffices to show that |(S1/xi)L
q
j | ≤ |Lq+1

j+1 |. This first inequality
below follows from Macaulay’s Theorem, and the second inequality
holds since A is an ideal:

|(S1/xi)L
q
j | ≤ |(S1/xi)U

q
j | ≤ |U

q+1
j+1 | = |Lq+1

j+1| .

Since (S1/xi)L
q
j ⊆ Lq+1

j+1, it follows that (S1/xi)m ∈ C.

It remains to prove that xim ∈ C. We will show that Lqj ⊆ Lq+1
j .

Both Lqj and Lq+1
j are lex monomial spaces in (S/xi)j . So, in order

to show that Lqj ⊆ Lq+1
j it suffices to show that |Lqj | ≤ |L

q+1
j |. Since

A is an ideal, we have that Uqj ⊆ Uq+1
j . Hence

|Lqj | = |U
q
j | ≤ |U

q+1
j | = |Lq+1

j |.

The inclusion Lqj ⊆ Lq+1
j implies that xim ∈ C.

We will see that the situation is similar for multicompression.

Construction 46.3. Fix a set A ⊂ {x1, . . . , xn}. An Sq-monomial
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space Aq can be written uniquely in the form

Aq =
⊕

m

mUm,

where Um is a monomial space in the ring k[A] = k[xi |xi ∈ A]. For
each m, let Lm be the lexification of the space Um in k[A]. The
monomial space Cq defined by

Cq =
⊕

m

mLm

is the A-compression of Aq. Clearly, |Cq| = |Aq|.
Let A be a monomial ideal in S. For each q ≥ 0, let Cq be the

A-compression of Aq. We call C = ⊕0≤q Cq the A-compression of
A.

The following result can be proved similarly to Proposition 46.2.

Proposition 46.4. Let A be a monomial ideal in S and fix a set
A ⊂ {x1, . . . , xn}. The A-compression C of A is an ideal.

47 Ideals with a fixed Hilbert function

The problem “What can be said about the properties of ideals with a
fixed Hilbert function?” has received a lot of attention. Evans raised
the problem to study the properties of the Betti diagrams of all graded
ideals in S with a fixed Hilbert function; since the problem is very
complex in general, people focused on maximal and on minimal Betti
numbers. We will show that a lex ideal attains the greatest Betti
numbers among all ideals with a fixed Hilbert function.

For simplicity, we assume throughout this section that char(k) =
0. If M is a monomial ideal, then G(M)j stands for the set of mono-
mials of degree j in the minimal system of monomial generators of M ,
and furthermore we denote by |G(M)j| the number of monomials in
G(M)j.
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47 Ideals with a fixed Hilbert function

Let J be a graded ideal in S. By Macaulay’s Theorem 41.7, there
exists a lex ideal L with the same Hilbert function as J . The next
result follows by Proposition 41.6.

Proposition 47.1. For every j ≥ 0, the number of elements of degree
j in a minimal system of homogeneous generators of J is ≤ |G(L)j |.

This property extends to all graded Betti numbers as follows.

Theorem 47.2. (Bigatti, Hulett) Assume char(k) = 0. Let J be a
graded ideal in S. If L is the lex ideal with the same Hilbert function
as J , then

bSi,i+j(J) ≤ bSi,i+j(L) for all i, j.

Remark 47.3. It is proved in [Pardue] that Theorem 47.2 holds
without the assumption char(k) = 0.

Note that the minimal free resolution and the Betti numbers of a
lex ideal are given by the Eliahou-Kervaire resolution, see Section 28.

Recall that for an Sq-monomial space Aq we set

ti(Aq) =
∣
∣
∣ {m ∈ {Aq} | max(m) ≤ i }

∣
∣
∣ .

Set

ui(Aq) = ti(Aq)− ti−1(Aq) =
∣
∣
∣ {m ∈ {Aq} | max(m) = i }

∣
∣
∣ .

Lemma 47.4. If M is a Borel ideal in S, then bSi,i+j(M) is equal to

|Mj |
(
n− 1
i

)

−
n−1∑

p=1

tp(Mj)
(
p− 1
i− 1

)

−
n∑

p=1

tp(Mj−1)
(
p− 1
i

)

.

Proof. By Corollary 28.12, we have that

bSi,i+j(M) =
∑

m∈G(M)j

(
max(m)− 1

i

)

=
n∑

p=1

up(G(M)j)
(
p− 1
i

)

.
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Since
G(M)j = {Mj} \ {S1Mj−1}

we obtain

bSi,i+j(M) =
n∑

p=1

up(Mj)
(
p− 1
i

)

−
n∑

p=1

up(S1Mj−1)
(
p− 1
i

)

.

Furthermore, since M is Borel, by Lemma 44.1 we have

{S1Mj−1} =
n∐

p=1

xp{m ∈ {Mj−1} | max(m) ≤ p} ,

and hence up(S1Mj−1) = tp(Mj−1) . Therefore,

bSi,i+j(M)

=
n∑

p=1

(

tp(Mj)− tp−1(Mj)
)(

p− 1
i

)

−
n∑

p=1

tp(Mj−1)
(
p− 1
i

)

= |Mj |
(
n− 1
i

)

−
n−1∑

p=1

tp(Mj)
(
p− 1
i− 1

)

−
n∑

p=1

tp(Mj−1)
(
p− 1
i

)

.

Proof of Theorem 47.2. We will present the proof in [Chardin-Gasha-
rov-Peeva]. Let M be the generic initial ideal of J with respect to a
fixed term order (say, revlex). It is Borel, by Theorem 28.4. Thus,
there exists a Borel ideal M with the same Hilbert function as J such
that

bSi,i+j(J) ≤ bSi,i+j(M) for all i, j.

Both M and L are Borel ideals. Use the formula for the Betti
numbers in Lemma 47.4 and apply 44.4 to obtain the inequalities

bSi,i+j(M) ≤ bSi,i+j(L).

Theorem 47.5. There is an upper bound on the regularities of all
graded ideals with a fixed Hilbert function.
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Proof. By Remark 47.3, it follows that the regularity of the lex ideal
with that Hilbert function is the smallest upper bound.

Problem 47.6. [Geramita-Harima-Shin] Does there exist an ideal
that has greatest graded Betti numbers among all Gorenstein artinian
graded ideals with a fixed Hilbert function?

Next, we will discuss the following question: Assume char(k) =
0. Let J be a graded ideal in S and let L be the lex ideal with the same
Hilbert function. How do the graded Betti numbers of J and L differ?
We would like to obtain more precise information than Theorem 47.2.

The Hilbert function can be computed from the graded Betti
numbers by Theorem 16.2 and we get

∞∑

j=0

dimk(S/J)j tj =

∑∞
j=0

∑n
i=0 (−1)ibSi,j(S/J) tj

(1− t)n

‖
∞∑

j=0

dimk(S/L)j tj =

∑∞
j=0

∑n
i=0 (−1)ibSi,j(S/L) tj

(1− t)n .

These equalities imply that the graded Betti numbers bSi,j(S/J) and

bSi,j(S/L) are related as described below.

Given a sequence of numbers {cp,q}, we obtain a new sequence
by a cancellation as follows: fix a q, and choose p < t so that
one of the numbers is odd and the other is even; then replace cp,q
by cp,q − 1, and replace ct,q by ct,q − 1. The equalities above imply
that the graded Betti numbers bSi,j(S/J) are related to the graded

Betti numbers bSi,j(S/L) by a sequence of cancellations. This has been
observed and applied in order to study the Betti diagrams of ideals
with a fixed Hilbert function. Recall the definition of a consecutive
cancellation in Section 22.

Theorem 47.7. [Peeva 2] Let J be a graded ideal and L be the lex
ideal in S with the same Hilbert function. The graded Betti numbers
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bSi,j(S/J) can be obtained from the graded Betti numbers bSi,j(S/L) by
a sequence of consecutive cancellations.

Extending Hartshorne’s method [Hartshorne] Pardue proved the
next result. There, by a sequence of deformations we mean a compo-
sition of deformations (applied one after another).

Theorem 47.8. [Pardue] Every two graded ideals in a polynomial
ring with the same Hilbert function are connected by a sequence of
deformations over A1

k.

More precisely, in the notation of 47.7 Pardue proved that J and
L are connected by a sequence of deformations of the following three
types:
(1) generic change of coordinates
(2) deformation between an ideal and an initial ideal; see Theo-

rem 22.8
(3) polarization and then factoring out generic hyperplane sections;

more precisely, applying σ′
L defined in [Pardue, Section 4].

We are ready to prove Theorem 47.7.

Proof. The graded Betti numbers are preserved under (1). For (2) we
apply Theorem 22.9. By Theorem 21.10, we have that (3) preserves
the graded Betti numbers as well.

Theorem 47.7 can be used in order to prove that certain Hilbert
functions are not attained within a given class of ideals.

It should be noted that the there are many examples where the
existence of possible consecutive cancellations does not imply the ex-
istence of an ideal for which those cancellations are realized.

Corollary 47.9. Let L be a lex ideal. Suppose that L does not have
two minimal monomial generators in consecutive degrees. If J is a
graded ideal with the same Hilbert function as L, then J has the same
graded Betti numbers as L.

The following can be explored.

Open-Ended Problem 47.10. (folklore) Let J be a graded ideal in
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S and let L be the lex ideal with the same Hilbert function. Which con-
secutive cancellations occur as cancellations when we are comparing
the graded Betti numbers of L and J , in the case when some additional
properties of J (e.g. monomial, artinian, Gorenstein, compressed) are
assumed?

Example 47.11. In contrast to Theorem 47.2, there exist examples
where no ideal attains smallest Betti numbers among the ideals with
a fixed Hilbert function. The following examples are proved in [Dodd-
Marks-Meyerson-Richert] and were noted by Gelvin-LaVictore-Reed-
Richert. Let

J = (x1x2, x1x3, x2x3, x3x4, x3x5, x3x6, x4x5) .

Then:
(1) Among the graded ideals with the same Hilbert function as J ,

there exists no ideal with smallest Betti numbers.
(2) Among the squarefree monomial ideals with the same Hilbert

function as J , there exists no ideal with smallest Betti numbers.

48 Gotzmann’s Persistence Theorem

Gotzmann’s Persistence Theorem is a major result on Hilbert func-
tions. It shows that once an ideal achieves minimal growth then it
grows minimally forever after.

Gotzmann’s Persistence Theorem 48.1. (Gotzmann) Let J be
a graded ideal in S, and L be the lex ideal with the same Hilbert
function as J . Suppose that q is an integer such that the following
two conditions are satisfied:
(1) J is generated in degrees ≤ q.
(2) dimk(Jq+1) = dimk(S1Lq).

We have that
dimk(Jq+i) = dimk(SiLq)

for all i ≥ 1. Equivalently, L is generated in degrees ≤ q.

Proof. The proof is from [Gahsarov-Murai-Peeva 2]. It uses consec-
utive cancellations. Assumption (2) means that L has no minimal
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generator in degree q+1. We will show that L has no minimal mono-
mial generator in degree q+2. Assume the opposite, then we have that
bS1,q+2(S/L) 
= 0. On the other hand, we know that J does not have

a minimal monomial generator in degree q + 2, so bS1,q+2(S/J) = 0.

Since bS1,q+2(S/J) = 0 is obtained from bS1,q+2(S/L) 
= 0 by consecu-

tive cancellations by Theorem 47.7, it follows that bS2,q+2(S/L) 
= 0.
The ideal L is Borel, so the minimal free resolution of S/L is the

Eliahou-Kervaire resolution 28.6. Since L does not have a minimal
monomial generator in degree q + 1, it follows that bS2,q+2(S/L) = 0.
This is a contradiction.

We proved that L does not have a minimal monomial generator
in degree q+2. Therefore, dimk(Jq+2) = dimk(S1Lq+1). The theorem
holds by induction on degree.

Example 48.2. Consider the ideal J = (y2, z2) in A = k[x, y, z]. We
will compute the lex ideal L with the same Hilbert function as J . The
k-vector space J2 has basis y2, z2. Hence the k-vector space L2 has ba-
sis x2, xy. The k-vector space J3 has basis y3, y2x, y2z, z2x, z2y, z3,
so it is 6-dimensional. Therefore, L3 has basis x3, x2y, x2z, xy2, xyz,

xz2. So far we have found that the lex ideal has minimal generators
x2, xy, xz2.

The k-vector space (A/J)4 has basis x4, x3y, x3z, x2yz. Hence
the k-vector space (A/L)4 has basis y3z, y2z2, yz3, z4. Therefore, L4

is spanned by A1L3 and y4.

In degree 5, the k-vector space (A/J)5 has basis x5, x4y, x4z, x3yz.
Hence, the k-vector space (A/L)5 has basis y3z2, y2z3, yz4, z5. There-
fore, L5 is spanned by A1L4. Thus, L has no minimal generators in
degree 5.

By Gotzmann’s Persistence Theorem 48.1 it follows that L =
(x2, xy, xz2, y4).

Gotzmann’s Regularity Theorem 48.3. Let J be a graded ideal
in S. Let q be an integer such that the following two conditions are
satisfied:
(1) J is generated in degrees ≤ q.
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(2) dimk(Jq+1) = dimk(S1Lq).
Then regS(J) ≤ q.

Proof. By Remark 47.3, Corollary 28.13, and Theorem 48.1 we get
regS(J) ≤ regS(L) ≤ q.

Let J be a graded ideal in S, and L be the lex ideal with the
same Hilbert function as J . We say that J is a Gotzmann ideal if
the equality

dimk(S1Jq) = dimk(S1Lq)

holds for every q ≥ 0.

Exercise 48.4. Let J be a graded ideal in S, and L be the lex ideal
with the same Hilbert function as J . The ideal J is Gotzmann if and
only if J and L have the same number of minimal generators.

Theorem 48.5. (Herzog-Hibi) Let J be a graded Gotzmann ideal
in S, and L be the lex ideal with the same Hilbert function as J . We
have equalities of graded Betti numbers

bSi,j(S/J) = bSi,j(S/L) for all i, j ≥ 0 .

Proof. Let p be the smallest degree in which L has a minimal mono-
mial generator. For q ≥ p, denote by J(q) the ideal generated by all
monomials in J of degree ≤ q. Similarly, denote by L(q) the ideal
generated by all monomials in L of degree ≤ q. By Gotzmann’s Per-
sistence Theorem 48.1, for each q ≥ p the ideals J(q) and L(q) have
the same Hilbert function. Furthermore, by Remark 47.3 it follows
that the graded Betti numbers of S/L(q) are greater or equal to those
of S/J(q).

All Betti numbers in the proof are over S. By Theorem 16.2 the
graded Betti numbers bi,j(S/T ) for a homogeneous ideal T and its
Hilbert function are related by

∞∑

j=0

dimk(S/T )j tj =

∑∞
j=0

∑n
i=0 (−1)ibi,j(S/T ) tj

(1− t)n
.
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Therefore, for each q ≥ p we have that

(∗)
∞∑

j=0

n∑

i=0

(−1)i
(

bi,j(S/J(q))− bi,j(S/L(q))
)

tj = 0 .

By induction on q we will show that the graded Betti numbers
of S/L(q) are equal to those of S/J(q).

First, consider the case when q = p. By the Eliahou-Kervaire
resolution, it follows that L(p) has a p -linear minimal free resolution,
that is, bi,j(S/L(p)) = 0 for j 
= i + p − 1. Since the graded Betti
numbers of S/L(p) are greater or equal to those of S/J(p), it follows
that bi,j(S/J(p)) = 0 for j 
= i+p−1. By (∗) we obtain the equalities
of graded Betti numbers

bi,j(S/J(p)) = bi,j(S/L(p)) for all i, j .

Suppose that the claim is proved for q. Now, we consider the
ideals L(q + 1) and J(q + 1). For j < i+ q, we have that

bi,j(S/L(q + 1)) = bi,j(S/L(q)) = bi,j(S/J(q)) ,

where the first equality follows from the Eliahou-Kervaire resolution
and the second equality holds by induction hypothesis. As J(q +
1)s = J(q)s for s ≤ q by construction, and since bi,j(S/J(q)) = 0
for j ≥ i + q, we conclude that bi,j(S/J(q + 1)) = bi,j(S/J(q)) for
j < i+ q. Hence,

bi,j(S/L(q + 1)) = bi,j(S/J(q + 1)) for j < i+ q

bi,j(S/L(q + 1)) = 0 for j > i+ q, by the Eliahou-Kervaire resolution.

Since the graded Betti numbers of S/L(q + 1) are greater or equal to
those of S/J(q + 1), we conclude that

bi,j(S/J(q + 1)) = bi,j(S/L(q + 1)) for j < i+ q

bi,j(S/J(q + 1)) = bi,j(S/L(q + 1)) = 0 for j > i+ q .
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By (∗) it follows that

n∑

i=0

(−1)i
(

bi,i+q(S/J(q))− bi,i+q(S/L(q))
)

ti+q = 0 .

Hence
bi,j(S/J(q + 1)) = bi,j(S/L(q + 1)) for all i, j ,

as desired.

Let J be a graded ideal in S. We say that J is componentwise

linear if for every q ≥ 0 the ideal generated by Jq has a q-linear
minimal free resolution. By Theorem 48.5, we have that a Gotzmann
ideal is componentwise linear.

49 Numerical versions

Since lex ideals are highly structured, it is easy to derive the inequal-
ities characterizing their Hilbert functions. As an application, we
discuss numerical versions of some results proved earlier.

Note that by convention
(
a
b

)
= 0 if a < b.

Lemma 49.1. Let q be a positive integer. For every p ∈ N there
exist numbers sq > . . . > s1 ≥ 0 such that

p =
(
sq
q

)

+
(
sq−1

q − 1

)

+ . . .+
(
s1
1

)

.

Proof. The proof is by induction. Set

sq = max
{

j

∣
∣
∣
∣

(
j

q

)

≤ p

}

.

If p =
(
sq

q

)
, then set si = i − 1 for each 1 ≤ i < q. Suppose that

p−
(
sq

q

)
> 0. By induction, we can find sq−1 > . . . > s1 ≥ 0 such that

p−
(
sq
q

)

=
(
sq−1

q − 1

)

+ . . .+
(
s1
1

)

.
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It remains to show that sq > sq−1. Assume the opposite. Then we
obtain
(
sq−1

q − 1

)

≥
(

sq
q − 1

)

=
(
sq + 1
q

)

−
(
sq
q

)

> p−
(
sq
q

)

=
(
sq−1

q − 1

)

+ . . . +
(
s1
1

)

,

which is a contradiction.

This is called the q’th Macaulay representation of p. The
numbers s1, . . . , sq are called the q’th Macaulay coefficients of p.

Example 49.2. The 3’rd Macaulay representation of 14 is

14 =
(

5
3

)

+
(

3
2

)

+
(

1
1

)

.

Exercise 49.3. The q’th Macaulay coefficients of p are unique.

Set 0〈q〉 = 0 and

p〈q〉 =
(
sq + 1
q + 1

)

+
(
sq−1 + 1
q − 1 + 1

)

+ . . . +
(
s1 + 1
1 + 1

)

.

Proposition 49.4. Let L be an ideal generated by a lex segment in
Sq. If p = dimk (S/L)q, then dimk (S/L)q+1 = p〈q〉.

Proof. Set j = min{i|xqi /∈ L }. We have that the monomials

{u ∈ Sq is a monomial |u %lex xqj } = k[xj , . . . , xn]q

are non-zero monomials in (S/L)q. The number of such monomials is

dimk k[xj , . . . , xn]q =
(
n− j + q

q

)

=
(
sq
q

)

,

where sq = n− j + q. Furthermore,

(xj , . . . , xn){u |u %lex xqj−1 } = k[xj , . . . , xn]q+1
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are non-zero monomials in (S/L)q+1. The number of such monomials
is

dimk k[xj , . . . , xn]q+1 =
(
n− j + q + 1

q + 1

)

=
(
sq + 1
q + 1

)

.

Let m be the lex-greatest monomial in Sq but not in L. Hence
xqj−1 ∈ L and xqj−1 !lex m !lex xqj . Set

D = {u ∈ {Sq} |m �lex u !lex xqj }

F = {u ∈ {Sq} |xqj �lex u } .

All monomials in D are divisible by xj−1, so we can write D = xj−1D′.
Now,

dimk (S/L)q = |D′|+ |F|
dimk (S/L)q+1 = |(xj , . . . , xn)1D′|+ |(xj , . . . , xn)1F| .

We showed that |F| =
(
sq

q

)
and |(xj , . . . , xn)1F | =

(
sq+1
q+1

)
. By induc-

tion on the degree, we have that

|D′| =
(
sq−1

q − 1

)

+ . . . +
(
s1
1

)

and

|(xj , . . . , xn)1D′| =
(
sq−1 + 1

q

)

+ . . .+
(
s1 + 1
1 + 1

)

.

In order to finish the proof, we need to verify that sq, . . . , s1 are
the Macaulay coefficients, that is, we have to verify that sq > . . . > s1.
The inequalities sq−1 > . . . > s1 hold by induction. So we have to
check that sq > sq−1.

We have that sq = n−j+q, where j = min{i|xqi /∈ L }. Similarly,
sq−1 = n− c+ (q − 1), where

c = min{i |xq−1
i /∈ D′ } = min{i |xj−1x

q−1
i /∈ D }

= min{i |xj−1x
q−1
i /∈ L, i ≥ j } .
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Therefore, c ≥ j. Hence sq−1 = n− c+ q − 1 < n− j + q = sq.

The above proposition and Macaulay’s Theorem imply the fol-
lowing result.

Numerical Version of Macaulay’s Theorem 49.5. Let J be a
graded ideal in S. Then

dimk (S/J)j+1 ≤ (dimk (S/J)j)
〈j〉 for j ≥ 0 .

Similarly, the above proposition and Gotzmann’s Persistence
Theorem 48.1 imply the following result.

Numerical Version of Gotzmann’s Theorem 49.6. Let J be a
graded ideal in S. Let q be an integer such that the following two
conditions are satisfied:
(1) J is generated in degrees ≤ q.

(2) dimk (S/J)q+1 =
(
dimk (S/J)q

)〈q〉.
Then

dimk (S/J)j+1 =
(
dimk (S/J)j

)〈j〉 for j ≥ q .

Numerical Version of Gotzmann’s Regularity Theorem 49.7.
Let J be a graded ideal in S. Let q be an integer such that the following
two conditions are satisfied:
(1) J is generated in degrees ≤ q.

(2) dimk (S/J)q+1 =
(
dimk (S/J)q

)〈q〉.
Then regS(J) ≤ q.

Let α = {α0, α1, . . . } be a sequence of non-negative integer
numbers. We say that α is a Macaulay sequence if α0 = 1 and

αq+1 ≤ α
〈q〉
q for each q ≥ 1.

Corollary 49.8. Let α = {α0 = 1, α1 ≤ n, α2, . . . } be a sequence
of non-negative integer numbers. There exists a graded ideal J in S

with dimk (S/J)i = αi for all i ≥ 0, if and only if, α is a Macaulay
sequence.
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Proof. Note that α0 = 1 as S0 = k. Furthermore, α1 ≤ n since
dimk S1 = n.

Suppose that there exists a graded ideal J in S with dimk (S/J)i
= αi for all i ≥ 0. By Macaulay’s Theorem, there exists a lex ideal
L with dimk (S/L)i = αi for all i ≥ 0. Applying Proposition 49.4
we conclude that if L has no minimal monomial generators in degree

q + 1 then we have the equality αq+1 = α
〈q〉
q , and otherwise we have

the inequality αq+1 ≤ α
〈q〉
q .

Suppose that α is a Macaulay sequence. Let Lq be the lex seg-
ment in Sq such that dimk (S/L)q = αq. By Proposition 49.4, it
follows that Lq+1 ⊇ S1 Lq. Hence L = ⊕q≥0 Lq is an ideal. It has the
desired Hilbert function.

Corollary 49.9. Let J be a graded ideal in S. The Hilbert polyno-
mial of S/J has the form

hS/J(t) =
(
t+ aq
aq

)

+
(
t+ aq−1

aq−1

)

+ . . . +
(
t+ a1

a1

)

.

for some aq ≥ . . . ≥ a1 ≥ 0.

Proof. Let L be the lex ideal with the same Hilbert function as J .
Let q be the maximal degree in which L has a minimal monomial
generator. Denote by N the ideal generated by Lq. It follows that
dimk (Ji) = dimk (Ni) for i ≥ q. Hence S/J and S/N have the same
Hilbert polynomial.

Let sq > . . . > s1 ≥ 0 be the Macaulay’s coefficients of the q’th
Macaulay representation of the number dimk (S/N)q.

By Proposition 49.4, it follows that the Hilbert polynomial of
S/N is

hS/N (q + t) =
(
sq + t

q + t

)

+
(
sq−1 + t

q − 1 + t

)

+ . . . +
(
s1 + t

1 + t

)

.

Set ai = si − i for each i. Hence

hS/N(q+ t) =
(
t+ q + aq
q + t

)

+
(
t+ q − 1 + aq
q − 1 + t

)

+ . . .+
(
t+ 1 + a1

1 + t

)

.
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Therefore,

hS/N (t) =
(
t+ aq
t

)

+
(
t+ aq−1

t

)

+ . . .+
(
t+ a1

t

)

=
(
t+ aq
aq

)

+
(
t+ aq−1

aq−1

)

+ . . . +
(
t+ a1

a1

)

.

Corollary 49.10. Suppose that the field k is infinite. Let

g(t) = art
r + . . . + a1t+ a0

g(1) 
= 0, and ai ∈ Z for all i. There exists a p ∈ N such that
g(t)

(1− t)p
is equal to HilbS/J(t) for some graded Cohen-Macaulay J if and only
if a0, a1 ≤ n, . . . , ar is a Macaulay sequence of positive numbers.

Proof. Let HilbS/J(t) =
g(t)

(1− t)dim(S/J)
. If S/J is Cohen-Macaulay,

then by 20.1 there exists a regular sequence of linear forms of length
dim(S/J). Hence, g(t) is the Hilbert series of an artinian graded
quotient of S. Therefore, a0, a1 ≤ n, . . . , ar is a Macaulay sequence of
positive numbers.

On the other hand, suppose that a0, a1 ≤ n, . . . , ar is a Macaulay
sequence of positive numbers. Therefore, there exists an artinian
graded quotient S/J of S with Hilbert series g(t).

The following problems have been studied, cf. [Valla].

Problems 49.11.
(1) Characterize the Hilbert functions of graded artinian Gorenstein

quotients of S.
(2) Characterize the Hilbert functions of graded Cohen-Macaulay do-

mains that are quotients of S.
(3) Characterize the Hilbert functions of sets of points in uniform

position.

A problem of this type is also the Eisenbud-Green-Harris Con-
jecture, discussed in Section 53. Another conjecture of this type is
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Fröberg’s conjecture.

Fröberg’s Conjecture 49.12. (Fröberg) Let f1, . . . , fr be generic
forms in S of degrees a1, . . . , ar, and let T = (f1, . . . , fr). The Hilbert
series of S/T is

HilbS/T (t) =
∣
∣
∣
∣

∏
1≤i≤r (1− tai)

(1− t)n

∣
∣
∣
∣ ,

where | | means that a term cit
i in the series is omitted if there exists

a term cjt
j with j ≤ i and negative coefficient cj. (Here r > n is the

interesting case, since for r ≤ n we have that f1, . . . , fr is a regular
sequence.)

Set 0〈q〉 = 0 and

p〈q〉 =
(
sq − 1
q

)

+
(
sq−1 − 1
q − 1

)

+ . . .+
(
s1 − 1

1

)

.

Exercise 49.13. Let L be an ideal generated by a lex segment in Sq.
If p = dimk (S/L)q, then

dimk

(
S/(L, xn)

)
q

= p〈q〉 .

Green’s Hyperplane Restriction Theorem 44.10 and 49.13 imply
the next result.

Numerical Version of Green’s Hyperplane Restriction The-
orem 49.14. Let J be a graded ideal in S, and h be a generic linear
form. If p = dimk (S/J)q, then

dimk (S/(J, h))q ≤ p〈q〉 .

50 Hilbert functions over quotient rings

The main idea in Macaulay’s Theorem is that every Hilbert function
is attained by a lex ideal. One can wonder for what quotient rings this
idea works out. If I is a monomial or toric ideal, then we can define
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the notion of a lex ideal in the quotient ring R = S/I. There might be
other classes of rings for which one can introduce a meaningful notion
of lex ideals, that is, find a class of ideals which attain all Hilbert
functions and which are defined in a nice way (and call such ideals lex
ideals).

It is easy to find quotient rings over which Macaulay’s Theorem
does not hold. For example, there exists no lex ideal with the same
Hilbert function as the ideal (ab) in the quotient ring k[a, b]/(a2b, ab2)
by [Mermin-Peeva 2, Example 2.13]. Since the trouble is sometimes in
the degrees of the minimal generators of I, it makes sense to relax the
problem to Problem 50.1(1). Furthermore, in view of Hartshorne’s
Theorem that every graded ideal in S is connected by a sequence of
deformations to a lex ideal, it is natural to raise Problem 50.1(2).
Problem 50.1(3) is motivated by Theorem 47.2 which shows that a
lex ideal attains the greatest graded Betti numbers among all graded
ideals in S with the same Hilbert function.

Open-Ended Problems 50.1. [Mermin-Peeva, Mermin-Peeva 2]
(1) Let p be the maximal degree of an element in a minimal homo-

geneous system of generators of I. Find classes of graded ideals
I so that every Hilbert function over R = S/I of a graded ideal
generated in degrees > p is attained by a lex ideal.

(2) Let J be a graded ideal in R, and L be a lex ideal with the same
Hilbert function. When is J connected to L by a sequence of
deformations? What can be said about the structure of the Hilbert
scheme that parametrizes all graded ideals in R with the same
Hilbert function as L?

(3) Let J be a graded ideal in R, and L be a lex ideal with the same
Hilbert function. Find conditions on R and/or J so that the
Betti numbers of J over R are less than or equal to those of L.

Furthermore, one can also ask for generalizations or extensions of
the Gotzmann’s Persistence Theorem and the Lex-Plus-Powers Con-
jecture.

Open-Ended Problem 50.2. (Peeva) Find classes of graded ideals
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I so that Gotzmann’s Persistence Theorem holds over R.

Open-Ended Problem 50.3. [Mermin-Peeva] Let J be a graded
ideal in R, and L be a lex ideal with the same Hilbert function in R.
Denote by J̃ and L̃ the preimages of J and L in S. Find conditions
on R and/or J so that the Betti numbers of J̃ over S are less than or

equal to those of L̃. (We say that L̃ is a lex-plus-I ideal.)

As we have seen in Section 51, Hilbert functions over an exterior
algebra coincide with f -vectors of simplicial complexes. The situation
over an exterior algebra is well-studied and we have the following
results.

Theorem 50.4. Let E be a standard graded exterior algebra on n

variables of degree one.
(1) (Kruskal-Katona) For every graded ideal in E there exists a lex

ideal with the same Hilbert function.
(2) [Peeva-Stillman 3] The Hilbert scheme, that parametrizes all graded

ideals with a fixed Hilbert function, is connected. Each graded
ideal in E is connected by a sequence of deformations to the lex
ideal with the same Hilbert function.

(3) [Aramova-Herzog-Hibi 2] Each lex ideal in E attains maximal
Betti numbers among all graded ideals with the same Hilbert
function.

(4) [Mermin-Peeva-Stillman] Each lex-plus-(x2
1, . . . , x

2
n) ideal in S

attains maximal Betti numbers among all graded ideals contain-
ing (x2

1, . . . , x
2
n) and with the same Hilbert function.

(5) [Aramova-Herzog-Hibi 2] Gotzmann’s Persistence Theorem holds
over E.

51 Squarefree ideals plus squares

In this section, we study how the Hilbert function and the minimal
free resolution change when we add the squares of the variables to a
squarefree monomial ideal. This relates to (4) in Theorem 50.4.

Throughout the section Δ is a simplicial complex on the vertex
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set {x1, . . . , xn}. Set c = dim(Δ) + 1.

The Stanley-Reisner ideal (in S) of Δ is

IΔ = (xi1 . . . xip | {xi1 , . . . , xip} /∈ Δ) .

Each squarefree monomial ideal in S is the Stanley-Reisner ideal of
some simplicial complex on vertex set {x1, . . . , xn}.

The Stanley-Reisner ring of Δ is RΔ = S/IΔ. The ring

QΔ = RΔ/ (x2
1, . . . , x

2
n) = S/(IΔ + (x2

1, . . . , x
2
n))

is closely related toRΔ. We say that IΔ+(x2
1, . . . , x

2
n) is a squarefree-

plus-squares ideal.

First, we study how the Hilbert function changes when we add
the squares of the variables to a squarefree monomial ideal.

Construction 51.1. Consider the correspondence

ϕ : xi1 · · · xip → the face with vertices {xi1 , . . . , xip} .

from the set of squarefree monomials in n variables to the faces of the
simplex on n vertices. Clearly, ϕ is a bijection.

The f-vector of Δ is (f−1, f0, . . . , fc−1), where fi is the number
of faces of dimension i in Δ. Note that f−1 = 1, since a simplicial
complex has one empty face. The polynomial f(t) =

∑
0≤i≤c fi−1 t

i

is called the f-polynomial.

Proposition 51.2.

HilbQΔ(t) =
∑

0≤i≤c
fi−1 t

i = f(t).

Proof. The bijection in Construction 51.1 induces the bijection

ψ : the monomials in QΔ = RΔ/ (x2
1, . . . , x

2
n) −→ the faces of Δ .

Proposition 51.3.

HilbRΔ(t) = HilbQΔ

(
t

1− t

)

.
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Proof. Let m be a squarefree monomial in QΔ of degree i. Denote
supp(m) = {xj |xj divides m}. All monomials in S with the same
support asm are monomials inRΔ and they are exactly the monomials

in mk[xj |xj ∈ supp(m)]; hence they contribute
ti

(1− t)i to HilbRΔ(t).

Therefore,

HilbRΔ(t) =
∑

0≤i≤c
fi−1

ti

(1− t)i = HilbQΔ

(
t

1− t

)

.

Theorem 51.4. If Δ and Δ′ are simplicial complexes on n vertices,
then

HilbRΔ(t) = HilbRΔ′ (t) ⇐⇒ HilbQΔ(t) = HilbQΔ′ (t) .

Theorem 51.5.

dim(RΔ) = dim(Δ) + 1 .

Proof. We have that

HilbRΔ(t) =
∑

0≤i≤c
fi−1

ti

(1− t)i
=
∑

0≤i≤c
fi−1

ti(1− t)c−i

(1− t)c .

Set h(t) =
∑

0≤i≤c fi−1t
i(1− t)c−i. Then HilbRΔ(t) =

h(t)
(1− t)c

and

h(1) = fc−1 
= 0. Hence dim(RΔ) = c = dim(Δ) + 1.

Recall that the polynomial h(t) above is called the h-polynomial.

Corollary 51.6. h(t) = (1− t)c · f
(

t

1− t

)

.

Next, we study how the Betti numbers change when we add the
squares of the variables to a squarefree monomial ideal.

Theorem 51.7. Let N be a squarefree ideal. Set P (i) = (x2
1, . . . , x

2
i )

and P (0) = 0. For each 0 ≤ i < n, the mapping cone of the short
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exact sequence

0→ S/
(
(N+P (i)) : xi+1

) x2
i+1−−−−−→S/

(
N+P (i)

)
→ S/
(
N+P (i+1)

)
→ 0

yields a minimal free resolution of S/
(
N + P (i+ 1)

)
.

This theorem shows how to obtain the Betti numbers of N +
(x2

1, . . . , x
2
n) starting from the minimal free resolution of N and adding

the squares one after another. At each step, we use a mapping cone.

Proof. First, note that
(
(N + P (i)) : x2

i+1

)
=
(
(N + P (i)) : xi+1

)

because the ideal N + P (i) is squarefree on the variable xi+1. Thus,
the sequence above is exact.

Since the ideal N + P (i) is squarefree on the variable xi+1, by
Taylor’s resolution, it follows that the Betti numbers of S/

(
N +P (i)

)

are concentrated in multidegrees not divisible by x2
i+1. On the other

hand, the first map in the short exact sequence is multiplication by
x2
i+1. Therefore, there can be no cancellations in the mapping cone.

Hence, the mapping cone yields a minimal free resolution.

The disadvantage of the above theorem is that we may change
the Hilbert function by adding some (but not all) of the squares.
That is, if N and N ′ are two squarefree ideals with the same Hilbert
function, then N+P (i) and N ′ +P (i) may not have the same Hilbert
function. There are examples, when N + (x2

1) and N ′ + (x2
1) have

different Hilbert functions. For example, consider the polynomial ring
k[a, b, c, e] and let T be the ideal generated by the squarefree cubic
monomials; the ideal N = (ab, ac, bc) + T is squarefree Borel and the
ideal N ′ = (ab, ac, ae)+T is squarefree lex. The ideals N and N ′ have
the same Hilbert function, but N + (a2) and N ′ + (a2) have different
Hilbert functions. The next theorem shows how to use mapping cones
while preserving the Hilbert function.

For a σ ⊆ {x1, . . . , xn}, we set xσ =
∏
xi∈σ xi.

Theorem 51.8. [Mermin-Peeva-Stillman] Let P = (x2
1, . . . , x

2
n) and

N be a squarefree monomial ideal.
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(1) We have the long exact sequence

(∗)

0 → ⊕|σ|=n S/(N : xσ)
ϕn−−→ . . .

→ ⊕|σ|=i S/(N : xσ)
ϕi−−→ ⊕|σ|=i−1 S/(N : xσ) → . . .

→ ⊕|σ|=1 S/(N : xσ) = ⊕1≤j≤n S/(N : xj)
ϕ1−−→

→ ⊕|σ|=0 S/(N : xσ) = S/N → S/(N + P ) → 0

with maps ϕi the Koszul maps for the sequence x2
1, . . . , x

2
n, and

σ ⊆ {1, . . . , n}.
(2) S/(N + P ) is minimally resolved by the iterated mapping cones

from (∗).
(3) Each of the ideals (N : xσ) in (1) is a squarefree monomial ideal.
(4) For the graded Betti numbers of S/(N + P ) we have

bp,s(S/(N + P )) =
∑

0≤i≤p

(∑

|σ|=i
bp−i,s−2i(S/(N : xσ))

)

.

Proof. First, note that (N : x2
σ) = (N : xσ) is squarefree since N is

squarefree.
By Construction 14.1 and Theorem 14.7, the exact Koszul com-

plex K for the sequence x2
1, . . . , x

2
n has the form

0 → ⊕|σ|=n S
ϕn−−→ . . .

→ ⊕|σ|=i S
ϕi−−→ ⊕|σ|=i−1 S → . . .

→ ⊕|σ|=1 S = ⊕1≤j≤n S
ϕ1−−→

→ ⊕|σ|=0 S = S → S/P → 0 .

Write K = K′ ⊕ K′′, where K′ consists of the components of K in
all multidegrees m /∈ N , and K′′ consists of the components of K in
all multidegrees m ∈ N . Note that both K′ and K′′ are exact by 3.7.
We will show that (∗) coincides with K′.

By 14.1, K is an exterior algebra on variables e1, . . . en. Let
mej1 ∧ . . . ∧ eji be an element in Ki and m be a monomial. The
multidegree of the variable ej is x2

j ; hence, the multidegree of mej1 ∧
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. . . ∧ eji is mx2
j1
. . . x2

ji
. Now, mej1 ∧ . . . ∧ eji ∈ K′ if and only if

mx2
j1
. . . x2

ji
/∈ N , if and only if mxj1 . . . xji /∈ N , if and only if m /∈

(N : xj1 . . . xji). Therefore,

K′
i → ⊕|σ|=i S/(N : xσ)

mej1 ∧ . . . ∧ eji �→ m ∈ S/(N : xj1 . . . xji)

is an isomorphism. We proved (1).
We will prove (2). Denote by Vi the kernel of ϕi : K′

i → K′
i−1.

We have the short exact sequence

0→ Vi → ⊕|σ|=i S/(N : xσ) → Vi−1 → 0 .

Each of the ideals (N : xσ) is squarefree. By Corollary 26.10, the Betti
numbers of ⊕|σ|=i S/(N : xσ) are concentrated in squarefree multide-
grees. On the other hand, the entries in the matrix of the map ϕi
are squares of the variables. Therefore, there can be no cancellations
in the mapping cone. Hence, the mapping cone yields a minimal free
resolution.

(4) follows from (2).

Furthermore, the following result is proved in [Mermin-Peeva-
Stillman].

Proposition 51.9. Let N and N ′ be two squarefree monomial ideals
with the same Hilbert function. Fix an integer 1 ≤ p ≤ n. The graded
modules ⊕|σ|=p (N : xσ) and ⊕|σ|=p (N ′ : xσ) have the same Hilbert
function.

Proposition 51.10. Let N be a squarefree monomial ideal, and Δ
be its Stanley-Reisner simplicial complex. Let σ ⊆ {1, . . . , n}. The
Stanley-Reisner simplicial complex of (N : xσ) is

starΔ(σ) = {τ ∈ Δ | τ ∪ σ ∈ Δ} ,

(recall 36.17).
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Proof.

starΔ(σ) = {τ ∈ Δ | τ ∪ σ ∈ Δ}
= {τ ⊆ {1, . . . , n} | lcm(xτ ,xσ) /∈ N}
= {τ ⊆ {1, . . . , n} |xτxσ /∈ N}
= {τ ⊆ {1, . . . , n} |xτ /∈ (N : xσ) }
= {τ ⊆ {1, . . . , n} |xτ /∈ (N : xσ) } .

52 Clements-Lindström rings

Counting faces of simplicial complexes (that is, counting in an exterior
algebra) naturally generalizes to counting in multicomplexes. This
leads to considering Clements-Lindström rings, which have the form

P = S/(xa1
1 , . . . , x

an
n ) ,

where 2 ≤ a1 ≤ . . . ≤ an. We will prove the analogue of Theo-
rem 50.4(1), that is, we will prove that Macaulay’s Theorem holds
over P . The remaining parts (2)-(5) of Theorem 50.4 hold over P as
well and are proved in [Gasharov-Murai-Peeva 2] and [Mermin-Murai].

The notions of a Pq-monomial space, compression, Borel, and lex
ideals easily extend over P . For example, we say that a Pq-monomial
space Bq is Borel if whenever a non-zero monomial xjm ∈ Bq and
1 ≤ i ≤ j it follows that xim ∈ Bq (note that xim = 0 is possible
since P is a quotient ring).

We will need some lemmas. Minor modifications in the proofs of
Structure Lemma 42.5, Lemma 44.1, the Comparison Theorem 44.4,
Compression Lemma 42.9, and Proposition 41.6 lead to the following
analogs (listed below) over P of these results. See [Mermin-Peeva] for
detailed proofs.

Structure Lemma 52.1. If a Pq-monomial space Cq is compressed
and n ≥ 3, then Cq is Borel.
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Lemma 52.2. If a Pq-monomial space Bq is Borel, then

∣
∣
∣ {P1Bq}

∣
∣
∣ =

n∑

i=1

ri,ai−1(Bq) .

Comparison Theorem 52.3. Let Bq be a Borel monomial space in
Pq. Let Lq be a lex monomial space in Pq with |Lq| ≤ |Bq|. Then

ri,j(Lq) ≤ ri,j(Bq)

for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ai.

Compression Lemma 52.4. Let Aq be a Pq-monomial space. There
exists a compressed monomial space Tq in Pq such that |Tq| = |Aq |
and |P1Tq| ≤ |P1Aq|.

Proposition 52.5. The following properties are equivalent.
(1) Let Aq be a Pq-monomial space and Lq be its lexification in Pq.

Then |P1Lq | ≤ |P1Aq |.
(2) For every graded ideal J in P there exists a lex ideal L with the

same Hilbert function.

Using the above results we will prove Macaulay’s Theorem over
the Clements-Lindström ring P .

Clements-Lindström’s Theorem 52.6. Let P = S/(xa1
1 , . . . , x

an
n ),

where 2 ≤ a1 ≤ . . . ≤ an. For every graded ideal in P there exists a
lex ideal with the same Hilbert function.

Proof. We will prove that (1) in Proposition 52.5 holds. We will use the
argument in the first proof of Macaulay’s Theorem from Section 45.

An easy calculation shows that the theorem holds provided n = 2
and we do not have a2 ≤ q + 1 < a1. But a1 ≤ a2 by assumption, so
the theorem holds for n = 2.

Consider the case n ≥ 3. Applying 52.4, we conclude that there
exist a compressed monomial space Cq such that |Cq| = |Aq| and
|P1Cq| ≤ |P1Aq|. By Lemma 52.1 it follows that Cq is Borel. Let Lq be
the lex monomial space for which |Cq| = |Lq|. We apply Lemma 52.2

202



53 The Eisenbud-Green-Harris Conjecture

to conclude that

∣
∣
∣ {P1Cq}

∣
∣
∣ =

n∑

i=1

ri,ai−1(Cq)

∣
∣
∣ {P1Lq}

∣
∣
∣ =

n∑

i=1

ri,ai−1(Lq) .

Finally, we apply Theorem 52.3 and get the inequality
∣
∣ {P1Lq}

∣
∣ ≤

∣
∣ {P1Cq}

∣
∣.

53 The Eisenbud-Green-Harris Conjecture

The most exciting currently open conjecture on Hilbert functions is
the Eisenbud-Green-Harris Conjecture. It is wide open.

The Eisenbud-Green-Harris Conjecture 53.1. [Eisenbud-Green-
Harris 1, Eisenbud-Green-Harris 2] Let N be a graded ideal in S

containing a maximal homogeneous regular sequence in degrees 2 ≤
e1 ≤ · · · ≤ en. There exists a monomial ideal T such that N and
T + (xe11 , · · · , xen

r ) have the same Hilbert function.

A monomial ideal L + (xe11 , . . . , x
en
r ) is called lex-plus-powers

if it is the preimage of a lex ideal in S/(xe11 , . . . , x
en
r ). By Clements-

Lindström’s Theorem 52.6, it follows that the conjecture can be stated
equivalently as follows.

Conjecture 53.2. Let N be a graded ideal containing a maximal
homogeneous regular sequence in degrees 2 ≤ e1 ≤ · · · ≤ en. There
exists a lex-plus-powers ideal L+ (xe11 , . . . , x

en
r ) with the same Hilbert

function.

The original conjecture gives a numerical characterization of the
Hilbert functions of graded ideals containing a maximal homogeneous
regular sequence in degrees 2 ≤ e1 ≤ · · · ≤ en. It is well known that
the numerical characterization is equivalent to the existence of a lex-
plus-powers ideal L+(xe11 , . . . , x

en
n ) with the same Hilbert function as

the ideal N .
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Another equivalent formulation of the conjecture is:

Conjecture 53.3. Let f1, . . . , fn be a maximal homogeneous regular
sequence in S in degrees 2 ≤ e1 ≤ · · · ≤ en. Let N̄ be a graded
ideal in the complete intersection ring S/(f1, . . . , fn). There exists a
lex ideal L̄ in the Clements-Lindström ring S/(xe11 , . . . , x

en
r ) with the

same Hilbert function as N̄ .

The conjecture is especially interesting in the case e1 = . . . =
en = 2 when the regular sequence consists of quadrics.

Next, we focus on problems based on the idea that the lex ideal
has the greatest Betti numbers among all ideals with a fixed Hilbert
function.

Conjecture 53.4. Suppose that k is an infinite field (possibly, one
should also assume char(k) = 0). Let N be a graded ideal con-
taining a homogeneous regular sequence f1, . . . , fn in S in degrees
2 ≤ e1 ≤ · · · ≤ en. Suppose that there exists a lex-plus-powers ideal
L+ (xe11 , · · · , xen

n ) with the same Hilbert function. Then:
(1) The Betti numbers of N̄ over S/(f1, . . . , fn) are less than or

equal to those of L̄ over S/(xe11 , . . . , x
en
n ), (where N̄ and L̄ are

the images of N and L in the corresponding complete intersection
rings).

(2) The LPP Conjecture (the lex-plus-powers conjecture).
(Evans) The Betti numbers of N over S are less than or equal
to those of L+ (xe11 , . . . , x

en
n ).

The first part of the conjecture is about infinite resolutions,
whereas the second part is about finite ones.

The LPP Conjecture was inspired by the Eisenbud-Green-Harris
Conjecture. [Francisco-Richert] is an expository paper on the LPP
Conjecture.
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