
Chapter 2
Graph-Theoretic Foundations

In this chapter, we present some important concepts and algorithms from graph the-
ory for the benefit of a general reader. These concepts and algorithms constitute the
theoretical underpinnings of a variety of techniques used to solve the various prob-
lems that arise in the context of virtual craniofacial surgery. The focus of this chapter
is to present the necessary graph-theoretic foundations for the research presented in
the remainder of the monograph. The details of the graph-theoretic modeling of spe-
cific problems in the context of virtual craniofacial surgery, along with appropriate
justifications, will be provided accordingly in the later chapters. This chapter con-
tains an introductory section, followed by three separate sections on graph matching,
graph isomorphism, and network flow. We state most of the important theoretical re-
sults without proof. The interested reader is referred to reputed textbooks on graph
theory such as [31–33], and [34] for a more formal and detailed treatment of the
subject.

2.1 Some Basic Terminology

In this section, we discuss some common terminology in graph theory such as the
order and the size of a graph, and a walk, a path, and a cycle within a graph follow-
ing [32]. We also provide the definition of a bipartite graph.

Definition 2.1 A graph G is an ordered pair of disjoint sets (V ,E) such that E is a
subset of the set V (2) of unordered pairs of V . The set V is the set of vertices, and
E is the set of edges.

Definition 2.2 The order of G is the number of vertices in G, and the size of G is
the number of edges in G.

Definition 2.3 A graph G(V1 ∪ V2,E) is bipartite if the two vertex sets V1 and V2
are disjoint and every edge in the edge set E joins a vertex in V1 to a vertex in V2.
The graph G is said to have a bipartition (V1,V2).

A.S. Chowdhury, S.M. Bhandarkar, Computer Vision-Guided Virtual Craniofacial Surgery,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-296-4_2, © Springer-Verlag London Limited 2011

15

http://dx.doi.org/10.1007/978-0-85729-296-4_2

16 2 Graph-Theoretic Foundations

Definition 2.4 A path P in a graph G is denoted by a sequence of vertices
(v0, v1, . . . , vn) that it connects. In this case, P is said to be a path from v0 to vn.

Definition 2.5 A walk W in a graph G consists of an alternating sequence of ver-
tices and edges, such as (v0, e1, v1, e2, v2, . . . , vn−1, en, vn), where ei = {vi−1, vi},
0 < i ≤ n. In this case, W is termed as a v0 − vn walk of length n. The differ-
ence between a path and a walk is made clear by context in spite of the notational
similarity.

Definition 2.6 A graph Cn constitutes a cycle of order n if its vertices vi, 0 < i < n,
are distinct from each other, n ≥ 3, v0 = vn, and there exists a v0 − vn walk.

Consider the graph shown in Fig. 2.1. It has an order 5 as it contains five ver-
tices, namely {A,B,C,D,E}. The size of the graph is 7 as it contains seven edges,
namely {AB,AD,AE,BC,BD,BE,DE}.

Figure 2.2 shows a bipartite graph. Note that the two vertex sets V1 and V2 are
disjoint. V1 consists of the vertices {A,B,C}, and V2 consists of the vertices {D,E}.
The edges {AD,AE,BD,BE,CD,CE} are such that each edge connects one ver-
tex in V1 to another vertex in V2.

The graph in Fig. 2.3 constitutes a cycle of order 4.

Fig. 2.1 A graph

Fig. 2.2 A bipartite graph

Fig. 2.3 A cycle graph

2.2 Matchings in Graphs 17

Fig. 2.4 Matching in a
general graph

2.2 Matchings in Graphs

In this section, we first provide some important definitions and then present some
key results on matchings in general graphs and bipartite graphs.

Definition 2.7 A matching M of a graph G = (V ,E) is a subset of the edges with
the property that no two edges of M share the same node.

Definition 2.8 Edges of a graph in a matching are called matched edges; the other
edges are called free. Similarly, the vertices that are not incident upon any matched
edge are called exposed; the remaining vertices are called free.

Definition 2.9 A path P = (v1, v2, . . . , vk) is called alternating if:

edges {v1, v2}, {v3, v4}, . . . , {v2j−1, v2j }, . . . are free,
whereas edges {v2, v3}, {v4, v5}, . . . , {v2j , v2j+1}, . . . are matched.

Definition 2.10 An alternating path p = (v1, v2, . . . , vk) is called augmenting if
both v1 and vk are exposed vertices.

Example 2.1 Consider Fig. 2.4 which shows a matching M in a graph G with ver-
tices {v1, . . . , v10}. We can then write the following:

Matched edges: {v2, v3}, {v4, v10}, {v5, v6}, {v7, v8}.
Free edges: {v1, v2}, {v1, v10}, {v2, v4}, {v3, v5}, {v4, v7}, {v4, v9}, {v5, v7},
{v6, v8}, {v8, v9}, {v9, v10}.
Exposed vertices: {v1, v9}.
An alternating path: (v9, v8, v7, v5).
An augmenting path: (v9, v8, v7, v4, v10, v1).

Definition 2.11 If the edge weights of a graph are all unity, the matching problem
is essentially a Cardinality Matching problem. A Maximum Cardinality Matching
is a matching with a maximum number of edges.

Definition 2.12 When the cardinality of a matching is �|V |/2�, the largest possible
in a graph with |V | nodes, we say that the matching is complete or perfect.

18 2 Graph-Theoretic Foundations

Fig. 2.5 Maximum
cardinality matching in a
general graph

Example 2.2 Consider Fig. 2.5 which shows a maximum cardinality matching M∗
in a graph G with vertices {v1, . . . , v10}.

Matched edges: {v1, v10}, {v2, v3}, {v4, v9}, {v5, v6}, {v7, v8}.
Since the number of vertices is 10 and the cardinality of the matching is 5, this

is also an example of complete or perfect matching. Note that there are no exposed
vertices and hence no augmenting paths in this figure (as opposed to Fig. 2.4).

Definition 2.13 If the edge weights are given by a function w : E → 	+, the weight
of a matching is defined as w(M) = ∑

e∈M w(e). The Maximum Weight Matching
problem is to determine a matching M in G that has maximum weight.

Next, we present three theorems on matchings in bipartite and general graphs.
The first theorem discusses the condition for the existence of maximum matching.
The next two theorems give the results for the worst-case time-complexity of two
graph matching algorithms, namely, the Maximum Cardinality Minimum Weight
(MCMW) matching for a bipartite graph and Maximum Weight Graph Matching
(MWGM) for a general graph.

Theorem 2.1 A matching M in a graph G is maximum if and only if there is no
augmenting path in G with respect to M .

Theorem 2.2 The worst-case time complexity of the Maximum Cardinality Mini-
mum Weight (MCMW) matching algorithm for a bipartite graph G = (V1 ∪ V2,E)

with |V1| = |V2| = n is O(n3).

Theorem 2.3 The worst-case time complexity of the Maximum Weight Graph
Matching (MWGM) algorithm for a general graph G = (V ,E) with |V | = n is
O(n4).

For detailed proofs of the above theorems and details of the matching algorithms,
the interested reader can refer to [31, 33].

2.3 Isomorphism and Automorphism of Graphs 19

2.3 Isomorphism and Automorphism of Graphs

We discuss the isomorphism and automorphism of graphs with some examples.
Some important results on the time complexity of the graph isomorphism problem
and graph automorphism problem are also stated.

Definition 2.14 Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic, de-
noted by G1 ∼= G2, if there exists a bijection M ⊆ V1 ×V2 such that, for every pair of
vertices vi, vj ∈ V1 and wi,wj ∈ V2 with (vi,wi) ∈ M and (vj ,wj) ∈ M,(vi, vj) ∈
E1 if and only if (wi,wj) ∈ E2. In such a case, M is a graph isomorphism from G1
to G2.

Definition 2.15 An automorphism of a graph G is a graph isomorphism between G

and itself.

The set of all automorphs of a graph forms a group under the operation of com-
position. This group is termed the automorphism group of the graph. It is a well-
known fact that the graph isomorphism problem (i.e., determining whether or not
two graphs are isomorphic) ∈ NP. However, it can be solved in polynomial time for
many special graphs [34]. Now, we state and prove a result on graph automorphisms
for cycle graphs.

Theorem 2.4 The automorphism group of a cycle graph Cn on n ≥ 3 vertices is a
group of order 2n.

Proof A cycle graph Cn on n ≥ 3 vertices is left fixed by exactly n rotations as well
as by exactly n reflections. Thus, the resulting automorphism group has order 2n. �

Example 2.3 The two graphs G1 and G2 in Fig. 2.6 are isomorphic. The mapping
from G1 to G2 is given by the following bijection:

M = {
(A,1), (B,2), (C,3), (D,4)

}
.

Fig. 2.6 A pair of
isomorphic graphs

20 2 Graph-Theoretic Foundations

Example 2.4 Let C4 be a cycle graph of order 4 with vertices [P,Q,R,S], as shown
in Fig. 2.3. Then from Theorem 2.4 we conclude that there exist 4 rotational au-
tomorphs and 4 reflectional automorphs, i.e., a total of 8 automorphs of C4. The
members of the automorphism group of C4 are given by:

1. {P,Q,R,S}, {S,P,Q,R}, {R,S,P,Q}, {Q,R,S,P } (these are the 4 rotational
automorphs)

2. {Q,P,S,R}, {P,S,R,Q}, {S,R,Q,P }, {R,Q,P,S} (these are the 4 reflec-
tional automorphs)

2.4 Network Flows

In this section, we describe the basic concepts underlying network flows following
[35]. As in previous sections, we state the definitions, provide some illustrative ex-
amples, and state key theorems without proofs. For the proofs of the theorems in
this section, the interested reader is referred to well-known textbooks such as [35]
and [36]. We end the section with a description of the Ford–Fulkerson algorithm for
computing the maximum flow in a flow network.

Definition 2.16 A flow network G = (V ,E) is a directed graph in which each edge
(u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. Two vertices in the flow network
are distinguished as a source vertex s and a sink vertex t .

Definition 2.17 A flow in G is a real-valued function f : V ×V → 	+ that satisfies
the following properties:

∀u,v ∈ V, f (u, v) ≤ c(u, v); (2.1)

∀u,v ∈ V, f (u, v) = −f (v,u); (2.2)

∀u ∈ V − {s, t},
∑

v∈V

f (u, v) = 0. (2.3)

The quantity f (u, v) is called the flow from the vertex u to vertex v.

Definition 2.18 The value of a flow is defined as

|f | =
∑

v∈V

f (s, v), (2.4)

that is, the total flow out of the source.

Definition 2.19 Given a flow network G = (V ,E) and a flow f , the residual graph
of G induced by f is Gf = (V ,Ef) where Ef = {(u, v) ∈ V × V | cf (u, v) >

0}. Here, cf (u, v) denotes the residual capacity of (u, v). Let f (u, v) and c(u, v)

respectively denote the flow and capacity between u and v. Then, we can write

cf (u, v) = c(u, v) − f (u, v). (2.5)

2.4 Network Flows 21

Fig. 2.7 Flow in a graph.
(a) Flow network,
(b) Corresponding residual
network

Definition 2.20 Given a flow network G = (V ,E) and a flow f , an augmenting
path p is a simple path from s to t in the residual network Gf .

Definition 2.21 We have previously defined the residual capacity for an edge in a
flow network. Now, we define the residual capacity cf (p) of an augmenting path p

as follows:

cf (p) = min
{
cf (u, v)

∣
∣ (u, v) is on p

}
. (2.6)

Thus, cf (p) is the maximum amount by which a flow can be increased on each edge
in the augmenting path p.

Definition 2.22 A cut (S,T) of a flow network G = (V ,E) is a partition of V into
S and T = V − S such that s ∈ S and t ∈ T .

Definition 2.23 The capacity of a cut (S,T) is the sum of the capacities of the
edges from S to T .

Example 2.5 Consider the flow network in Fig. 2.7(a). Each edge in the flow net-
work is labeled with a flow and a capacity. The residual network is shown in
Fig. 2.7(b) with an augmenting path p = (s, v2, v3, t). Then, using (2.5) and (2.6),
we can write:

cf (s, v2) = c(s, v2) − f (s, v2) = 10 − 7 = 3,

cf (v2, v3) = c(v2, v3) − f (v2, v3) = 7 − 5 = 2,

22 2 Graph-Theoretic Foundations

Fig. 2.8 Cut in a graph

cf (v3, t) = c(v3, t) − f (v3, t) = 22 − 17 = 5,

cf (p) = min
{
cf (s, v2), cf (v2, v3), cf (s, v2)

} = min{3,2,5} = 2.

Example 2.6 Figure 2.8 depicts the existence of a cut in the same flow network.
We can infer following from Fig. 2.8:

A cut (S,T) can be observed in the above flow network where S = {s, v1, v2},
T = {v3, v4, t}.

Capacity of this cut = c(v1, v3) + c(v2, v4) = 15 + 14 = 29.
Note that only edges going from S to T but not the edges in the reverse direction

contribute to the capacity of a cut. Hence, only cf (v1, v3) and cf (v2, v4) are con-
sidered, and cf (v3, v2) is excluded when computing the capacity of the cut (S,T).

Next, we state some important theorems for flow networks. The first theorem
relates the maximum flow and minimum cut in a flow network. The second theo-
rem discusses the nature of capacity functions and the corresponding flow. Once the
above definitions are extended to a multisource, multisink flow network, the third
theorem establishes the equivalence of a multisource, multisink network flow prob-
lem with a single-source single-sink network flow problem.

Theorem 2.5 For any graph, the maximum flow value from s to t is equal to the
minimal cut capacity of all cuts separating s and t . This is known as Max-flow Min-
Cut Theorem.

Theorem 2.6 If the capacity function c is integer valued, there exists a maximal
flow f that is also integer valued. This is called the Integrity Theorem.

Theorem 2.7 Maximum flow in a graph with multiple sources s1, s2, . . . , sn and
multiple sinks t1, t2, . . . , tn is induced by a maximum flow in a simple equiva-
lent graph with an added hypersource s∗ and a hypersink t∗ with capacities
c(s∗, si) = ∞ and c(ti , t

∗) = ∞. This is called the Multisource Multisink Maximum-
flow Minimum-cut Theorem.

The Ford–Fulkerson algorithm is used to find the maximum-flow in a flow net-
work. This algorithm is based on the concepts of a residual graph, augmenting path
and cut. Next, we present the basic structure of this algorithm following [35]:

2.4 Network Flows 23

Algorithm 2.1 (Ford–Fulkerson)
Input: A flow network G(V,E) with source s and sink t

Output: A maximum flow f

for each edge in the flow network G

initialize flow f := 0
while there exists an augmenting path p

do augment flow f along p by adding the residual capacity
on the augmenting path cf (p)

return f

The time complexity of the Ford–Fulkerson algorithm is O(E|f ∗|), where f ∗
is the maximum flow. Note that the flow value can be increased by at least unity in
each iteration of the while loop in the above algorithm, i.e., the loop can be executed
at most |f ∗| times. The running time of the algorithm increases substantially if |f ∗|
is quite large. For practical purposes, we often use the Edmonds–Karp algorithm for
computation of the augmenting paths. A breadth-first search is employed in such
cases where an augmenting path is detected as a shortest path from the source to
sink. It can be shown that the Edmonds–Karp algorithm has a time complexity of
O(V E2).

http://www.springer.com/978-0-85729-295-7

	Chapter 2: Graph-Theoretic Foundations
	2.1 Some Basic Terminology
	2.2 Matchings in Graphs
	2.3 Isomorphism and Automorphism of Graphs
	2.4 Network Flows

