
Chapter 2
Lyapunov-Based Model Predictive Control

2.1 Introduction

MPC, also known as receding horizon control (RHC), is a popular control strategy
for the design of high performance model-based process control systems because of
its ability to handle multi-variable interactions, constraints on control (manipulated)
inputs and system states, and optimization requirements in a systematic manner.
MPC is an online optimization-based approach, which takes advantage of a system
model to predict its future evolution starting from the current system state along a
given prediction horizon. Using model predictions, a future control input trajectory
is optimized by minimizing a typically quadratic cost function involving penalties
on the system states and control actions. To obtain finite dimensional optimization
problems, MPC optimizes over a family of piecewise constant trajectories with a
fixed sampling time and a finite prediction horizon. Once the optimization prob-
lem is solved, only the first manipulated input value is implemented and the rest
of the trajectory is discarded; this optimization procedure is then repeated in the
next sampling step [25, 91]. This is the so-called receding horizon scheme. The
success of MPC in industrial applications (e.g., [25, 89]) has motivated numerous
research investigations into the stability, robustness and optimality of model predic-
tive controllers [65]. One important issue arising from these works is the difficulty
in characterizing, a priori, the set of initial conditions starting from where controller
feasibility and closed-loop stability are guaranteed. This issue motivated research
on LMPC designs [67, 68] (see also [42, 86]) which allow for an explicit character-
ization of the stability region of the closed-loop system and lead to a reduced com-
putational complexity of the controller optimization problem. Despite this progress,
the adoption of communication networks in the control loops and the use of hetero-
geneous measurements motivate the development of MPC schemes that take data
losses (or asynchronous feedback) and time-varying delays explicitly into account.
However, little attention has been given to these issues except for a few results on
MPC of linear systems with delays (e.g., [36, 49]).

Motivated by the above considerations, in this chapter, we adopt the LMPC
framework [67, 68] and introduce modifications on the LMPC design both in the
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optimization problem formulation and in the controller implementation to account
for data losses and time-varying delays, respectively. The design of the LMPC is
based on uniting receding horizon control with explicit Lyapunov-based nonlinear
controller design techniques. In order to guarantee the closed-loop stability, in the
design of the LMPCs, constraints based on Lyapunov functions are incorporated in
the controller formulations. The theoretical results are illustrated through a chemical
reactor example. The results of this chapter were first presented in [53, 72], and an
application of the control methods to a continuous crystallizer can be found in [50].

2.2 Notation

Throughout this book, the operator | · | is used to denote the absolute value of a scalar
and the operator ‖ · ‖ is used to denote Euclidean norm of a vector, while we use
‖ ·‖Q to denote the square of a weighted Euclidean norm, i.e., ‖x‖Q = xT Qx for all
x ∈ Rn. A continuous function α : [0, a) → [0,∞) is said to belong to class K if
it is strictly increasing and satisfies α(0) = 0. A function β(r, s) is said to be a class
K L function if, for each fixed s, β(r, s) belongs to class K function with respect
to r and, for each fixed r , β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s → 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rn : V (x) ≤ r} where
V is a scalar positive definite, continuous differentiable function and V (0) = 0, and
the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rn : x ∈ A,x /∈ B}.
The symbol diag(v) denotes a square diagonal matrix whose diagonal elements are
the elements of the vector v. The notation t0 indicates the initial time instant. The
set {tk≥0} denotes a sequence of synchronous time instants such that tk = t0 + kΔ

and tk+i = tk + iΔ where Δ is a fixed time interval and i is an integer. Similarly, the
set {ta≥0} denotes a sequence of asynchronous time instants such that the interval
between two consecutive time instants is not fixed.

2.3 System Description

Consider nonlinear systems described by the following state-space model:

ẋ(t) = f
(
x(t), u(t),w(t)

)
, (2.1)

where x(t) ∈ Rn denotes the vector of state variables, u(t) ∈ Rm denotes the vector
of control (manipulated) input variables, w(t) ∈ Rw denotes the vector of distur-
bance variables and f is a locally Lipschitz vector function on Rn × Rm × Rw

such that f (0,0,0) = 0. This implies that the origin is an equilibrium point for the
nominal system (i.e., system of Eq. 2.1 with w(t) ≡ 0 for all t ) with u = 0.

The input vector is restricted to be in a nonempty convex set U ⊆ Rm which is
defined as follows:

U := {
u ∈ Rm : ‖u‖ ≤ umax}, (2.2)
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where umax is the magnitude of the input constraint.
The disturbance vector is bounded, that is, w(t) ∈ W where:

W := {
w ∈ Rw : ‖w‖ ≤ θ, θ > 0

}
(2.3)

with θ being a known positive real number. The vector of uncertain variables, w(t),
is introduced into the model in order to account for the occurrence of uncertainty
in the values of the process parameters and the influence of disturbances in process
control applications.

Remark 2.1 Note that the assumption that f is a locally Lipschitz vector function
is a reasonable assumption for most of chemical process models.

2.4 Lyapunov-Based Control

We assume that there exists a feedback control law u(t) = h(x(t)) which satis-
fies the input constraint on u for all x inside a given stability region and renders
the origin of the nominal closed-loop system asymptotically stable. This assump-
tion is essentially equivalent to the assumption that the nominal system is stabi-
lizable or that there exists a Lyapunov function for the nominal system or that the
pair (A,B) in the case of linear systems is stabilizable. Using converse Lyapunov
theorems [11, 40, 48, 64], this assumption implies that there exist functions αi(·),
i = 1,2,3,4 of class K and a continuously differentiable Lyapunov function V (x)

for the nominal closed-loop system, that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (2.4)

∂V (x)

∂x
f

(
x,h(x),0

) ≤ −α3
(‖x‖), (2.5)

∥∥∥∥
∂V (x)

∂x

∥∥∥∥ ≤ α4
(‖x‖), (2.6)

h(x) ∈ U (2.7)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote the
region Ωρ ⊆ O as the stability region of the closed-loop system under the control
u = h(x). Note that explicit stabilizing control laws that provide explicitly defined
regions of attraction for the closed-loop system have been developed using Lya-
punov techniques for specific classes of nonlinear systems, particularly input-affine
nonlinear systems; the reader may refer to [2, 11, 41, 97] for results in this area in-
cluding results on the design of bounded Lyapunov-based controllers by taking ex-
plicitly into account constraints for broad classes of nonlinear systems [18, 19, 47].

By continuity, the local Lipschitz property assumed for the vector field
f (x,u,w), the fact that the manipulated input u is bounded in a convex set and
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the continuous differentiable property of the Lyapunov function V , there exists pos-
itive constants M , Lw , Lx and L′

x such that:

∥
∥f (x,u,w)

∥
∥ ≤ M, (2.8)

∥∥f (x,u,w) − f
(
x′, u,0

)∥∥ ≤ Lw‖w‖ + Lx

∥∥x − x′∥∥, (2.9)
∥∥∥∥
∂V (x)

∂x
f (x,u,0) − ∂V (x′)

∂x
f

(
x′, u,0

)
∥∥∥∥ ≤ L′

x

∥∥x − x′∥∥ (2.10)

for all x, x′ ∈ Ωρ , u ∈ U and w ∈ W . These constants will be used in characterizing
the stability properties of the system of Eq. 2.1 under LMPC designs.

Remark 2.2 Note that while there are currently no general methods for constructing
Lyapunov functions for general nonlinear systems, for broad classes of nonlinear
models arising in the context of chemical process control applications, quadratic
Lyapunov functions are widely used and provide very good estimates of closed-loop
stability regions.

Remark 2.3 Note that the inequalities of Eqs. 2.4–2.10 are derived from the basic as-
sumptions (i.e., Lipschitz vector field and existence of a stabilizing Lyapunov-based
controller). The various constants involved in the upper bounds are not assumed to
be arbitrarily small.

2.5 Model Predictive Control

MPC is widely adopted in industry as an effective approach to deal with large mul-
tivariable constrained control problems. The main idea of MPC is to choose control
actions by repeatedly solving an online constrained optimization problem, which
aims at minimizing a performance index over a finite prediction horizon based on
predictions obtained by a system model. In general, an MPC design is composed of
three components:

1. A model of the system. This model is used to predict the future evolution of the
system in open-loop and the efficiency of the calculated control actions of an
MPC depends highly on the accuracy of the model.

2. A performance index over a finite horizon. This index will be minimized subject
to constraints imposed by the system model, restrictions on control inputs and
system state and other considerations at each sampling time to obtain a trajectory
of future control inputs.

3. A receding horizon scheme. This scheme introduces the notion of feedback into
the control law to compensate for disturbances and modeling errors.

Consider the control of the system of Eq. 2.1 and assume that the state measure-
ments of the system of Eq. 2.1 are available at synchronous sampling time instants
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{tk≥0}, a standard MPC is formulated as follows [25]:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ + F

(
x(tk+N)

)
, (2.11)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.12)

u(t) ∈ U, (2.13)

x̃(tk) = x(tk), (2.14)

where S(Δ) is the family of piece-wise constant functions with sampling period Δ,
N is the prediction horizon, Qc and Rc are strictly positive definite symmetric
weighting matrices, x̃ is the predicted trajectory of the nominal system due to con-
trol input u with initial state x(tk) at time tk , and F(·) denotes the terminal penalty.

The optimal solution to the MPC optimization problem defined by Eqs. 2.11–2.14
is denoted as u∗(t |tk) which is defined for t ∈ [tk, tk+N). The first step value of
u∗(t |tk) is applied to the closed-loop system for t ∈ [tk, tk+1). At the next sampling
time tk+1, when a new measurement of the system state x(tk+1) is available, the
control evaluation and implementation procedure is repeated. The manipulated in-
put of the system of Eq. 2.1 under the control of the MPC of Eqs. 2.11–2.14 is
defined as follows:

u(t) = u∗(t |tk), ∀t ∈ [tk, tk+1), (2.15)

which is the standard receding horizon scheme.
In the MPC formulation of Eqs. 2.11–2.14, Eq. 2.11 defines a performance index

or cost index that should be minimized. In addition to penalties on the state and
control actions, the index may also include penalties on other considerations; for
example, the rate of change of the inputs. Equation 2.12 is the nominal model of
the system of Eq. 2.1 which is used in the MPC to predict the future evolution of
the system. Equation 2.13 takes into account the constraint on the control input,
and Eq. 2.14 provides the initial state for the MPC which is a measurement of the
actual system state. Note that in the above MPC formulation, state constraints are
not considered but can be readily taken into account.

It is well known that the MPC of Eqs. 2.11–2.14 is not necessarily stabilizing. To
achieve closed-loop stability, different approaches have been proposed in the litera-
ture. One class of approaches is to use infinite prediction horizons or well-designed
terminal penalty terms; please see [6, 65] for surveys of these approaches. Another
class of approaches is to impose stability constraints in the MPC optimization prob-
lem [1, 4, 65]. There are also efforts focusing on getting explicit stabilizing MPC
laws using offline computations [59]. However, the implicit nature of MPC control
law makes it very difficult to explicitly characterize, a priori, the admissible initial
conditions starting from where the MPC is guaranteed to be feasible and stabilizing.
In practice, the initial conditions are usually chosen in an ad hoc fashion and tested
through extensive closed-loop simulations.
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2.6 Lyapunov-Based Model Predictive Control

In this section, we introduce the LMPC design proposed in [67, 68] which allows
for an explicit characterization of the stability region and guarantees controller fea-
sibility and closed-loop stability.

For the predictive control of the system of Eq. 2.1, the LMPC is designed based
on an existing explicit control law h(x) which is able to stabilize the closed-loop
system and satisfies the conditions of Eqs. 2.4–2.7. The formulation of the LMPC
is as follows:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥
∥

Qc
+ ∥

∥u(τ)
∥
∥

Rc

]
dτ, (2.16)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.17)

u(t) ∈ U, (2.18)

x̃(tk) = x(tk), (2.19)

∂V (x(tk))

∂x
f

(
x(tk), u(tk),0

) ≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

)
,0

)
, (2.20)

where V (x) is a Lyapunov function associated with the nonlinear control law h(x).
The optimal solution to this LMPC optimization problem is denoted as u∗

l (t |tk)
which is defined for t ∈ [tk, tk+N). The manipulated input of the system of Eq. 2.1
under the control of the LMPC of Eqs. 2.16–2.20 is defined as follows:

u(t) = u∗
l (t |tk), ∀t ∈ [tk, tk+1), (2.21)

which implies that this LMPC also adopts a standard receding horizon strategy.
In the LMPC defined by Eqs. 2.16–2.20, the constraint of Eq. 2.20 guarantees

that the value of the time derivative of the Lyapunov function, V (x), at time tk is
smaller than or equal to the value obtained if the nonlinear control law u = h(x)

is implemented in the closed-loop system in a sample-and-hold fashion. This is a
constraint that allows one to prove (when state measurements are available every
synchronous sampling time) that the LMPC inherits the stability and robustness
properties of the nonlinear control law h(x) when it is applied in a sample-and-hold
fashion.

One of the main properties of the LMPC of Eqs. 2.16–2.20 is that it possesses the
same stability region Ωρ as the nonlinear control law h(x), which implies that the
origin of the closed-loop system is guaranteed to be stable and the LMPC is guar-
anteed to be feasible for any initial state inside Ωρ when the sampling time Δ and
the disturbance upper bound θ are sufficiently small. Note that the region Ωρ can be
explicitly characterized; please refer to Sect. 2.4 for more discussion on this issue.
The stability property of the LMPC is inherited from the nonlinear control law h(x)

when it is applied in a sample-and-hold fashion; please see [14, 79] for results on
sampled-data systems. The feasibility property of the LMPC is also guaranteed by
the nonlinear control law h(x) since u = h(x) is a feasible solution to the optimiza-
tion problem of Eqs. 2.16–2.20. The main advantage of the LMPC approach with
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respect to the nonlinear control law h(x) is that optimality considerations can be
taken explicitly into account (as well as constraints on the inputs and the states [68])
in the computation of the control actions within an online optimization framework
while improving the closed-loop performance of the system.

Remark 2.4 Since the closed-loop stability and feasibility of the LMPC of
Eqs. 2.16–2.20 are guaranteed by the nonlinear control law h(x), it is unneces-
sary to use a terminal penalty term in the cost index (see Eq. 2.16 and compare it
with Eq. 2.11) and the length of the horizon N does not affect the stability of the
closed-loop system but it affects the closed-loop performance.

2.7 LMPC with Asynchronous Feedback

In this section, we modify the LMPC introduced in the previous section to take into
account data losses or asynchronous measurements, both in the optimization prob-
lem formulation and in the controller implementation. In this LMPC scheme, when
feedback is lost, instead of setting the control actuator outputs to zero or to the last
available values, the actuators implement the last optimal input trajectory evaluated
by the controller (this requires that the actuators must store in memory the last opti-
mal input trajectory received). The LMPC is designed based on a nonlinear control
law which is able to stabilize the closed-loop system and inherits the stability and
robustness properties in the presence of uncertainty and data losses of the nonlin-
ear controller, while taking into account optimality considerations. Specifically, the
LMPC scheme allows for an explicit characterization of the stability region, guaran-
tees practical stability in the absence of data losses or asynchronous measurements,
and guarantees that the stability region is an invariant set for the closed-loop system
under data losses or asynchronous measurements if the maximum time in which
the loop is open is shorter than a given constant that depends on the parameters
of the system and the nonlinear control law that is used to formulate the optimiza-
tion problem. A schematic diagram of the considered closed-loop system is shown
in Fig. 2.1.

Fig. 2.1 LMPC design for systems subject to data losses. Solid lines denote point-to-point, wired
communication links; dashed lines denote networked communication and/or asynchronous sam-
pling/actuation
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2.7.1 Modeling of Data Losses/Asynchronous Measurements

We assume that feedback of the state of the system of Eq. 2.1, x(t), is available
at asynchronous time instants ta where {ta≥0} is a random increasing sequence of
times; that is, the intervals between two consecutive instants are not fixed. The dis-
tribution of {ta≥0} characterizes the time the feedback loop is closed or the time
needed to obtain a new state measurement. In general, if there exists the possibility
of arbitrarily large periods of time in which feedback is not available, then it is not
possible to provide guaranteed stability properties, because there exists a nonzero
probability that the system operates in open-loop for a period of time large enough
for the state to leave the stability region. In order to study the stability properties in
a deterministic framework, we assume that there exists an upper bound Tm on the
interval between two successive time instants in which the feedback loop is closed
or new state measurements are available, that is:

max
a

{ta+1 − ta} ≤ Tm. (2.22)

This assumption is reasonable from process control and networked control systems
perspectives [69, 78, 110, 111] and allows us to study deterministic notions of sta-
bility. This model of feedback/measurements is of relevance to systems subject to
asynchronous measurement samplings and to networked control systems, where the
asynchronous property is introduced by data losses in the communication network
connecting the sensors/actuators and the controllers.

2.7.2 LMPC Formulation with Asynchronous Feedback

When feedback is lost, most approaches set the control input to zero or to the last
implemented value. Instead, in this LMPC for systems subject to data losses, when
feedback is lost, we take advantage of the MPC scheme to update the input based on
a prediction obtained using the system model. This is achieved using the following
implementation strategy:

1. At a sampling time, ta , when the feedback loop is closed (i.e., the current system
state x(ta) is available for the controller and the controller can send information
to the actuators), the LMPC evaluates the optimal future input trajectory u(t) for
t ∈ [ta, ta + NΔ).

2. The LMPC sends the entire optimal input trajectory (i.e., u(t) ∀t ∈ [ta, ta +NΔ))
to the actuators.

3. The actuators implement the input trajectory until the feedback loop is closed
again at the next sampling time ta+1; that is, the actuators implement u(t) in
t ∈ [ta, ta+1).

4. When a new measurement is received (a ← a + 1), go to Step 1.



2.7 LMPC with Asynchronous Feedback 21

In this implementation strategy, when the state is not available, or the data sent
from the controller to the actuators is lost, the actuators keep implementing the last
received optimal trajectory. If data is lost for a period larger than the prediction
horizon, the actuators set the inputs to the last implemented values or to fixed val-
ues. This strategy is a receding horizon scheme, which takes into account that data
losses may occur. This strategy is motivated by the fact that when no feedback is
available, a reasonable estimate of the future evolution of the system is given by the
nominal trajectory. The LMPC design taking into account data losses/asynchronous
measurements, therefore modifies the standard implementation scheme of switch-
ing off the actuators (u = 0) or setting the actuators to nominal values or to the
last computed input values. The idea of using the model to predict the evolution
of the system when no feedback is possible has also been used in the context of
sampled-data linear systems, see [70, 71, 74, 75]. The actuators not only receive
and implement given inputs, but must also be able to store future trajectories to im-
plement them in case data losses occur. This means that to handle data losses, not
only the control algorithms must be modified, but also the control actuator hardware
that implements the control actions.

When data losses are present in the feedback loop, the existing LMPC schemes
[42, 67, 68, 86] can not guarantee the closed-loop stability no matter whether the
actuators keep the inputs at the last values, set the inputs to constant values, or keep
on implementing the previously evaluated input trajectories. In particular, there is
no guarantee that the LMPC optimization problems will be feasible for all time,
i.e., that the state will remain inside the stability region for all time. In the LMPC
design of Eqs. 2.16–2.20, the constraint of Eq. 2.20 only takes into account the first
prediction step and does not restrict the behavior of the system after the first step. If
no additional constraints are included in the optimization problem, no claims on the
closed-loop behavior of the system can be made. For this reason, when data losses
are taken into account, the constraints of the LMPC problem have to be modified.
The LMPC that takes into account data losses in an explicit way is based on the
following finite horizon constrained optimal control problem:

min
u∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.23)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (2.24)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0

)
, ∀t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (2.25)

u(t) ∈ U, (2.26)

x̃(ta) = x̂(ta) = x(ta), (2.27)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ), (2.28)

where x̂(t) is the trajectory of the nominal system under the nonlinear con-
trol law u = h(x̂(t)) when it is implemented in a sample-and-hold fashion,
j = 0,1, . . . ,N − 1, and NR is the smallest integer satisfying NRΔ ≥ Tm. This op-
timization problem does not depend on the uncertainty and assures that the LMPC
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inherits the properties of the nonlinear control law h(x). To take full advantage of
the use of the nominal model in the computation of the control action, the prediction
horizon should be chosen in a way such that N ≥ NR .

The optimal solution to the LMPC optimization problem of Eqs. 2.23–2.28 is
denoted as u∗

a(t |ta) which is defined for t ∈ [ta, ta + NΔ). The manipulated input
of the system of Eq. 2.1 under the LMPC of Eqs. 2.23–2.28 is defined as follows:

u(t) = u∗
a(t |ta), ∀t ∈ [ta, ta+1), (2.29)

where ta+1 is the next time instant in which the feedback loop will be closed again.
This is a modified receding horizon scheme which takes advantage of the predicted
input trajectory in the case of data losses.

In the design of the LMPC of Eqs. 2.23–2.28, the constraint of Eq. 2.25 is used to
generate a system state trajectory under the nonlinear control law u = h(x) imple-
mented in a sample-and-hold fashion; this trajectory is used as a reference trajectory
to construct the Lyapunov-based constraint of Eq. 2.28 which is required to be sat-
isfied for a time period which covers the maximum possible open-loop operation
time Tm. This Lyapunov-based constraint allows one to prove the closed-loop sta-
bility in the presence of data losses in the closed-loop system.

Remark 2.5 The LMPC of Eqs. 2.23–2.28 optimizes a cost function, subject to a set
of constraints defined by the state trajectory corresponding to the nominal system in
closed-loop. This allows us to formulate an LMPC problem that does not depend on
the uncertainty and so it is of manageable computational complexity.

2.7.3 Stability Properties

The LMPC of Eqs. 2.23–2.28 computes the control input u applied to the system
of Eq. 2.1 in a way such that in the closed-loop system, the value of the Lyapunov
function at time instant ta (i.e., V (x(ta))) is a decreasing sequence of values with
a lower bound. Following Lyapunov arguments, this property guarantees practical
stability of the closed-loop system. This is achieved due to the constraint of Eq. 2.28.
This property is summarized in Theorem 2.1 below. To state this theorem, we need
the following propositions.

Proposition 2.1 Consider the nominal sampled trajectory x̂(t) of the system of
Eq. 2.1 in closed-loop for a controller h(x), which satisfies the conditions of
Eqs. 2.4–2.7, obtained by solving recursively:

˙̂x(t) = f
(
x̂(t), h

(
x̂(tk)

)
,0

)
, t ∈ [tk, tk+1), (2.30)

where tk = t0 + kΔ, k = 0,1, . . . . Let Δ,εs > 0 and ρ > ρs > 0 satisfy:

−α3
(
α−1

2 (ρs)
) + L′

xMΔ ≤ −εs/Δ. (2.31)
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Then if ρmin < ρ where:

ρmin = max
{
V

(
x̂(t + Δ)

) : V (
x̂(t)

) ≤ ρs

}
(2.32)

and x̂(t0) ∈ Ωρ , the following inequality holds:

V
(
x̂(t)

) ≤ V
(
x̂(tk)

)
, ∀t ∈ [tk, tk+1), (2.33)

V
(
x̂(tk)

) ≤ max
{
V

(
x̂(t0)

) − kεs, ρmin
}
. (2.34)

Proof Following the definition of x̂(t), the time derivative of the Lyapunov function
V (x) along the trajectory x̂(t) of the system of Eq. 2.1 in t ∈ [tk, tk+1) is given by:

V̇
(
x̂(t)

) = ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)
. (2.35)

Adding and subtracting ∂V (x̂(tk))
∂x

f (x̂(tk), h(x̂(tk)),0) and taking into account
Eq. 2.5, we obtain:

V̇
(
x̂(t)

) ≤ −α3
(∥∥x̂(tk)

∥∥) + ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)

− ∂V (x̂(tk))

∂x
f

(
x̂(tk), h

(
x̂(tk)

)
,0

)
. (2.36)

From the Lipschitz property of Eq. 2.10 and the above inequality of Eq. 2.36, we
have that:

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

x

∥∥x̂(t) − x̂(tk)
∥∥ (2.37)

for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. 2.8 and
the continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥∥x̂(t) − x̂(tk)
∥∥ ≤ MΔ. (2.38)

Using the expression of Eq. 2.38, we obtain the following bound on the time deriva-
tive of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈ Ωρ/Ωρs :

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

xMΔ. (2.39)

If the condition of Eq. 2.31 is satisfied, then V̇ (x̂(t)) ≤ −εs/Δ. Integrating this
bound on t ∈ [tk, tk+1) we obtain that the inequality of Eq. 2.33 holds. Using
Eq. 2.33 recursively, it is proved that, if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs

in a finite number of sampling times without leaving the stability region. Once the
state converges to Ωρs ⊆ Ωρmin , it remains inside Ωρmin for all times. This statement
holds because of the definition of ρmin in Eq. 2.32. �

Proposition 2.1 ensures that if the nominal system under the control u = h(x)

implemented in a sample-and-hold fashion with state feedback every sampling time
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starts in the region Ωρ , then it is ultimately bounded in Ωρmin . The following Propo-
sition 2.2 provides an upper bound on the deviation of the system state trajectory
obtained using the nominal model of Eq. 2.1, from the closed-loop state trajectory
of the system of Eq. 2.1 under uncertainty (i.e., w(t) �= 0) when the same control
actions are applied.

Proposition 2.2 Consider the systems:

ẋa(t) = f
(
xa(t), u(t),w(t)

)
, (2.40)

ẋb(t) = f
(
xb(t), u(t),0

)
(2.41)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a class K function fW(·) such
that:

∥∥xa(t) − xb(t)
∥∥ ≤ fW(t − t0), (2.42)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with:

fW(τ) = Lwθ

Lx

(
eLxτ − 1

)
. (2.43)

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is given by:

ė(t) = f
(
xa(t), u(t),w(t)

) − f
(
xb(t), u(t),0

)
. (2.44)

From the Lipschitz property of Eq. 2.9, the following inequality holds:

∥
∥ė(t)

∥
∥ ≤ Lw

∥
∥w(t)

∥
∥ + Lx

∥
∥xa(t) − xb(t)

∥
∥ ≤ Lwθ + Lx

∥
∥e(t)

∥
∥ (2.45)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ‖ė(t)‖ with initial condition
e(t0) = 0 (recall that xa(t0) = xb(t0)), the following bound on the norm of the error
vector is obtained:

∥∥e(t)
∥∥ ≤ Lwθ

Lx

(
eLx(t−t0) − 1

)
. (2.46)

This implies that the inequality of Eq. 2.42 holds for:

fW(τ) = Lwθ

Lx

(
eLxτ − 1

)
(2.47)

which proves this proposition. �

Proposition 2.3 below bounds the difference between the magnitudes of the Lya-
punov function of two states in Ωρ .
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Proposition 2.3 Consider the Lyapunov function V (·) of the system of Eq. 2.1.
There exists a quadratic function fV (·) such that:

V (x) ≤ V
(
x′) + fV

(∥∥x − x′∥∥)
(2.48)

for all x, x′ ∈ Ωρ where:

fV (s) = α4
(
α−1

1 (ρ)
)
s + Mvs

2 (2.49)

with Mv > 0.

Proof Since the Lyapunov function V (x) is continuous and bounded on compact
sets, there exists a positive constant Mv such that a Taylor series expansion of V

around x′ yields:

V (x) ≤ V
(
x′) + ∂V (x′)

∂x

∥∥x − x′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ. (2.50)

Note that the term Mv‖x − x′‖2 bounds the high order terms of the Taylor series of
V (x) for x, x′ ∈ Ωρ . Taking into account Eq. 2.6, the following bound for V (x) is
obtained:

V (x) ≤ V
(
x′) + α4

(
α−1

1 (ρ)
)∥∥x − x′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ, (2.51)

which proves this proposition. �

In Theorem 2.1 below, we provide sufficient conditions under which the LMPC
design of Eqs. 2.23–2.28 guarantees that the state of the closed-loop system of
Eq. 2.1 is ultimately bounded in a region that contains the origin.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop, with the loop closing
at asynchronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the
LMPC of Eqs. 2.23–2.28 based on a controller h(x) that satisfies the conditions of
Eqs. 2.4–2.7. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy the
condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW(NRΔ)

)
< 0 (2.52)

with fV (·) and fW(·) defined in Eqs. 2.49 and 2.43, respectively, and NR being
the smallest integer satisfying NRΔ ≥ Tm. If x(t0) ∈ Ωρ , then x(t) is ultimately
bounded in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV

(
fW(NRΔ)

)
(2.53)

with ρmin defined as in Eq. 2.32.
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Proof In order to prove that the closed-loop system is ultimately bounded in a region
that contains the origin, we prove that V (x(ta)) is a decreasing sequence of values
with a lower bound. The proof is divided into two parts.

Part 1: In this part, we prove that the stability results stated in Theorem 2.1 hold
in the case that ta+1 − ta = Tm for all a and Tm = NRΔ. This case corresponds to
the worst possible situation in the sense that the LMPC needs to operate in open-
loop for the maximum possible amount of time. In order to simplify the notation,
we assume that all the notations used in this proof refer to the final solution of the
LMPC of Eqs. 2.23–2.28 solved at time ta . By Proposition 2.1 and the fact that
ta+1 = ta + NRΔ, the following inequality can be obtained:

V
(
x̂(ta+1)

) ≤ max
{
V

(
x̂(ta)

) − NRεs, ρmin
}
. (2.54)

From the constraint of Eq. 2.28, the inequality of Eq. 2.54 and taking into account
the fact that x̂(ta) = x̃(ta) = x(ta), the following inequality can be written:

V
(
x̃(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
}
. (2.55)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequality:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(∥∥x̃(ta+1) − x(ta+1)
∥∥)

. (2.56)

Applying Proposition 2.2, we obtain the following upper bound on the deviation of
x̃(t) from x(t):

∥
∥x(ta+1) − x̃(ta+1)

∥
∥ ≤ fW(NRΔ). (2.57)

From the inequalities of Eqs. 2.56 and 2.57, the following upper bound on
V (x(ta+1)) can be written:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(
fW(NRΔ)

)
. (2.58)

Using the inequality of Eq. 2.55, we can rewrite the inequality of Eq. 2.58 as follows:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fV

(
fW(NRΔ)

)
. (2.59)

If the condition of Eq. 2.52 is satisfied, from the inequality of Eq. 2.59, we know
that there exists εw > 0 such that the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρa

}
, (2.60)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if
x(ta) ∈ Ωρa , then V (x(ta+1)) ≤ ρa .

Because fW(·) and fV (·) are strictly increasing functions of their arguments
and fV (·) is convex (see Propositions 2.2 and 2.3 for the expressions of fW(·) and
fV (·)), the inequality of Eq. 2.60 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρa

}
, ∀t ∈ [ta, ta+1). (2.61)
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Using the inequality of Eq. 2.61 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of
Eqs. 2.23–2.28 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, it can be
proved that if x(t0) ∈ Ωρ , the closed-loop trajectories of the system of Eq. 2.1 sat-
isfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for
the case when ta+1 − ta = Tm for all a and Tm = NRΔ.

Part 2: In this part, we extend the results proved in Part 1 to the general case, that
is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤ NRΔ. Be-
cause fW(·) and fV (·) are strictly increasing functions of their arguments and fV (·)
is convex, following similar steps as in Part 1, it can be shown that the inequality
of Eq. 2.61 still holds. This proves that the stability results stated in Theorem 2.1
hold. �

Remark 2.6 Theorem 2.1 is important from an MPC point of view because if the
maximum time without data losses is smaller than the maximum time that the sys-
tem can operate in open-loop without leaving the stability region, the feasibility of
the optimization problem for all times is guaranteed, since each time feedback is
regained, the state is guaranteed to be inside the stability region, thereby yielding a
feasible optimization problem.

Remark 2.7 In the LMPC of Eqs. 2.23–2.28, no state constraint has been considered
but the presented approach can be extended to handle state constraints by restricting
the closed-loop stability region further to satisfy the state constraints.

Remark 2.8 It is also important to remark that when there are data losses in the
control system, standard MPC formulations do not provide guaranteed closed-loop
stability results. For any MPC scheme, in order to obtain guaranteed closed-loop
stability results, even in the case where initial feasibility of the optimization problem
is given, the formulation of the optimization problem has to be modified accordingly
to take into account data losses in an explicit way.

Remark 2.9 Although the proof of Theorem 2.2 is constructive, the constants ob-
tained are conservative. This is the case with most of the results of the type pre-
sented in this book. In practice, the different constants are better estimated through
closed-loop simulations. The various inequalities provided are more useful as guide-
lines on the interaction between the various parameters that define the system and
the controller and may be used as guidelines to design the controller and the net-
work.
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2.7.4 Application to a Chemical Reactor

Consider a well mixed, nonisothermal continuously stirred tank reactor (CSTR)
where three parallel irreversible elementary exothermic reactions take place of the
form A → B , A → C and A → D. B is the desired product and C and D are
byproducts. The feed to the reactor consists of pure A at flow rate F , tempera-
ture TA0 and molar concentration CA0 + ΔCA0 where ΔCA0 is an unknown time-
varying uncertainty. Due to the nonisothermal nature of the reactor, a jacket is used
to remove/provide heat to the reactor. Using first principles and standard modeling
assumptions, the following mathematical model of the process is obtained [21]:

dT

dt
= F

Vr

(TA0 − T ) −
3∑

i=1

ΔHi

σcp

ki0e
−Ei
RT CA + Q

σcpVr

, (2.62)

dCA

dt
= F

Vr

(CA0 + ΔCA0 − CA) +
3∑

i=1

ki0e
−Ei
RT CA, (2.63)

where CA denotes the concentration of the reactant A, T denotes the temperature
of the reactor, Q denotes the rate of heat input/removal, Vr denotes the volume of
the reactor, ΔHi, ki0,Ei, i = 1,2,3 denote the enthalpies, preexponential constants
and activation energies of the three reactions, respectively, and cp and σ denote the
heat capacity and the density of the fluid in the reactor, respectively. The values of
the process parameters are shown in Table 2.1.

For Qs = 0 KJ/h (Qs is the steady-state value of Q), the CSTR of Eqs. 2.62–2.63
has three steady-states (two locally asymptotically stable and one unstable). The
control objective is to stabilize the system at the open-loop unstable steady state
Ts = 388 K, CAs = 3.59 mol/l. The manipulated input is the rate of heat in-
put Q. We consider a time-varying uncertainty in the concentration of the inflow
|ΔCA0| ≤ 0.5 kmol/m3. The control system is subject to data losses in both the
sensor-controller and the controller-actuator links.

To demonstrate the theoretical results, we first design the nonlinear control law
h(x) as a Lyapunov-based feedback law using the method presented in [97]. The

Table 2.1 Process parameters of the CSTR of Eqs. 2.62–2.63

F 4.998 [m3/h] k10 3 × 106 [h−1]

Vr 1 [m3] k20 3 × 105 [h−1]

R 8.314 [KJ/kmol K] k30 3 × 105 [h−1]

TA0 300 [K] E1 5 × 104 [KJ/kmol]

CA0 4 [kmol/m3] E2 7.53 × 104 [KJ/kmol]

ΔH1 −5.0 × 104 [KJ/kmol] E3 7.53 × 104 [KJ/kmol]

ΔH2 −5.2 × 104 [KJ/kmol] σ 1000 [kg/m3]

ΔH3 −5.4 × 104 [KJ/kmol] cp 0.231 [KJ/kg K]
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CSTR of Eqs. 2.62–2.63 belongs to the following class of nonlinear systems:

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
u(t) + w

(
x(t)

)
, (2.64)

where xT = [T −Ts CA −CAs] is the state, u = Q−Qs is the input and w = ΔCA0
is a time varying bounded disturbance with the upper bound θ = 0.5 kmol/m3. We
consider the Lyapunov function V (x) = xT Px with:

P =
[

1 0
0 104

]
. (2.65)

The values of the weights have been chosen to account for the different range of
numerical values for each state. The following feedback law [97] asymptotically
stabilizes the open-loop unstable steady-state of the nominal process:

h(x) =
{

−Lf V +√
(Lf V )2+(LgV )4

LgV
if LgV �= 0,

0 if LgV = 0,
(2.66)

where Lf V = ∂V (x)
∂x

f (x) and LgV = ∂V (x)
∂x

g(x) denote the Lie derivatives of the
scalar function V with respect to the vectors fields f and g in Eq. 2.64, respectively.
This controller will be used in the design of the LMPC of Eqs. 2.16–2.20 and the
LMPC of Eqs. 2.23–2.28. The stability region Ωρ is defined as V (x) ≤ 1000, i.e.,
ρ = 1000.

First, we have to choose an appropriate sampling time and a maximum prediction
horizon for the LMPC based on the properties of h(x). The inequalities obtained in
the main results of this section are conservative to be used to estimate an appropriate
sampling time for a given uncertainty bound and the maximum time that the system
can operate in open-loop without leaving the stability region. In order to obtain
practical estimates, we resort to extensive off-line closed-loop simulations under
the Lyapunov-based controller of Eq. 2.66. After trying different sampling times, we
choose Δ = 0.05 h. For this sampling time, the closed-loop system with u = h(x)

is practically stable and the performance is similar to the closed-loop system with
continuous measurements. With this sampling time, the maximum time such that
the system remains in Ωρ when controlled in open-loop with the nominal sampled
input trajectory is 5Δ (i.e., NR = 5). This value is also estimated using data from
simulations.

We implement the LMPCs presented in the previous sections using a sampling
time Δ = 0.05 h and a prediction horizon N = NR = 5. The cost function is de-
fined by the weighting matrices Qc = P and Rc = 10−6. The values of the weights
have been tuned in a way such that the values of the control inputs are comparable
to the ones computed by the Lyapunov-based controller (i.e., same order of magni-
tude of the input signal and convergence time of the closed-loop system when no
uncertainty or data losses are taken into account).

We will first compare the LMPC of Eqs. 2.23–2.28 with the original LMPC of
Eqs. 2.16–2.20. In this scheme, no data losses were taken into account. We imple-
ment the two LMPCs using the same strategy, that is, sending to the actuator the
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Fig. 2.2 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.23–2.28 with no data losses; (b, d) state and input trajectories of the CSTR of Eqs. 2.62–2.63
with the LMPC of Eqs. 2.16–2.20 with no data losses

whole optimal input trajectory, so in case data losses occur, the input is updated
as in the modified receding horizon scheme. The same weights, sampling time and
prediction horizon are used.

In Fig. 2.2, the trajectories of both LMPCs are shown assuming no data is lost,
that is, the state x(tk) is available every sampling time. It can be seen that both
closed-loop systems are practically stable. Note that regarding optimality, for a
given state, the LMPC of Eqs. 2.16–2.20 (not necessarily the closed-loop trajec-
tory) yields a lower cost than the LMPC of Eqs. 2.23–2.28, because the constraints
that define the LMPC of Eqs. 2.16–2.20 are less restrictive (i.e., the Lyapunov-
based constraint must hold only in the first sampling time whereas in the LMPC of
Eqs. 2.23–2.28 it must hold along the whole prediction horizon).

When data losses occur, the LMPC of Eqs. 2.23–2.28 is more robust. The sta-
bility region is an invariant set for the closed-loop system if Tm ≤ NΔ. That is
not the case with the LMPC of Eqs. 2.16–2.20. In Fig. 2.3, the trajectories of the
closed-loop system under both LMPCs are shown for the worst case of data loss
scenario with Tm = 5Δ; that is, the system receives only one measurement of the
actual state every 5 samples. These trajectories account for the worst-case effect
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Fig. 2.3 (a, c) Worst case state and input trajectories of the CSTR of Eqs. 2.62–2.63 with the
LMPC of Eqs. 2.23–2.28 with Tm = 5Δ; (b, d) state and input trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 with Tm = 5Δ

of the data losses. The trajectories are shown in the state space along with the
closed-loop stability region Ωρ . It can be seen that the trajectory under the LMPC
of Eqs. 2.16–2.20 leaves the stability region, while the trajectory under the LMPC
of Eqs. 2.23–2.28 remains inside. When data losses are taken into account, in order
to inherit the stability properties of the Lyapunov-based controller of Eq. 2.66, the
constraints must be modified to take into account data losses as in the LMPC of
Eqs. 2.23–2.28.

We now compare the LMPC of Eqs. 2.23–2.28 with the Lyapunov-based con-
troller of Eq. 2.66 applied in a sample-and-hold fashion following a “last available
control” strategy, i.e., when data is lost, the actuator keeps implementing the last
received input value. Note that, through extensive simulations, we have found that
in this particular example, the strategy of setting the input to zero when data losses
occur, yields worst results than the strategy of implementing the last available input.
In Fig. 2.4, the worst case trajectories with Tm = 2Δ for both controllers are shown.
It can be seen that, due to the instability of the open-loop steady state, for this small
amount of losses, the Lyapunov-based controller is not able to stabilize the system.
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Fig. 2.4 Worst case state and input trajectories of the CSTR of Eqs. 2.62–2.63 with Tm = 2Δ

in closed-loop with (a) the LMPC of Eqs. 2.23–2.28 and (b) the Lyapunov-based controller of
Eq. 2.66

Table 2.2 Total performance costs along the closed-loop trajectories of the CSTR of
Eqs. 2.62–2.63 under the Lyapunov-based controller of Eq. 2.66 and the LMPC of Eqs. 2.23–2.28

sim. Lyapunov-based controller of Eq. 2.66 LMPC of Eqs. 2.23–2.28

1 0.1262 × 1012 0.0396 × 1012

2 0.3081 × 1012 0.2723 × 1012

3 0.0561 × 1012 0.0076 × 1012

4 0.9622 × 1011 0.2884 × 1011

5 3.8176 × 1011 1.3052 × 1011

6 0.9078 × 1011 0.0950 × 1011

7 0.4531 × 1012 0.2678 × 1012

8 0.6752 × 1011 0.5689 × 1011

9 1.0561 × 1011 0.6776 × 1011

10 0.5332 × 1012 0.3459 × 1012

This is due to the fact that this control scheme does not update the control actuator
output using the model, as the LMPC of Eqs. 2.23–2.28 does.

We have also carried out another set of simulations to demonstrate that the LMPC
of Eqs. 2.23–2.28, although inherits the same stability and robustness properties of
the Lyapunov-based controller that it employs, it does outperform the Lyapunov-
based controller of Eq. 2.66 from a performance index point of view. Table 2.2
shows the total cost computed for 10 different closed-loop simulations under the
LMPC and the Lyapunov-based controller implemented in a sample-and-hold fash-
ion, using the nominal model to predict the evolution of the system when data is lost.
To carry out this comparison, we compute the total cost of each simulation based on
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Fig. 2.5 LMPC design for
systems subject to
time-varying measurement
delays

the performance index of the LMPC which has the form:
∫ tf

t0

[∥∥x(τ)
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.67)

where t0 = 0 is the initial time of the simulations and tf = 4 h is the end of the
simulation. For each pair of simulations (one for each controller), a different ini-
tial state inside the stability region, a different random uncertainty trajectory and
a different data losses realization is chosen. As it can be seen in Table 2.2, the to-
tal cost under the LMPC of Eqs. 2.23–2.28 is lower than the corresponding total
cost under the Lyapunov-based controller. This demonstrates that in this example,
the LMPC shares the same robustness and stability properties and is more optimal
than the Lyapunov-based controller, which is not designed taking into account any
optimality consideration.

The simulations have been done in MATLAB� using fmincon and a Runge–
Kutta solver with a fixed integration time of 0.001 h. To simulate the time-varying
uncertainty, a different random value w(t) has been applied at each integration step.

2.8 LMPC with Delayed Measurements

In this section, we deal with the design of LMPC for nonlinear systems subject
to time-varying measurement delays in the feedback loop. In the LMPC design that
will be presented, when measurement delays occur, the nominal model of the system
is used together with the latest available measurement to estimate the current state,
and the resulting estimate is used to evaluate the LMPC; at time instants where
no measurements are available due to the delay, the actuator implements the last
optimal input trajectory evaluated by the controller as discussed in the previous
section. The LMPC accounting for delays is also designed based on a nonlinear
control law which is able to stabilize the closed-loop system and inherits the stability
and robustness properties in the presence of uncertainty and time-varying delays of
the nonlinear control law, while taking into account optimality considerations. The
closed-loop system considered in this section is shown in Fig. 2.5.

2.8.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 2.1 is received by the controller at
asynchronous time instants ta where {ta≥0} is a random increasing sequence of times
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Fig. 2.6 A possible sequence
of delayed measurements

and that there exists an upper bound Tm on the interval between two successive mea-
surements as described in Eq. 2.22. We also assume that there are delays in the mea-
surements received by the controller due to delays in the sampling process and data
transmission. In order to model delays in measurements, another auxiliary variable
da is introduced to indicate the delay corresponding to the measurement received
at time ta , that is, at time ta , the measurement x(ta − da) is received. In general, if
the sequence {da≥0} is modeled using a random process, there exists the possibility
of arbitrarily large delays. In this case, it is improper to use all the delayed mea-
surements to estimate the current state and decide the control inputs, because when
the delays are too large, they may introduce enough errors to destroy the stability of
the closed-loop system. In order to study the stability properties in a deterministic
framework, we assume that the delays associated with the measurements are smaller
than an upper bound D, that is:

da ≤ D. (2.68)

The size of D is, in general, related to measurement sensor delays and data trans-
mission network delays. We note that for chemical processes, the delay in the mea-
surements received by a controller are mainly caused in the measurement sampling
process. We also assume that the time instant when a measurement is sampled is
recorded and transmitted together with the measurement. This assumption is prac-
tical for many process control applications and implies that the delay in a measure-
ment received by the controller is calculable and can be assumed to be known.

Note that because the delays are time-varying, it is possible that at a time instant
ta , the controller may receive a measurement x(ta −da) which does not provide new
information (i.e., ta − da ≤ ta−1 − da−1); that is, the controller has already received
a measurement of the state after time ta − da . We assume that each measurement is
time-labeled, and hence the controller is able to discard a newly received measure-
ment if ta −da < ta−1 −da−1. Figure 2.6 shows part of a possible sequence of {ta≥0}.
At time ta , the state measurement x(ta − da) is received. There exists a possibility
that between ta and ta+j , with ta+j − ta = D − da and j being an unknown integer,
all the measurements received do not provide new information. Note that any mea-
surements received after ta+j provide new information because the maximum delay
is D and the latest received measurement was x(ta − da). The maximum possible
time interval between ta+j and ta+j+1 is Tm. Therefore, the maximum amount of
time in which the system might operate in open-loop following ta is D + Tm − da .
This upper bound will be used in the formulation of the LMPC design for systems
subject to delayed measurements below.

Remark 2.10 The sequences {ta≥0} and {da≥0} characterize the time needed to ob-
tain a new measurement in the case of asynchronous measurements or the quality of
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the network link in the case of networked (wired or wireless) communications sub-
ject to data losses and time-varying delays. The model is general and can be used to
model a wide class of systems subject to asynchronous, delayed measurements.

2.8.2 LMPC Formulation with Measurement Delays

A controller for a system subject to time-varying measurement delays must take
into account two important issues. First, when a new measurement is received, this
measurement may not correspond to the current state of the system. This implies
that in this case, the controller has to make a decision using an estimate of the
current state. Second, because the delays are time-varying, the controller may not
receive new information every sampling time. This implies that in this case, the
controller has to operate in open-loop using the last received measurements. To
this end, when a delayed measurement is received the controller uses the nom-
inal system model and the input trajectory that has been applied to the system
to get an estimate of the current state and then an MPC optimization problem is
solved in order to decide the optimal future input trajectory that will be applied
until new measurements are received. This approach implies that the previous con-
trol input trajectory should be stored in the controller. The implementation strategy
for the LMPC for systems subject to time-varying measurement delays is as fol-
lows:

1. When a measurement x(ta −da) is available at ta , the LMPC checks whether the
measurement provides new information. If ta −da > maxl<a tl −dl , go to Step 2.
Else the measurement does not contain new information and is discarded, go to
Step 5.

2. The LMPC estimates the current state of the system x̃(ta) and computes the
optimal input trajectory of u based on x̃(ta) for t ∈ [ta, ta + NΔ).

3. The LMPC sends the entire optimal input trajectory to the actuators.
4. The actuators implement the input trajectory until a new measurement is received

at time ta+1.
5. When a new measurement is received (a ← a + 1), go to Step 1.

The LMPC that takes into account time-varying measurement delay in an explicit
way is based on the following constrained optimal control problem:

min
u∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ, (2.69)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, ∀t ∈ [ta − da, ta + NΔ), (2.70)

u(t) = u∗
d(t), ∀t ∈ [ta − da, ta), (2.71)

x̃(ta − da) = x(ta − da), (2.72)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0

)
, t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (2.73)
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Fig. 2.7 A possible scenario
of the measurements received
by the LMPC of
Eqs. 2.69–2.75 and the
corresponding state
trajectories defined in the
LMPC

x̂(ta) = x̃(ta), (2.74)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ), (2.75)

where u∗
d(t) indicates the actual control input trajectory that has been applied to the

system, x(ta − da) is the delayed measurement that is received at ta with delay size
da , x̃(ta) is an estimate of the current system state, j = 0, . . . ,N − 1, and ND,a is
the smallest integer satisfying ND,aΔ ≥ Tm + D − da .

The optimal solution to the LMPC optimization problem of Eqs. 2.69–2.75 is
denoted as u∗

d(t |ta) which is defined for t ∈ [ta, ta + NΔ). The manipulated input
of the system of Eq. 2.1 under the control of the LMPC of Eqs. 2.23–2.28 is defined
as follows:

u(t) = u∗
d(t |ta), ∀t ∈ [ta, ta+i ), (2.76)

for all ta such that ta − da > maxl<a tl − dl and for a given ta , the variable i denotes
the smallest integer that satisfies ta+i − da+i > ta − da .

In the LMPC design of Eqs. 2.69–2.75, if at a sampling time, a new measure-
ment x(ta − da) is received, an estimate of the current state x̃(ta) is obtained using
the nominal model of the system (the constraint of Eq. 2.70) and the control input
trajectory applied to the system from ta − da to ta (the constraint of Eq. 2.71) with
the initial condition x̃(ta − da) = x(ta − da) (the constraint of Eq. 2.72). The esti-
mated state x̃(ta) is then used to obtain the optimal future control input trajectory.
The LMPC of Eqs. 2.69–2.75 uses the nominal model to predict the future trajec-
tory x̃(t) for a given input trajectory u(t) ∈ S(Δ) with t ∈ [ta, ta + NΔ). A cost
function is minimized (Eq. 2.69), while assuring that the value of the Lyapunov
function along the predicted trajectory x̃(t) satisfies a Lyapunov-based constraint
(the constraint of Eq. 2.75) where x̂(t) is the state trajectory corresponding to the
nominal system in closed-loop with the nonlinear control law h(x) (the constraint of
Eq. 2.73) with the initial condition x̂(ta) = x̃(ta) (the constraint of Eq. 2.74). Note
that the length of the constraint ND,a depends on the current delay da so it may
have different values at different time instants and has to be updated before solving
the optimization problem of Eqs. 2.69–2.75. If the controller does not receive any
new measurement at a sampling time, it keeps implementing the last evaluated opti-
mal trajectory. This strategy is a receding horizon scheme, which takes time-varying
measurement delays explicitly into account.

Figure 2.7 shows a possible scenario for a system of dimension 1. A delayed
measurement x(ta − da) is received at time ta and the next new measurement is
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not obtained until ta+i . This implies that at time ta we evaluate the LMPC of
Eqs. 2.69–2.75 and we apply the optimal input u∗

d(t |ta) from ta to ta+i . The solid
vertical lines are used to indicate sampling times in which a new measurement is
obtained (that is, ta and ta+i ) and the dashed vertical line is used to indicate the time
corresponding to the measurement obtained in ta (that is, ta − da).

2.8.3 Stability Properties

In this subsection, we present the stability properties of the LMPC of Eqs. 2.69–2.75
for systems subject to time-varying measurement delays. Theorem 2.2 below pro-
vides sufficient conditions under which the LMPC of Eqs. 2.69–2.75 guarantees
stability of the closed-loop system in the presence of time-varying measurement
delays.

Theorem 2.2 Consider the system of Eq. 2.1 in closed-loop, which closes at asyn-
chronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the
LMPC of Eqs. 2.69–2.75 based on a controller h(x) that satisfies the conditions
of Eqs. 2.4–2.7. Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy
the condition of Eq. 2.31 and the following inequality:

−NRεs + fV

(
fW (NDΔ)

) + fV

(
fW(D)

)
< 0. (2.77)

with fV (·) and fW(·) defined in Eqs. 2.49 and 2.43, respectively, ND being the
smallest integer satisfying NDΔ ≥ Tm + D, and NR being the smallest integer sat-
isfying NRΔ ≥ Tm. If N ≥ ND , x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately
bounded in Ωρd

⊆ Ωρ where:

ρd = ρmin + fV

(
fW(NDΔ)

) + fV

(
fW(D)

)
. (2.78)

Proof In order to prove that the system of Eq. 2.1 in closed-loop with the LMPC
of Eq. 2.69–2.75 is ultimately bounded in a region that contains the origin, we will
prove that the Lyapunov function V (x) is a decreasing function of time with a lower
bound on its magnitude. We assume that the delayed measurement x(ta − da) is
received at time ta and that a new measurement is not obtained until ta+i . The LMPC
of Eq. 2.69–2.75 is solved at ta and the optimal input trajectory u∗

d(t |ta) is applied
from ta to ta+i .

Part 1: In this part, we prove that the stability results stated in Theorem 2.2 hold
for ta+i − ta = ND,aΔ and all da ≤ D.

The trajectory x̂(t) corresponds to the nominal system in closed-loop with the
nonlinear control law u = h(x̂) implemented in a sample-and-hold fashion with
initial condition x̃(ta); please see the constraint of Eqs. 2.73 and 2.74. By Proposi-
tion 2.1, the following inequality can be obtained:

V
(
x̂(ta+i )

) ≤ max
{
V

(
x̂(ta)

) − ND,aεs, ρmin
}
. (2.79)
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The constraint of Eq. 2.75 guarantees that:

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + ND,aΔ), (2.80)

and the constraint of Eq. 2.74 guarantees that V (x̂(ta)) = V (x̃(ta)). This implies
that:

V
(
x̃(ta+i )

) ≤ max
{
V

(
x̃(ta)

) − ND,aεs, ρmin
}
. (2.81)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 2.3 to obtain the following inequalities:

V
(
x̃(ta)

) ≤ V
(
x(ta)

) + fV

(∥∥x(ta) − x̃(ta)
∥∥)

, (2.82)

V
(
x(ta+i )

) ≤ V
(
x̃(ta+i )

) + fV

(∥∥x(ta+i ) − x̃(ta+i )
∥∥)

. (2.83)

Applying Proposition 2.2, we obtain the following upper bounds on the deviation of
x̃(t) from x(t):

∥∥x(ta) − x̃(ta)
∥∥ ≤ fW(da), (2.84)

∥∥x(ta+i ) − x̃(ta+i )
∥∥ ≤ fW(NDΔ). (2.85)

Note that the constraints of Eqs. 2.70–2.72 and the implementation procedure allow
us to apply Proposition 2.2 because it is guaranteed that the actual system state x(t)

and the state estimated using the nominal model x̃(t) are obtained using the same
input trajectory. Note also that we have taken into account that NDΔ ≥ Tm +D −da

for all da . Using the inequalities of Eqs. 2.81–2.84, the following upper bound on
V (x(tk+j )) is obtained:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − ND,aεs, ρmin
} + fV

(
fW(da)

) + fV

(
fW(NDΔ)

)
.

(2.86)
In order to prove that the Lyapunov function is decreasing between two consec-

utive new measurements, the following inequality must hold:

ND,aεs > fV

(
fW(NDΔ)

) + fV

(
fW(da)

)
(2.87)

for all possible 0 ≤ da ≤ D. Taking into account that fW(·) and fV (·) are strictly
increasing functions of their arguments, that ND,a is a decreasing function of the
delay da and that if da = D then ND,a = NR , if the condition of Eq. 2.77 is satisfied,
the condition of Eq. 2.87 holds for all possible da and there exists εw > 0 such that
the following inequality holds:

V
(
x(ta+i )

) ≤ max
{
V

(
x(ta)

) − εw,ρd

}
, (2.88)

which implies that if x(ta) ∈ Ωρ/Ωρd
, then V (x(ta+i )) < V (x(ta)), and if

x(ta) ∈ Ωρd
, then V (x(ta+i )) ≤ ρd .
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Because the upper bound on the difference between the Lyapunov function of the
actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
time, the inequality of Eq. 2.88 also implies that:

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρd

}
, ∀t ∈ [ta, ta+i ). (2.89)

Using the inequality of Eq. 2.89 recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of
Eqs. 2.69–2.75 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ,∀t). Moreover, using the
inequality of Eq. 2.89 recursively, it can be proved that if x(t0) ∈ Ωρ , the closed-
loop trajectories of the system of Eq. 2.1 under the LMPC of Eqs. 2.69–2.75 satisfy:

lim sup
t→∞

V
(
x(t)

) ≤ ρd. (2.90)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd
for

the case when ta+i − ta = ND,aΔ.
Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,aΔ. Taking into account that fV (·) and fW(·) are strictly
increasing functions of their arguments and fV (·) is convex, following similar steps
as in Part 1, it can be shown that the inequality of Eq. 2.87 holds for all possible
da ≤ D and ta+i − ta ≤ ND,aΔ. Using this inequality and following the same line
of arguments as in the previous part, the stability results stated in Theorem 2.2 can
be proved. �

Remark 2.11 When time-varying measurement delays are not present and new mea-
surements of x(t) are fed into the controller every synchronous sampling time, the
LMPC of Eqs. 2.69–2.75 may be simplified to the LMPC of Eqs. 2.16–2.20. Com-
paring the LMPC of Eqs. 2.16–2.20 with the one of Eqs. 2.69–2.75, the difference
is that the Lyapunov-based constraint of Eq. 2.20 has to hold only for one time
step. This implies that even if the same implementation procedure is used, and the
same optimization problem is solved (in order to estimate the current state), if the
Lyapunov-based constraint is not changed, stability cannot be proved. This point
will be illustrated in the example in Sect. 2.8.4.

Remark 2.12 In the LMPC of Eqs. 2.23–2.28 for systems with asynchronous feed-
back without delays, the Lyapunov-based constraint of Eq. 2.28 has to hold for a
time period which is equal to or bigger than the maximum time without new mea-
surement. This constraint makes the computed control action more conservative
(and thus less optimal) because the controller may have to satisfy the Lyapunov-
based constraint over unnecessarily large horizons. If the LMPC of Eqs. 2.23–2.28
is implemented for systems subject to time-varying delays, it will be, in general, less
optimal than the LMPC of Eqs. 2.69–2.75. This point will also be illustrated in the
example in Sect. 2.8.4.
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2.8.4 Application to a Chemical Reactor

Consider the CSTR described by Eqs. 2.62–2.63 in Sect. 2.7.4. We assume that the
manipulated input (the rate of heat input Q) is bounded by |Q| ≤ 105 KJ/h and
the time-varying uncertainty in the reactant concentration of the inflow is bounded
by |ΔCA0| ≤ 0.2 mol/l. The control system is subject to time-varying measure-
ment delay in the measurements of the concentration of the reactant, CA, and in
the measurements of the temperature, T . Note that we do not consider the possi-
ble different sampling rates of temperature and concentration sensors in this exam-
ple. Note also that the delay in the measurements could be regarded as the total
time needed for online sensors to get a sample, analyze the sample and transmit
the data to the controller. The same nonlinear controller of Eq. 2.66 with the same
Lyapunov function V (x) and weighting matrix P is used in the design of the LM-
PCs used in the simulations. The stability region Ωρ is defined as V (x) ≤ 700, i.e.,
ρ = 700.

The sampling time of the LMPCs is chosen to be Δ = 0.025 h, the maximum
allowable measurement delay is D = 6Δ = 0.15 h and the maximum interval be-
tween two consecutive measurements is Tm = Δ = 0.025 h which implies that
there is a measurement available every Δ but it may not contain new state in-
formation. The cost function is defined by the weighting matrices Qc = P and
Rc = 10−6.

We first compare the LMPC of Eqs. 2.69–2.75 with the LMPC of Eqs. 2.16–2.20
in the case where no time-varying measurement delays are present. For this sim-
ulation, we choose the prediction horizon of the two LMPCs N equal to 7
(N ≥ D + Tm). We implement the LMPC of Eqs. 2.16–2.20 using the same ap-
proach employed in the implementation of the LMPC of Eqs. 2.69–2.75, that is,
the current state is estimated using the nominal model when a delayed measure-
ment is received and the last optimal input is applied when no new measurement
is received. In Fig 2.8, the trajectories of the CSTR under both LMPCs are shown
assuming no measurement delay is present, that is, the state x(tk) is available every
sampling time. It can be seen that both closed-loop systems are practically stable
and the trajectories remain in the stability region Ωρ .

In order to simulate the process in the presence of measurement delay, we use a
random process to generate the delay sequence {da≥0}, and the time sequence {ta≥0}
and corresponding delay sequence {da≥0} in which the control system is subjected
to is shown in Fig. 2.9. In this figure, we see the time-varying nature of the mea-
surement delays and the largest delays are equal to the maximum allowable delay
D = 6Δ = 0.15 h. Note that when da+1 = da + Δ, the controller does not receive
any new measurement.

When time-varying measurement delays are present, the LMPC of Eqs. 2.69–2.75
is more robust. The stability region is invariant for the closed-loop system if
D + Tm ≤ NΔ. This is not the case with the LMPC of Eqs. 2.16–2.20. In Fig. 2.10,
the trajectories of the closed-loop system under both controllers are shown in the
presence of measurement delay with D = 6Δ = 0.15 h. It can be seen that the
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Fig. 2.8 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.69–2.75 when no measurement delay is present; (b, d) state and input trajectories of the
CSTR of Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 when no measurement delay is present

Fig. 2.9 Time sequence
{ta≥0} and corresponding
delay sequence {da≥0} used
in the simulation shown in
Fig. 2.10

LMPC of Eqs. 2.16–2.20 can not stabilize the system at the desired open-loop un-
stable steady-state and the trajectories leave the stability region, while the LMPC
of Eqs. 2.69–2.75 keeps the trajectories inside the stability region. When mea-
surement delay is present, in order to provide stability guarantees, the constraints
must be modified to take into account the measurement delay as in the LMPC of
Eqs. 2.69–2.75.

We have also carried out a set of simulations to compare the LMPC of
Eqs. 2.69–2.75 with the LMPC of Eqs. 2.23–2.28 for nonlinear systems subject
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Fig. 2.10 (a, c) State and input trajectories of the CSTR of Eqs. 2.62–2.63 with the LMPC of
Eqs. 2.69–2.75 when D is 6Δ and Tm = Δ; (b, d) state and input trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.16–2.20 when D is 6Δ and Tm = Δ

to data losses from a performance index point of view. We also implement the
LMPC of Eqs. 2.23–2.28 using the same approach employed in the implementa-
tion of the LMPC of Eqs. 2.69–2.75. Table 2.3 shows the total cost computed for
20 different closed-loop simulations under the LMPC of Eqs. 2.69–2.75 and the
LMPC of Eqs. 2.23–2.28. To carry out this comparison, we have computed the total
cost of each simulation based on the performance index of Eq. 2.67 with the initial
simulation time t0 = 0 and the final simulation time tf = 2 h.

The prediction horizon in this set of simulations is N = 10. For each pair of sim-
ulations (one for each controller) a different initial state inside the stability region, a
different uncertainty trajectory and a different random measurement delay sequence
is chosen. As can be seen in Table 2.3, the LMPC of Eqs. 2.69–2.75 has a cost lower
than the corresponding total cost under the LMPC designed for systems subject to
data losses in 16 out of 20 simulations (see also Remark 2.12). This illustrates that
the LMPC of Eqs. 2.69–2.75 is, in general, more optimal. This is because the LMPC
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Table 2.3 Total performance
costs along the closed-loop
trajectories of the CSTR of
Eqs. 2.62–2.63 under LMPC
of Eqs. 2.69–2.75 and LMPC
of Eqs. 2.23–2.28

sim. LMPC of Eqs. 2.69–2.75 LMPC of Eqs. 2.23–2.28

1 1.8295 × 104 2.4428 × 104

2 4.2057 × 104 6.0522 × 104

3 3.2481 × 103 1.0428 × 104

4 7.4328 × 102 7.3961 × 102

5 1.4229 × 103 2.7798 × 105

6 4.9435 × 104 6.1596 × 104

7 3.2519 × 104 3.4319 × 104

8 2.7590 × 104 4.7075 × 104

9 9.4216 × 102 9.4866 × 102

10 5.4505 × 102 5.4322 × 102

11 1.9723 × 104 3.1282 × 104

12 2.7235 × 104 3.8772 × 104

13 1.8671 × 103 1.9200 × 103

14 3.7789 × 104 4.0050 × 104

15 2.1839 × 103 2.1392 × 103

16 4.2920 × 104 4.4594 × 104

17 1.5153 × 102 1.7190 × 102

18 4.9955 × 103 9.9094 × 103

19 3.2086 × 104 4.8838 × 104

20 1.5420 × 103 1.5197 × 103

designed for system subject to data losses requires the Lyapunov-based constraint
of Eq. 2.28 to be satisfied along the whole possible maximum open-loop operation
time (that is t ∈ [ta, ta + NRΔ)) which yields a more conservative controller from a
performance point of view.

We have also carried out a set of simulations to study the dependence on the
value of the maximum delay D of the set in which the trajectory of the process
under the proposed LMPC scheme is ultimately bounded. In order to estimate the
size of each set for a given D, we start the system very close to the equilibrium
state and run it for a sufficient long time. In this set of simulations, we set ΔCA0 =
0.1 kmol/m3 and N = 7. The simulation time is 25 h. Figure 2.11 shows the location
of the states, (CA,T ), at each sampling time and the estimated regions for D =
2Δ,4Δ,6Δ. Three ellipses are used to estimate the boundaries of the sets, and they
are chosen to be as small as possible but still include all the corresponding points
indicating the states. From Fig. 2.11, we see that the size of these sets becomes larger
as D increases. The results are expected because the size of the sets is not only
dependent on the system and the controller, but it also depends on the maximum
measurement delay. The longer the size of the delay, the further the system can
move away from the steady-state which means a larger set (if the state is still in
the stability region Ωρ ). Note that all the sets for D = 2Δ,4Δ,6Δ are included
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Fig. 2.11 (a) Estimate of the set in which the state trajectories of the CSTR of Eqs. 2.62–2.63 with
the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum allowable measurement
delay D is 2Δ; (b) estimate of the set in which the state trajectories of the CSTR of Eqs. 2.62–2.63
with the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum allowable mea-
surement delay D is 4Δ; (c) estimate of the set in which the state trajectories of the CSTR of
Eqs. 2.62–2.63 with the LMPC of Eqs. 2.69–2.75 are ultimately bounded when the maximum
allowable measurement delay D is 6Δ; (d) comparison of the three sets

in the stability region of the closed loop system under the LMPC accounting for
time-varying delays (Ωρ,ρ = 700).

2.9 Conclusions

In this chapter, LMPC designs were developed for the control of a broad class
of nonlinear uncertain systems subject to data losses/asynchronous measurements
and time-varying measurement delays. The main idea is that in order to provide
guaranteed stability results in the presence of data losses or time-varying mea-
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surement delays, the constraints that define the LMPC optimization problems as
well as the implementation procedures have to be modified to account for data
losses/asynchronous measurements or time-varying measurement delays. The pre-
sented LMPCs possess an explicit characterization of the closed-loop system sta-
bility regions. The applications of the presented LMPCs were illustrated using a
nonlinear CSTR example.
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