
Chapter 2
Coordinate Systems and Transformations

2.1 Introduction

In navigation, guidance, and control of an aircraft or rotorcraft, there are several
coordinate systems (or frames) intensively used in design and analysis (see, e.g.,
[171]). For ease of references, we summarize in this chapter the coordinate systems
adopted in our work, which include

1. the geodetic coordinate system,
2. the earth-centered earth-fixed (ECEF) coordinate system,
3. the local north-east-down (NED) coordinate system,
4. the vehicle-carried NED coordinate system, and
5. the body coordinate system.

The relationships among these coordinate systems, i.e., the coordinate transforma-
tions, are also introduced.

We need to point out that miniature UAV rotorcraft are normally utilized at low
speeds in small regions, due to their inherent mechanical design and power limi-
tation. This is crucial to some simplifications made in the coordinate transforma-
tion (e.g., omitting unimportant items in the transformation between the local NED
frame and the body frame). For the same reason, partial transformation relationships
provided in this chapter are not suitable for describing flight situations on the oblate
rotating earth.

2.2 Coordinate Systems

Shown in Figs. 2.1 and 2.2 are graphical interpretations of the coordinate systems
mentioned above, which are to be used in sensor fusion, flight dynamics modeling,
flight navigation, and control. The detailed description and definition of each of
these coordinate systems are given next.
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Fig. 2.1 Geodetic, ECEF,
and local NED coordinate
systems

Fig. 2.2 Local NED,
vehicle-carried NED, and
body coordinate systems

2.2.1 Geodetic Coordinate System

The geodetic coordinate system (see Fig. 2.1) is widely used in GPS-based navi-
gation. We note that it is not a usual Cartesian coordinate system but a system that
characterizes a coordinate point near the earth’s surface in terms of longitude, lat-
itude, and height (or altitude), which are respectively denoted by λ, ϕ, and h. The
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longitude measures the rotational angle (ranging from −180° to 180°) between the
Prime Meridian and the measured point. The latitude measures the angle (ranging
from −90° to 90°) between the equatorial plane and the normal of the reference
ellipsoid that passes through the measured point. The height (or altitude) is the local
vertical distance between the measured point and the reference ellipsoid. It should
be noted that the adopted geodetic latitude differs from the usual geocentric lati-
tude (ϕ′), which is the angle between the equatorial plane and a line from the mass
center of the earth. Lastly, we note that the geocentric latitude is not used in our
work. Coordinate vectors expressed in terms of the geodetic frame are denoted with
a subscript g, i.e., the position vector in the geodetic coordinate system is denoted by

Pg =
(

λ

ϕ

h

)
. (2.1)

Important parameters associated with the geodetic frame include

1. the semi-major axis REa,
2. the flattening factor f,
3. the semi-minor axis REb,
4. the first eccentricity e,
5. the meridian radius of curvature ME, and
6. the prime vertical radius of curvature NE.

These parameters are either defined (items 1 and 2) or derived (items 3 to 6) based
on the WGS 84 (world geodetic system 84, which was originally proposed in 1984
and lastly updated in 2004 [212]) ellipsoid model. More specifically, we have

REa = 6,378,137.0 m, (2.2)

f = 1/298.257223563, (2.3)

REb = REa(1 − f) = 6,356,752.0 m, (2.4)

e =
√

R2
Ea − R2

Eb

REa
= 0.08181919, (2.5)

ME = REa(1 − e2)

(1 − e2 sin2 ϕ)3/2
, (2.6)

NE = REa√
1 − e2 sin2 ϕ

. (2.7)

2.2.2 Earth-Centered Earth-Fixed Coordinate System

The ECEF coordinate system rotates with the earth around its spin axis. As such,
a fixed point on the earth surface has a fixed set of coordinates (see, e.g., [202]). The
origin and axes of the ECEF coordinate system (see Fig. 2.1) are defined as follows:
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1. The origin (denoted by Oe) is located at the center of the earth.
2. The Z-axis (denoted by Ze) is along the spin axis of the earth, pointing to the

north pole.
3. The X-axis (denoted by Xe) intersects the sphere of the earth at 0° latitude and

0° longitude.
4. The Y-axis (denoted by Ye) is orthogonal to the Z- and X-axes with the usual

right-hand rule.

Coordinate vectors expressed in the ECEF frame are denoted with a subscript e.
Similar to the geodetic system, the position vector in the ECEF frame is denoted by

Pe =
(

xe
ye
ze

)
. (2.8)

2.2.3 Local North-East-Down Coordinate System

The local NED coordinate system is also known as a navigation or ground coordi-
nate system. It is a coordinate frame fixed to the earth’s surface. Based on the WGS
84 ellipsoid model, its origin and axes are defined as the following (see also Figs. 2.1
and 2.2):

1. The origin (denoted by On) is arbitrarily fixed to a point on the earth’s surface.
2. The X-axis (denoted by Xn) points toward the ellipsoid north (geodetic north).
3. The Y-axis (denoted by Yn) points toward the ellipsoid east (geodetic east).
4. The Z-axis (denoted by Zn) points downward along the ellipsoid normal.

The local NED frame plays a very important role in flight control and navigation.
Navigation of small-scale UAV rotorcraft is normally carried out within this frame.
Coordinate vectors expressed in the local NED coordinate system are denoted with
a subscript n. More specifically, the position vector, Pn, the velocity vector, Vn,
and the acceleration vector, an, of the NED coordinate system are adopted and are,
respectively, defined as

Pn =
(

xn
yn
zn

)
, Vn =

(
un
vn
wn

)
, an =

(
ax,n
ay,n
az,n

)
. (2.9)

We also note that in our work, we normally select the takeoff point, which is also the
sensor initialization point, in each flight test as the origin of the local NED frame.
When it is clear in the context, we also use the following definition throughout the
monograph for the position vector in the local NED frame,

Pn =
(

x

y

z

)
. (2.10)

Furthermore, h = −z is used to denote the actual height of the unmanned system.
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2.2.4 Vehicle-Carried North-East-Down Coordinate System

The vehicle-carried NED system is associated with the flying vehicle. Its origin and
axes (see Fig. 2.2) are given by the following:

1. The origin (denoted by Onv) is located at the center of gravity (CG) of the flying
vehicle.

2. The X-axis (denoted by Xnv) points toward the ellipsoid north (geodetic north).
3. The Y-axis (denoted by Ynv) points toward the ellipsoid east (geodetic east).
4. The Z-axis (denoted by Znv) points downward along the ellipsoid normal.

Strictly speaking, the axis directions of the vehicle-carried NED frame vary with
respect to the flying-vehicle movement and are thus not aligned with those of the
local NED frame. However, as mentioned earlier, the miniature rotorcraft UAVs fly
only in a small region with low speed, which results in the directional difference
being completely neglectable. As such, it is reasonable to assume that the directions
of the vehicle-carried and local NED coordinate systems constantly coincide with
each other.

Coordinate vectors expressed in the vehicle-carried NED frame are denoted with
a subscript nv. More specifically, the velocity vector, Vnv, and the acceleration vec-
tor, anv, of the vehicle-carried NED coordinate system are adopted and are, respec-
tively, defined as

Vnv =
(

unv
vnv
wnv

)
, anv =

(
ax,nv
ay,nv
az,nv

)
. (2.11)

2.2.5 Body Coordinate System

The body coordinate system is vehicle-carried and is directly defined on the body of
the flying vehicle. Its origin and axes (see Fig. 2.2) are given by the following:

1. The origin (denoted by Ob) is located at the center of gravity (CG) of the flying
vehicle.

2. The X-axis (denoted by Xb) points forward, lying in the symmetric plane of the
flying vehicle.

3. The Y-axis (denoted by Yb) is starboard (the right side of the flying vehicle).
4. The Z-axis (denoted by Zb) points downward to comply with the right-hand rule.

Coordinate vectors expressed in the body frame are appended with a subscript b.
Next, we define

Vb =
(

u

v

w

)
(2.12)
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to be the vehicle-carried NED velocity, i.e., Vnv, projected onto the body frame, and

ab =
(

ax
ay
az

)
(2.13)

to be the vehicle-carried NED acceleration, i.e., anv, projected onto the body frame.
These two vectors are intensively used in capturing the 6-DOF rigid-body dynamics
of unmanned systems.

2.3 Coordinate Transformations

The transformation relationships among the adopted coordinate frames are intro-
duced in this section. We first briefly introduce some fundamental knowledge related
to Cartesian-frame transformations before giving the detailed coordinate transfor-
mations.

2.3.1 Fundamental Knowledge

We summarize in this subsection the basic concepts of the Euler rotation and rotation
matrix, Euler angles, and angular velocity vector used in flight modeling, control and
navigation.

2.3.1.1 Euler Rotations

The orientation of one Cartesian coordinate system with respect to another can al-
ways be described by three successive Euler rotations [171]. For aerospace appli-
cation, the Euler rotations perform about each of the three Cartesian axes conse-
quently, following the right-hand rule. Shown in Fig. 2.3 is a simple example, in
which Frames C1 and C2 are two Cartesian systems with the aligned Z-axes point-
ing toward us. We take Frame C2 as the reference and can obtain Frame C1 through
a Euler rotation (by rotating Frame C2 counter-clockwise with an angle of ξ ). Then,
it is straightforward to verify that the position vectors of any given point expressed
in Frame C1, say PC1, and in Frame C2, say PC2, are related by

PC1 = RC1/C2PC2, (2.14)

where RC1/C2 is defined as a rotation matrix that transforms the vector P from Frame
C2 to Frame C1 and is given as

RC1/C2 =
[ cos ξ sin ξ 0

− sin ξ cos ξ 0
0 0 1

]
. (2.15)

It is simple to show that

RC2/C1 = R−1
C1/C2 = RT

C1/C2. (2.16)
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Fig. 2.3 Illustration of a
Euler rotation

2.3.1.2 Euler Angles

The Euler angles are three angles introduced by Euler to describe the orientation of a
rigid body. Although the relative orientation between any two Cartesian frames can
be described by Euler angles, we focus in this monograph merely on the transforma-
tion between the vehicle-carried (or the local) NED and the body frames, following
a particular rotation sequence. More specifically, the adopted Euler angles move the
reference frame to the referred frame, following a Z-Y-X (or the so-called 3–2–1)
rotation sequence. These three Euler angles are also known as the yaw (or heading),
pitch, and roll angles, which are defined as the following (see Fig. 2.4 for graphical
illustration):

1. YAW ANGLE, denoted by ψ , is the angle from the vehicle-carried NED X-axis to
the projected vector of the body X-axis on the X-Y plane of the vehicle-carried
NED frame. The right-handed rotation is about the vehicle-carried NED Z-axis.
After this rotation (denoted by Rint1/nv), the vehicle-carried NED frame transfers
to a once-rotated intermediate frame.

2. PITCH ANGLE, denoted by θ , is the angle from the X-axis of the once-rotated
intermediate frame to the body frame X-axis. The right-handed rotation is about
the Y-axis of the once-rotated intermediate frame. After this rotation (denoted by
Rint2/int1), we have a twice-rotated intermediate frame whose X-axis coincides
with the X-axis of the body frame.

3. ROLL ANGLE, denoted by φ, is the angle from the Y-axis (or Z-axis) of the twice-
rotated intermediate frame to that of the body frame. This right-handed rotation
(denoted by Rb/int2) is about the X-axis of the twice-rotated intermediate frame
(or the body frame).
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Fig. 2.4 Euler angles and yaw-pitch-roll rotation sequence

The three relative rotation matrices are respectively given by

Rint1/nv =
[ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

]
, (2.17)

Rint2/int1 =
[ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

]
, (2.18)

and

Rb/int2 =
[1 0 0

0 cosφ sinφ

0 − sinφ cosφ

]
. (2.19)
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2.3.1.3 Angular Velocities

The angular velocities (or angular rates) are associated with the relative motion be-
tween two coordinate systems. Considering that Frame C1 is rotating with respect
to Frame C2, the angular velocity is denoted by

ω∗
C1/C2 =

(
ωx
ωy
ωz

)
, (2.20)

where ∗ is a coordinate frame on which the angular velocity vector is projected.
We note that the coordinate frame ∗ can be C1 or C2 or any another frame. It is
simple to verify that the angular velocity vector of Frame C2 rotating with respect
to Frame C1 is given by

ω∗
C2/C1 = −ω∗

C1/C2. (2.21)

2.3.2 Coordinate Transformations

We proceed to present the necessary coordinate transformations among the coordi-
nate systems adopted, of which the first three transformations are mainly employed
for rotorcraft spatial navigation, the fourth one is commonly adopted for flight con-
trol purposes, and finally, the last one focuses on an approximation particularly suit-
able for the miniature rotorcraft.

2.3.2.1 Geodetic and ECEF Coordinate Systems

The position vector transformation from the geodetic system to the ECEF coordinate
system is an intermediate step in converting the GPS position measurement to the
local NED coordinate system. Given a point in the geodetic system, say

Pg =
(

λ

ϕ

h

)
,

its coordinate in the ECEF frame is given by

Pe =
(

xe
ye
ze

)
=

(
(NE + h) cosϕ cosλ

(NE + h) cosϕ sinλ

[NE(1 − e2) + h] sinϕ

)
, (2.22)

where e and NE are as given in (2.5) and (2.7), respectively.

2.3.2.2 ECEF and Local NED Coordinate Systems

The position transformation from the ECEF frame to the local NED frame is re-
quired together with the transformation from the geodetic system to the ECEF frame
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to form a complete position conversion from the geodetic to local NED frames.
More specifically, we have

Pn = Rn/e(Pe − Pe,ref), (2.23)

where Pe,ref is the position of the origin of the local NED frame (i.e., On, normally
the takeoff point in UAV applications) in the ECEF coordinate system, and Rn/e is
the rotation matrix from the ECEF frame to the local NED frame, which is given by

Rn/e =
[ − sinϕref cosλref − sinϕref sinλref cosϕref

− sinλref cosλref 0
− cosϕref cosλref − cosϕref sinλref − sinϕref

]
, (2.24)

and where λref and ϕref are the geodetic longitude and latitude corresponding to
Pe,ref.

2.3.2.3 Geodetic and Vehicle-Carried NED Coordinate Systems

In aerospace navigation, a kinematical relationship between geodetic position and
vehicle-carried NED velocity is of great importance. The derivative of the geode-
tic position can be expressed in terms of the vehicle-carried NED velocity as the
following:

λ̇ = vnv

(NE + h) cosϕ
, (2.25)

ϕ̇ = unv

ME + h
, (2.26)

and

ḣ = −wnv. (2.27)

We note that the first two equations are derived based on spherical triangles, whereas
the third one can be easily obtained from the definitions of h and wnv.

The derivatives of the vehicle-carried NED velocities are respectively given by

u̇nv = − v2
nv sinϕ

(NE + h) cosϕ
+ unvwnv

ME + h
+ amx,nv, (2.28)

v̇nv = unvvnv sinϕ

(NE + h) cosϕ
+ vnvwnv

NE + h
+ amy,nv, (2.29)

and

ẇnv = − v2
nv

NE + h
− u2

nv

ME + h
+ g + amz,nv, (2.30)

where g is the gravitational acceleration, and

amea,nv =
(

amx,nv
amy,nv
amz,nv

)
(2.31)
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is the projection of amea,b, the proper acceleration measured on the body frame, onto
the vehicle-carried NED frame. The proper acceleration is an acceleration relative to
a free-fall observer who is momentarily at rest relative to the object being measured
[209]. In the above equations, we omit terms related to the earth’s self-rotation,
which is reasonable for small-scale UAV rotorcraft working in a small confined
area.

2.3.2.4 Vehicle-Carried NED and Body Coordinate Systems

Kinematical relationships between the vehicle-carried NED and the body frames are
important to flight dynamics modeling and automatic flight control. For translational
kinematics, we have

Vb = Rb/nvVnv, (2.32)

ab = Rb/nvanv, (2.33)

and

amea,b = Rb/nvamea,nv, (2.34)

where Rb/nv is the rotation matrix from the vehicle-carried NED frame to the body
frame and is given by

Rb/nv =
[ cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

]
, (2.35)

and where s∗ and c∗ denote sin(∗) and cos(∗), respectively.
For rotational kinematics, we focus on the angular velocity vector ωb

b/nv, which
describes the rotation of the vehicle-carried NED frame with respect to the body
frame projected onto the body frame. Following the definition and sequence of the
Euler angles, it can be expressed as

ωb
b/nv :=

(
p

q

r

)
=

(
φ̇

0
0

)
+ Rb/int2

[( 0
θ̇

0

)
+ Rint2/int1

( 0
0
ψ̇

)]

= S

(
φ̇

θ̇

ψ̇

)
, (2.36)

where p, q , and r are the standard symbols adopted in the aerospace community for
the components of ωb

b/nv, Rint2/int1 and Rb/int2 are respectively given as in (2.18)
and (2.19), and lastly, S is the lumped transformation matrix given by

S =
[1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

]
. (2.37)



34 2 Coordinate Systems and Transformations

It is simple to verify that

S−1 =
[1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

]
. (2.38)

We note that (2.36) is known as the Euler kinematical equation and that θ = ±90°
causes singularity in (2.37), which can be avoided by using quaternion expressions.

2.3.2.5 Local and Vehicle-Carried NED Coordinate Frames

As mentioned in Sect. 2.2.4, under the assumption that there is no directional differ-
ence between the local and vehicle-carried NED frames, we have

Vn = Vnv, ωb
b/n = ωb

b/nv, an = anv, amea,n = amea,nv, (2.39)

where amea,n is the projection of the proper acceleration measured on the body
frame, i.e., amea,b, onto the local NED frame. These properties will be used through-
out the entire monograph.
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