Chapter 2
Kazhdan-Lusztig Cells and Cellular Bases

The aim of this chapter is to develop a general framework for studying the represen-
tation theory of Iwahori—-Hecke algebras associated with finite Coxeter groups.

The motivating example is the representation theory of the symmetric group G,,.
Frobenius showed around 1900 that the irreducible representations of &, over a field
of characteristic 0 are naturally parametrised by the partitions of n. In the 1970s,
James [181] developed a “characteristic-free” approach to the representation theory
of &,,, where Specht modules and certain bilinear forms on them play a crucial role.
Dipper and James [62] extended this theory to Iwahori-Hecke algebras associated
with G,,. A considerable simplification was then achieved through the powerful new
ideas introduced by Murphy [256], [257]. In fact, what we nowadays call the “Mur-
phy basis” is an example of a “cellular basis” in the formal sense defined later by
Graham and Lehrer [144].

Here, we shall construct such a “cellular basis” in the sense of Graham and
Lehrer, for the generic algebra H associated with an arbitrary (finite) Coxeter group
W. For this purpose, we need two basic ingredients:

(1) abasis of H with certain specific multiplicative properties and
(2) a suitable partial ordering on Irr(W).

Already Graham and Lehrer identified the Kazhdan—Lusztig basis {C,, | w € W} (see
Section 2.1) of H as a natural candidate for (1). However, it is only in some very
special examples (in type A or B) that {C,,} itself has the required multiplicative
properties. But in any case, this new basis of H provides the necessary tools to
define a partial ordering on Irr(W); see Section 2.2.

In order to proceed, we have to rely on certain deep properties of the basis {C,, }
for which no elementary proofs are known. Sections 2.3-2.5 are devoted to a dis-
cussion of these properties, which appear as conjectures P1-P15 in Lusztig’s book
[231]. We can then put all the pieces together and construct, following [111], [112],
a “cellular basis” for H; see Sections 2.6 and 2.7. In the final section, we present an
elementary treatment of the case where W = G,,.
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60 2 Kazhdan-Lusztig Cells and Cellular Bases

2.1 The Kazhdan-Lusztig Basis

Let W be a finite Coxeter group and L: W — I' a weight function, where I" is an
abelian group admitting a monomial order < such that L(s) > O for all s € S (as
in Chapter 1). Let H = H4(W,S,L) be the corresponding generic Iwahori-Hecke
algebra over A = R[I"], where R C C is a subring as in 1.2.1. The main purpose of this
section is to introduce the Kazhdan—Lusztig basis {C,, | w € W} of H. This basis first
appeared in [195], in the equal-parameter case. Then Lusztig [219] showed that the
construction also works in the general multiparameter case. These results are now
readily accessible in Lusztig’s book [231], so we will outline the main constructions
and formulate the main results but refer to [231] for further details.

2.1.1. Given elements y,w € W, we write y < w if y can be obtained by omitting
some terms in a reduced expression for w. This defines a partial order relation on W,
called the Bruhat—Chevalley order. Here are some properties (see [231, Chap. 2]):

(a) Letw e W and s € S. Then sw < w if and only if I(sw) = I(w) —
(b) Lety,w € W and s € S be such that sw < w. Then

sy<sw o ifsy <y,
< .
ysw < {yésw if sy > y.
Note that (b) provides a recursive description of <.

2.1.2. Let wy € W be the longest element. For any w € W, we can write uniquely

TwTwy= > Ry, Ty,  whereR;, € Z[I].
yew

If w=1, then R{ | =0 and R}, =0 for all y # 1. Now assume that w # 1 and let
s € S be such that sw < w. Then one easily checks the following relation:

R _ RSy g if sy <y,
W Ry + (vs v DRy, ifsy >y

By using 2.1.1 and the above formulae, we obtain (see also [231, 4.5 and 4.7])

(a) Ry, =1 and Ry, =0 unlessy<w
(b) Ry, = (—1)OH0Ry

(Here, a for any a € A is defined in Example 1.2.6.) The above recursion formulae
are the same as those for the elements ry,, in [231, 4.4]. Consequently, we have

©) TW_,I1 =y Ry, T, foranyw e W.
yew

(The relation between the expressions for T,, 7, and T~ "I already appeared in the
remarks following [195, Lemma A.4].)
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2.1.3. Weset I>g = {g € I" | g > 0} and denote by Z[I>o] the set of all integral linear
combinations of terms €%, where g > 0. The notations Z[I¢], Z[IT<o], Z[I-] have
a similar meaning. Then, by the proof of [231, Theorem 5.2] (see also [228, 7.10]),
there exists a unique collection of elements {Py,, | y,w € W} C Z[I'] satisfying the
following conditions:

(a) Pj;ﬁw =1 and P}*W = 0 unless y < w; furthermore, P

w € Z[To] if y <w.
(b) For any y,w € W, we have

D* * *
Pw= % R.PL
zeW:iy<z<w

Note that P;W can be constructed recursively using (a) and (b); see Example 2.1.5.
(Here, the notation is as in [219]; R;f,w, wa are denoted by ry,,, py,, in [231].)

Definition 2.1.4 (Kazhdan and Lusztig [195], Lusztig [219]). For w € W, we set

Coi= Y (—1)/HOP: T, € H,
yew

with P, as in 2.1.3. The elements {Cy | w € W} form an A-basis of H; to see this
just note that, by 2.1.3(a), we have T,, € Cyy + X ycw: y<y Z[I>0] Ty for any w € W,
For x,y € W, let us write

CCy = Z hyy.Cyy where hyyz €A.
ZEW

Example 2.1.5. The formulae in 2.1.2 yield a straighforward algorithm for comput-
ing the polynomials Rj,,. As already mentioned above, the formulae in 2.1.3 can
then be used to construct P}*w recursively. Indeed, given y < w, note that

L L

yw et Lwt
ZEW z<y<w

Proceeding by induction on /(w) — I(y), all terms on the right-hand side are known.
Then Py, itself is determined by the additional condition that P}, € Z[I].

yw
For example, it is clear that C; = T;. Now let s € S. Then R} ; = vy — v;l and so

D* * * * _ pk * -1
Pl.,s 7P1,s - Z Lzt z,s — Rl,sPs,s =Vs— Vs -
zeW:1<z<s

Since Py | € Z[I), it follows that P}, = 0 (if L(s) = 0) and P}  =v; " (if L(s) > 0).

Thus, we obtain
C.— T, if L(s) =0,
ST T, —vTh if L(s) > 0.

In order to see some more complicated polynomials Py, let s,z € S be such that
mg > 3 and assume that L(¢) > L(s) > 0. Then the above precedure yields

Cy =Ty —v Ty — vl +vev T
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and

Cist = Tt —viTyy —viTis + Vtsz
" vov Iy — vsvtle if L(s) = L(¢),
(v —vi )T — (vpv? —vi WAHTy if L(t) > L(s).

With some more effort, it is possible to write down explicit formulae for all basis
elements C/,, where W is of type I(m); see [231, Chap. 7], [132, Exc. 11.4].

We can now state the following characterisation of the element C,,. This version
of the characterisation (which works for finite W) is due to Lusztig [232]; the proof
is very similar to (but the statement as such is different from) the original one in
[195], [219] (which relied on the “bar involution” on H).

Theorem 2.1.6 (Kazhdan and Lusztig [195], Lusztig [219], [231], [232]). For any
w € W, the element C,, is uniquely determined by the following two conditions:

CveTy+ Y ZILoT,  and  C,Ty € Y, Z[Ik]T;.
yew yeWw

Proof. Let us verify that C,, satisfies the above two conditions. The first one is clear
by 2.1.3(a); furthermore, using the relations (a), (b) in 2.1.2, we obtain:

Coly = 2 ()5 (1Y OTORLE ) T,

yeWw zeW:y<z<w
1 1 »n* pF
= Z (71) )+ (y)( 2 Ry,sz,W)TYWo
yew z2eWy<zsw
= (O T,
yeWw

where the last equality holds by 2.1.3(b). Thus, we have in fact

CwTwo € Twwo + z Z[r<0]731w0 - z Z[FQO]Tya
yEW: y<w yeW

as required. Using this expression for C,, Ty, one easily deduces the following state-
ment. Let h = ¥, . a,Cy € H, where a, € Z[I'] for all x € W. Then we have

(*) hTy, € Y Z[T)T, = ay € Z[Ixo] forallxeW.
yew

This immediately implies the uniqueness of C,,. Indeed, assume that C,, € H also
satisfies the desired conditions. Let & := C,, — C,,. Then we have

he Y ZIRoT, C Y Z[Ih)Cy  and ATy € Y Z[T]T,
yew yEW yew

Hence, using (x), we conclude that, in an expression of % as a linear combination of
basis elements {Cy}, all coefficients must be zero and so C,, = C,,.. a
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Remark 2.1.7. As in [195], [219], we set C,, := (—1)1<W)ij for all w € W, where
is defined in Example 1.2.6. (The element C}, is denoted by ¢, in [231].) Using the
formula 7,/ = (—1)! 7! and the relations in 2.1.2, 2.1.3, we obtain

w—

Co=2 (VORI = 3 P T = 3 (PR )Ty = 3 P T,
zeW zeW yew yeWw

Furthermore, applying 7 to the relation C,Cy = ¥ ¢y Ay, .C,, we obtain

e, =Y (1)@ b, cl foranyx,y € W.
zeW
We shall write /2, := (—1)/@H0IHE - for any x,y,z € W.

Thus, any statement about C,, has an equivalent version for C}, (where typically
some signs need to be arranged). For applications to representation theory, it is more
convenient to work with C,,; see, for example, Remark 2.1.12. In this book, we will
systematically work with C,,,.

Theorem 2.1.8 (Kazhdan and Lusztig [195], Lusztig [219], [231, Chap. 6]). For
any x,y,z € W, we have h, . = f_zx7),7z. Furthermore, for s € S and w € W, we have

Csw lfL(S) = 07
C,C, = —(vs+viHCy if L(s) > 0 and sw <w,
Cow— Y, (=D)WHOI 0 ifL(s) > 0and sw > w,
YEW sy<y<w

where W, € Z[T'| is such that iy, = Ly .

(The analogous formulae for the elements {C/,} are proved in [231, Chap. 6];
then it remains to use the conversion formulae in 2.1.7.)

2.1.9. There is a direct recursive algorithm for simultaneously computing

{Py’fw |y,we W} and
{15, | s €S,y,w €W such that L(s) > 0 and sy <y <w < sw},

without reference to the polynomials {R; }. Recall that, first of all, we have

W

(a) Pvt,w =1forallweWw and P;,w =0 unless y < w;

see 2.1.3. We shall now list some further properties of these elements. Let y,w € W
be such that y < w. Let t € S be such that tw < w. Then we have

(b1) P;W = P,*NW if L(t) =0,
(b2) P, =v P, if L(t) > 0,1y >y,
(b3) P;w =W Py*,tw + t;.tw - Z P;,z .ué,tw if L(t) > 0,1y <y.

zeEWy<z<iwtz<z
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Furthermore, for any s € S such that L(s) > 0 and sy < y < w < sw, we have

(e1) o =vsPo+ 3 By, €2,
€W y<z<w,sz<z
©2) Wy = K-

See [231, Chap. 6] and [132, §11.1]. In order to describe a recursion based on the
above properties, we need to define an ordering on all pairs of elements (y, w), where
y,w € W and y < w. This is done as follows:

W) E (v,w) & w<w or w=wandy<y.

The recursion starts with the pair (y,w) = (1,1). We have P;'; = 1 and there are
no W-polynomials to determine for this pair. Now let (y,w) be such that w # 1 and
y < w. Assume that Py*,‘w, and the relevant p-polynomials are already known for all

pairs (y/,w') C (y,w). Then we proceed as follows.

(1) First we determine P;W If y = w, then P;f,vw = 1. If y < w, then choose some
t € S such that rw < w. There are three cases to distinguish:

(i) IfL(r) =0, then (zy,tw) C (y,w) and so the right-hand side of (b1) is known
by induction.

(ii) If L(r) > 0 and ry >y, then (ry,w) C (y,w) and so the right-hand side of
(b2) is known by induction.

(iii) If L(¢) > 0 and ty < y, then all terms on the right-hand side of (b3) involve
pairs (y',w), where w' < w. In particular, (y',w’) C (y,w) for all such pairs
and so, by induction, the right-hand side of (b3) is known.

(2) Now assume that y < w. Then we have to determine i, for any s € S such that
L(s) >0 and sy < y < w < sw. For this purpose, we set

Py k * N
0 :=vsby, — Z By Mz

ZEW: y<z<w,sz<2

(i) For all z appearing in the above sum, we have (y,z) T (y,w) and (z,w) C
(y,w) and, hence, the corresponding terms are known by induction. By (1),
we also know P;‘w Thus, o is determined.

(ii) Write o0 = o + o9 + o, where oy € Z[I1g], o— € Z[I[p] and o € Z
are uniquely determined. By (c1) and (c2), we have u,, = o + ot + 0.
Thus, uj,, is determined.

For readers with an interest in “computer algebra” we just mention that it is an ex-
cellent programming exercise to implement the above recursion on a computer. For
further details see, for example, DuCloux [75] and his COXETER system, CHEVIE
[105], [118], and the references in these articles.

The above recursion formulae can actually be used to establish some further
properties of P, and uy,,. We illustrate this with a few examples.
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Example 2.1.10. Let y,w € W and s € S. Then we claim that
(a) \1S,I,L§.7w € Z[Iso], where L(s)>0andsy<y<w <sw.

Indeed, by 2.1.9(c2), this is equivalent to showing that v; ! Wy € Z[Io]. Multiply-
ing 2.1.9(c1) by v, !, we obtain

i =Pt Y P (v',) € 2],

zeWiy<z<w,sz<z

By an inductive argument, we can assume that we already know that v;luzﬁw €
Z[I-) for all z in the above sum. Hence, we also have v;l,l,lysqw € Z[I-9], as required.

Assume, furthermore, that we are in the equal-parameter case where I = Z and
L(s) =1for all s € S. Then Z[I'] is the ring of Laurent polynomials in one indeter-
minate v = €. Let yw € W and s € S be such that sy <y < w < sw. We have just
seen that vity , € vZ[v]. Hence, we have y; , € Z[v]. Since [y, = u; ,,, we conclude
that ,uyfw € Z. In fact, we have

(b) u,, = coefficient of v=! in P, € v 'Z[y~1].

Indeed, since py,, € Z, the relation in 2.1.9(c1) reduces to the condition that uy,, —
VP, € v~1Z[v~!], which immediately yields the above statement.

Example 2.1.11. Let y,w € W be such that y < w and set P, := vwvy’lefw. Then
the following holds:

(a) If L(s) > Oforall s € S, then P,,, € Z[I>¢] is non-zero, with constant term 1.

This is proved as follows (see also [231, Prop. 5.4]). If y = w, then P,,,, = 1 and so
(a) holds. Now assume that y < w and choose some ¢ € S such that tw <w. If ty >y,
then 2.1.9(b2) yields P,,, = F;y,,, and so (a) holds by induction. (Note that y < tw by
2.1.1(b) and, hence, ry < t(tw) = w.) If ty <y, then 2.1.9(b3) yields

2 —1 t
Py = vi Py + Prypw — Z Py zviwv, (Vt“z,zw) .

z2eWy<z<twitz<z

By Example 2.1.10 and induction, we have P, ; € Z[I>o] and v, 4} ,,, € Z[I%] for all
z in the above sum. Hence, we conclude that P, ,, = Py, mod Z[I%]. Since ty < tw
by 2.1.1(b), this yields (a) by induction.

Note that if L(s) = 0 for some s € S, then the conclusion in (a) no longer holds.
For example, if L(s) =0, then C; = T; and so P s = 0.

Remark 2.1.12. Assume that L(s) > 0 for all s € S. Then the basis {C,,} gives rise
to a W-graph structure on W. Indeed, let us set I(w) :={s € S | sw <w} forw e W.
Furthermore, if y,w € W and s € S are such that s € I(y) and s € I(w), we set

1 if y = sw,
s, = —(—l)l(le(y)H;,w ify <w,
0 otherwise.
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Then we see that the data {I(w)}, {my,,} give rise to a W-graph structure on the set
W, in the sense of Definition 1.4.11. Note that vym, , € Z[I] by Example 2.1.10.

2.1.13. Recall that H is a symmetric algebra, where {7,, | w € W} and {T,,-1 |w €
W} form a pair of dual bases of H. Since each C,, equals T, plus a Z[I%¢]-linear
combination of basis elements 7, (z € W), it easily follows that

(a) T(C1Cy) € 8y + Z[T0)] for all x,y € W;
(see [220, 5.3.3] where this appeared in the equal-parameter case). Now set

D,:=T,+ Y P, T, (wew),

ywo,wwp Y
YEW:w<y

where wo € W is the longest element. Then, {C,, |[w € W} and {D,, 1 |w € W} form
a pair of dual bases; that is, we have

(b) T(Cnyq) = Oy forall x,y € W.

In particular, A, = T(C;CyD,-1) for all x,y,z € W, a relation which will be used
repeatedly in what follows. The relation (b) follows from the following identity:

> (—1/mHbp pr =38,  forally<winW,

¥z wwo,zawg
W y<zsw

which appeared as [195, Theorem 3.1] in the equal-parameter case; see [231, 10.7
and 11.4] or [103, §2] for the general case. Once the above identity is proved, one
also obtains the following relation (see [231, 11.6] or [103, 2.6]):

©) oy ywg = — (=100 g
for any s € S and y,w € W such that sy <y < w < sw.

2.1.14. The A-linearmap H — H, h — hb, defined by wa =T,-1 (we W)is an anti-
involution of H; see Example 1.2.5. Applying b to the relation TW_,I1 =dyew R;WZ},
we find that R;,l el = R}, for all y,w € W. Then, using 2.1.3, it also follows that

C,=C,1 and P, =P for all y,w e W.

w w y’l,w*I
We can now apply the general definitions concerning “cells” in Section 1.6 to the
algebra H = H with its basis {C,, | w € W }. Thus, we obtain pre-order relations < ¢,
<, <o on W. Recall, for example, that < o is defined as the transitive closure of
the relation < ¢; by the multiplicition formulae in Theorem 2.1.6, we have

- - either y = sw, where s € S is such that L(s) = 0 or sw > w,
yezw or iy, #0, wheres €S, L(s) >0and sy <y <w <sw.
Furthermore, we have y <; w if and only if y~! <& w™!. And, finally, < ¢ is the
union of < ¢ and <.
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Definition 2.1.15. The left, right or two-sided cells defined, in the sense of 1.6.1,
by taking H = H with its basis {C,, | w € W}, are called the left, right or two-sided
Kazhdan—Lusztig cells of W respectively.

From now on, unless explicitly stated otherwise, the symbols < ¢, <», < ¢z,
~g, ~q, ~qgp Will always refer to the pre-order relations defined using the
Kazhdan-Lusztig basis {C,, } of H.

Lemma 2.1.16 (Lusztig [231, 8.6]). Given w € W, define L (w) :={s €S| sw <
wand L(s) > 0} and Z#(w) := £ (w™"). Then the following hold:

(a) Ifz,y € W are such that z < gy, then Z(y) C Z(z).
(b) If z,y € W are such that 7 <z y, then £ (y) C £ ().

In particular, the function w — Z(w) is constant on left cells and the function w —
Z(w) is constant on right cells.

Proof. Since the formulation in [231, 8.6] does not include the possibility that
L(s) =0 for some s € S, let us briefly sketch the argument. To prove (a), we may
assume that z,y are related by an elementary step in the definition of < ¢; that is,
there is some s € S such that h’sw’Z # 0. If L(s) > 0, then the argument is exactly the
same as in [231, 8.6], using the fact that "H := (C,, | w € W,wr < w)4 C H is a left
ideal for any ¢ € S such that L(z) > 0; see [231, 8.4].

Now assume that L(s) = 0. Then z = sy by the multiplication formulae in Theo-
rem 2.1.6. Let t € Z(y). If sy >y, then Z(y) C Z(sy) and so r € Z(z), as required.
Finally, assume that sy < y; then I(sy) = I(yt). If we had zr > z, then I(syt) = ()
and so syt = y; see [132, 1.2.6]. Hence, s, would be conjugate in this case and so
L(s) = L(t), which is a contradiction. Thus, we must have z¢ < z, as required.

The proof of (b) is analogous. a

Example 2.1.17. Assume that L(s) > 0 forall s € S. Let w € W be such that w ~ & 1.
Then Lemma 2.1.16 implies that Z(w) = %(1) = @ and so w = 1. Hence, {1} is a
left Kazhdan—Lusztig cell.

Similarly, let w € W be such that w ~ ¢ wq, where wy € W is the longest element.
Then Lemma 2.1.16 implies that Z(w) = Z(wo) = S and so w = wy. Hence, {wy}
is a left Kazhdan—Lusztig cell. We have the following explicit formula:

CW() _ Z (_1)1<W0)+1<W>8L(W0)*L<W>Tw_

wew

Indeed, if w € W is such that w # wy, then there exists some s € S such that sw > w.
Hence, the formula in 2.1.9(b2) yields that P}, = v;lP* By a simple downward

A sw,w *
induction on /(w), we conclude that Py, = ghlw)=Liwo)

, as required.

Example 2.1.18. Let W be of type I (m) (m > 3); that is, we have W = (s1,s7),
where 57 = 53 = (s152)™ = 1. Let L be a weight function where b := L(s1) > 0 and
a:=L(sy) > 0; here, a = b if m is odd.

The relations < ¢, <4 and < ¢y are determined in [231, 8.8]. (See also [132,
Exc. 11.4] for the case a # b.) For any k > 0, write 1, = sysps1--- (k factors) and

2 = $25182 - -+ (k factors); note that 1,, = 2,,. With this notation, we have:
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e Ifmisoddand a = b > 0, then the left cells are
{10}7 {lm}7 {217127237‘”71m—1}7 {11722;137"'72}%—1}‘

e Ifmisevenand a = b > 0, then the left cells are
{10}? {lm}7 {217127237~~~;2m—1}; {113227137"'31”1—1}'

e Ifmisevenand b > a > 0, then the left cells are

{IO}a {21}’ {1"1*1}7 {1m}, {11»227133'“7277172}’ {123237147-“a2m*1}'

e Ifmisevenand b > a = 0, then the left cells are

{10721}7 {1malm—1}a {117227137'--72}11—2}7 {127237]47"')2}%—1}-

The two-sided cells and the partial order induced on them are given by

{1} <oz W\{lo,1n} <2z {lo} (a=b>0),
{In} <oz {ln-1} <22 W\{10,21, Ln—1, In} <z {21} <gz {lo} (b>a>0),
{Ln, L1} <oz WA\{10,21, Lu—1,1m} <oz {l0,21} (b>a=0).

Recall that, in Definition 1.6.4, we have introduced the left, right and two-sided J-
cells of W, using the algebra H = J with its basis {t,, | w € W}. In the above example
where W is of type L(m), the two-sided Kazhdan—Lustzig cells are precisely the
two-sided J-cells determined in Example 1.7.3. If this was known to be true in
general, then our task in this book would be considerably simpler! (We will discuss
this in more detail in Section 2.5.) To close this section, we will show by a general
argument that, at least, the Kazhdan—Lusztig cells are always unions of J-cells.

2.1.19. We will now bring back into the picture the balanced matrix representa-
tions {p7L | A € A} and the corresponding leading matrix coefficients cfvj‘l; see Sec-
tion 1.4. Recall that, for any w € W, we have

e pM(T,,) € My, (Op) and Cfvf/l = g% p}(T;,) mod m

for all A € A and s,t € M(A). Now consider the expressions for C,, and D,,. Since
P, € Z[Io] for all y # w, we deduce that

yw

efph(C,)ely and  e%pl(D,) € Oy,

% pli(T) = €% pl(Cy) = €% ply(Dy) = ¢}; mod m,

for all L € A and s,t € M(A). Thus, the leading matrix coefficients can be taken
with respect to any of the bases {7, }, {C,,} or {D,, }.

Proposition 2.1.20. Every left Kazhdan—Lusztig cell of W is a union of left J-cells
(see Definition 1.6.4). Analogous statements hold for right and two-sided cells. In
particular, if x,y,z € W are such that ¥y, # 0, then the elements xEL yEL A gl
lie in the same two-sided Kazhdan—Lusztig cell.

Proof. Lety,z € W belong to the same left J-cell. It will be sufficient to consider an
elementary step in the definition of this relation; that is, we can assume that
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Veyet = (Z D f}u cx)L ;le ;i) #0 forsomexecW.
AeA s tueM(A)

We deduce that

Y cy‘jtcz 1,70  forsome A € A ands teM(A).
ueM(i

Using the relations in 2.1.19 we obtain that

eEpl (D)= Y (e%pl(Cy)) (e%pls(D)) = X Cﬁ“ﬁ“%

ueM() ueM(A

modulo m. Since the expression on the right-hand side is non-zero modulo m, we
conclude that p (C D_-1) # 0 and so C,D,-1 # 0. Since T is non-degenerate, we
have 7(C,,CyD_-1) # 0 for some w € W. ThlS yields hy,y,. = 7(C,,CyD_-1) # 0 and
s0 7 < ¢ ¥ (in the Kazhdan—Lusztig pre-order). Similarly, we find that

epl(D,C) = Y (e%plu(Dy)) (eMpls(C)) = 3 C“icuh

ueM(d) ueM(A

modulo m and, hence, DyC_-1 # 0. Again, we can find some w € W such that
T(CwDyCZq) # 0. It fOllOWS that h -1 oyl = T(CzchDy) = T(CWDyCZq) #0.
Hence, we have y~! < z7! and so y < ¢ z. Thus, we have shown that y, z belong to
the same left Kazhdan-Lusztig cell. The arguments for right and two-sided cells are
analogous. The last statement (involving % ;) follows from Corollary 1.6.7. a

2.2 A Pre-order Relation on Irr(W)

We have just seen that the weight function L: W — I' and the monomial order <
on I give rise to the Kazhdan—Lusztig pre-order relations < ¢, <z, < gz on W.
We will now use the two-sided relation < ¢ to define a pre-order relation on the
set Irrg (W) = {E* | A € A}. Recall that, in Proposition 1.6.11, we constructed a
natural surjective map

Trr (W) — {set of two-sided J-cells of W}, E* — 7.

By Proposition 2.1.20, we also know that each .#) is contained in a two-sided
Kazhdan-Lusztig cell. This leads us to the following definition.
Definition 2.2.1 (Cf. Lusztig [220, 5.15]). Let A, 1 € A. Then we define

E* <, E* & x<gpy forallxe.Z) andye F,

where < ¢ is the Kazhdan—Lusztig pre-order relation on W see 2.1.14. Since each
two-sided J-cell is contained in a two-sided Kazhdan-Lusztig cell, we have
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E* <, E* & x<gzy forsomexec F) and someyc F,.

Furthermore, we write E* ~; E* if E* <, E* and EM <, E*. Thus, E* ~; EM if
and only if .7, , %, are contained in the same two-sided Kazhdan—Lusztig cell.

We wish to mention right away that the relation ~, on Irrg (W) is not yet com-
pletely understood nor explicitly known in all cases (and even less so the relation
=1). In this section we will, therefore, content ourselves with giving some examples
and explaining the open questions. Of particular interest for us will be the relation
between =; and the function E* — a; . We will see that even the first example that
one might think of, namely the case where W = G, requires a considerable amount
of work; see Example 2.2.13 and Section 2.8. We begin by showing that <; and ~,
can be expressed without reference to the map E s Z 2-

2.2.2. By the general method described in 1.6.1, each left Kazhdan—Lusztig cell €
gives rise to a representation of H. This is constructed as follows. Let [€]4 be an
A-module with a free A-basis {e,, | w € €}. Then the action of H on [€]4 is given by

(a) Cy.ex = 2 M.y €y, where w € W and x € €.
yec

(Similarly, right cells give rise to right H-modules and two-sided cells give rise to
H-bimodules.) Now let 68: A — k be a ring homomorphism into a field k. Then
[€]k := k®a [€]4 is a left module for the specialised algebra Hy. In particular, let
0:: A — K be the ring homomorphism such that 8;(e%) =1 for all g € I', as in
1.2.1. Then we obtain a module [€]; := K®y [€]4 for KW = K ®4 H. For any
A € A, denote by m(€, 1) the multiplicity of E* as an irreducible constituent of
[€];. Then the “specialisation argument” in Example 1.2.4 immediately shows that

(b) m(€,A) = multiplicity of E* as an irreducible constituent of [¢],
where [€]k is the Hx-module obtained from [€]4 by extending scalars from A to K.

Remark 2.2.3. Assume that L(s) > 0 for all s € S. Let € be a left Kazhdan-Lusztig
cell and consider the left cell module [€]4. As in Remark 2.1.12, we see that the
action of H on [€]4 is given by a W-graph, where X = €, I(x) = Z(x) (x € €) and

1 ifx=sy>y,
m = —(=1)/0H@ s ifsx <x<y<sy,
0 otherwise.

Lemma 2.2.4. Let A € A and € be a left Kazhdan—Lusztig cell such that m(C,1) >
0. Then we have E* wsp W for some w € €, that is, w € €N .F,.

Proof. (Compare with the proof of Theorem 1.8.1.) Consider the identity

Y CuDyi =Y, Y heyyDyr.

wel xeWye€
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(This is proved by multiplying both sides by C; for some z € W and applying the
trace form 7.) Now note that trace(Cy, [€]a) = Yyce hx,y,y- Taking also into account
the formula [€]x = @ cn m(&, u)EY, we obtain

Y heyy =D, m(€, 1) x* (Cx) forallx e W.
ye€ HeA

Then the orthogonality relations in Proposition 1.2.12 yield that

1 (T D) = X @) (3 (€ xH (D)) = ml€A)dy

wel HEA xeW

Multiplying this relation by £ and taking constant terms, we deduce that

D D edhe, =mEA)d; f

s,teM(A)wee

Since the right-hand side is non-zero by assumption, we conclude that cfv_t/l # 0 for
some w € € and some s,t € M(A), as required. O

Corollary 2.2.5. Let A, it € A and €, be left Kazhdan—Lusztig cells such that
m(€,A) > 0andm(¢ 1) > 0. Then E* < E* ifand only if w < gz W' for some w €
¢ and some w' € €' (where < gy denotes the Kazhdan—Lusztig pre-order relation).

In particular, E* ~p E® if and only if €, & are contained in the same two-sided
Kazhdan—Lusztig cell.

Proof. First assume that E* <; EM. By definition, this means that x < ¢ y for all
x € F, and y € Z,. Now, by Lemma 2.2.4, there exist elements w € €N .%#, and
w' € ¢’ N.%,. Hence, we have w < ¢ W, as required.

Conversely, assume that w < ¢ w for some w € € and some w' € €. Since
m(€,A) > 0, there exists some wi € €N .F,; see Lemma 2.2.4. Similarly, there
exists some w) € €'N.%,. Hence, we have wi ~ o w < gz W ~ o w] andsow; < ¢z
w' . As pointed out in Definition 2.2.1, this already implies that E* <; EX. O

Remark 2.2.6. Let W = W) x - -- X W; be the decomposition into irreducible compo-
nents. Correspondingly, we have

I (W) = {EM K. -REM | A € A;}, where Irrg(W;) = {E% | & € A;}.

Thus, as in Remark 1.3.5, we identify A = A X --- X A;. Furthermore, we have
H=H, ®,4 - ®aHy, where H,; is the generic algebra associated with W;, L|w,. The
Kazhdan-Lusztig basis of H behaves well with respect to this decomposition, that
is,if w=wy -...-wgy, where w; € W;, then C,, = C,,,, -...-C,,,. It follows that

E* <, E* & BN EM fori=1,....d,

where A = (y,...,44) and L = (W, ..., Uy). Thus, the determination of < can be
reduced to the case where (W, S) is irreducible.
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2.2.7. Assume that W, L are such that the following data are explicitly available:

* The matrices {p*(T}) | s € S} for all A € A. (Recall the algorithm in 1.4.9 for
turning any given representation into a balanced representation.)
*  All the polynomials {P},,} and {4y, }. (See the recursive description in 2.1.9.)

Since the invariants a, are also known (see Section 1.3), we can then work out all
leading matrix coefficients Cf:/l and the Kazhdan—Lusztig pre-order relations < ¢,
<4, <.g%. This, in turn, enables us to explicitly determine the pre-order relation
= on Irrg (W), via the characterisation in Corollary 2.2.5. Now, the above data are
available for W of type I,(m) (any m > 3), Hz, Ha, Fy. We will now go through these
examples one by one and describe the relation <, on Irrg (W) in each case.

Example 2.2.8. Let W be of type I (m) (m > 3); that is, we have W = (s}, s,), where
52 = 53 = (5152)™ = 1. Recall from Example 1.3.7 the description of Irrg (W). By
Example 2.1.18, we know the left and two-sided cells. It it also not difficult to de-
termine the cell modules [€]; and decompose them into irreducibles. Let y denote

the sum of all the two-dimensional representations.

* Ifmisoddand L(s;)=L(sz) >0, then the left cell { 1o} affords 1y, {2,,} affords
sgn, and the two remaining left cells afford y.

e If mis even and L(s;) = L(s2) > 0, then {1o} affords lw, {2,,} affords sgn,
the first of the two remaining left cells affords y & sgn,, and the second affords
v dsgn,.

* If mis even and L(s;) > L(s2) > 0, then {1} affords 1w, {2;} affords sgn,,
{11} affords sgn,, {1,,} affords sgn, and the two remaining left cells afford .

o Ifmisevenand L(s;) > L(s2) =0, then {1¢,2; } affords 1y ®sgny, {1, ln-1}
affords sgn & sgn,, and the two remaining left cells afford .

Using this information together with the knowledge of < ¢ (see Example 2.1.18)
and of a; (see Example 1.3.7), we find that the pre-order <, on Irrg (W) is “linear”
in the sense that, for any A, 1 € A, we have

E*< E* &  a,<a.
In particular, E* ~; E* if and only if a; = a,.

Example 2.2.9. Let W be of type Hz or Hs. Then all generators are conjugate, so we
are automatically in the equal-parameter case. Assume that L(s) > 0 for s € S. Then
Alvis [2] has computed all polynomials P}, and (. In this way, he explicitly
determined the relations < ¢ and < ¢7; he also found the decomposition of the
left cell representations into irreducibles (see [216, §5] for type Hz). The partial
order induced by < 5 on the set of two-sided cells is, in fact, a total order.! The
equivalence classes of Irrg (W) under ~ are explicitly known by [218, §13] and [2,
3.5]. This information, together with the invariants a,, is listed in [132, Tables C.1
and C.2]. It turns out that, again, the pre-order < is “linear” such that

! This statement is not contained in [2]; we thank Alvis (personal communication, 2008) for having
verified this using his programs for producing the data in [2].
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E* < E* & a <ay

for any A, € A. In particular, E* ~; E* if and only if a; = a,.

Fig. 2.1 Partial order on two-sided cells in type F4

1

13 4
9
(13) 4, :
44 2
8, 9; ¢
9; !
(161)
16

(161) 8,

9

9, ?
82 82 22

44 43
94

(1)

45 12 45

24

14 14

a=>b b=2a 2a>b>a b>2a
Brackets ( ) indicate a two-sided cell with several irreducible components, given as follows:
(40) ={21,23,42}, (4s) =1{22,24,4s}, (13) ={13,21,83,91}, (12) = {12,22,84,9},
(121) ={12,13,41,43,44,61,62,92,93,121,16,}, (161) ={41,61,62,121,16;}.
Otherwise, the two-sided cell contains just one irreducible respresentation.

Example 2.2.10. Let W be of type Fy with generators labelled as in Table 1.1 (p. 2).
Assume that a := L(s1) = L(s2) > 0 and b := L(s3) = L(s4) > 0. (The case where
L(s;) = 0 for some i will be considered in Remark 2.4.13.) We may also assume
without loss of generality that b > a. The pre-order relations < ¢, <4, < ¢z have
been determined in [105], based on an explicit computation of all the polynomials
Py, and ug,, using CHEVIE [118]. The resulting pre-order relations <, on Irrg (W)
are given in Figure 2.1. The notation for the irreducible representations is compatible
with that in Table 1.2 (p. 16). For example, 1; is the trivial representation, 14 is the
sign representation and 4, is the reflection representation. The pre-order <y is not
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“linear” in these cases, but by inspection of the tables we notice that, at least, the
following property holds:

E* <, E* = a, <a, (with equality only if E* ~; EH).
In particular, if E* ~; E*, then a, =ay.

Remark 2.2.11. The diagrams in Figure 2.1 have a striking symmetry. This is a gen-
eral phenomenon. Indeed, recall the definition of the bijection A — A" on A from
Example 1.2.6. By Corollary 1.6.16, we have Irrg (W | Fwp) = Irrg (W | F)7 for
every two-sided J-cell . of W. Now, 2.1.13(c) implies that if x,y € W are such that
x < g2 ¥, then ywg < ¢ xwy. It follows that, for any A, 1 € A, we have

1 i
E*< E* &  EM < EM.
Thus, the pre-order <; admits a natural symmetry with respect to A — A7,

2.2.12. Assume that W is of crystallographic type and that we are in the equal-
parameter case where I = Z and L(s) = 1 for all s € S. It has recently been shown
[113] that then =<; admits a geometric interpretation, and this actually yields an
explicit description of <. It would be beyond the scope of this book to explain this
in detail, but we can at least outline the general idea, assuming some familiarity with
the theory of algebraic groups and Lusztig’s work [220] (see also Section 4.4).

So let G be a connected reductive algebraic group (over C or over F »» Where pisa
large prime), with Weyl group W. Then, by the Springer correspondence (see [197],
[221], [282]), we can naturally associate with every E* € Irrg (W) a pair consisting
of a unipotent class of G, which we denote by O, and a G-equivariant irreducible
local system on O, . Thus, we obtain a map

Irrg (W) — {set of unipotent classes in G}, E* — 0.

(The local system on O, will not play a role for our purposes here.) We now need
the concept of a “special” unipotent class. This is defined as follows. Given A € A,
let b, be the smallest i > 0 such that E* is a constituent of the ith symmetric power
of the natural reflection representation of W. Lusztig [215] observed that we always
have a; < b, . We say that E* is a special representation if a; = by ; let

S(W):={LeA|a, =by}.

Following Lusztig [215], the classes {0 | A € (W)} are called the special unipo-
tent classes of G (although the word “special” only appeared in later references; see
also 4.3.13). By [220, 13.1.1], we have

a; = dim 4%, forany A € .S (W),

where u € O, and %, is the variety of Borel subgroups in G containing u#. Now
[113, Cor. 5.6] shows that, for any A, € . (W), we have
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(%) E* <, EM* o 0, C 5” := Zariski closure of Oy.

The map E* — 0, is explicitly known in all cases; see Carter [45, §13.3] and the ref-
erences there. Also, the Zariski closure relation among the special unipotent classes
of G is explicitly known in all cases; see Carter [45, §13.4] and Spaltenstein [280].
Hence, () provides an explicit description of the pre-order < for special represen-
tations. On the other hand, given any A € A, we have

E* ~ E™ for a unique Ay € .7 (W);

see [220, 4.14 and 5.25]. Hence, since the equivalence relation ~y, is explicitly
known by Lusztig [220, 4.4-4.13 and 5.25], the relation < is determined once
we know it for special representations. Finally, by [220, 5.27], the function A +— a;
is known to be constant on the equivalence classes under ~;. Hence, by the above
characterisation of a; for A € (W), we also find that, for any A, € A, we have

E* < E* = ay <a, (with equality only if E* ~; EH).
(In the next two sections, we will say more about the proof of this implication.)

Example 2.2.13. In the setting of 2.2.12, let W be of type A,,—1. Then W = G,, and
A is the set of all partitions of n; see Example 1.3.8. By [220, 4.4], all irreducible
representations of W are special. Now W is the Weyl group of G = GL,, (over C
or over FI,, where p is a large prime). Let L = (A} > A, > ... > 0) € A. Then the
Springer correspondence associates with E * the unipotent class O, consisting of all
unipotent matrices in G whose Jordan normal form has blocks of size A1, 43, .. .; see
Springer [282, p. 293], [45, §13.3]. By [104, §2.6] and 2.2.12(x), we have

E* 2 E* & 0,C0, & A4y,

where < denotes the dominance order, which is defined as follows. Write A = (4; >
A2 >--->0)and u = (U > o >--- >0). Then

def

A<u A< Y W (foralld >1).

1<i<d 1<i<d
It then follows by a completely elementary argument that we have the implication
A<u = A=u or a;>ay;

see, for example, [132, Exc. 5.6]. See Corollary 2.8.14 for a much more direct and
elementary proof of the above characterisation of <, (following [107]).

Example 2.2.14. In the setting of 2.2.12, let W be of type B,,. Then A is the set of
all pairs of partitions (A, ) such that |A| + |u| = n; see Example 1.3.9. For any
(A,u) € Aand (A',u') € A, let us define
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> Aitw) < Y (A +u)

deof 1<i<d 1<i<d
A=) S S+ Y +w) <A+ Y (A +u)),
1<i<d 1<i<d

(foralld > 1)

where A= (L 2h>... 20 V=AU =2AM>..20,u=W = w=>...20)
and u' = (u; > pb > ... >0). By [220, 4.5], we have:

(A,u) e L (W) = Ai+1 > > Ay (foralli>1).

Now W is the Weyl group of G = SO»,,+; (over C or over Fp, where p is a large
prime). Then, by Spaltenstein [281, §4] and 2.2.12(x), we have

EA1) <L E(A/’H,) = 0(1,[1) - 5(1/#/) < (A,u)= (A/7[,L/)
for (A,u) € (W) and (A, ') € #(W). See [122, §5] for further details.

Example 2.2.15. Let again W be of type B, and consider the reflection subgroup
W C W in Example 1.3.10. Then W is of type D, and this is the Weyl group of
G = SOy, (over C or over Fp, where p is a large prime). To be consistent with
the notation in Example 1.3.10, the equal-parameter weight function on W will be
denoted by L. Now Irrg (W) is described in terms of the restrictions of the irreducible
representations of W to W. Given E € Irr (W) and (A, 1) € A, we write

~ f o= . . .
E|EWH & £ is a constituent of the restriction of E) to W.

To characterise the special representations in Irri (W), it is convenient to define

W) ={(A,u)€A) | iz = Ay —1foralli> 1},

where we write A = (41 2 A > ... >0)and u = (i > W > ... > 0). Now let
E € Irr (W). Then, by [220, 4.6], we have

E is special & E | EXM) for some (A, ) € L (W).

Note that if £ is special, then (4, 1) on the right-hand side is uniquely determined:
just observe that if both (A, 1) and (u,A) belong to .7 (W), then A = p.

Now, by Spaltenstein [281, §4] and 2.2.12(x), we obtain the following result. Let
E,E’ € Trri (W) be special representations. Let (A, 1) € §(W) and (A',u") € F (W)
be such that £ | EA#) and E' | E@"#)) Then

— E—F A=A =p=p',
Ex b = {(A7y)<(l’,u’) otherwise,

where (A, 1) < (A/,u') is defined in Example 2.2.15. See [122, §5] for further de-
tails.
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Example 2.2.16. Assume that W is of type E¢, E7 or Eg. The equivalence classes
of Irrg (W) under ~/, are listed in Lusztig [220, 4.11-4.13]; see also [132, App. C].
The Springer correspondence is explicitly described in the tables in [45, 13.3].

(Es) We have |Irrg (W)| = 25 and there are 17 equivalence classes under ~. The
partially ordered set of special unipotent classes is printed in [45, p. 441].

(E7) We have |Irrg (W)| = 60 and there are 35 equivalence classes under ~. The
partially ordered set of special unipotent classes is printed in [45, p. 443].

(Eg) We have |Irrg (W)| = 112 and there are 46 equivalence classes under ~. The
partially ordered set of special unipotent classes is printed in [45, p. 445].

Example 2.2.17. Let W be of type B, and L: W — I' be a weight function given by

b
By .iz_z_ C _ﬁ where b > (n—1)a > 0.

Recall that A is the set of all pairs of partitions (4, ) such that |A|+ |u| = n;
see Example 1.3.9. By [122, Example 5.1] (which relies on the series of papers by
Bonnafé, Geck, lancu [21], [26], [108], [114], [121]), we have

@ E®H <, E@X 1) = (A,u) < (A, u").

Here, < denotes the dominance order on pairs of partitions, which is defined by

Z /'LIS z A’l{

I<i<d 1<i<d
def
o ey E s Y w W+ Y
1<i<d 1<i<d

(foralld > 1)

where A = (4 212/ 20 AV =AZ2M>..20,u=(Wm=2wp=>...20)
and 1’ = (U > p) > O) Furthermore, by [121, Cor. 5.5], we have
(c) ER#) <, ) o ag ) <ag ),

with equality only if (A,u) = (A',u’).

For the (infinitely many) remaining open cases in type B, at least a conjecture is
formulated in [122, 4.11].

Remark 2.2.18. Lusztig’s definition [220, 5.15] of a pre-order relation on Irrg (W)
looks somewhat different from that in Definition 2.2.1, but it is really the same.
Let us briefly indicate why this is the case. By the Artin—Wedderburn theorem, the
split semisimple algebra Hx decomposes as a direct sum of simple two-sided ideals
Hx = @jca HKUL), where Hg(A) is the sum of all left ideals in Hx which are
isomorphic to E (as left Hg-modules). On the other hand, for any y € W, we have
the two-sided 1deals J 7 and TJ’Z 7 defined by the general procedure in 1.6.2, with
respect to the basis {Cw |we W} of Hk. Now let T be a two-sided Kazhdan—Lusztig
cell and A € A. Then we claim that the following two statements are equivalent:
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(@) E} anspw for some w € T. 7

(b) Hgx(A) C Jyg‘%’ and Hx (1) € ﬁyg‘%’ for some y € T.

Indeed, if (a) holds, then cfvf)L # 0 and C:lvgl,x # 0 for some s,t,u,0 € M(1); see
1.6.10. Hence, by 2.1.19, we have p*(C,) # 0 and p*(D,-1) # 0. This yields
Cy.Hg(A) # {0} and D1 . Hg (1) # {0}. Then the argument in the proof of [220,
Lemma 5.2] shows that (b) holds. Conversely, assume that (b) holds. Then the inclu-
sion Hg (1) C 3;7% induces an (Hg,Hg)-bimodule homomorphism ¢: Hg(4) —
J;Z% / ﬁ;%” , which is non-zero since Hg (1) € ﬁ;f% . Now let us just consider the left
Hg-module structure. Since T is a union of left cells, the left Hg-module TJ;Z% / fl;{fg
has a filtration by left cell modules [€;]g, where each €; is a left cell contained
in . Hence, there exists a non-zero Hx-module homomorphism E} — [¢;]x for
some i. Then m(€;;A) > 0 and so there exists some w € €; such that E* LW,
see Lemma 2.2.4. Thus, the equivalence of (a) and (b) is proved. Once this is estab-
lished, we can conclude that

(©) EM < EM o there exists some w € W such that
- Hx(2) C 0, Hy(u) €7, Hy(p) £ 577,

The condition on the right-hand side is the one used by Lusztig [220, 5.15].

2.3 On Lusztig’s Conjectures, I

In the previous section, we have defined a pre-order relation <y on Irrg (W) and we
have seen that, in many examples, the following implication holds for any A, u € A:

(&) E* < E* = a,<a, (withequality only if E* ~; E¥).

This property will turn out to be the key to our main results on representations of
Hecke algebras at roots of unity. The somewhat weaker implication

(&) E* ~p E* = a, =a,

was a key ingredient in Lusztig’s work [220] on characters of reductive groups over
finite fields. Now, a general proof of these apparently simple statements is not yet
known. And in those situations where () and (&’) are known to hold, the proofs
rely on deep results from algebraic geometry, or explicit computations. It is the
purpose of this and the following two sections to discuss this in some more detail.
Assume first that W is a Weyl group and that we are in the equal-parameter case.
Then the proof of (&’) in [220, Chap. 5] relies on the theory of primitive ideals in
enveloping algebras. Subsequently, Lusztig [225] found a new proof which uses a
geometric interpretation of {C,,} and the results in [222], [223]. This interpretation
implies, for example, that all coefficients of the polynomials Py, are non-negative
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integers. In the general multiparameter case, such a geometric interpretation is not
known — and the coefficients of P},, may be strictly negative; see Example 2.1.5!

In his book [231, Chap. 14], Lusztig has extended the known situation in the
equal-parameter case and stated 15 conjectural properties P1-P15 of the basis {C,, }
which should hold for any Coxeter group (finite or infinite) and in the general mul-
tiparameter case. In [231, Chap. 20], Lusztig shows that (¢) and (&') are formal
consequences of P1-P15. Thus, P1-P15 appear to provide the appropriate frame-
work for establishing substantial results concerning the representation theory of H.

(See 2.4.1 for a summary of the cases where P1-P15 are known to hold.)

2.3.1. For the convenience of the reader, we state here Lusztig’s conjectures P1-
P15 in [231, Chap. 14] in the general framework involving a totally ordered abelian
group I, and taking into account the possibility that L(s) = 0 for some s € S. Also
note that these properties are formulated in [231] with respect to the basis {C,}, but,
using the formulae in Remark 2.1.7, it is a straightforward matter to switch back and
forth between C,, and C),. The following definitions originally appeared in [222], in
the equal-parameter case. For a fixed z € W, we set

a(z) :=min{g € I>¢ | €8 hy ;. € Z[I>o) for all x,y € W}.

Givenx,y,z€ W, we define c, , -1 € Z by

Cyy,.-1 1= constant term of 2@ hy . € Z).
Furthermore, if z € W is such that P"_ # 0, we define an element A(z) € I3 and an

integer 0 # n, € Z by the condition
Pl P.=n; modZ[I|; see [231, 14.1].

(Note that we can only have Py, = 0 if L(s) = 0 for some s € S; see Example 2.1.11;
this is the only place where we explicitly have to mention if L(s) equals zero or not.)
Finally, we set 7 := {z € W | P # 0 and a(z) = A(2)}.

Conjecture 2.3.2 (Lusztig [231, 14.2]). The following properties hold.

P1. Foranyz € W such that P} , # 0, we have a(z) < A(z).

P2. Ifd € P andx,y € W satisfy cxyq # 0, then x = y~ L

P3. Ify e W, there exists a unique d € 2 such that Cy1yd # 0.

P4. Ifx,y € W are such that x < 5y, then a(y) > a(x). In particular, if x ~ 2 y,
then a(x) = a(y).

PS. Ifde P, yeW, ¢y,

P6. Ifdc D, thend® = 1.

P7. Forany x,y,z € W, we have cxy; = Cy x.

P8. Letx,y,z € W be suchthat ¢y, #0. Then x ~ g y~

P9. Ifx<yyanda(x)=a(y), thenx~gy.

P10. Ifx <y and a(x) = a(y), then x ~z y.

P11. If x <gp yand a(x) = a(y), then x ~ y5 y.

a7 0 thenc, 1, ng= (1)),

1 1

Vg g xh
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P12. Let I C S and W; be the parabolic subgroup generated by 1. If y € Wy, then
a(y) computed in terms of Wy is equal to a(y) computed in terms of W.

P13. Any left cell € of W contains a unique element d € 9. We have ¢  ; # 0 for
allx € €. ;

P14. Foranyz € W, we have z ~ 45 7.

P15. If w,w',x,y € W are such that a(x) = a(y), then

thw 1 Qzh wz,y — thw y®Zhwxz mZ[F]@ZZ[F]-
zeEW EW

We just remark (a) that there are some logical dependences between these prop-
erties (for example, “P1 + P3 = P5” by [231, 14.5]) and (b) that some of these
properties seem to be more crucial than others (for example, P4 will appear almost
everywhere while P6 will not be needed in the whole discussion below).

Remark 2.3.3. In 2.1.14, we have seen that C{’V =C,-1 forallw € W, where h — W
is the anti-automorphism of H defined by 7;), = T, 1. This immediately implies that

hyyz=hy1 11, a(z) = a(z_l) and Cryz = Cyl 1 o1

for all x,y,z € W. Furthermore, we have n, =n, 1, A(z) = A(z"!), 2=27".

Remark 2.3.4. P14 holds for finite W by Lemma 1.6.6 and Proposition 2.1.20. (See
[220, 5.2] for the equal-parameter case.) The reason why it appears in the above list
is that Conjecture 2.3.2 is stated in [231] for arbitrary (possibly infinite) Coxeter
groups satisfying a certain boundedness condition.

Remark 2.3.5. Assume that we are in the equal-parameter case where I" = Z and
L(s) =1forall s € S. Now A is the ring of Laurent polynomials in one indeterminate
v = €. One easily checks that there is a well-defined ring homomorphism o.: H —
H such that o(v) = —v, a(r) = r for all r € R and (T;,) = (—1)"")T;, for all
w € W. Hence, by the characterisation in Theorem 2.1.6, we must have o.(C,,) =
(-1 )I(W)Cw. Applying o to the relation CyCy, = Y ey /x,y,.C;, we deduce that

(a) hyy(—v) = (— l)l(")+l(3')+l(z) hyyz(v) for all x,y,z € W.
This also implies that

(b) (—1)l(")H(y)Jrl(Z)cx,yﬁZ = (—l)a(z)cx%z for all x,y,z € W.
(These observations are due to Lusztig [222, 3.2].)

Remark 2.3.6. Let J be the free Z-module with basis {#, | w € W}. We define an
element of J by 1y := 3 ;c4 nqty. We define a bilinear product on J by

Ly =Y Yeyzlot, where Yoy 1= (—l)l(x)“(y)”@cx,y’zq.
zeW
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(Note that this agrees with the notation in [231, 13.6].) Using P1, P4, one deduces
that J is an associative ring, where 1y is the identity. Since we will not need this
construction here, we refer to Lusztig [231, Chap. 18] for further details. For the
identification with our algebra J, see Proposition 2.3.16 below.

Remark 2.3.7. We note that P15 really is a statement about a certain bimodule
structure (which appeared in [216], [222, 9.2]). To see this, consider the ring
o/ =R[I'|®g R[I'] and let & be a free «7-module with basis {e, | z € W}. Let

H; = &/ ®4H, where A is embedded into ./ viaa+— 1 ®a,
H), = &/ @4 H, where A is embedded into &/ viaa+— a® 1.

By P4 and the definition of the Kazhdan—Lusztig pre-order relation < ¢, there is a
left action of H; on & via

Cy.ex = Z (1Qhyy,)e; for x,w € W.
zeW:a(z)=a(x)

Similarly, there is a right action of H; on & via

ey.C,, = Z (hywe®1)e, for x,w e W.
zeW:a(z)=a(x)

Now let x,w,w’ € W. Then

Co-(exCy)= Y, (M @) Cpez= Y, (how @huzy)ey.
ZEW y,2EW
a(z)=a(x) a(y)=a(z)=a(x)

Here, we recognise the terms appearing on the left-hand side of P15. Similarly, when
we expand (Cy.¢,).C,s, we will recognise the terms appearing on the right-hand side
of P15. Thus, we conclude that P15 holds if and only if & is an (H;,H;)-bimodule.

As already mentioned in the introduction to this section, Lusztig [231, Chap. 20]
has shown that (&') formally follows from P1-P15. We will now give a somewhat
streamlined exposition of this deduction which, eventually, only requires P1, P4.
(The stronger property (¢) will be considered in the next section.) For this pur-
pose, we need to relate the functions a(z) and ay . The following result (which first
appeared in [114]) seems to be the only known connection between these two func-
tions which can be proved without assuming any of the properties P1-P15.

Lemma 2.3.8. Let A € A and w € W be such that E* «~s; w. Then a(w) > a;.

Proof. By assumption, there exist some s, t € M(A) such that cfv_t/l 2 (. Furthermore,
by 2.1.19, we have e pX (D,,) = cst, mod m. Now we claim that

(a) ps)-Lt(DW): z czlpslt(Dx*I)pés(Dy*I)hxy,w*l'
x,yew
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This is seen as follows. Let x,y € W. Then h, .1 = 7(C;CyDy); see 2.1.13. Fur-

thermore, T=73cx ¢, Tx* and so h, vl = ZpeA cljl x*(CCyD,,). This yields

Byt = 2 2 ¢ ph(C)plhi (C) phu(Dy).

HEA u W oeM (1)

Now multiply on both sides by pZ,(D,-1) pZ, (Dy-1) and sum over all x,y € W. Using
the Schur relations in Proposition 1.2.12, a straightforward computation yields (a).

Now note that c;L] = f;' €% /(14 g;), where g; € F[I¢]. Hence, we obtain

W fﬁl w
)p.?t(DW) = z 1 _"}_L (Ealpgt(Dx*')) (ealpsls(Dy*I)) (Sa( )hx,y,w*])'
x,yeW 8

All terms in the above sum lie in Op; see 2.1.19 and also note that a(w) = a(w™!)
by Remark 2.3.3. Hence the whole sum will lie in & and so eaw) pﬁt(DW) € 0.
Since €2 p2,(D,,) # 0 mod m, we conclude that a(w) > a;, as claimed. O

Lemma 2.3.9. Let € be a left Kazhdan—Lusztig cell and A € A be such that
m(€,1) >0

(a) Ify € W is such that p’l(Cy) #0, then y' <z y for some y' € €.

(b) Ifz €W is such that p*(D,1) # 0, then z <4 7 for some 7 € €.

Proof. Since m(€,A) > 0, we have that E} is an irreducible constituent of [€]x;
see 2.2.2. Now assume that pk(Cy) # 0; that is, C, does not act as zero on E}.
Then C, cannot act as zero on [C]g either. By the definition of this action, there
exist some x,y’ € € such that hy .y # 0. In particular, vy <4 . Thus, (a) is proved.
Now assume that pk(szl) # 0. Then D, cannot act as zero on [€]k. So, by the
definition of this action, there exists some 7/ € € such that D,.1Cy = 0. Since T is
non-degenerate, there exists some x € W such that 7(C,D,-1Cy) # 0. This yields
hy . =1(CaCiD.~1) = T(CD,-1Cy) # 0 and so z < 7/, as required. O

Lemma 2.3.10. Assume that P4 holds. Let x,y,z € W. Then

_ 1 st tu us
Cxyz ™= 2 Z f)L Cxlcylczl7
A s, t,ueM(A

where the first sum runs over all A € A such that a; = a(z).

Proof: Wehave h,, 1 = T(GCGD;) and T=3;cp€; !*. This yields

he,1 = ¢ race(p* (Cy) p*(Cy) pH (D))
AEA

=Y Y o'phc)pl(cy)plD.).

AeA s tueM(A)

Now note that c;l = f{l £’ /(14 g;), where g; € F[I¢]. Hence, we obtain
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-1
= 35 @A) PG (ol (P.)

AEA s, tueM(A

By 2.1.19, the terms &% p, (Cy), €2 pf, (Cy) and €® p}%, (D.) lie in . Let A € A be
such that p, (D) # 0. Let € be a left Kazhdan—Lusztig cell such that m(€, 1) > 0.
Then, by Lemma 2.3.9(b), there exists some w € € such that 7g 2 w. By P4, we
must have a(w) < a(z~!) = a(z). Furthermore, by Lemma 2.2.4, there exists some
w" € €N.%,. Hence, by P4 and Lemma 2.3.8, we have a; < a(w”) =a(w) < a(z).
But if a;, < a(z), then £2@p, (D,) € m for all s,u € M(A) and so these terms do
not contribute to £2(2) hy .1 mod Z[Io]. We conclude that

e2dp ( Z Z f)L lcjtl C;le c;‘j) mod m.
AEA s tueM(A
ay =a(z)
This yields the desired formula for cy . O

Corollary 2.3.11. Assume that P4 holds. Then {a(z) |ze W} C{a, |A € A}.

Proof. Given z € W, let x,y € W be such that ¢, , ; # 0. Then Lemma 2.3.10 shows
that there exists some A € A such that ay = a(z). O

Lemma 2.3.12 (Lusztig [222, 6.1]). Assume that P4 holds. Then P7 also holds.
Furthermore, if ¢, # 0, then a(x) = a(y) = a(z).

Proof. We first show that, for any x’,y’,z € W, we have
(*) ¢y y . = constant term of 2@ (T TyD;) € Z[I>o).
Indeed, as already noted in Definition 2.1.4, we have

Tv=Cv+ D 0ywCy, where 0, € Z[I%o).

wew:w' <w
Since a(z) = a(z"!') and ¢, s . = €2 7(CyCyD,) mod Z[I%), this shows that

Cx/,y’,z = Sa(d’f(Tx/]jV/Dz) + z z ax’,x” (Xy/_’y//ga<z)T(Cx//c,//DZ) mod Z[F>()]

X”<x’ y//<y/

Since ea(Z)T(CquyuDz) € Z[I>), we see that (x) holds.

Now we argue as follows. Let x,y,z € W and set ¢ := cy .. Assume first that
¢ # 0. Hence, by (%), we have that £2&)7(T,T,D,) € Z[Io] has constant term c.
Now, writing D, in terms of the 7T-basis (see 2.1.13) and using (x), we see that
2@ 1(D,T,D,) € Z[I>o] has constant term ¢ and, hence, 2% 1(T,D,D,) € Z[I[>0)
has constant term c. Using once more the expression of D, in 2.1.13, we obtain

£a<Z)T(TyTZDx) _ g"'(Z)T(TyDZDx) — z P ga(z)‘c(TyTwa).

Wwo,zwo
weW:z<w
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Now, since ¢ = cyy; # 0, we have h,, -1 # 0 and, hence, 71 <4 x. So, by

xy.2
P4, we have a(x) < a(z™') = a(z). Combining this with (x), we deduce that

2@ (T, T,,D,) € Z[Iso) for all y,w € W. Consequently,
2T, T,D,) = e*D1(T,D.D,) =c  mod Z[I3).

Using (), this shows that a(x) > a(z). Since we also have a(z) > a(x), we conclude
that a(x) = a(z) and, hence, ¢, ; , = c. Since ¢ # 0, we can repeat the whole argument
with ¢, . ¢ and find that ¢, , = ¢; furthermore, a(z) = a(y).

Thus, if one of the numbers ¢y ,;, Cy.; v, C7xy 1S NON-zero, then these three num-
bers are equal to each other and we have a(x) = a(y) = a(z). If all three numbers
are zero, they are again equal. a

Lemma 2.3.13 (Lusztig [231, 14.5]). Assume that P1 holds. Then

2 (—l)l(d) NgCy1y g = Oy forany x,y e W.
dc9

Proof. Since Cy-1Cy = S ey by, .C: and 7(C;) = (=1)'@P] _, we have

—1xz

T(C1C) = Y, (71)1<Z>hy71J{,ZF{,z
zEW

- 3 R (e )
zEW: 1’:

By 2.1.13(a), the left-hand side is congruent to 6y, modulo Z[I%0). Now consider
the right-hand side. By the definition of A(z), we have S’A(Z)Fiz =n; mod Z[I1).
Since P1 is assumed to hold, we have a(z) < A(z). This yields that

g*a(Z)ﬁ* _ ) mod Z[F>0] ifze 9,
1271 0 mod Z[Io)] otherwise.

Hence, we obtain 8, = 7(C,-1Cy) = Yyeq(—1)/ @1, 4-1ng mod Z[Io]. Finally,
by Remark 2.3.3, we have ¢;-1 , ;-1 = ¢,-1 , 4, Which yields the desired formula. O

Proposition 2.3.14. Assume that P1, P4 hold. If L € A and w € W are such that
E* «~sp w, then a(w) = ay. In particular, (&') holds.

Proof. By Lemma 2.3.8, we already know that a(w) > a;. So it will now be suffi-
cient to prove that a(w) < a; . For this purpose, we consider the identity

z (_l)l<d)ndcwcd = 2 (_l)l(d)ndhw,dycy
ey deD ,yeW

Applying p? and multiplying by £22t20") we obtain

z (*1)l(d)”dgalﬂ(w)l)gt(chd) = z (*1)l(d)”d (Sa(w)hw,d,y) (ga’l pét(cy))~
ey de9,yeW
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Assume that the terms corresponding to d € 2,y € W give a non-zero contribution
to the sum on the right-hand side; that is, A, 4, # 0 and p2(Cy) # 0. Let € be a
left Kazhdan—Lusztig cell such that m(€,A) > 0. By Lemma 2.3.9(a), there exists
some 7 € € such that z/ <z y. On the other hand, since h,, 4, # 0, we have y <z w.
Furthermore, by Lemma 2.2.4, there exists some w' € €N.%;. Thus, we obtain

ww' €F,, w(Zle€  I<zpy<aw

Since every two-sided Kazhdan—Lusztig cell is a union of two-sided J-cells (see
Proposition 2.1.20) and also a union of left Kazhdan—Lusztig cells, we conclude that
w,w',y,7 all lie in the same two-sided Kazhdan—Lusztig cell. In particular, since P4
holds, we have a(y) = a(w). Hence, using 2.1.19, the right-hand side of the above
identity can be rewritten as

(_l)l(d)nd (8a<)’) hw,d,y) (gal Pi{(cy))
e ,yeW
= Y (=) Ywdy-1Coy  mod m.
deP yeWw

By Lemma 2.3.12, we have ¥, ; -1 = %1, 4. Hence, Lemma 2.3.13 yields that

I(d t _ st
(-1) ( )nd Yivdoy! C;,/l = ch mod m.
deP yew

Since Cifx # 0, we can go back to the left-hand side of the original identity above
and conclude that 3y (—1)!(@ngetr 2 pl (C,C;) # 0 mod m. Thus, we have

(=1)Dng (€2 p(Cu)) (6% pia(Ca)) # 0 mod m,
deZueM(L)

So there must be some d € 2 and some u € M(A) such that £2")p} (C;) & m.
Consequently, by Proposition 1.4.10(c) and 2.1.19, we have a; > a(w). Thus, we
have shown that a(w) = ay if E* e~y w.

Now assume that 4,11 € A are such that E* ~; E*. By definition, this means
that w ~ ¢ W', where w,w’ € W are such that E* «~; w and E* «~; w'. Using P4,
we obtain ay = a(w) = a(w’) = ay; that is, (&') holds. O

Remark 2.3.15. In the above discussion, we have not found it necessary to use any
of the properties P2, P3, PS5, P6, P13 in Lusztig’s list. All of these express properties
of the elements in 2. It seems that these are logically independent of P1, P4, P15.

Finally, we show that our algebra J constructed in Section 1.5 really is an incar-
nation of Lusztig’s asymptotic ring J (see Remark 2.3.6).

Proposition 2.3.16 (Cf. [114, §3]). Assume that P1, P4 hold. Then

S . (—I)KW)nW ifwe 9,
Yeyz = Cryz and fw = { 0 otherwise,
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for all x,y,z,w € W. In particular, Conjecture 1.5.12(a) holds; that is, ¥, and fi,
are integers. Furthermore, we have 9 = 9.

Thus, the map f,, — (—1)!")z,, defines an algebra isomorphism J = K ®z J,
where J is Lusztig’s asymptotic ring; see Remark 2.3.6.

Proof. Letx,y,z€ W.By P4 and Proposition 2.1.20, we have %, . = 0 unless a(x) =
a(y) = a(z). The analogous statement also holds for c, ,, by Lemma 2.3.12. Thus,
in order to show that % . = cxy., we can assume without loss of generality that
a(x) = a(y) = a(z). But, in this case, we have

1 st tu us
Cxyz = Z z fl CxA ylczl
A s tueM(A)

by Lemma 2.3.10, where the first sum runs over all A € A such that ay = a(x) =
a(y) = a(z). On the other hand, we have

7x,yz— 2 z fl cx)LC)tukczA

AeA s tueM(A)

But, by Proposition 2.3.14, the leading matrix coefficients appearing in the above
expression are zero unless a; = a(x) = a(y) = a(z). Thus, the desired identity be-
tween ¥y, and ¢y ; is proved.

The identity in Lemma 2.3.13 and the fact that P7 holds (see Lemma 2.3.12) now
imply that Y, @(—l)l(d)ndtd € J is an identity element in J; see the analogous ar-
gument in the proof of Proposition 1.5.5. Since the identity element of J is uniquely
determined, we obtain the desired statement about 7i,,,. O

2.4 On Lusztig’s Conjectures, I1

The conjectural properties P1-P15 are known to hold in a number of situations
(including the equal-parameter case), but a general proof is still missing. There does
not even seem to be a general idea of how to prove one of the crucial properties P1,
P4, P15 for an arbitrary weight function L. In this section, we first give a summary
about the present state of knowledge concerning the validity of P1-P15. This will
be followed by a detailed discussion of the case where L(s) = 0 for some s € S.

2.4.1. Here is a summary of the cases where P1-P15 are known to hold.

(a) P1-P15 hold for any finite W, assuming that we are in the equal-parameter case
where I' = Z and there is some a > 0 such that L(s) = a for all s € S. (Here, A
is the ring of Laurent polynomials in one indeterminate v = €.) Indeed, as al-
ready mentioned, Lusztig [231, Chap. 15] deduces P1-P15 from the following
“positivity” properties:

€ Z>o[v, vfl] for all x,y,z,w € W.

P}, €Zxovv '] and K,
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(Recall that /), , = (= 1)!OHOHEp, | o see also Remark 2.3.5.) If W is a
Weyl group, then these “positivity” properties follow from a geometric interpre-
tation; see Kazhdan and Lusztig [196], Lusztig and Vogan [233] and Springer
[283]. If W is of type I(m) (any m > 2), Hs or Hy, they follow by explicit
computations; see Alvis [2] and DuCloux [76].

(b) P1-P15 have been checked by explicit computations for W of type I,(m) (any
m > 3) and any weight function such that L(s) > 0 for s € S; see [76], [114, §5].

(c) P1-P1S have been checked by explicit computations (with the help of a com-
puter and CHEVIE [118]) for W of type F4 and any weight function such that
L(s) > 0 for s € S; see [105], [114, §5].

(d) P1-P15 hold for W of type B, and any weight function L: W — I given by

b ,a a a
B, ‘e o - . . —e where b > (n—1)a > 0.

See the series of papers by Bonnafé, Geck, lancu [21], [26], [108], [114], [121].

(e) P1-P15 hold if (W,S) is irreducible, I' = Z and L(s) = 0 for some s € S; see
2.4.8 below. (Here, we are essentially reduced to the equal-parameter case; see
also Lusztig [224], [225], where a more general setting is considered.)

It is beyond the scope of this book to discuss the proofs of (a)—(d) in any more detail.
An elementary proof of P1-P15 for W =2 &,, is given in [107]; see also Section 2.8.
The geometric arguments used in (a) can be extended to the so-called quasi-split
case, in which some choices of unequal parameters occur; see Table 4.1 (p. 227).
(The proofs are sketched in [219] and [231, Chap. 16].) Of course, it would be highly
desirable to find general proofs (at least for P1, P4, P15) which uniformly work for
any W, L. The above results imply the following general statement:

Corollary 2.4.2. Let W be any finite Coxeter group and Lo: W — I be the univer-
sal weight function in Example 1.1.9. Let < be a monomial order on I such that we
are in the “asymptotic case” as in Example 1.1.11(c). Then P1-P15 hold for W, L.

For the remainder of this section, we address in some more detail the question of
what happens when W is a finite Coxeter group and L(s) = 0 for some s € S.

2.4.3. Let 2 C W be the parabolic subgroup generated by all # € S such that L(¢) = 0.
Then we can break down the structure of W as follows. Let W; C W be the subgroup
generated by S; := {ws®~! | @ € Q,s € S where L(s) > 0}. Then, by Bonnafé and
Dyer [24, Theorem 1.1], W; is a normal subgroup of W such that W; N Q = {1};
furthermore, we have a semidirect product decomposition

(a) W=QxW and (W;,S) is a Coxeter system.

Givenw € W, letw =51 ---5,, (5; € S) be a reduced expression. We denote by /o (w)
the number of i € {1,...,p} such that L(s;) = 0, and by /;(w) the number of i €
{1,...,p} such that L(s;) > 0. (Note that these two numbers do not depend on the
choice of the reduced expression.) By [24, Cor. 1.3], we have

(b) I(w) =la(w)+1i(w) and [{|w, is the length function for (W;,S;).
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© L(owo™") =1 (w)forallwe W, and w € Q.

Now let § € Sy and write § = @s® !, where ® € Q and s € S is such that L(s) > 0.
Then one readily checks that L(§) = L(s); moreover, we have

(d) The restriction L|w, : Wi — I is a weight function, which we denote by L;.

Indeed, let w € Wy and let w = §1---§, (§; € S1) be a reduced expression for w
with respect to S;. For each i, let 5; € S and w; € Q be such that §; = (o,'s,'a)i’1
and L(s;) > 0. Writing each ®; as a product of generators 7 € S such that L(t) =
0, we obtain an expression for w in terms of S which is not necessarily reduced.
But we can extract a reduced expression from it, and this reduced expression will
contain the factors si,...,s, and various generators ¢ € S such that L(t) = 0. (By
(b), all the factors si,...,s, must occur since /;(w) = p.) Thus, we have L(w) =
L(s1)+---+L(sp). The argument also shows that L(§;) = L(s;) for all i and so
L(w)=L($1)+---+L(5p). Hence, L|w, : W; — I is a weight function, as required.

Example 2.4.4. Assume that (W, S) is irreducible and that {1} # Q # W. According
to the classification in Table 1.1, we are in one of the following cases.

(a) Let (W,S) be of type B,, where the generators are labelled as in the diagram
below. Let L(sg) = 0 and L(s;) = -+ = L(s,—1) > 0. Then 2 = {1,50} and
S1 = {505150,51,52, - -.,5,—1}- The Coxeter system (W;,S;) is of type D,:
50 , 51 82 Sn—1 S8 s 83 Sn—1
B, o —eo— o - - - —e Dy, P — Y
505150

(b) Let (W,S) be of type B, (with generators labelled as above), but now let L(so) >
0 and L(Sl) =...= L(Sn_l) = 0. Then Q = <S1,S2,...,Sn_1> ~ G, and S| =
{t1,t2,...,tn}, where t; = so and #; = s;_1t;_15;—1 for 2 < i < n. One easily
checks that all the #; commute with each other and so (W), S)) is of type A X
-+« X Aq (n factors).

(c) Let (W,S) be of type Fy, where the generators are labelled as in Table 1.1.
Let L(s1) = L(s2) =0 and L(s3) = L(s4) > 0. Then Q = (s1,s2) = &3 and
St = {53,54,525352,5152835251 }. One easily checks that (W;,S;) is of type Dy,
where s3, 525357 and 5152535251 commute with each other,

(d) Let (W,S) be of type I»(m), where m > 4 is even. Write S = {s1,s2} and let
L(s1) >0 and L(s2) = 0. Then Q = {1,s2) and S| = {s1,s25152}. One easily
checks that (W}, S) is of type L (m/2).

Note that, in all of the above cases, L is a multiple of the length function of W;.
On the level of H, we have the following result.

Proposition 2.4.5 (Cf. Bonnafé [22, §2.E]). Assume we are in the setting of 2.4.3.

(a) Forall w,0w € Q andw € W, we have

ToTw = Tow, T, Ty = Tyo, ToTy = Tye, Tarl = Ta;l-
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(b) Forany§ € S| andw € Wy, we have

T.T. — T?w lfll (fw) > ll(W)v
ST T + (M9 — e LONT,  if L (Sw) < I (w).

In particular, Hy := (T,, | w € Wi )4 C H is a subalgebra, and this is the generic
Iwahori—-Hecke algebra associated with (W,S) and Ly: Wy — T
(c) Let{C, |w € W} be the Kazhdan—Lusztig basis of H. Then

CoCy = C(mw CCo» = Cwan Co =Ty

forall € Q andw € W. Furthermore, if w € Wy, then C,, € Hy and this is the
Kazhdan—Lusztig basis element constructed within Hy.

Proof. (a) Lett € S be such that L(¢) = 0. Then T,T,, = T;,, and T,,T; = T,,, for all
w € W (independently of whether /(tw) > I(w) or [(tw) < [(w)). This yields that
ToT, = Ty, and T,,T, = T,,, for all w € W and @ € 2. Hence, (a) follows.

(b) Let § € 1 and write § = wsw ™' where w € Q and s € S is such that L(s) > 0.
Letw € W) and set w' = 0~ 'wo. Using 2.4.3(b), we obtain

L(GGw) =L(o Swe) =1 (s 'weo) =1, (sw) = I(sw) — g (sw).
We certainly have I (sw') = Ig(w'). Using 2.4.3(b), this yields that
L(sw) — L (w) =1(sw) —1(w).

Now assume that [; (§w) > [} (w). Then the above relation implies that /(sw’) > I(w')
and so T;T,, = Ty,s. By (a), we have T; = Ta,Y}Tw’1 and T, = T, T,/ Tajl. This yields
LTy =To(TT)T, ' = ToTowT, ' =T,

osw o~ =

Ty,

as required. Similarly, if /; (§w) < I;(w), then [(sw) < I(w') and so T,T,y = Ty, +
(€M) — g=L6N)T,,,. Using (a), we deduce that

Ty = To (L) Ty ' = To (T + (8" —e M) T,) T,
= (Twsw’afl + (8L(S> - 87L(S)>Ta)w’a)*1) =Ts+ (EL(S) - 87L(S))TWa

as required; note that L(§) = L(s). Once these relations are established, we see that
T;T,, € Hy for all § € S; and w € W. It follows that H; C H is a subalgebra. The
relations then show that H; 2 Hy (W, S1,L1), as required.

(c) By the formulae in Theorem 2.1.8, Example 2.1.5 and Remark 2.3.3, we have
¢ =1, GC, =C, and C,,C; = C,; for w € W and ¢ € S such that L(z) = 0. This
immediately yields the formulae for C,, C,C,, and C,,Cy,, where @ € 2. Now let
w € W) and denote by C,, the Kazhdan—Lusztig basis element constructed inside
H;. In order to show that C,, = C,,, we verify that C,, satisfies the two conditions in
Theorem 2.1.6 (with respect to W). We have C,, € T,, + Yyew, Z[T0] T, and so the
first condition is satisfied. Now let wy € W) be the longest element (with respect to
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S1). Then Walwo € 2 and so we can write wy = Womy, where @y € 2. By Theo-
rem 2.1.6 (applied to W1), we have C,, Ty, € ¥yew, Z[Txo]Ty. Since Ty Ty, = Ty, for
all y € Wy, we deduce that C,, Ty = (:‘WTWO Ty € Zyew, Z[I'<0]Tya, and so the second
condition also holds. Hence, we must have C,, = C,,, as required. O

Remark 2.4.6. Define Hy, := Ty.H; = H.Ty, for @ € 2. Then Proposition 2.4.5
shows that

H=(PH, ad HyHy=H,y forallw o cQ.
we

Thus, H is an extended Iwahori-Hecke algebra and the subspaces {Hy, | @ € Q}
form an Q-graded Clifford system in H, in the sense of [53, Def. 11.12].

24.7. Let w € W and write w = @wj, where w € Q2 and w; € W;. By Proposi-
tion 2.4.5(c), we have T,, = Ty T, Cp = Ty and C,, = C,Cy,,, Where C,,, is the
Kazhdan-Lusztig basis element defined within H;. Hence, we obtain

z (—1)How)+D) pr

¥y, 0wy
yeWw y1EW]

Ty :Ca)W1 :chwl = z (_1)1(W1>+l(y1)13;17wl Ta)ylv

where P |, is defined by the element CCVI € H;. Thus, given any y € W and writing

y= 'y, where @’ € Q, y; € W;, we have

P if o= 0o
o V1w ’
(a) Piw { 0 otherwise.

A similar relation can be established for the structure constants 4, .. By definition,
given x1,x; € Wy and w1, m, € Q, we have

Conx; Conx, = 2 iy xy ,r37,03x3 Corycy -
;3 €Q x3eW)

Note that, if @1 = @, = @3 = 1, then hy, 4, x, IS a structure constant with respect to
the Kazhdan—Lusztig basis in H;. By the relations in Proposition 2.4.5(c), we have

(b) Cyl=C,1 and  Cu1GyCop=Cpy

o ww
for any w € Q and w; € W|. Using these relations, we obtain

Cﬂ)lxl Ca)z)Q == Cwl Cxl Ca)ZCXZ == Cwl a)zcwz—l C

xpa X2

= Z hwilxlah,XQ,X3 Cwl X3
x3€W]

Thus, for any x3 € W| and @ € , we have

h i if w3 = Wy,
(©) heyxy 030,030 = @ ¥1M2%2,%3 .
0 otherwise.
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We see that the structure constants for the Kazhdan—Lusztig basis in H are com-
pletely determined by the structure constants inside Hj.

2.4.8. Leta(z), A(z) (z € W) and 2 be defined as in 2.3.1, with respect to the weight
function L: W — I'. Define a;(z1), A1(z1) (z1 € W) and 2 analogously, with re-
spect to the weight function L : Wi — I'". Then 2.4.7(c) shows that

(a) a(a)zl) = 31(21) forall w € Q and z; € W;.

Furthermore, since L;(§) > 0 for all § € S, we have Pl*_Zl =0 for all z; € W). Then
2.4.7(a) shows that

(b) Alwz)=Ai(z1)) (fo=1 and Z=9.

Assume now that I' = Z and that L; is a multiple of the length function of Wj. In

particular, A is the ring of Laurent polynomials in one indeterminate v = €. Then

the “positivity” properties in 2.4.1(a) hold for Wy, L;. Using Remark 2.1.7 and the

formulae in 2.4.7, we conclude that these “positivity” properties also hold for W, L:
P, € Zsolv,v™'] and K., € Zso[v,v™'] forallx,y,z,w e W.

Xy,

Taking into account (a) and (b), we can now follow Lusztig’s arguments in [231,
Chap. 15] to conclude that P1-P15 hold for W, L. In particular, we see that P1-P15
hold for W, L in all situations described in Example 2.4.4 (where I" = Z).

Proposition 2.4.9 (Bonnafé [22, §2.E]).

(a) Let x1,xp € Wi and o1, € Q. Then w1x1 < Wyxy (with respect to L) if and
only if x1 <. xa (with respect to Ly ). Similarly, x1 ) <g X2y (with respect to
L) if and only if x1 <gp x2 (with respect to Ly).

(b) The left cells of W (with respect to L) are of the form Q.€| where €| is a left
cell of Wy (with respect to Ly). The left cell module [Q.€1]4 is isomorphic to
the induced module Indgl ([QI]A) =H®y, [€]a.

(c) Letxi,xo € Wy and @y, € Q. Then w1x1 < g Wpxo (With respect to L) if and
only if there exists some ® € Q such that x; <.z ©x20~ " (with respect to Ly ).

(d) The two-sided cells of W (with respect to L) are of the form Q..%.Q, where
F1 is a two-sided cell of Wy (with respect to Ly ).

Proof. (a) Assume first that w;x; < myxp (with respect to L). It is enough to
consider the case where w;x; < ¢ anxy; that is, there exists some w € W such
that K, g1, 06, 7 0. By 2.4.7(c), this structure constant equals h,,, x, v, (for some
w1 € Wp). Consequently, we have x; < ¢ xp (with respect to L;). Conversely, as-
sume that x| < x, (with respect to Ly). Thus, h,, x, x, 7 0 for some w; € W;. By
2.4.1(c), hy, x, x, also is a structure constant for the Kazhdan—Lusztig basis in H and
s0 x1 <. xp (with respect to L). Furthermore, @;x| ~¢ x| and @wyxy ~ o x,. (This
immediately follows from the fact that C,C,, = Cy,, for all ® € 2 and w € W; see
Proposition 2.4.5(c).) Hence, we also have @;x; < ¢ wpx, (with respect to L). The

statement about the relation < is proved using the fact thatx <y y = x~ ! <5y~
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(b) The statement about the left cells is an immediate consequence of (a). Now
consider the left cell module [£2.€]4. This module has a basis {eq,r, | 01 € 2,x1 €
€1}, where the action of C,, (@ € Q, w; € W}) is given by

Cow, -€ox, = 2 haw, ,o1x1, 0%, €y -
MmEN e

Using 2.4.7(c), we obtain that

Cowy-€opx = Z hwflwla)l,xl,xzewwm'
xEC

On the other hand, by definition, Indg1 ([€1]4) has a basis {@; @ ey, | 0 € Q,x1 €
€1}, where the action of Cy,, (0 € Q, w; € W) is given by

CCOWI .((})1 ®exl) = 2 hwflwlwl X1 (0)0)1 ®exZ).
xpEC) o

Hence, [Q.€]4 — Indgl ([€1]a), ewx, — O1 ® ey, is an H-module isomorphism
(c) For any ® € Q, the map wy — @w;® ! is a Coxeter group automorphism of

(W1,81). Furthermore, by 2.4.7(b), we have Cp,' = C,y-1 and Cy,,, -1 = CoCuy Cyp-1

for all wy € W;. Hence, for any x1,x, € Wj, we have

1

() X1 <gxy &  0x o <y Ox0~ (with respect to Ly).

Now let x;,x, € Wi and @1, m; € Q. Assume first that w;x; < ¢z Wrxp (With respect
to L). It is enough to consider the case where @ x| < ¢ Wrxp or Wx| < Wrxp (With
respect to L). Note that, in the latter case, we have (w;x; 0, 1)a)l <z (mx0, 1)(02.
Hence, using (a), we conclude thatx; < ¢ x; or @1x1 @, ! <% X0, ! (with respect
toL;). Settingw=1orw= wl_l @, according to these two cases, and using (x), we
obtain x| < ¢y wx;0~ ! (with respect to L), as required. Conversely, assume that
there is some ® € €2 such that x; < ¢y wxy0~! (with respect to L1). But then, by
(a), we have wx,0 ! ~ ¢ xo0~ ! ~4 x; and so x; < ¢z X2 (with respect to L).

(d) This immediately follows from (c). a

Remark 2.4.10. Let .# be a two-sided cell of W (with respect to L). By Proposi-
tion 2.4.9(d), we have .# NW,; # &. We claim that the following implication holds.

(@) Ifxi,x € F N W are such that x| < g x, (with respect to Ly), then we have
X1 ~ oz Xx» (with respect to Ly).

This is seen as follows. By Proposition 2.4.9(c), since x < ¢z x1 (With respect to
L), there exists some @ €  such that x, < ¢ ox; @~ (with respect to L;). Hence,
since x; <.z X2 (With respect to Li), we have x; <gp @xjo~' (with respect to
L1). Relation (x) in the proof of Proposition 2.4.9 shows that then we also have
oxio-! < % w3 x 02 (with respect to L;). Repeating this argument, we obtain
that wi_lxla)_(i_1> <op o'x o~ (with respect to L), for all i > 1. But Q has
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finite order, and so @’ = 1 for some i > 1. We conclude that wx; 0! < o X1 and,
hence, xp < ¢z x1 (with respect to Ly). Thus, (a) is proved.

2.4.11. Assume that K C C is a splitting field for both W; and W. Then we write
Irg(Wi) = {E¥ [ L €A} and  Ig(W)={E* |1 € A}.

By the argument in Example 1.2.4, we have the following compatibility between
specialisation and restriction, where A € A and A; € A;:

multiplicity of E* in the restriction of E* to W;

= multiplicity of Eé” in the restriction of EéL to Hy g := K®4 Hy.

Now, the group €2 acts on W and, hence, on Irrg (W} ). Thus, there is an action of Q2
on A; (which we write as A; — ®.A4;) such that

(a) trace(w 7E“’J“) = trace(a)_lwlw,E’ll) forall A € A; and w; € Wj.

Using this notation, Clifford’s theorem ([53, 11.1]) states the following: Let A € A
and A, € A; be such that E™ is a constituent of the restriction of E* to Wi. Then
this restriction is a direct sum of simple modules of the form E “’"11, for various
o € Q. Since we have an Q-graded Clifford system as in Remark 2.4.6, there is
also a version of Clifford’s theorem on the level of H (see [53, (11.16)]):

(b) The restriction of Eél € Irr(H) is a direct sum of simple H; g-modules of the
form Eg"ll, for various @ € 2.
Now let €; be a left cell of W; (with respect to L1) and @ € €2. Then, by relation (x)

in the proof of Proposition 2.4.9(c), the set € m ' also is a left cell of Wy (with
respect to L1). Now, using the formulae in 2.4.7, one sees that

hxl,x27x2 = hwxlw—'.wxzw—l,a)x3w—1 for all X1,X2,x3 € Wy

1 is the same as the action of C._,

Hence, the action of C,,, (w; € Wi) on 0€ @™ o~ lw o

on ¢;. Combining this with (a), we conclude that
(© m(€, ) =m(oC o o.u) foraloeQ.
With these preparations, we obtain the following corollary.

Corollary 2.4.12. Let A, ;1 € A and Ay, 11y € Ay be such that EM appears in the
restriction of E* to Wy and E™ appears in the restriction of E* to Wy. Then F, €
Fy, and Fy, C Fy. Furthermore, we have

E* <r E* & M =<1, E®M for some o € Q.

Proof. Let €1, €] be left cells of W; such that m(€;,4;) > 0 and m(€}, u;) > 0. By
Proposition 2.4.9(b), € := Q.¢; and €' := Q.¢ are left cells of W; furthermore,
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we have [€]4 = Indgl ([€1]a) and [¢']4 = Indg1 ([€}]a). Hence, by Frobenius reci-
procity, we have m(€,A) > 0 and m(¢’, ) > 0. Then Corollary 2.2.5 also shows
that .77, C .7, (since €; C €) and .7, C % (since €] C ).

Now assume that E* <; EX. By Corollary 2.2.5, this implies that w < ¢ W
(with respect to L), for some w € € and some w' € ¢'. Let us write w = w;w; and
w = ojw] where wi € €1, w| € €| and @, ®] € Q. Then, by Proposition 2.4.9(c),
we have wi < ¢p a)w’la)‘l (with respect to L) for some @ € (2. Using the formula
in 2.4.11(c), we conclude that EM =1, E®H, as required.

Conversely, assume that EM =L E®H where o € Q. By 2.4.11(c), we have
m(o€ o~ w.u) =m(€, 1) > 0. So Corollary 2.2.5 implies w; < g oW~
(with respect to L;), for some w; € ¢; and some w} € €). Hence, by Proposi-
tion 2.4.9(c), we also have wi < g W) (With respect to L). Since w; € €and w) € €1,
we can use once more Corollary 2.2.5 and conclude that E* < E". O

Fig. 2.2 Two-sided cells in type F4 with parameters 0,0, a, a; see Example 2.4.4(c)

(2.4) 0 {11,15,23} (a3 =0)

{42,44,83} (ax = a)

{91,9} (az =2a)

{(11,2),(1,21),(2,22)} {21,2,41,61,6,,81,8,,121,16, } (ay = 3a)

(11,+)

192,94} (a5 = 6a)

(1,111) {43,45,84} (a, =7a)

o (2,1111) O {12,14,24} (a; = 12a)

Dy (parameter a > 0) Fy (parameters 0,0, a,a)

Remark 2.4.13. The above result shows that the relation <; on Irrg (W) is com-
pletely determined by the relation <;, on Irrg (W;); an example is given in Fig-
ure 2.2. Note that the converse is not true, at least not in any straightforward way.
For example, using the above notation, assume that A = g and @ € Q is such that
A1 = .41 # U;. Then both sides of the equivalence in Corollary 2.4.3 are trivially
true, but we cannot tell whether it is true that EM =L EH or not. One can show
that, in general, we have:
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M =< Hy ll =M if)L:li,
(a) EM =2 E = { E* <, E*  otherwise.

(See Example 2.2.15 for the case where W is of type D, and W is of type B,; see
Figure 2.2, where W is of type D4 and W is of type F4. The remaining cases are
much easier to deal with; we omit further details.)

Proposition 2.4.14 (Cf. [132, 10.5.6], [101, 4.6]). Let L € A and A; € Ay be such
that EM appears in the restriction of E* to Wy. Then

¢ dimE* =|Q|c; dimEYM, a; =a;, fdimE* =|Q| f;, dimE™.

Proof. Letd) =dimE 4 and denote by I, the identity matrix of size d; . Consider-
ing a matrix representation p* afforded by Eé, we have that

dyerly, = Y, pH(Tw) pH (T, ).
wew

(Indeed, the (s, t)-coefficient of the expression on the right-hand side equals

2 2 psu put( wo 1)

weW ueM(A

By the Schur relations in Proposition 1.2.12, this evaluates to ds¢d) ¢, as required.)
Now let us write W = {wla) | wi € Wi, m € Q}. By Proposition 2.4.5(a), we have
Tw,0 = Ty, Ty and T, ' = T, 1. This yields that

> X pMT)p M (To) pH(T, )M (T, )

w1eEW] weQ

Q1 Y (L) pH (T, ).

wieW] !

dkclldl

Since E*M appears in the restriction of E* from W to Wy, a specialisation argument
(see Example 1.2.4) shows that E? ! appears in the restriction of EéL from Hg to
H, k. Thus, choosing a suitable basis of E7L we can assume that, for each w; € W,
the matrix p* (T, ,) has a block diagonal shape, where one of the blocks equals
pH (T,). Let d;, = dim EM . Considering the corresponding block in the above
identity arising from the Schur relations, we obtain

drerla, =192 Yy ph T 1)

wiEW] !

But then the sum on the right-hand side can be evaluated using the Schur relations
for Hy . This yields the desired identity d; ¢; = |€2|d}, ¢;, . Once this is established,
the identities concerning a; and f) are immediate consequences. ad
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2.5 On Lusztig’s Conjectures, I11

Our aim now is to formulate a version of the properties P1-P15 purely in terms of
the invariants a,; and our algebra J constructed in Section 1.5.

Proposition 2.5.1 (Cf. Lusztig [231, 18.9(b)]). Assume that P1, P4, P15 hold.
(a) Let w,w' x,y € W and assume that a(x) = a(y). Then

z ’}/x,w’,z*1 hw,z-,y = 2 hW-,X-,Z Yz,w vl
zEW zeW

(b) Letw,w',y € W and assume that a(w') = a(y). Then

hw,w/,y = z ﬁd hw.d,z iiz,w’,y_l .
€W, deg
a(z)=a(d)

Proof. (a) Consider the identity P15; by P4, we can assume that on both sides the
sum is over all z € W such that a := a(z) = a(x) = a(y). Now, we can write

Ny = Col 21+ 8xwl 25 where g,/ . € Z[I],

a
£ hz,w/,y = Cpt y1 +gz.,w’.y7 where 8wy S Z[F>()].

Hence, multiplying both sides of P15 by €“ ® 1, we obtain

l® ( 2 Cxw/ 71 hW-,Z;}’) + Z 8xw 2 @ hW-ZJ'

zeW:a(z)=a zeW:a(z)=a

=1® ( Z Cow! y~1 hw,x,z) + z 8zw'y b2 hw,x,z-

zeW:a(z)=a zeW:a(z)=a

Finally, Z[I'] ®7 Z[I'] is a free Z-module with basis {e¢ @ &¢ | g,¢' € I'}. Compar-
ing the coefficients of 1 ® ¢ on both sides, we obtain the identity

2 Con! -1 hyzy = 2 Py x 2 Conly 1
zeW zeW

The desired identity in (a) now follows from Proposition 2.3.16.
(b) Taking x =d € 2, we multiply both sides of the identity in (a) by 7i; and then
sum over all d € & such that a(d) = a(y). This yields

Z 2 fig ')7d,w’,z*1 P2y = Z 2 fiahwd.z }72;“’/&’71 )

W  4ed €W de9
a(y)=a(@) a(y)=a(d)
On the right-hand side, we can replace the condition “a(y) = a(d)” by the condition
“a(z) = a(d)”, since ¥,,,, ,-1 # 0 implies a(z) = a(y) by P4 and Proposition 2.1.20.
On the other hand, by Lemma 1.5.3(a), we have 7, ,» -1 =¥,/ 1 4. Hence, the left-
hand side of the above identity equals
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Y Y feratia =2 X Tverafa) i

W aed zeEW de9
a(y)=a(d) a(y)=a(d)

Now, if %, 14 # 0, then a(d) = a(w') by P4 and Proposition 2.1.20. Since
a(y) = a(w'), we can omit the condition “a(y) = a(d)” in the above sum. So
Lemma 1.5.3(b) yields that the above sum evaluates to A,,,, ,, as required. a

Corollary 2.5.2. Assume that P1, P4, P15 hold. Then P9, P10, P11 also hold.

Proof. To prove P9, let y,w € W be such that y <o w and a(y) = a(w). We
must show that y ~¢ w. It is enough to consider the case where y,w are re-
lated by an elementary step of the relation < g; that is, we have h,,, # 0 for
some x € W. But then Proposition 2.5.1(b) shows that there exist some z € W
and d € 9 such that a(z) = a(d), hy4, # 0 and Voyw1 # 0. In particular, by
Lemma 1.6.5 and Proposition 2.1.20, y and w belong to the same Kazhdan—Lusztig
left cell, as required. Once P9 is established, P10 and P11 easily follow as well;
see [231, 14.10, 14.11]. Indeed, to obtain P10, just note that a(z) = a(z"!') and
that y <4 w if and only if y~! <& w™!. Finally, to prove P11, let y <z w be
such that a(y) = a(w). By definition, there is a sequence y = yo,y1,...,ym = w such
that, for each i € {1,...,m}, we have y;_; < y; or yi_| <z yi- By P4, we have
a(w)=a(yy,) = a(ym—1) = ... =2 a(y1) = a(yy) =a(y). Since a(y) = a(w), we have
a(y) =a(y) =a(y1) = ... = a(ym) = a(w). Applying P9 or P10 to y;_1,y;, we ob-
tain y;—1 ~_¢ y; Or yi—1 ~z yi- Hence, y ~ gz w. g

2.5.3. Let us consider the following three statements (&), (#), (#). These should be
regarded as our adaptation of Lusztig’s properties P1-P15 in Conjecture 2.3.2 for
the purposes of this book. Note that (&), (#), (#) do not refer to the function a(z)
Or t0 %.,y,z, as defined in 2.3.1; these have only played an auxiliary role.

(%) Let A,u € A. If E* < EM, then a, < a,. In particular, if E* ~; E¥, then
a) = a,. Furthermore, if E* <, E* and a, = ay, then E* ~ EM.
(#) Let w,w,x,y € W be such that x ~ g y. Then

2 ’}/)C,W/7171 hw,z,y = Z hw,x,z ’)/Z’W,’yil :
ZEW ZEW

(Here, ~ 5 refers to the two-sided Kazhdan—Lusztig relation.)
(#) Every Kazhdan—Lusztig left cell contains a unique element of .

Let us briefly recall how the first two statements are deduced from P1, P4, P1S5.
To prove (&), let x € .%, and y € .%,,. By Proposition 2.3.14, we have a(x) = a; and
a(y) = ay. So, if E* <, EM, then x < ¢ y and so ay = a(y) <a(x) = a,, using P4.
If E* <, E* and a; = a, then x < y and a(x) = a(y). By Corollary 2.5.2, P11
holds and so x ~ ¢ y; hence, E* ~ o EM, as required. Finally, if w,w',x,y € W
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are as in (#), then a(x) = a(y) by P4 and so the desired identity holds by Propo-
sition 2.5.1. (One can show that, conversely, (&) and (#) imply P1, P4, P15; see
[114, 3.8, 4.7].)

Finally, if P1, P4, P13 hold, then (4) holds, since D=9 by Proposition 2.3.16.

Remark 2.5.4. As in Remark 2.3.7, we note that (#) really is a statement about a
certain bimodule structure. Indeed, let R C C be an L-good subring and consider the
algebra J; see Section 1.5. Then Jg := (t,, | w € W)g C J is an R-subalgebra of J
and J = K ®g J. By the identification C,, < t,,, the natural left H-module structure
on H (g1ven by left multiplication) can be transported to a left H-module structure
on J4 := A ®@g Jr. Explicitly, the action is given by

Coxte= Y hyx:t: forall x, w € W.
zeW

By the definition of the Kazhdan-Lusztig pre-order < ¢, we can define a left H-
module structure on J4 by the formula

C, oty = Z Nyxzt; for all x, w e W.
€W iz~ gpx

For any & € H and x € W, the difference h*t, —hot, is an A-linear combination
of terms f,, where y < ¢z w and y o ¢z w (in the Kazhdan—Lusztig pre-order). On
the other hand, we have a natural right J4-module structure on J4 (given by right
multiplication). Then these two actions commute if and only if

C o (txty) = (Cyp oty )ty for all x,w,w € W.
Writing this out using the defining equations, the above identity is equivalent to

Y Fwethey= Y Pz Tyt 31 forally € W.

€Wz~ gpy ZEW 1z~ gpx

Now, by Proposition 2.1.20, we can assume that z ~ ¢ x for all z on the left-hand
side and z ~ ¢ y for all z on the right-hand side. Thus, if x «¢ & v, then both sides
of the above identity are zero. Hence, the above identity holds if and only if (#)
holds. So we conclude

(a) (#) holds if and only if J 4 1S an (H,j A )-bimodule (with the above actions).
Since the algebra H is generated by {Cs | s € S} U{T }, we also conclude
(b) in order to verify (#), it is sufficient to do this assuming that w =s € S.

The following result was proved by Lusztig [223] in the equal-parameter case and

in [231, 18.9 and 18.10] in general, assuming that P1-P15 hold. Here, we follow the
proof given in [112], which is much less “computational” than that in [223], [231].

Theorem 2.5.5 (Lusztig [231, 18.9]; see also [112, §5]). Assume that property (#)
in 2.5.3 holds. Then there is a unique unital A-algebra homomorphism ¢ : H — Ju
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such that, for any h € H and w € W, the difference ¢ (h)t,, — hxt,, is an A-linear
combination of terms t,, where 'y < ¢ w and y ¢z w. Explicitly, ¢ is given by

¢(CPV) = z hvv,d,zﬁdtz (W € W)

€W ded
gz d

Proof. In the setting of Remark 2.5.4, the left H-module structure on J4 gives rise
to an A-algebra homomorphism

yv: H— Ends(J4) suchthat w(h)(t,)=hot,.

Since the left action of H on J4 commutes with the right action of J4, the image of
y lies in Endy, (J%), where the superscript “r” indicates that we consider the right

action of J4 on itself. Now, we have a natural A-algebra isomorphism
n:Endy, (J3) —Jas e f(13,)-
We define ¢ =now: H— Js. Then ¢ is an A-algebra homomorphism such that
d)(h):y/(h)(le):hole forall h € H.

This yields ¢ (h)t,, = (ho 1y, )tw = ho 13, t,, = hot, or, in other words, the difference
¢ (h)ty, — hxt,, is an A-linear combination of terms #,, where y < ¢z w and y ¢ ¢z w,
as required. Furthermore, we immediately obtain the formula

o(Cy) = Cw<>1jA = Z igCy oty = 2 hya gt

de9 2EW,d€D:z~ 4z d

Since hy 4, = 84z, this yields ¢(Cy) = 13, ; hence, ¢ is unital.
Finally, assume that ¢': H — J, is another homomorphism satisfying the re-

quired conditions. But these imply that ¢’ (h)r,, = hot,, for all w € W and, hence,
¢'(h) = ¢'(h)15, =holj, forall h € H. So we have ¢’ = ¢ as required. O

Remark 2.5.6. Once Theorem 2.5.5 is established, the further theory of J and H can
be developed as in [231, Chap. 18-20], with essentially the same proofs. We just
single out the following statement; cf. Lusztig [231, 18.11]:

(a) Let 6: A — k be a specialisation, where k is a commutative ring with 1. Let
¢ : Hy — Ji be the induced map. Then ker(¢y) is a nilpotent ideal of Hy.

Proof. Let F1,..., %y be the two-sided Kazhdan—Lusztig cells of W, where the
labelling is such that if x < ¢z y forall x € #; and y € .F}, then i < j. Consequently,
each Hy ¢; := (G, | w € %}, 1 < j < i)t is a two-sided ideal of Hy. Now let €
ker(¢y). Then, by Theorem 2.5.5, hxt,, is a k-linear combination of terms t,, where
v <o w and y L ¢y w. Recalling the definition of the x-action, we deduce that
hH <; € Hy <;— for all i, where we set Hy <o = {0}. Hence, given N elements

hi,...,hy € ker(¢y), then we have h; - --hy € Hy <o = {0}. Thus, (a) is proved. O
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Example 2.5.7 (Cf. Lusztig [231, 20.1]). The inclusion A C K induces an alge-
bra homomorphism ¢ : Hx — J. Since Hy is semisimple, Remark 2.5.6(a) shows
that ¢ is an isomorphism. Next, consider the specialisation 0;: A — K such that
0;(e8) = 1 for all g € I'. Let ¢;: KW — J be the induced map. Since KW
is semisimple, Remark 2.5.6(a) shows that ¢; is an isomorphism. Thus, KW =
J as K-algebras. Finally, the inclusion K C K induces an algebra isomorphism
(¢1)kx: KW — Jk. Hence, the composition

v =(¢1)g odx: Hx — KW is an algebra isomorphism.

(This first appeared in [216] in the equal-parameter case.) Thus, using Y, one obtains
a more natural explanation for the correspondence Irrg (W) < Irr(Hg) in 1.2.1. But
note that the results in 1.2.1 do not rely on the assumption that (&) holds!

Lemma 2.5.8. Assume that (#) holds. Let x,y,w € W be such that y ~ gz w. Then

hx,w,y = Z ﬁd hx,d,z %,W,y*l .

€W,de9

~ opd
Proof. The left-hand side of the above identity is the coefficient of #, in the expan-
sion of C, *t,, and the right-hand side is the coefficient of f, in the expansion of
¢ (Cy)ty. By Theorem 2.5.5, these two coefficients must be the same. O

Lemma 2.5.9. Assume that (@) holds. Then the left J-cells are precisely the left
Kazhdan—Lusztig cells. (Analogous statements hold for right and two-sided cells.)
Furthermore, the following implication holds for any y,w € W:

ySgw and y~gpw = yrgw,
where < ¢, ~. and ~ gz refer to the Kazhdan—Lusztig relations.

Proof. Recall that, by Proposition 2.1.20, every left (or right or two-sided) J-cell
is contained in a left (or right or two-sided respectively) Kazhdan—Lusztig cell. To
prove the reverse implications, we begin by showing the following two statements:

(a) Let y,w € W be such that y < w and y ~ ¢, w (with respect to the Kazhdan—
Lusztig relations). Then y, w belong to the same left J-cell (and, hence, y ~ & w).

(b) Let y,w € W be such that y <4 w and y ~ o5 w (with respect to the Kazhdan—
Lusztig relations). Then y, w belong to the same right J-cell.

To prove (a), we may assume that y,w are related by an elementary step in the
Kazhdan-Lusztig pre-order relation < ¢; that is, we can assume that , ,,, # 0 for
some x € W. But then Lemma 2.5.8 shows that there exist some z € W and d € 2
such that z ~ g d, hy g, 7 0 and 7, ,, -1 # 0. In particular, by Lemma 1.6.5, y and
w belong to the same left J-cell. Thus, (a) is proved. The proof of (b) is analogous.

Now (a) shows that if y ~ ¢ w, then y,w belong to the same left J-cell. Thus,
the left Kazhdan—Lusztig cells coincide with the left J-cells. Using (b), a similar
statement holds for right cells. Now consider the two-sided cells. Let y,w € W be
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such that y ~ ¢ w. Then there is a sequence y = yg,y1,...,Vn = w in W such that,
for each i € {1,...,m}, we have y;_| <y y; or yi_1 <z yi- Since y ~ g5 w, all
elements y; belong to the same two-sided Kazhdan—Lusztig cell. Hence, by (a) and
(b), all elements y; belong to the same two-sided J-cell. In particular, y, w belong to
the same two-sided J-cell. a

Example 2.5.10. Assume that (#) holds. Let € be a left Kazhdan—Lusztig cell of
W. By Lemma 2.5.9, the set € also is a left J-cell. Then we claim that

M(C,A) =m(C,A)  forall A € A,

where the left-hand side is defined in Theorem 1.8.1 and the right-hand side is de-
fined in 2.2.2. Indeed, by the argument in the proof of Lemma 2.2.4, we have

2 2 Cfvf)t c:f‘_l_]L =m(&€,A)d; fr-

s teM(A) wee

By Theorem 1.8.1(b), the left-hand side also equals d; (€, 1) f;,, as required. We
can now write the relations in Theorem 1.8.1 in the form

D CuaCyty = {m(Q(;l)fx if A=,

otherwise.
wel

We close this section with some auxiliary results which will be useful at several
places below. The proofs of some of these will only require the following weak
version of (&) which we already encountered at the beginning of Section 2.3 (p. 78):

(*,) E}b ~r E* = a, =a,

Lemma 2.5.11. Assume that (&') holds. Let T be a two-sided Kazhdan—Lusztig cell
and a € T> be the common value of ay, where A € A is such that #; C . Then

€y, € L[I>0) and Yoyt = €%y, mod Z[I%o]
forallx € W and y,z € X. In particular, ¥, ,, .1 € Z.

Proof. We have hyy,; = T(CxCyD,-1) and T = ¥4 c;' x*. Furthermore, as in the
proof of Lemma 2.3.10, c;l = f;l €20 /(14 g;), where g; € F[I]. This yields

£
= B X Ty PR (P () (0l (D)
AeA s tueM(A 82
Now assume that A € A and s, t,u € M(A) are such that all three terms
gakpslt(cx)v gakptlu(c)’)v EapL)LLs(Dz*] )

in the above sum are non-zero. Let € be a left Kazhdan—Lusztig cell such that
m(€,A) > 0. Then, by Lemma 2.3.9, there exist y,7’ € € such that y <z y and
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7<% 7. Since y,z € T, we deduce that € C T. By Lemma 2.2.4, there exists some
w e €N.Z,. Since € C T, this implies that .%#; C ¥ and so a = a, . Consequently, all
of the above three terms lie in &j. Hence, the whole sum lies in &) and its constant
term can be computed term by term. Thus, we obtain

st tu
8hxy7—2 z Cxlc)lczll—%cyz" mod m.
AeA s tueM(A)

Since Ay, € Z[I'|, we have 7, -1 € Z and the congruences are modulo Z[I%¢]. O

Proposition 2.5.12. Assume that we are in the equal-parameter case where I' = 7.
and L(s) =1 for all s € S. Then property (#) in 2.5.3 is a consequence of (&').

Proof. By Remark 2.5.4, it is enough to prove (#) assuming that w = s € S. Thus,
we must show that

(a) D Vo o1 Bs ey = Y b A forall s € S,
zeEW zEW

where w',x,y € W are such that x ~ ¢ y (in the Kazhdan—Lusztig pre-order). Let
% denote the two-sided Kazhdan—Lusztig cell such that x,y € ¥. First we note that,
by Lemmas 1.6.5 and 1.6.6, we can assume that z € ¥ on both sides of the above
identity; furthermore, we can also assume that w' € €. Now we argue as follows.

If L(s) = 0, then h ., = &,,; see Theorem 2.1.8. Hence, the left-hand side of
(a) reduces to f{wtrl. Similarly, since A ; = Oy, the right-hand side reduces to
Yew y-1- Hence, the assertion is true in this case. We can assume from now on that
L(s) > 0.

Case I: sx < x. Then, by Theorem 2.1.8, we have C;C; = —(vs +v; !)C, and
so the right-hand side of (a) reduces to —(vs + V;l)'}z(7wl7y—l. Now let z € W and
assume that the corresponding term on the left-hand side of (a) is non-zero; that is,
Ve 1 #0and A, # 0. By Lemma 1.6.5, this implies that z ~ x and so sz < z;
see Remark 2.1.16. Hence, the left hand side also reduces to —(vs + vy 1)y o1
Thus, the identity (a) holds in this case.

Case 2: sx > x. Let again z € W and assume that the corresponding term on the
left-hand side of (a) is non-zero; that is, we have 7,/ -1 # 0 and h, ., # 0. Again,
this implies that z ~4 x and so sz > z. Hence, the sum on the left-hand side only
needs to be extended over all z € W such that sz > z. But then, since we are in the
equal-parameter case, we have A, ; , € Z; see Example 2.1.10(b). Now consider the
usual associativity rule in H: the identity Cs(C,C,,) = (C,Cy)C,, yields

thw, Szy—thwy 552 forallye W.
zeEW EW

Let z € W be such that the corresponding term on the left-hand side is non-zero.
Then h, s . # 0 and s0 z < x; furthermore, A; ; , # 0 and so y < ¢ z. Since x ~ 5 y,
we deduce that z ~ ¢ x. Thus, we can assume that z € ¥ in the sum on the left-hand
side. Now we use (&'). Let a € I3 be the common value of a;, where A € A is
such that .#; C ¥. By Lemma 2.5.11, we have
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8ahx7w/_’z = ’7x,w,z’1 mod Z[F>()].

Hence, since h; ;,, € Z for all z such that sz > z, we have

e ( Z hx,w/,z hS,z.,y) = Z (Sa hx,w’.z) hs,z,y € Z[F>0]
zeEW €%

and the constant term of this expression equals the left hand side of (a). A similar
argument applies to the right-hand side of the above associativity identity: the sum
only needs to be extended over all z € . Furthermore, we have

€hz iy =, 0 -1 mod Z[[o).

Hence, since sx > x and hy x ; € Z, we have

% ( S hepy hs,m) = 3 (e y) hs i € ZITo0)]
zeEW €T

and the constant term equals the right hand side of (a). Thus, (a) is proved. O

Lemma 2.5.13. Assume that (&) holds. Then we have ¥y, € Z for all x,y,z € W
and iy, € Z forallw e W.

Proof. If y,z~! belong to the same two-sided Kazhdan—Lusztig cell, then we have
¥:y: € Z by Lemma 2.5.11. Otherwise, we have ¥, . = 0 by Proposition 2.1.20.
It remains to consider 7. Let Ag € A be such that E% «~s; w. We have Py, =

(=1)!™)z(C,,). Expressing 7 as in the proof of Lemma 2.5.11, we obtain

—1
(1) P, = Y Jagmm, (£ pZ (Cw))-

" ensemny 1 T8
Let A € A be such that p*(C,,) # 0. Then we claim that a;, < a,. Indeed, let €
be a left Kazhdan—Lusztig cell such that m(€, 1) > 0. By Lemma 2.3.9(a), we have
y < w for some y € €. By Lemma 2.2.4, there also exists some y € € such that
E* «~s; y. In particular, we now have y ~ g y <z w and so E* <; E%_ Since
() is assumed to hold, we can conclude that ay, <ay,as required. This shows that
the above sum lies in &) and we have

(—1)1<W>£7%IS?W = > Y f;lcfvfl mod m.
AcA  seM(A)
312310
But then the first sum can be extended over all A € A: just note that if ¢, # 0, then
E* 1w and so E* ~L EAO; hence, a; = ay, in this case. So we conclude that

(fl)l(w)sfa’lﬂl_fiw =7, modm.

Since the left-hand side lies in Z[I'], we deduce that 7i,, € Z, as required. O
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Example 2.5.14. Assume that (#), (&), (#) are satisfied. Then Conjectures 1.5.12
and 1.6.18 hold. (Indeed, part (a) of Conjecture 1.5.12 holds by Lemma 2.5.13;
using Lemma 2.5.9 and (4), we see that Conjecture 1.6.18 holds; then part (b) of
Conjecture 1.5.12 follows by the argument in Remark 1.6.19.) Now let € be a left
Kazhdan-Lusztig cell of W. Then, by Examples 1.8.6 and 2.5.10, we have

> fiim(€ ) =1

AeA

This is a quite powerful statement. (It can also be easily deduced from [231, 21.4].)
For example, it directly shows that if f; =1 for all A € A, then [€]; € Irrg (W).

Remark 2.5.15. Following Lusztig [223, 2.8], we can now also give a more direct
proof of the fact that ¢x : Hx — Jx is an isomorphism. Indeed, let us assume that
both (#) and (&) hold. For each w € W, choose some A € A such that E* vy w
and set a,, := a, . (This does not depend on the choice of A, thanks to (&).) Then

gawd)(cw) = z gaw ﬁd hw,d.,z I, = 2 ( Z gaw ﬁd hw,d,z) I;.

72eW,de9 ZEW de@:zwg%d

o~ gpd
Assume that z and 4 in the above sum are such that 4,5, # 0. Let u € A be such
that E¥ «~s z. Since 4, # 0 and z ~ ¢ d, we have z < ¢ w and so E* <. E*.
Since (&) holds, this implies that a,, < a,, with equality only if w ~ ¢ z. Assume
first that w ~ g5 z. Then a,, = a, and Lemma 2.5.11 shows that €*"h,, ;. lies in
Z[I>0] and has constant term ¥, , 1. Thus, we have

Z e fighyg . = Z g Va1 Mod ZTso),
deD:z~gpd deD:z~gpd

where w ~ zz z. Now, if %, .1 # 0, then w,d,z belong to the same two-sided
Kazhdan-Lusztig cell; see Proposition 2.1.20. So we can omit the condition z ~ &5
d in the above sum. Then Lemma 1.5.3 shows that

Z fig )7w,d,z’1 = Z fig Z’],W,d = 81W'

dE_@:ZN'Zg%d de9
Since 7i; € Z by Lemma 2.5.13, we finally obtain that

e ¢(C,) =t + Z[I%o]-combination of terms #,, where z ~ g w
+ Z[I']-combination of terms t;, where z < g W, 2 %4 g W.

So, for a suitable ordering of the elements of W, the matrix of ¢ with respect to the
basis {€™C,, | w € W} of H and the basis {t,, | w € W} of J4 has a block triangular
shape where the determinant of each diagonal block lies in 1+ Z[I¢]. Hence, the
determinant of the whole matrix of ¢ lies in 1+ Z[I%]. In particular, it is non-zero.
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2.6 A Cellular Basis for H

We are now ready to define a new basis of H which will turn out to be a “cellular
basis” in the sense of Graham and Lehrer [144]. We recall the basic definitions first.

2.6.1. Let k be a commutative ring (with 1) and H be an associative k-algebra (with
identity) which is finitely generated and free over k. Following Graham and Lehrer
[144, Def. 1.1], a cell datum for H is a quadruple (A, M, C, ) satisfying the follow-
ing conditions.

(C1) A is a partially ordered set, {M(A) | A € A} is a collection of finite sets and
Cc= {Cﬁ”’t |A €A, s,teM(A)} is a k-basis for H.

(C2) There is a k-linear anti-involution, & — h*, on H such that (Cs’ljt)* = Céﬁ for
allA € A and all s,t € M(1).

(C3) Denote by =< the partial order on A. If A € A and s,t € M(A), then

hC

5,

(=Y rf(s,s)Ch, modH(<A) forallh€H,
s'eM(2) '

where /' (s',5) € k is independent of t and where H (< A) is the k-submodule
of H generated by {C%, , | 1 < A:s”, ¢ € M(u)}.

If these conditions hold, we say that {C*,} is a cellular basis of H. Assume now
that this is the case. Given A € A, we can define a corresponding cell representation
(or cell module) of H as follows. Let W(A) be a free k-module with basis {Cs | s €
M(A)}. Then, using (C3), W(A) is seen to be an H-module with action given by

hCo= Y 1}(s',s)Cy  forhe HandseM(A).
s'eM(A)

This module is equipped with a canonical invariant bilinear form; see the following
lemma.

Lemma 2.6.2 (Graham and Lehrer [144, 2.4]). Let A € A. Then there is a well-
defined symmetric bilinear form (, ); : W(A) x W(A) — k such that

ck . Cl

s,

o =(Cs,C)2CLy, mod H(<A)  foralls,tuveM(A).
Furthermore, we have (h.C4,Cy¢); = (Cs,h*.C); foralls,t € M(A) and h € H.
Proof. This is a good exercise to see how the axioms are used. By (C3), we have

Cﬁ,tcg,n = z r,),Ll (s',5) Cg/?n mod H(< 1), where h; = Cﬁ"t.
S'EM(A)

On the other hand, by (C2), we have C} CZ, = (Ct,)" (CL,)" = (Ct.Cl,)"
Applying (C3) to the product Cé"s C&u and using (C2), we obtain that
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Cﬁ_’t C;n = > rf}z(t/,t) Cﬁ.t’ mod H(< A), where hy = Cé_yg.
t'eM(A)
Hence, we deduce that C{}’tC‘ﬁ}ﬂn = oszfn mod H(< 1), where o := rﬁl (u,8) =
r}}é(n,t). Note that rﬁl (u,5) does not depend on v, and rﬁz(n,t) does not depend
on u. Consequently, & does not depend on u and not on v. Now choose u = v. Then
we also see that o is not affected if we exchange the roles of s and t. Thus, we obtain
a well-defined symmetric bilinear form (, ),, as required. It remains to show that
this form has the desired invariance property. Let & € H and s,t € M(A). Then

<h'C57Ct>ﬁ, = Z r}% (5/75) <C5’act>l'
s'eM(A)

Now let u,v € M(A). Multiplying the above identity by Cin and using the defining
formula for (, ), we obtain

<h'C5’Cf>7L CLAL,U = 2 r}lz (ﬁlvﬁ)cﬁ,s/ C&b mod d('< )L)
s'eM(A)

On the other, by (C2) and (C3), we have

> rh(ss)Ch, = (hCE) =Ch " mod H(< Q)
s'EM(A)

and so
(h.Ca,CYACly =Ch (CH) = Y i (t )CECh,
veM(n)

> () (Cs,Co)a CLy = (Co,h*.C)2Chh,,  mod H(<A),
tYeM(2)

as required. a

Corollary 2.6.3. Let A € A and 5,5, t,u € M(A). Then
rn(s',5) = 8y (Cs,Ci)y, where h= C&,r

Proof. This is clear by Lemma 2.6.2 and the definiton of r;,(s’,5) in (C3). O

Definition 2.6.4. Let L* := W(A)/rad((, );) for any A € A. Then L* is a left H-
module since, by Lemma 2.6.2, the radical of (, ), is an H-submodule of W(2).
Note that we may have L* = {0}; this happens if and only if (, ), is identically
zero.

Now we have the following two fundamental results of Graham and Lehrer [144]
whose proof we will not give here. (See also Mathas [245, Chap. 2].)

Theorem 2.6.5 (Graham and Lehrer [144, 3.4, 3.8]). Assume that k is a field. If
(, )1 #£0, then L* isan absolutely irreducible H-module; furthermore,
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In(H) = {L* | L€ A}, where A°={A€A|(,),#0}.

In particular, the algebra H is split. Finally, H is semisimple if and only if A = A°
and ( , ), is non-degenerate for all A € A.

Recall that an algebra is called split if the endomorphism algebra of any irre-
ducible representation consists just of the scalar multiples of the identity.

Theorem 2.6.6 (Graham and Lehrer [144, 3.6]). Assume that k is a field. For A €
A and 1 € A°, denote by (W(A) : L*) the multiplicity of L* as a composition factor
of W(A). Then

A4) Wu):L*)=1 and (W(A):L*)=0 unless A =U.

Thus, the decomposition matrix D = (W (L) : L“))AeAluer has a lower unitrian-

gular shape, if the rows and columns are ordered according to the order relation <.

Let us now also assume that H is a symmetric algebra, with trace form 7: H — k.
Then, given a basis {CE’}_’t |A €A, s,te M(A)} as above, we have a corresponding

dual basis C:= {C} | A € A, s,t € M(1)}. We choose the notation such that

A 1 ifA=Uu,s=0t=u,
t(Ch Cly) = { u

0 otherwise.

To state the following result, note that if V is a left H-module, then Homy(V, k)
also is a left H-module where the action is given by h.f(v) = f(h*.v) for h € H,
f € Homy(V,k) andv e V.

Proposition 2.6.7 (Graham [143, 4.12]). Assume that H is symmetric with trace
Sform t: H — k such that T©(h*) = t(h) for all h € H. Then, with the above notation,
the following hold.

(a) The quadruple (AOP,M,Q, x) also is a cell datum for H, where AP is the set A
endowed with the opposite partial order =op (that is, A <gp t & U 2 A).

(b) Let A € A and W(Q) be the cell module with respect to the cell datum in (a).
Then there is an isomorphism of left H-modules W (1) = Homy (W (1), k).

(c) Ifkis afield and H is semisimple, then W (L) = W (L) for all A € A.

We shall call (A°P, M, C, *) the opposite cell datum to (A,M,C, ).

Proof. Let us verify that (C1), (C2), (C3) hold for the quadruple in (a). First note
that (C1) is clear and (C2) is easily seen to hold thanks to the assumption on 7. To
prove (C3), let h € H and consider the product hC&t. Let u € A and u,0 € M(u)

be such that éﬂﬂn appears with a non-zero coefficient in the expansion of hé&t with
respect to the basis C. Note that this coefficient is given by

T((hég,t)cg,u) = T(((héit)cg,u)*) = T((h*cﬁ,n)é’&s)'
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Hence, by (C3) for the original cell datum, we must have A =< u; furthermore, if
A = U, then the above expression evaluates to 6{)’{7'},7:* (s,u). Thus, we have

hCti= Y rh(s,u)Cly mod H(<op A).
C ueM(A) '

This shows that (C3) holds. The above formula also proves (b). More precisely, if
p*: H — My, (k) is the matrix representation afforded by W (A) (with respect to its
standard basis), then the matrix representation afforded by W (1) (with respect to its
standard basis) is given by h — p(h*)" (h € H).

Finally, to prove (c), assume that k is a field and H is semisimple. Let A € A and
G* be the Gram matrix of the bilinear form ( , ), with respect to the standard basis
of W(1). Then G” is invertible by Theorem 2.6.5. On the other hand, the invariance
condition in Lemma 2.6.2 implies that G* p* (h) = p (h*)" G* for all h € H. Hence,
the two representations are equivalent; that is, W (A1) = W (). O

We return to the situation where we consider the generic Iwahori—Hecke algebra
H = H,(W,S,L) associated with a finite Coxeter group W and a weight function
L: W — I'. Recall that H is defined over A = R[I"], where R C C is a subring such
that Zw C R; furthermore, we assume that there is a monomial order < on I" such
that L(s) > 0 for all s € S. Let {C,, | w € W} be the associated Kazhdan-Lusztig
basis of H; see Section 2.1. Write

Irg (W) ={E* |A €A},  dj =dimE*,

and let M(2) be an indexing set for a basis of E*, as in Section 1.2; for each E* €
Irrg (W), we have a corresponding invariant ay € I3o. In Section 1.5, we used the
leading matrix coefficients ¢} /l to construct the ring J.

Definition 2.6.8 (Cf. [111, §3]). Assume that R C C is L-good in the sense of Defi-
nition 1.5.9. Let A := A and M(A) := M(A) for all € A. Let p* and B* be as in
Proposition 1.5.11. Let us write

p (1) = (Cfvfl)s,teM(l) and B = (ﬁgt)s,teM(A)'

Then, for any A € A and s,t € M(1), we define

=y 3 ﬁ&lcfvi.l cH.

weW ueM(A
We now show in several steps that (C1), (C2), (C3) hold for these data.

Remark 2.6.9. In the defining formula for CZ ,, we can assume that the first sum runs
over all w € %, (where .%, is defined in Proposition 1.6.11). Indeed, if C,, appears
with a non-zero coefficient in that sum, then ¢!?, , # 0 for some u,s € M(A), and

sow~! € .%,. But then Lemma 1.6.6 also shows that w € .%,, as required.
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Lemma 2.6.10. The elements {C} (A €A, s, t€M(A)} form an A-basis of H. In
fact, lety € W and .F be the two-sided J-cell containing y. Then C, is an R-linear

combination of elements C* ., where A € A is such that E* “nsp Y.

R

Proof. By the Artin-Wedderburn theorem, |W| = ¥, 4 |[M(1)|?. Hence, the above
set has the correct cardinality. It is now sufficient to show that the elements {C i
span H as an A-module. Let us fix y € W. We claim that

Gy = Z z fll 5 ﬁ 5 ¢, Where (B)L)_l = (Bst)~

A€A s,s" teM(A)

Note that the coefficients in the above sum lie in R, since fj and det(B)L) are invert-
ible in R (since R is L-good and by Proposition 1.5.11(b)). Furthermore, we have
E* e~y y if C? ¢ occurs with non-zero coefficient in the above sum. Thus, it re-
mains to prove the above identity. For this purpose, we insert the defining formula
for C7L ¢ into the right-hand side; this yields

DIDINEDS falfi(Zﬁuﬁm)c—lx

weW LeA s,s' ueM (A teM(A

=2 (Z > fllcsicuill)cwzcy

weW "AeA s,ueM(A

as desired, where the last equality holds by Proposition 1.4.10(b). a

Lemma 2.6.11. We have (Cgl_’t)b = Cﬁs forall A € A and s,t € M(A), where b is
the anti-involution in 2.1.14.

Proof. By 2.1.14, we have C), = C,,1 for all w € W. Thus, we obtain

W71

(Cé,t)b* > X ﬁk eyt Gt = = (B)L~p)’(tw—l))t_ﬁcw—].

weW ueM(A wew
By Proposition 1.5.11, we have B*.p*(z,,-1) = p*(1,,)".B*. This yields

(C:)’ =Y (P (t)"BY)  Co1 = X Z o BLC =Cty,

wew weW ueM(A

as required. (Recall that B* is symmetric.) a

We can now state the main result of this chapter.

Theorem 2.6.12 (Cf. [111, §3] [112, §5]). Assume that R is L-good and that (#) in
2.5.3 holds. Then the elements {Cit} introduced in Definition 2.6.8 form a cellular
basis of H with respect to the anti-involution T,, — wa =T, (see 2.1.14), and the
partial order <, on A defined by
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pu< A ¥ ou=2 o EF< EM EM 4 EM

where <1, and ~ are as in Definition 2.2.1. If property (&) in 2.5.3 also holds, then
we have
u<A = A=u or a;>ay.

Proof. Recall that (C1) holds by Lemma 2.6.10; (C2) holds by Lemma 2.6.11. In
order to prove (C3), we need to consider a product hCﬁ"t where he Hand A € A,
s,t € M(A). It is sufficient to consider the case where h = C, for some x € W. Now,
by the definition of C ¢ and Remark 2.6.9, we have

hCly=Y rnC,  where =Y Y Bl 1 By

yew WwEF) ueM(1)

Let T, be the two-sided Kazhdan-Lusztig cell such that .%, C ¥;. Note that if
ry # 0, then there is some w € %) C ¥ such that A, , # 0 and so y < gz w (in the
Kazhdan-Lusztig pre-order).

Assume first that r, 20 and y ¢ ¥, . By Lemma 2.6.10, C, is a linear combination
of elements Cu vs Where E* «~s; y. Hence, since y ¢ T,l, we conclude that Cy €
H(< A) and so we do not need to consider these terms in any more detail.

Thus, we can now assume that y € T, . Then, by Lemma 2.5.8, we have

Powy = D, Adhed: ¥,y foranywe %) C%,.
€W,de9
~ ggpd

We insert this formula for Ay, into the above expression for ry; this yields

ry = z z 2 ﬁtu IJL fighya.z ’}7z,w,y"

WEF) zeW.deP ueM (A
g d

= Z fghya; Z Btu(z ;Slk’yzwy )

€W,de ueM(d) WEF)
gz d

Now, by 1.6.10 and Proposition 1.6.11, the sum over w € .%, can be extended to a
sum over all w € W. Using the defining equation for ¥, ,, -1, we obtain

- . —1 s'v o' s
S e = s, (XS flerand,)

weF), wew UEA ' v o' eM(u)

=3 X Rt (Tanaah)= X e,

UEA s v o'eM(u) s'eM(A)

where the last equality holds by Proposition 1.4.10(a). This yields
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5t— erc— z ﬁdhx,d,z Z (Z Z ﬂtu yll )

YET, 2€W,ded s’EM(/'L) YeEW ueM (A
gz

mod H(<y 4). Since the parenthesised sum equals Cﬁ,_ (» we see that
= Y (X Aheazctf)Ch, mod H(<pA).
s'eEM(A) zeW.deZ
Nﬁ([

Thus, we have shown that, for 7 = C, (x € W), we have

(s ,s) = Y fighca: ci_//'{' for all 5,5" € M(1);
€W, ded '
o~ gppd

in particular, this expression does not depend on t, as required. O

The model for this theorem, namely the case where W is the symmetric group
S,,, will be considered in detail in Section 2.8.

Remark 2.6.13. Note that the ingredients for a cellular basis of H (that is, the ele-
ments {C t} and the partial order <;) are defined without reference to (#); this
property is only required for the proof.

Remark 2.6.14. Assume that we are in the equal-parameter case. Then we have seen
in Proposition 2.5.12 that (&) is a consequence of the following implication:

(&) E* ~; E* = a g =a,.

Thus, in order to prove Theorem 2.6.12 in the equal-parameter case, we only need to
assume that (') holds. Recall that (&) does hold in type I, (m) (any m > 2), H3, Hy
by Examples 2.2.8 and 2.2.9. Furthermore, (&) was already established by Lusztig
[220, 5.27] (around 1985) for all finite Weyl groups.

Remark 2.6.15. Recall that, by Remark 2.2.11, we have the implication
E* <, E* = Er < EM
Now, by Examples 1.2.7 and 1.3.4, the following relation holds between a; and a,::
Njtrace(s, E*)
a §— a;, = N = (—k ’ ) L .
ai—ar =Ny = SmEA (s)

ses’

It follows that if (&) is satisfied, then we have the implication
A<pu = A=u or Ny <Ny.

Thus, Theorem 2.6.12 could be alternatively formulated using N instead of the
invariants a,. Note that N, is much easier to define than a,; also, N does not
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depend on the monomial order on I". The idea of using the invariants N, appears, in
a somewhat different context in Ginzburg et al. [137, §6]; see also Gordon [140].

The following result shows that, for any Iwahori—-Hecke algebra associated with
a finite Coxeter group, there does exist at least some cellular structure.

Corollary 2.6.16. Let k be a commutative ring (with 1) and {& | s € S} Ck* a
collection of elements such that & = &, whenever s,t € S are conjugate in W. Let
Hy = Hi (W, S, {&}) be the corresponding Iwahori-Hecke algebra; see 1.1.2. As-
sume that k is Ly-good (see Definition 1.5.9) for the “universal” weight function Ly
in Example 1.1.9. Then Hy, admits a cellular basis {Cgt | A €A,s,t € M(A)} with

respect to the anti-involution T, +— T), =T,

—1 and some partial order on A.

Proof. Let Iy, Ag and Hy be “universal”, as in Example 1.1.9. Choose a monomial
order on Ij such that, on every irreducible component of type By, F4 or L(m) (m
even), we are in the “asymptotic case” in Example 1.1.11. Then, by Corollary 2.4.2,
we know that P1-P15 hold. Hence, as discussed in 2.5.3, the properties () and (#)
also hold and so Theorem 2.6.12 applies. Thus, we obtain a cellular basis { Cﬁ_t} for
Hy, where the partial order on A is given by <z,,. '
Since k is Ly-good, there is a ring homomorphism R — k. This extends to a ring
homomorphism 6: Ay — k such that 0(v9) = & for all s € §', where {v?} are the
parameters of Hy. Thus, Hy = k ®4, Hy, where k is regarded as an Ag-module via 6.
Since the elements {Cél{ | A €A, s,teM(A)}in H satisfy (C1), (C2), (C3), it is

clear that the elements {C;l)t =1 ®C§)t |A €A, s, te M(A))} satisfy (C1), (C2),
(C3) in Hy. Thus, we have constructed a cell datum for Hj. O

Example 2.6.17. Let W be of type L(4) = By, where S = {s1,s,} and (s152)* = 1.
Assume that we are in the equal-parameter case, where I' =7 and L(s|) = L(s2) =
1. Then A = R[v,v"!] is the ring of Laurent polynomials in one indeterminate v =
€. Now Theorem 2.6.12 applies where R C C can be any subring in which 2 is
invertible. In order to determine a cellular basis, we need to work out the leading
matrix coefficients of the irreducible representations of Hg. The two-sided cells are
given by {1o}, {14} and W \ {1¢, 14}, where we use the notation in Example 1.7.3.
First consider the representation o7. By Example 1.3.7, we have a5, = 1 and so

-10 -10
voi(Th,) = ( o v2> = ( 0 O) mod m,

|
[T )
<
=
—_
~
I
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A corresponding symmetric matrix is given by

Bg, = (é (1)> see Example 1.4.6.

Performing similar (but much simpler) computations for the one-dimensional repre-
sentations, we obtain the following expressions for Cﬁt (see also [111, Exp. 4.3]):

CY =Gy, CY = —2Cy, — 20y,
Cc¥l =, ClY, = —2Cy,,
CH'=-C, +Cyy, CJ) =20y,
CH?=—Ci,+Ci;, CJh=—C—Cyy.

For the case of unequal parameters, see 2.8.19.

Example 2.6.18. Let W be of type ©(6) = G, where S = {s1,5,} and (s15,)® = 1.
(a) Assume that we are in the equal-parameter case where L(s;) = L( 2) > 0. Then,
again, Theorem 2.6.12 applies and so we have a cellular basis {C t} In this case,
we can take for R any subring of C in which 2, 3 are invertible. Expressions for Cs‘t
have been worked out in [129, Exp. 2.7] (using computations similar to those in the
previous example):

Cl 1 = Clys ngn Cis)

CPl' =Gy —Coy + Gy, Cigfz =Cy, —C,+Cuy,
CT\ =3C1, +6C1; +3Ci;, C =C), —Ci,

CYY, = —3Cy, —3Cy,, CTy=—C,+Cyy,
C\ = —3Cy, —3Cy,, CY = —Cy, +Cyy,
CYY) = Cy, +2Cy, +Coy, CY% =Cy, — Gy

(b) Assume that the monomial order on I' is such that L(s;) > L(s2) > 0. By 2.4.1,
P1-P15 hold and, hence, by 2.5.3, the hypothesis of Theorem 2.6.12 is satisfied. In
this case, we can take for R any subring of C in which 2 is invertible. We find the
following expressions for the cellular basis:

Cl 1= =Gy C?,ll = G, +Cy, C?,zl = G, -Gy,
Cblg:l = C167 Cf,lz =—C,-Cyy, C?.,zz =—-C,+Cy,
cE'=cC CJ =—Cy,—C Cy =—-Cy, +C
1,1 21 2,1 2 245 2,1 2, TCoy;
Cig?z = C1S, Cg}2 = C23 +C25, ngz = C23 —Czs.

Example 2.6.19. Let W be of type I(5), where S = {s1,52} and (s152)° = 1. We are
in the equal-parameter case; assume that L(s;) = L(sy) > 0. Then Theorem 2.6.12
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applies and so we have a cellular basis {C t} In this case, we can take for R any
subring of C in which 5 is invertible and ¢ := 5 L (—=14+/5) € R. We find the follow-
ing expressions for C;L’t:

=y, e
CTy = 2+ a)Ci, + (3+2a)Cy, C?fl = (1-a)Cy, + (1 —20)Cy,
Clh=—-Q2+a)C,— (1+a)Cy,,  CP=(a—1)Cp,+aCy,
Co=—Q2+a)Cy, — (1+ )Gy, CF = (a—1)Cyy +alCy,

CYY =Coy + (1+a)Coy, CP4 =Gy — aCyy.

2.7 Further Properties of the Cellular Basis of H

Throughout this section (except for Corollary 2.7.14 at the very end), we assume
that we are in the setting of Theorem 2.6.12, where properties (&) and (#) in 2.5.3
hold. Thus, we have a cellular basis {C ¢} of H, and the partial order on A satisfies

uw<p A = u=~A or ay >a.

Let {W(A) | A € A} be the cell modules constructed from the cellular basis; see
2.6.1. By extension of scalars from A to K, we obtain modules for Hy which we
denote by Wg(A) (A € A). Since Hk is semisimple, Theorem 2.6.5 shows that

Ir(Hg) = {Wg(L) | L € A}
Proposition 2.7.1. Let A € A. Forany h=C,, (w € W) and s,5' € M(A), we have
e ri(s',5) € R[], with constant term equal to cfvli

In particular, the representation of Hy afforded by Wy (L) (with respect to its stan-
dard basis) is balanced, and we have Wy (1) = E}.

Proof. At the end of the proof of Theorem 2.6.12, we obtained the formula

Aot ~ s's
rh(s,s): 2 ”dhw,d,zcz,/l-
2EW,deD
w~gppd

Now assume z € W and d € 2 are such that z ~ &5 d and the corresponding terms
. . ! . !
in the above sum are non-zero; that is, Ay, 4. # 0 and ¢ 7 # 0. Since ¢ 7 # 0, we

have E* «~[ z. Hence, Lemma 2.5.11 shows that % h,, 4, lies in Z[I%o] and has
constant term ¥, ; .-1. Thus, we have ™ rt(s',s) € R[I>o) and
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. ' /
£ rﬁ’(gl’s) = Z ( 2 fig yw_’d(l)cjj = ch mod R[I%],
€W deDizm gpd

where the last congruence follows as in Remark 2.5.15. Once this is established,
it is clear that the representation afforded by Wk (A) is balanced. Furthermore, by
Proposition 1.5.7, we also see that Wy (1) = EL. O

Corollary 2.7.2. Let A € A and denote by G* = (ggt) s,teM(M) the Gram matrix of
the bilinear form ( , )y : W(L) x W(A) — A. Then

€% g4 € R[] and €% gl = f B mod R[I%).
Proof. Recall that g4, = gl = 1} (s,s), where h = Cgl’t. Hence, using the defining
we obtain

g =Y ¥ Bfu ey (8% 1, (5,5)).

weW ueM (A

formula for CQ &

By Proposition 2.7.1, this expression lies in R[] and has constant term

Z Z ﬁtu 1,1 wx— Z Btu(ch—m w/l) ﬁtsflv

weW ueM(A ueM(A weW
where we used the “Schur relations” in Proposition 1.4.10(a). a

Example 2.7.3. Let A € A and consider the representation p* : J — My, (K), where
pr(1,) € My, (R) for all w € W. By first restricting p* to Jg and then extending
scalars from R to A, we can also regard ﬁl as an A-algebra homomorphism

ph:Ja— My, (A).
With this convention, the formula at the end of Theorem 2.6.12 means that

(5 (5".9) g scrray = PH(9(Ch))  (R=C).

By Proposition 2.7.1, we have E} = Wi (1 ). Hence, the above formula shows that,
for a suitable basis of EZ, the action of C,, on E} is given by the matrix p* (¢ (C,,)).
We express this by saying that the action of H on EE’l factors through ¢.

Example 2.7.4. Let A € A and assume that there exists a left Kazhdan—Lusztig cell
¢ such that EE’l 2 [€]k. (This is a very special situation, but we will see in Section 2.8
that it holds, for example, when W = &,,.) Let us write € = {x; | s € M(A)}. Then
we have a corresponding representation pe : Hx — My, (K) such that

pe(Cy) = (h,v7xt7x5)57t€Mm forallw e W.
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By Lemma 2.2.4, there exists some w € € such that E* «~sp w. Since (&) is assumed
to hold, we can apply Lemma 2.5.11, which yields that p¢ is balanced and, for all
weEW and s,t € M(L), we have

e hy v =7, 1 mod Z[I).

W,X¢,Xg
Thus, we can assume that p* = pg and the leading matrix coefficients are given by
Cfvf)t = V! forallw e W and s,t € M(1).
Now, by Lemma 1.5.3, we have }7w.xt.,x;1 = ?xfl,w’l,xg, = fﬁ St This means
that p*(1,,)" = p*(t,-1) for all w € W. Consequently, the conditions in Proposi-
tion 1.5.11 are satisfied where we take B to be the identity matrix. The formula for

r}}: (¢',s) in the proof of Proposition 2.7.1 now reads

I‘% (5/a5) = Z iy hw,d,z 7727){5 -x7l = hw,x5 X! (h = Cw)7
zeW.deD e
=~ gpd

where the last equality holds by Lemma 2.5.8. Thus, we have shown that W (A) is
nothing but the left cell module [€]4. Furthermore, the action of H on [€]4 factors
through ¢, as in Example 2.7.3.

2.7.5. One important feature of the definition of a “cell datum” is that it behaves well
with respect to a specialisation; see [144, (1.8)]. Let 8: A — k be a homomorphism
into a field k. Let Hy = k ®4 H be the corresponding specialised algebra over k.
Assume that {Cﬁ‘t} satisfy (C1), (C2), (C3) in H. Then the elements {1 ® Cﬁ_t}
will satisfy (C1), (C2), (C3) in Hy. Hence, a cell datum for H automatically gives
rise to a cell datum for Hy. Note that then the cell representations of Hy are given
by Wi (1) =k®4 W(A) (A € A), and the bilinear form (, ); on W(A) induces the
corresponding form (, )4 x on Wi(4). In particular, we have the following:

(a) Extending scalars from A to K, we obtain a cell datum for Hg. As already
mentioned (see Proposition 2.7.1), since Hg is semisimple, we have

Irr(Hg) = {Wk (1) | L € A}, where Wi(A) = E} forall A € A.

(b) In general, given any map 6: A — k as above, we set Lé =Wi(A)/rad((, )2 )
for A € A. Then Theorem 2.6.5 implies that

Irr(Hy) = {Lf | ueA}, where AL ={AeA|(, ) x#0}.

Furthermore, the composition multiplicities (Wi(2) : L) satisfy the conditions
(A) in Theorem 2.6.6. Hence, since () is assumed to hold, this means

A% (Wie(u): L) =1 for all u € A,
L) =0 unless A = p ora; >ay.
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Thus, our “fundamental problem” (p. 3) of determining Irr(H) now takes the fol-
lowing more precise form (and this will be addressed in the subsequent chapters).

Fundamental Problem (revised). Given a cell datum for Hy, describe the subset
Ag C A and determine the dimension of L;f foru e AL

Our next result provides an alternative characterisation of the subset Ay C A.
In particular, this shows that A7 does not depend on the choices involved in the

definition of {C;t}. (Recall that, for example, this definition relies on the balanced
representations p#, and these are not uniquely determined.)

Proposition 2.7.6. In the setting of 2.7.5, let A € A. Then the following three con-
ditions are equivalent.

(a) AeAL.
(b) 6()(’l (Cw)) # 0 for some w € W such that EY ey w.
(c) Cy.Wi(A)#{0} for some w € W such that E* sy w.

Proof. “(a) = (b)” If A € AZ, then (, ), # 0 and so (Cy,Cy)y x # O for some
u,t € M(1). Now, by Proposition 2.7.1, we have E* = Wi (A) and so

x*(h) = trace(h, E}) = trace (h,Wg (1)) = Y. ri(s,5) forallheH.
seM(A)

Let h = Cﬁ’t and apply Corollary 2.6.3. This yields rff (8,5) = Ous(Cs,Cy)y for
all s € M(A) and so x*(h) = (Cy,Cy);. Since (Cy,Ci) i # 0, this shows that
8(x*(h)) # 0. Finally, by Remark 2.6.9, & is an R-linear combination of elements
C,,, where E* «~ w. Hence, (b) follows.

“(b) = (c)” As above, we have x}‘(h) = YseM(A) r;} (s,s) for all » € H. Since
Wi(A) = k@4 W (L), this implies

0(x*(Cy)) = trace(Cyy,Wi(1))  forallwe W,

where C,, is regarded as an element of Hy on the right-hand side. Hence, if (b) holds,
then C,, does not act as zero on Wy (A ) and so (c) holds.

“(c) = (a)” Let w € W be such that E* «~s; w and C,.Wi(1) # {0}. By
Lemma 2.6.10, C,, is an R-linear combination of elements Cﬁﬁn, where L € A is
such that E# «~; w. Hence, we also have 7.Wi(1) # {0}, where h = C};, for

some i € A and u,v € M(u) such that E* ~; E*. In particular, this implies that
h.W (L) # {0}. By the definition of the action of H on W (1), this means that there

exist some 5,5",t € M(A) such that Cﬁ/_ . appears with a non-zero coefficient in the

decomposition of hC% = C}; ,CZ . By (C2) and (C3), this implies that A <l .
Since also E* ~r E*, we conclude that A = u.
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Thus, we have h.W; (1) # {0}, where h = Cﬁ,n for some u,v € M(1). By the
definition of the action of Hy on Wy (1) and Corollary 2.6.3, this implies that

(Cs,Co)ax=0(rf(u,5)) #£0 forsomes e M(L).
Thus, (, ), x # 0 and so (a) holds. O

Proposition 2.7.7. Let A € A;. Then the following hold.

(a) We have 6(x*(C,,)) = trace(CW,L,%)for all w € W such that E* «p w.
(b) We have CW.L% # {0} for some w € W such that E* asp w.

Proof. (a) Let w € W be such that E* «~s; w. As in the above proof, 8(x*(C,)) =
trace(C,,, Wx(1)). Considering a composition series for Wy (1), we obtain

0(x*(Cw)) = Y, (Wi(A): LY)trace(Cy, LY).
UHEAL

Let u € A and assume that the corresponding terms in the sum are non-zero; that
is, we have (W (1) : Lj) # 0 and trace(Cy, L} ) # 0. In particular, this means that
Cw.Lf # {0}. We claim that this implies that E# < E* . Indeed, since CW.L,F: # {0},
we also have C,,. Wy (i) # {0} and, hence, C,,.W (i) # 0. By Lemma 2.6.10, C,, is
an R-linear combination of elements C}, ,, where v € A is such that EV ey w.

Hence, we also have 2.W (i) # {0}, where / = C)., for some v € A and u,0 €
M(v) such that E* ~; EV. Arguing as in the above proof, this implies that y < v.
Since also E* ~r EV, we conclude that E* < El, as claimed. On the other hand,
since (Wi(A) : L}) # 0, we have A <I; u; see Theorem 2.6.6. In combination with
E* <, E*, this implies that A = y. Thus, since (Wi(1) :L,’}) = 1, we have shown
that 6(x*(C,,)) = trace(Cw,L,%).

(b) By Proposition 2.7.6, we have 6(x*(C,)) # 0 for some w € W such that
E* «~s; w. By (a), this implies that trace(C,, L}) # 0 and so C,,.L} # {0}. O

Remark 2.7.8. Once a cellular structure for H is available, it also natural to consider
the “Jantzen filtration” on cell modules; for recent results and open problems in this
direction, see James and Mathas [183], [184], Shan [277] (type A), Bonnafé and
Jacon [27] and Policzew [266] (exceptional types).

Finally, we discuss the existence of W-graph representations, as already briefly
mentioned at the end of Section 1.4. We begin with a preliminary result about the
structure and the representations of J.

Lemma 2.7.9. In addition to (&) and (8), also assume that (§) holds. Then:

(a) We have ¥y, € Z and iy = +1 foralld € 9.
(b) The elements {figty | d € P} are orthogonal idempotents.

Furthermore, for each A € A, the balanced representation p’l of Hg can be chosen
such that the following holds for the corresponding representation ﬁ’l of J:
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(¢) The conditions in Proposition 1.5.11 hold where p*(t,,) = (cfvtl) € My, (Zw)
forallweW.
(d) Foranyd € 9, the matrix ﬁl (t4) is diagonal with 0, %1 on the diagonal.

Proof. (a), (b) See Example 2.5.14. Once we know that %, and 7i,, are integers,
the fact that 7i; = £1 follows from the formula in Remark 1.6.19(a).

(c), (d) We slightly refine the argument in Proposition 1.5.11. We can assume
that (W,S) is irreducible. First let W be of type I>(m). In the proof of Proposi-
tion 1.5.11, we have seen that the representations in Example 1.3.7 satisfy (c). By
Example 1.7.4, these representations also satisfy (d). Now assume that W is not
of type I(m). Then Zy is a principal ideal domain. As in the proof of Proposi-
tion 1.5.11, a general argument shows that p’l can be chosen such that (c) holds. Let
J Zyw = (tw | W E W)z, andlet E Abeald 7 -module (finitely generated and free over
Zyw) which affords the representation ﬁl. Since the idempotents 7igt; (d € 2) lie in
J 7,y and since Zyy is a principal ideal domain, we have a direct sum decomposition
E* = DBco E*, where E% := figty.E* is a Zy-submodule of £+ which is finitely
generated and free over Zy . Now choose a Zy-basis of E* which is adapted to this
decomposition and perform a base change (over Zy ) to this new basis. We replace
p” by the representation obtained via this base change (as in the proof of Proposi-
tion 1.5.11). This new representation is balanced, and it satisfies (c) and (d). O

2.7.10. We keep the assumptions of Lemma 2.7.9. We shall consider the effect of
Lusztig’s homomorphism ¢: H — Ja (see Theorem 2.5.5) on C;, where s € S is
such that L(s) > 0. For any d € 9, we have C,C; = —(vs +v;1)Cy if sd < d;
furthermore, if sd > d, then hs4, = 0 unless sz < z, in which case we have
hsa,= (—l)l(d)H(Z)H/,LZd. Thus, the formula in Theorem 2.5.5 can be written as

O (Cy) = —(vy +v;1)( D ﬁdtd) + ( Y (—1)/@+H@D+15, Hid&)-

deg €W, deP
sd<d sz<z<d<sd and z~ gppd

Following Gyoja [150] (where this is discussed in the equal-parameter case, in a
somewhat different setting), we define elements of J4 as follows:

~ . ~ ~ . 1(z)+1(d)+1 ~

So:= Y figly and §1:= D (—1)/EH) g M g T
de9 €W,de9
sd<d sz<z<d<sd and z~ ppd

Thus, ¢(Cs) = —(vs +v; )50 +§1. Now recall that C; = Ty — v,T;. Then we have
O(Ty) = ¢(Cy) +vsl5 = —v;1§o+vs(1j —350)+§1 for any s € S.

The collection of elements {5, 5 | s € S,L(s) > 0} satisfies the following properties.
Lemma 2.7.11 (Cf. Gyoja [150, 2.4]). In the above setting, we have

2 o~ - ~ -~ - -~
o = So, Soto = foSo0, So81 = §1, 515=0

Sorall s,t € S such that L(s) > 0 and L(t) > 0.
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Proof. By Lemma 2.7.9(b), the elements {7igt; | d € 9} are orthogonal idempotents
in J. This yields that 5(2) = §p and Sofy = fpSo for all 5,7 € S. Now consider

& 1(2)+(d)+1 5 ~
0= T OO (S ),
€W.d'e9 e
sz<z<d' <sd' and z~ gppd’ sd<d

In order to show that this equals §j, it will be enough to show that ¥, 5 ;_;atat; =
t. for all z € W such that sz < z. Now, given any d € &, we have

{zz ifz '~gd,

Agtat: = Y, Ag ¥y o1t = > ¥ ot ate = 0 otherwise,

xeWw xeWw

where the second equality holds by Lemma 1.5.3(a) and the third equality holds
by Remark 1.6.19(a). Hence, it remains to show that the unique d € & such that
77! ~ o d satisfies sd < d. Now recall that sz < z. Using Lemma 2.1.16, we conclude
thats € £ (z) = Z(z~") = %Z(d). But, by Remark 1.6.19(a), we have d> = 1 and so
Z(d) =2£(d). Thus, sd < d, as required. Finally, consider

8180 = z z (—l)l(z)+l(d/)+1ﬁd/ ,Uidlﬁdtztd-

de9 W, d' €9
sd<d sz<z<d'<sd' and zmwd’

Assume, if possible, that this is non-zero. Then for some z,d,d’ in the above sum,
we have ui o 7 0and t;2; # 0. Arguing as above, the latter condition implies that
7z ~ ¢ d. On the other hand, since /’LZ & # 0, we have z < ¢ d'. Since we also have
Z ~ g d', we can conclude that 7 ~ g d’; see Lemma 2.5.9. Hence, (4) yields that
d = d'. But we have sd < d and sd’ > d’, which is a contradiction. Hence, the
assumption was wrong and so we must have §15y = 0, as claimed. O

A version of the following result (for equal parameters, and without taking into
account the cellular structure) was first shown by Gyoja [150, §2]; subsequently,
Lusztig [224, 3.8] gave a slightly different argument based on his asymptotic alge-
bra. Our proof is a combination of the techniques used in [150] and [224].

Theorem 2.7.12. Recall our standing assumption that (&) and (&) hold; also as-
sume that (#) holds and that L(s) > 0 for all s € S. Then the data in Definition 2.6.8
can be chosen such that the cell modules {W (L) | A € A} are afforded by W-
graphs where the elements {mfc)} C A (see Definition 1.4.11) all lie in the subring
Zw|I'] C A.

Proof. By Lemma 2.7.11, the elements {5y | s € S} pairwise commute with each
other. Hence, we can define

Fr=([T5%)(TT (1;—%)) €J for any subset I C S.
sel  ses\I

These elements have the following properties:
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() I5=F, F=F (CS), FEF=0 I#J).
ICS

Indeed, by Lemma 2.7.11, the elements {3 | s € S} do not only commute with each
other, but they are also idempotents. Hence, each F; is an idempotent (possibly zero).
Furthermore, suppose that I # J. If s € I'\ J, then the factor § occurs in F; and the
factor 15 — §o occurs in F;. Hence, we have FjF; = 0. The argument is analogous if

s € J\I. Finally, notice that 15 = 1 }S‘ =TTses (50 + (15— 50)) . Expanding the product
yields that 15 = ¥ F7, as required. Thus, (a) is proved.

Now assume that the balanced representations {p* | A € A} are chosen such that
they satisfy the properties in Lemma 2.7.9. In particular, for any A € A and d € 9,
the matrix p* (1) is diagonal with 0,1 on the diagonal. We conclude that p* (&)
is a diagonal matrix for any s € S and, hence, ﬁ}”(F]) is a diagonal matrix for any
1 C S. Since F; is an idempotent, the diagonal coefficients of p*(Fy) will be 0, 1.
Since the elements {F; | I C S} are orthogonal idempotents whose sum is 13, we
conclude that there is a well-defined partition

(b) M(A)=| |M;(A)  suchthat  Fre =e < teMi(A).
ICS

Let us now extend scalars from R to A. Then Ef’} = A®g E*isal 4-module but it
also becomes an H-module via Lusztig’s homomorphism ¢ : H — J4. The formula
at the end of the proof of Theorem 2.6.12 shows that & € H acts on W(A) in the
same way as ¢ (h) € Ja acts on E}. So let us identify W (1) = E*. Then, using the
formula for ¢ (7;) (s € S) in 2.7.10, we see that the action of H on W(4) is given by

T;.eq = —vs_ls"oet +vs(15 —50)et +Sieq, where t € M(1).

We will now show that this formula comes from a W-graph structure on W (4 ). First
of all, the definition of a W-graph requires a map from M (1) to the set of all subsets
of S. We define such a map as follows. Given t € M (1), let I(t) be the unique subset
I C S such that t € M;(A); see (b). This definition implies that

et if I = I(f),
() Frec= { 0 otherwise.

Next we consider the action of T, where s € S. If s € I(t), then §;5y = 0 and so
§1FI(£> = 0; since ey = F[(t)-@t, we conclude that §;.e; = 0. Furthermore, §y.e; = e
(since 5(2) = §o and so SoFy(¢) = F(y))- Hence, we obtain in this case

-1
Ts.e = —Vs €,

as required in the definition of a W-graph. Now assume that s ¢ I(t). Then §y.e; =0
(since SoFje) = 0) and so



122 2 Kazhdan—Lusztig Cells and Cellular Bases

~ N
Ty.eo =veer+81.ec=veec+ Y, my ey,
ueM(n)

where the terms m}, ( € A are such that 7}, = m}, ( and vym}, ( € Zw[I>o] (by the
defining formula for §;, Example 2.1.10 and Lemma 2.7.9(a) and (c)). So it remains
to show that m}, ( = 0 unless s € I(u). But, for any / C S such that s ¢ I, we have
(15 —50)§1 = 0 by Lemma 2.7.11 and so F75; = 0. Hence, we have

51.et:<2FI)s~1.et: 2 Fi51.e¢ C (Frey lue M(A),s €I CS)a.
1CS 1CS, sel

By (c), the latter submodule is contained in (e, | s € I(u))4, as required. So the
above formulae show that W(1) is afforded by a W-graph. O

The above result shows that the cell modules {W(A4) | A € A} arising from our
construction of a cellular basis of H are afforded by W-graphs. The following con-
jecture is a kind of converse to this statement.

Conjecture 2.7.13 (Geck and Miiller [129, 4.5]). Assume that L(s) > 0 forall s € S
and that, for every A € A, we are given a W-graph affording an H-module vA
such that K @4 V* = E}. Then the data in Definition 2.6.8 can be chosen such that
{V* | X € A} are the corresponding cell modules.

In order to prove this conjecture, it would be sufficient to show that every W-
graph representation of H factors through Lusztig’s homomorphism ¢: H — J,.
Somewhat related open problems are formulated by Gyoja [150, Remark 2.18].

The final result in this section holds without any assumptions on W, L.

Corollary 2.7.14. Let H = H4(W,S,L) be any generic Iwahori-Hecke algebra,
where W is finite and the general assumptions in 1.2.1 hold; that is, I' admits a
monomial ordering and A = R[I"], where Zw C R C C. Then every irreducible rep-
resentation of Hx can be realised over Zy[I'].

Proof. Let K be the field of fractions of R and set k := K[I']. Then k certainly is Lo-
good and so, as in the proof of Corollary 2.6.16, there exists some cell datum for Hy
which is obtained by extension of scalars from a cell datum in a “universal” algebra
Hj over Ay = K[I)], where P1-P15 are known to hold. Let {Wy(1) | A € A} be the
corresponding cell modules of Hy. We have a unique K-linear ring homomorphism
0: Ag — k such that 0(vy) = v, for all s € S, where {v{} are the parameters of Hy
and {v, | s € S} are the parameters of H. Thus, Hy = k®4, Ho, where k is regarded as
an Ap-module via 6. Now K (the field of fractions of A) equals the field of fractions
of k. Since Hx = K ®; Hy, is semisimple, we have

Irr(Hg) = {Wx(A) :=K®@4,Wo(A) | A €A}

see Theorem 2.6.5 and 2.7.5. Since each Wy(4) is realised over Zy [Iy] by Theo-
rem 2.7.12, we conclude that Wi (1) is realised over the image of Zw [I)] under 6p;
that is, over Zy [I'], as required. O
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2.8 The Case of the Symmetric Group

The aim of this section is to give an elementary proof of the properties (), (#) and
(#) in 2.5.3 when W = &,,. We will then see that the Kazhdan—Lusztig basis {C,, }
itself is a cellular basis in this case. Note that even if we were willing to admit from
the beginning that P1-P15 hold for W, then there would still be a substantial piece
of work to do in order to determine the partial order <y in Theorem 2.6.12.

We begin with a few general (and more or less well-known) remarks related
to longest elements in parabolic subgroups. In 2.8.1-2.8.7, W may be any finite
Coxeter group W and L: W — I' a weight function such that L(s) > 0 for all s € S.
(Here, we explicitly exclude the possibility that L(s) = 0 for some s € S.)

2.8.1. Let I C S and consider the parabolic subgroup W; C W. Let X; be the set of
distinguished left coset representatives of Wy in W; we have

X; = {w € W | w has minimal length in wW;}.

The map X; x Wy — W, (x,u) — xu, is a bijection and we have [(xu) = [(x) +1(u) for
u €Wy and x € Xj; see [132, §2.1]. Let H; = (T;, | w € W;)4 C H be the corresponding
parabolic subalgebra of H. For any w € W;, we have C,, € H; and C), € Hj; hence,
{Cy |w e W} and {C], | w € W;} are the Kazhdan—Lusztig bases of H;.

Lemma 2.8.2. Let w; € Wy be the unique element of maximal length. We have

Cy, = (—1)!0vn) gLlwr) 3 (—1)[) gLV, .

weWw

Furthermore, the following hold.

(a) Foranyw € Wy, we have T,,C,, = (—I)I(W) S_L(W)CWI.
(b) We have C2, = (—1)'"De~LMIPC,,  where P =Y,,cy, €2X); ¢f. 1.2.11(c).
(¢) The set Xywy is a union of left cells in W; we have Xpwr ={w e W |w < g wi}.

Proof. The formula for C,,, already appears in Example 2.1.17. Next, we prove (a),
by induction on I(w). First assume that w = s € I. Then we have sw; < wy and so
the multiplication rule in Theorem 2.1.8 shows that C;C,,, = —(vs +v; !)C,,,. Since
Cy = T, — v,Ty, this yields T,C,,, = —v; 'C,,. If [(w) > 1, then write w = w's, where
sel,w eWand l(w) =I1(w')+ 1. We have T,, = T, Ty, and so the desired formula
follows by induction. Once (a) is established, we compute

C2 = (—1)1m)glim) D (—l)l(w)EfL(W)Twa,
! weW;

= (71)1(W1)£L(W1) z 8_2L(W)CW[ — (,I)I(WI)S—L(WI)PICWI'

weWy

To obtain the last equality, we used the formula /(wwy) = I(w;) —I(w) for all w € W;.
Thus, (b) is proved. Finally, consider (c). Let w € W be such that w < & w;. Then
Z(wy) C %(w); see Lemma 2.1.16. Hence, since % (wy) = I, we can write w = xwy,
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where x € X;. Conversely, if x € Xj, then I(xw;y) = I(x) +(w;) and so xw; < ¢ wr.
(This follows since sw «— ¢ wif s € S, w € W are such that sw > w.) Thus, we obtain
Xiwr = {w € W | w < wy}. This also shows that X;wy is a union of left cells. O

Lemma 2.8.3. Let I C S and J;Z C H be the left ideal defined by the general proce-
dure in 1.6.2, with respect to the basis {C,, | w € W} of H. Then we have

38 = (Caw | X EX )4 = (T:Cyy | x € X ).

Proof. By definition, we have 3“2) = (Cy | w < g wr)a; this equals (Cyy, | x € Xp)a

by Lemma 2.8.2(c). Now set ///1 (I,Cy, | x € X1)4. Since CFZ is a left ideal, it
is clear that .#; C jwr Both .#; and EWZ; are free of the same rank over A; this
already implies that K @4 . = K ®4 7;%7 . But we also have that H/ 3;% is free over
A; furthermore, H is free as an H;-module and so H/.#; is free as an A-module.
Hence, we must have H; = TJ;Z; . O

Lemma 2.8.4. Let I C S and |1 € A be such that E* is a constituent of the induced
representation Ind% (sgng). Then E* «~sp xwy for some x € X.

Proof. Let sgn? denote the sign representation of H;. By Example 1.3.3, we have
sgné (T,,) = (—1)!™e=LM) for w € W;. So Lemma 2.8.2(a) shows that (C,,, )4 € H;
affords sgn?. Now, the induction of representations is also defined on the level of H;
see [132, §9.1]. Hence, by Lemma 2.8.3, we have an isomorphism of left H-modules

jf - IndH (<CW1 >A)7 T;CCWI = T;C ®CW[ (x 6 Xl)

Bya specialisation argument (see Example 1.2.4), our assumption implies that E is
a constituent of J JW K= K®a jf Now, for any w € W, we have trace(C,, jwfl;) =
xex; Powxwy owy - Furthermore by Lemma 2.8.2(a), we can write X;w; =€ U... U
¢, where €y, ..., &, are (pairwise distinct) left cells of W. Consequently, we have

trace(C,, J‘j N Y huoo= Y, trace(Cy,[€]a) forallweW.

1<i<mze¢; 1<i<m

Since H is split semisimple, this implies that JW k2] ®...®[Cy]k. It follows

that Ef is a constituent of [¢;]x for some i and so m(&;, it) > 0; see 2.2.2(b). Hence,
by Lemma 2.2.4, there exists some w € X;w; such that E¥ e~y w. O

Lemma 2.8.5. Let [ C S and |t € A be such that p*(C,,,) # 0. Then E* is a con-
stituent of Indy, (sgn;).

Proof. As in the above proof, let sgnj denote the sign representation of H;. Using
the formula for C,,, in Lemma 2.8.2, we obtain

2 (Cup) = (=)0 S sgnf (T, 1) 2 (Th),

weWwy
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where we also used the fact that sgn{ (7;,-1) = sgnj (T,,) for all w € W;. Now, writing
the restriction of y* to H; x as a sum of irreducible characters of H; x and using the
Schur relations in Proposition 1.2.12, we conclude that

xH(Cw)) = (— 1)I(W’)EL(w”csgnI m(l, 1),

where m(1, i) denotes the multiplicity of sgn? in the restriction of y* to H; x. By a
specialisation argument (see Example 1.2.4), m(I, i) also equals the multiplicity of
sgn; in the restriction of E* from W to W;. And by Frobenius reciprocity, this is the
same as the multiplicity of E as a constituent of Ind} (sgn;).

Thus, it remains to show that y*(C,,) # 0. Now, by Lemma 2.8.2(b), C,,, is a
non-zero scalar multiple of an idempotent. Hence, p* (C,,,) will be conjugate to a
non-zero scalar multiple of a diagonal matrix with 0 and 1 on the diagonal. Since
p*(Cy,) # 0, we conclude that y*(C,,) = trace(p*(Cy,)) # 0, as required. O

Corollary 2.8.6. Let I C S and A € A be such that a; = L(w;) and E* is a con-
stituent ofInd% (sgng). Then wy € F), (where .7, is defined in Proposition 1.6.11).

Proof. As in the above proof, y* (Cy,) = £e-("Degg, m(I,A). Now, we have

Csgn; = 2 sgn, sgn, z £*2L

weWy weW
Since a; = L(wy) and L(w) < L(w;) forw € W, w # wy, we obtain that

£ 1 (Coy) = 4m(1,2) Y, L0010 = (1 1) mod m.

weWy

Since we also have £ y*(T;,,) = € x*(C,,) mod m by 2.1.19, we conclude that
¢y, 0 = E£m(I,A) # 0 and so wy € 7. O

Corollary 2.8.7 (Cf. [107, 4.7, 4.8]). Let I C S and define

7! =P lelvie,, €, 1 € Hg for any x,y € Xj.

X,y AW~ wry™

Then the following hold:

(a) We have ZI = Z y € H. Furthermore, ZI € 3% where 3X7 is defined by

wr wr
the general procedure in 1.6.2, with respect to the basis {Cy, |w € W} of H.
(b) If u € A is such that p*( W) # 0, then E* is a constituent ()flndwl(sgnl)

Proof. (a) By Lemma 2.8.3, C,, is an A-linear combination of terms 7, C,,, where

x1 € X;. By 2.1.14, we have C,,, -1 Cybwl and so C,, -1 is an A-linear combination
1 s

of terms CWIT;]—I, where y; € X;. Consequently, by Lemma 2.8.2(b), Cy,,C,
1

W[_)77
an A-linear combination of terms P T, C,, qu , where x1,y; € X;. Hence, we have
1

~ P . - _ =1
Zl eHand Z € 327 Since P; = ¢ L") P, we also see that Z! =7, .
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(b) Assume that p# (Z[ ) # 0. In the proof of (a), we have seen that Z] , is an A-
linear combination of terms P Ty, C,, 7’;771, where x1,y; € X;. Hence, we must have
1

p*(Cy,) # 0 and so the assertion follows from Lemma 2.8.5. O

2.8.8. From now on, let W = &, be the symmetric group where S = {sy,...,5,—1}
and s; = (i,i+ 1) for 1 <i<n— 1. The set A consists of all partitions of n; we write
A F n to denote that A is a partition of n. Furthermore, we assume that I' = Z and
L(sj)=1for1 <i<n-—1.By1.7.6, we have f =1 forall A Fn. So R=7Zis an
L-good subring of C; in particular, A = Z[v,v~!], where v = ¢ is an indeterminate.
By Corollary 1.7.9, the balanced representations {p* | A -1} can be chosen such
that the corresponding leading matrix coefficients satisfy the following condition:

(a) Cfv,tk =c'%,, €{0,£1} forallwe W and s,t € M(1).

Consequently, we have a bijection
(b) Ll (M) xm@2)) = W, (5.0 = wils.b),
AeA

satisfying the properties in Theorem 1.7.10; in particular, we have
© Ty ={wy(s,t) |s,teM(A)} forall A F n.

By Proposition 2.1.20, we already know that .%, is contained in a two-sided
Kazhdan-Lusztig cell. One of our aims is to show that the converse also holds.

2.8.9. For any subset I C {1,...,n— 1}, denote by W; C W the parabolic sub-
group generated by {s; | i € I'}. We now define, for any partition A F n, a particular
parabolic subgroup of W. For this purpose, we set

IA) ={1,...,n ]\ {A A+ 40 + 4+ A3, )

where A > A > A5 > ... > 0 are the parts of 1%, the conjugate partition of 4.
(Thus, Wy(;y € W is the Young subgroup &,-.) For example, if A = (1"), then
A* = (n) and so W; = W. Then Young’s rule shows that, for any u - n, we have

(a)  E* is a constituent of Ind%m (sgmypy) & K #0 & pdA,

where K+« is a Kostka number and < denotes the dominance order on partitions,
as defined in Example 2.2.13. (For the first equivalence in (a), see Macdonald [236,
p- 115]; the second equivalence is a combination of [236, 1.6.5 and 1.7.9]. Note also
that A < u if and only if u* < A*; see [236, 1.1.11].) Consequently, we have

(b) a, =1(wy)) and Wiy € Fa for all A - n,

where we use Corollary 2.8.6 and [132, 5.4.1, 5.4.3] to relate a; and [(wy(;)). Now
we define a two-sided ideal of Hg by
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(©) N :={h€Hg | p*(h) =0forall u+ nsuchthat u A1}

We also set A, := {h € .A4; | p* (h) =0}. Note that . # is the sum of all Wedderburn
components of the split semisimple algebra Hx which correspond to the irreducible
representations EL where u<A.

2.8.10. We have just seen that wy(y) € ., for any A I n. In particular, wy;) =
w; (to,to) for a unique ty € M(A). By Theorem 1.7.10(b) and Proposition 2.1.20,
the set € := {w; (s,t) | s € M(A)} is contained in a left Kazhdan—Lusztig cell.
Hence, by Lemma 2.8.2(c), we have €y C Xj(;)w;(y). Consequently, there is a subset
{xs | s € M(A)} C Xj(z) such that w) (s,tp) = xswy(y) for all s € M(A). We now set

(a) Zy ::Z)ICMX)U where w=w, (s,t) fors,t € M(A).

5y

By Corollary 2.8.7(a), we have Z,, = Z,, € H. We claim that
(b) Zy €M, forallwe .%,.

This is seen as follows. Let u F n and assume that p*(Z,,) # 0. We must show
that 4 < A. Now, by Corollary 2.8.7(b), E* is a constituent of Ind%m (sgny(z)- By

2.8.9(a), this implies that 4 < A, as claimed.

Lemma 2.8.11. Let 1 € A and u,0 € M(A). Then, for any w € %), we have
Vv ph (7,) € Oy and v plt.(Z,) = £8,,8, mod m,

where s,t € M(A) are such that w = w) (s, 1).

Proof. We have a; = I(wy(;)) by 2.8.9(b). Hence we obtain

A -1 .2 A
Vi ploy (Z) = P[(,l) v ply (CXsz) Cwl(l)x;l)

—1 2 A
=Py 3y V"™ Pito (Cuy (5.t0) Gy (10.0)

= P[?}t) Z (Va)L pé’c (Cw/l (5,’(0))) (Va)L pt‘ltl (CW)L (to,t) )) .
teM(A)

First of all, this shows that the above expression lies in &p; note that Py;) € 1 +m.
Furthermore, its constant term can be expressed by the leading matrix coefficients
of wy (s,tp) and w) (to,t). Indeed, by 2.1.19 and Theorem 1.7.10, we have

A P:}r(cwa (s.to)) = C?V; (s,to),lE i65u6tt0 mod m,

VA P?n (Cvm(to,i)) = C:vj(to,t)ﬁk =400y, mod m.

Since Py(;) € 1 +m, we obtain v pr.(Z,) = £8, 8, mod m, as desired. O

Theorem 2.8.12 (Cf. [107, 4.10]). Recall that we are in the setting of 2.8.8, where
W = &,,. Then the following hold for any partition A - n.
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(a) +Cy € Zy+ N, C N, forallwe Fy,
(b) N, = (Cy | we Fy for some b nsuch that u < 4)g,
(© Ny =(Cp|we Fy for some W= n such that p <1 A)g,

where Jﬁ C N, are the two-sided ideals of Hk defined in 2.8.9.

Proof. We prove (a) by induction on the dominance order on partitions. The unique
minimal element in this order is the partition (1"). We have .%(j»y = {wo} (Where
wy is the longest element of W), I(1") = {1,...,n— 1}, X;(j») = {1} and

Zwo = P71 81(W0>CV2V0 = (—I)I(WO)CWO; see Lemma 2.8.2(b).

0 (1)

Hence, (a) holds in this case. Now assume that A # (1") and that (a) holds for all
partitions u F n, where u <1 A. Let w € %,. By 2.8.10(b), we already know that
Z,, € N5, Since Z,, = Z,, € H (see Corollary 2.8.7(a)), we can write

Zy = z Ny Cy, where 1, =1, € Z[v,v ! forally e W.
yew

Let y € W be such that 7, # 0; we have y € %, for a unique u -n. If u < A,
then +C, € Z, + .4}, by induction. Furthermore, by 2.8.10(b), we have Z, € .4;,. By
definition, it is also clear that .4}, C JV} Hence, we conclude that C, € A}, C Jﬁ
So it remains to consider those y where y € %, i 4 A. Let us write

¢ ={yeW|n,#0andye F, where u 41}
and set m := max{deg(n,) | y € €'}. We claim that
(%) {y € ¢ |deg(ny) =m} C .7 and m=0.

This is seen as follows. Let yg € ¢ be such that deg(ny,) = m; then yg = wy (u,0),
where g Fn,u,0 € M(u) and 4 £ A. By 2.1.19 and Theorem 1.7.10, we have

Vaipl (Cy) = cyp =+06y, modm  foranyyeW.

It follows that

VR (Zw) = 3 (V) (V¥ pau (Cy)) = (Vg )ity # 0 mod m.
yeWw

In particular, this yields that p*(Z,,) # 0 and so u < A, since Z,, € .4; by 2.8.10(b).
Combined with y £ A, we conclude that 4 = A and so yg € .%,, which proves the
first part of (). Now the above congruence reads

V(v ol (Z,)) # 0 mod m.
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But then Lemma 2.8.11 implies that m = 0, as required. Thus, (x) is proved. Conse-
quently, we can now write

Z, = z nyCy, mod A}, where 1, € Z forall y € .%).
YEF),

Let s,t € M(2) be such that w = wy, (s,t). Since p*(h) = 0 for all h € .4, we have

P&u (Zv) = z My p&n (Cy) for any u,0 € M(1).

YEZF,,

We multiply this identity by v* and take constant terms. Using Theorem 1.7.10,
Lemma 2.8.11 and 2.1.19, we deduce that

+8ub0 = D, Myeys =Myeyra,  where  yo=wy (u,0).
YEF,

It follows that 7,, = j:cfvj‘/l and 1, = 0 for all y € .%, \ {w}, as required. Thus, (a)
is proved. Now let . be the K-subspace of Hy defined by the right-hand side of
the desired identity in (b). We claim that .#) C .4, . Indeed, let w € .%,, where
u < A. By 2.8.10(b), we have Z, € .4;. Hence, using (a), we see that C,, € A4},.
Furthermore, by definition, it is clear that .4, C .4;. Hence, we have C,, € 4],
as claimed. Now notice that dim.Z) = 3, |#ul; furthermore, by 2.8.8(c), we
have |.Z, | = |[M(u)[*. On the other hand, as already noted in 2.8.9, the ideal .4} is
the sum of all Wedderburn components of Hx which correspond to the irreducible
representations EX where u < A. Hence, we also have dim.4j = Yu<i |M(u)|?
and, consequently, .4} = .#, . Thus, (b) is proved. This also implies (c) since, by
definition, 4; = Yu Y, where the sum runs over all g - n such that 4 < A. ad

Remark 2.8.13. The above proof essentially follows [107, Theorem 4.10]. However,
in [107], we referred to the results of Murphy [256], [257] in order to define the ide-
als .4, and ,/Vx The discussion here avoids that reference and, thus, is considerably
more self-contained than that in [107].

Corollary 2.8.14. Let A, - n. Then we have E* <; E* if and only if n < A. In
particular, the equivalence classes of Irrg (6,,) under ~y are singleton sets. Conse-
quently, the properties (&) and (B) (see 2.5.3) hold.

Proof. Assume first that g < A. By 2.8.9(a) (Young’s rule) and Lemma 2.8.4, this
implies that xwy () € 7, for some x € Xj(; ). But then we have xw;;) <g wi)
and so E* <; E*; recall that wia) € F by 2.8.9(b). Conversely, assume that
EM <, E*. This means that y <gz W, where y € %, and w € %) . By definition,
we can find a sequence y = yg,y1,...,Vm = w such that, for each i € {1,...,m},
there exist some x; € W such that &y, ,, . , # 0 or hy, ..y, , # 0. Now, by Theo-
rem 2.8.12(b), we have Cy, = C,, € .4). Since .4), is a two-sided ideal, we have
C,Cy,, € M and Gy, Cy,, € A Hence, we have y,,_1 € ., |, where U, < A;
see Theorem 2.8.12(b). We repeat the argument with x,,_1, y,;,—1 and find that
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Ym—2 € Fy, ,» Where > <ty < A. Continuing in this way, we eventually
obtain that u = o < A, as required. It is known that this implies a; < a,, with
equality only if A = u; see 2.2.13. Consequently, (&) holds. But then the weaker
property (&) holds and so (#) also holds; see Proposition 2.5.12. a

Theorem 2.8.15. The algebra H admits a cellular basis as in Theorem 2.6.12. The
data in Definition 2.6.8 can be chosen such that, for A -n and s,t € M(1), we have

Cst— flCW =+Cy, where w=w, (s,t).

Furthermore, the partial order < is given by the dominance order on partitions;
we have N, = Hg (<) and A = Hg (<L)

Proof. Since () and (#) hold, we can apply Theorem 2.6.12 and so H admits a
cellular basis where, by Definition 2.6.8, we have

5t_z 2 ﬁtuwlk

weWueM(A

Now, since ¢? A =c'?, , forall 5,t € M(1), we have pr(t,-1) = p*(t,)" for all

w € W. Hence, we can take for B* = (B%) the identity matrix. Then the above
sum reduces to C;t = CW, 34 Cw» as required. Finally, by Corollary 2.8.14, the partial
order <; in Theorem 2.6.12 coincides with the dominance order. The identities
N, =Hg (<L), JV,I = Hg (<) now follow from Theorem 2.8.12(b) and (c). a

Remark 2.8.16. This result was first stated by Graham and Lehrer [144, Exam-
ple 1.2], but the argument is very sketchy, especially concerning the ordering
<r. Some more details are contained in Graham’s thesis [143, Example 4.3] and
Williamson’s Honours essay [295]. As far as we are aware, the first elementary
proof of the characterisation of <; in terms of the dominance order appeared in
[107]. In Remark 2.8.18, we show how the signs in Theorem 2.8.15 can be fixed. A
completely different construction of a cellular basis (with respect to the above order-
ing on A) is due to Murphy [256], [257]; the equivalence of the two constructions
is shown in [107].

2.8.17. By Corollary 2.8.14 and Lemma 2.5.9, the Kazhdan—Lusztig cells of W =
G, are given by Theorem 1.7.10. So, for any A I n, the following hold.

(al) The set %) ={w)(s,t)|s,t € M(A)} is a two-sided Kazhdan—Lusztig cell.
(a2) Forte M(A), the set {w, (s,t) | s € M(L)} is a left Kazhdan—Lusztig cell.
(a3) Fors € M(A), the set {w, (s,t) | t € M(A)} is a right Kazhdan-Lusztig cell.

In particular, we see that (¢) holds. We also obtain the following result originally
due to Kazhdan and Lusztig [195, Theorem 1.4]: for any left Kazhdan—Lusztig cell
¢ of W, we have

(b) (€] elrg(W)  and  [¢], XE} & ¢C.Z,.
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Indeed, let € be a left cell and A € A be such that m(€,A) > 0. Then € C %, by
Lemma 2.2.4. Hence, € is equal to a set as in (a2). But then |€| = [M(1)| =d) =
dimE* and so we must have E* 2 [¢];. Finally, assume that € is a left cell such
that ¢ C .7 . Then the same argument shows that [¢]; = E*. (If we had [¢]; = E*,
where 1 # A, then € C 3““, which is a contradiction.) Thus, (b) is proved. We can
now also apply the discussion in Example 2.7.4, which shows that, for each A I n,
the balanced representation p# can be chosen such that

© WQA)=[C]a, where €, C .7, is a fixed left Kazhdan—Lusztig cell.

See also McDonough and Pallikaros [251], where the above cell modules are iden-
tified with the original “Specht modules” of Dipper and James [62].

Remark 2.8.18. Once Theorem 2.8.12, Corollary 2.8.14 and 2.8.17 are established,
it is actually not too difficult to show that P1-P15 hold for W = &,;; see [107, §5],
[121, §4]. Furthermore, one can even show a tiny piece of “positivity” by elementary
methods; namely, the fact that ¥, .. > 0 for all x,y,z € W; see [107, Theorem 5.10].
(Recall that 7, = (—1)/(0+0)1+@¢, | - see Remark 2.3.6.) The argument relies
on basic properties of the “Knuth—Robinson—Schensted correspondence” and the
Kazhdan-Lusztig “star operations”’; see Kazhdan and Lusztig [195, §5], Knuth [205,
§5.1.4] and Ariki [8]. We will not go into any more detail here, as these results are
not needed for the further discussions in this book.

Let us just explain how the signs in Theorem 2.8.15 can be fixed, assuming that
P1 and P4 hold and that ¥, ,, > 0 for all x,y,z € W (which is also known to be
the case by 2.4.1(a)). This is done as follows. Choosing the balanced representa-
tion p’1 as in Proposition 1.8.9, each coefficient cfvf,L is equal to a structure constant
Ty for suitable x,y € .7, . Now, by Proposition 2.3.16, Remark 2.3.5 and Propo-
sition 2.3.14, we have

Lw)+H(x)+ ()

Foxy = (—1) Yoxy = (_l)a(y)ywmy and a(y) =a;.

Since Yy = 0 and Cfv,tk € {0,+1}, we deduce that
Cfv:‘k = (—1)*, where w=w, (s,1).

Arguing as in the proof of Theorem 2.8.15, we now let B* = (BZ) be equal to
(—1)* times the identity matrix. Then we obtain CZ, = C,, as required.

For a further discussion of the combinatorics involved in the above constructions
(Knuth—Robinson—Schensted correspondence, etc.), we refer the reader to the refer-
ences cited in Remark 2.8.18. In a somewhat different context, we will have more
to say about the combinatorics of Young tableaux in Section 3.5.

2.8.19. Having dealt with W = &,,, it is natural to ask what happens with the other
cases in 1.7.6. So, let W be of type B, and L: W — I" a weight function given by

b4aa a
By oe—eo o - - - —e
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where a,b > 0 and b & {a,2a,...,(n— 1)a}. Recall that A is the set of all pairs

of partitions (A, u) such that |A| + |u| = n; see Example 1.3.9. As in the proof of

Theorem 2.8.15, one sees that, for any (A,) € A and s,t € M(A, ), we have
Ciﬁ’“) = +C,, where  w=w( ;)(5,1).

However, property (#) is not known in general, so we cannot conclude that the

above elements form a cellular basis of H.

Complete results are available in the asymptotic case, where b > (n—1)a > 0;
denote by Ly the weight function in this case. Then P1-P15 hold for W, L,y by
the series of papers by Bonnafé, Geck, and lancu [21], [26], [108], [114], [121].
Furthermore, as already mentioned in Example 2.2.17, we have

(Aou) Dy W) & (Aun) 2, 0).

Arguing as in 2.8.17, we obtain the following result originally due to Bonnafé and
Tancu [26, Prop. 7.9]: for any left Kazhdan—Lusztig cell € of W (with respect to
Lasy), we have

[Q:]l € Irrg (W) and [Q:]l ~Fr o ¢ - g(l#)‘

Furthermore, for (A, 1t) € A, the balanced representation p@’”) can be chosen such
that W(A, 1) = [€; yla, where € ) C F; ) is a fixed left Kazhdan—Lusztig
cell.

A completely different construction of a cellular basis is due to Dipper, James
and Murphy [68]; but, by [124], the above cell modules in the asymptotic case are
naturally isomorphic to the “Specht modules” of [68]. See also Chlouveraki, Gordon
and Griffeth [49] for further realisations of these modules. The construction of [68]
has been further generalised to Ariki—Koike algebras; see Dipper, James and Mathas
[67] (and also Graham and Lehrer [144, §5] for a slightly different approach). We
will describe these results on Ariki—Koike algebras in Section 5.3.
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