
Chapter 2
Kazhdan–Lusztig Cells and Cellular Bases

The aim of this chapter is to develop a general framework for studying the represen-
tation theory of Iwahori–Hecke algebras associated with finite Coxeter groups.

The motivating example is the representation theory of the symmetric group Sn.
Frobenius showed around 1900 that the irreducible representations of Sn over a field
of characteristic 0 are naturally parametrised by the partitions of n. In the 1970s,
James [181] developed a “characteristic-free” approach to the representation theory
of Sn, where Specht modules and certain bilinear forms on them play a crucial role.
Dipper and James [62] extended this theory to Iwahori–Hecke algebras associated
with Sn. A considerable simplification was then achieved through the powerful new
ideas introduced by Murphy [256], [257]. In fact, what we nowadays call the “Mur-
phy basis” is an example of a “cellular basis” in the formal sense defined later by
Graham and Lehrer [144].

Here, we shall construct such a “cellular basis” in the sense of Graham and
Lehrer, for the generic algebra H associated with an arbitrary (finite) Coxeter group
W . For this purpose, we need two basic ingredients:

(1) a basis of H with certain specific multiplicative properties and
(2) a suitable partial ordering on Irr(W ).

Already Graham and Lehrer identified the Kazhdan–Lusztig basis {Cw |w∈W} (see
Section 2.1) of H as a natural candidate for (1). However, it is only in some very
special examples (in type A or B) that {Cw} itself has the required multiplicative
properties. But in any case, this new basis of H provides the necessary tools to
define a partial ordering on Irr(W ); see Section 2.2.

In order to proceed, we have to rely on certain deep properties of the basis {Cw}
for which no elementary proofs are known. Sections 2.3–2.5 are devoted to a dis-
cussion of these properties, which appear as conjectures P1–P15 in Lusztig’s book
[231]. We can then put all the pieces together and construct, following [111], [112],
a “cellular basis” for H; see Sections 2.6 and 2.7. In the final section, we present an
elementary treatment of the case where W ∼= Sn.
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2.1 The Kazhdan–Lusztig Basis

Let W be a finite Coxeter group and L : W → Γ a weight function, where Γ is an
abelian group admitting a monomial order � such that L(s) � 0 for all s ∈ S (as
in Chapter 1). Let H = HA(W,S,L) be the corresponding generic Iwahori–Hecke
algebra over A = R[Γ ], where R⊆C is a subring as in 1.2.1. The main purpose of this
section is to introduce the Kazhdan–Lusztig basis {Cw |w∈W} of H. This basis first
appeared in [195], in the equal-parameter case. Then Lusztig [219] showed that the
construction also works in the general multiparameter case. These results are now
readily accessible in Lusztig’s book [231], so we will outline the main constructions
and formulate the main results but refer to [231] for further details.

2.1.1. Given elements y,w ∈ W , we write y � w if y can be obtained by omitting
some terms in a reduced expression for w. This defines a partial order relation on W ,
called the Bruhat–Chevalley order. Here are some properties (see [231, Chap. 2]):

(a) Let w ∈W and s ∈ S. Then sw < w if and only if l(sw) = l(w)−1.
(b) Let y,w ∈W and s ∈ S be such that sw < w. Then

y � w ⇔
{

sy � sw if sy < y,
y � sw if sy > y.

Note that (b) provides a recursive description of �.

2.1.2. Let w0 ∈W be the longest element. For any w ∈W , we can write uniquely

TwTw0 = ∑
y∈W

R∗
y,w Tyw0 , where R∗

y,w ∈ Z[Γ ].

If w = 1, then R∗
1,1 = 0 and R∗

y,1 = 0 for all y �= 1. Now assume that w �= 1 and let
s ∈ S be such that sw < w. Then one easily checks the following relation:

R∗
y,w =

{
R∗

sy,sw if sy < y,
R∗

sy,sw +(vs − v−1
s )R∗

y,sw if sy > y.

By using 2.1.1 and the above formulae, we obtain (see also [231, 4.5 and 4.7])

R∗
w,w = 1 and R∗

y,w = 0 unless y � w,(a)

R̄∗
y,w = (−1)l(y)+l(w)R∗

y,w.(b)

(Here, ā for any a ∈ A is defined in Example 1.2.6.) The above recursion formulae
are the same as those for the elements ry,w in [231, 4.4]. Consequently, we have

(c) T−1
w−1 = ∑

y∈W
R̄∗

y,w Ty for any w ∈W .

(The relation between the expressions for TwTw0 and T−1
w−1 already appeared in the

remarks following [195, Lemma A.4].)
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2.1.3. We set Γ�0 = {g∈Γ | g � 0} and denote by Z[Γ�0] the set of all integral linear
combinations of terms εg, where g � 0. The notations Z[Γ>0], Z[Γ�0], Z[Γ<0] have
a similar meaning. Then, by the proof of [231, Theorem 5.2] (see also [228, 7.10]),
there exists a unique collection of elements {P∗

y,w | y,w ∈W} ⊆ Z[Γ ] satisfying the
following conditions:

(a) P∗
w,w = 1 and P∗

y,w = 0 unless y � w; furthermore, P∗
y,w ∈ Z[Γ<0] if y < w.

(b) For any y,w ∈W , we have

P̄∗
y,w = ∑

z∈W :y�z�w
R∗

y,zP
∗
z,w.

Note that P∗
y,w can be constructed recursively using (a) and (b); see Example 2.1.5.

(Here, the notation is as in [219]; R∗
y,w, P∗

y,w are denoted by ry,w, py,w in [231].)

Definition 2.1.4 (Kazhdan and Lusztig [195], Lusztig [219]). For w ∈W , we set

Cw := ∑
y∈W

(−1)l(w)+l(y)P̄∗
y,wTy ∈ H,

with P∗
y,w as in 2.1.3. The elements {Cw | w ∈W} form an A-basis of H; to see this

just note that, by 2.1.3(a), we have Tw ∈Cw +∑y∈W :y<w Z[Γ>0]Ty for any w ∈W .
For x,y ∈W , let us write

CxCy = ∑
z∈W

hx,y,z Cz, where hx,y,z ∈ A.

Example 2.1.5. The formulae in 2.1.2 yield a straighforward algorithm for comput-
ing the polynomials R∗

y,w. As already mentioned above, the formulae in 2.1.3 can
then be used to construct P∗

y,w recursively. Indeed, given y < w, note that

P̄∗
y,w −P∗

y,w = ∑
z∈W :z<y�w

R∗
y,zP

∗
z,w.

Proceeding by induction on l(w)− l(y), all terms on the right-hand side are known.
Then P∗

y,w itself is determined by the additional condition that P∗
y,w ∈ Z[Γ<0].

For example, it is clear that C1 = T1. Now let s ∈ S. Then R∗
1,s = vs − v−1

s and so

P̄∗
1,s −P∗

1,s = ∑
z∈W :1<z�s

R∗
1,zP

∗
z,s = R∗

1,sP
∗
s,s = vs − v−1

s .

Since P∗
1,s ∈ Z[Γ<0], it follows that P∗

1,s = 0 (if L(s) = 0) and P∗
1,s = v−1

s (if L(s) > 0).
Thus, we obtain

Cs =
{

Ts if L(s) = 0,
Ts − vsT1 if L(s) > 0.

In order to see some more complicated polynomials P∗
y,w, let s, t ∈ S be such that

mst � 3 and assume that L(t) � L(s) > 0. Then the above precedure yields

Cst = Tst − vtTs − vsTt + vsvtT1
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and

Ctst = Ttst − vtTst − vtTts + v2
t Ts

+
{

vsvtTt − vsv2
t T1 if L(s) = L(t),

(vsvt − v−1
s vt)Tt − (vsv2

t − v−1
s v2

t )T1 if L(t) > L(s).

With some more effort, it is possible to write down explicit formulae for all basis
elements C′

w, where W is of type I2(m); see [231, Chap. 7], [132, Exc. 11.4].

We can now state the following characterisation of the element Cw. This version
of the characterisation (which works for finite W ) is due to Lusztig [232]; the proof
is very similar to (but the statement as such is different from) the original one in
[195], [219] (which relied on the “bar involution” on H).

Theorem 2.1.6 (Kazhdan and Lusztig [195], Lusztig [219], [231], [232]). For any
w ∈W, the element Cw is uniquely determined by the following two conditions:

Cw ∈ Tw + ∑
y∈W

Z[Γ>0]Ty and CwTw0 ∈ ∑
y∈W

Z[Γ�0]Ty.

Proof. Let us verify that Cw satisfies the above two conditions. The first one is clear
by 2.1.3(a); furthermore, using the relations (a), (b) in 2.1.2, we obtain:

CwTw0 = ∑
y∈W

(−1)l(w)+l(y)( ∑
z∈W :y�z�w

(−1)l(y)+l(z)R∗
y,zP̄

∗
z,w

)
Tyw0

= ∑
y∈W

(−1)l(w)+l(y)( ∑
z∈W :y�z�w

R
∗
y,zP

∗
z,w

)
Tyw0

= ∑
y∈W

(−1)l(w)+l(y)P∗
y,w Tyw0 ,

where the last equality holds by 2.1.3(b). Thus, we have in fact

CwTw0 ∈ Tww0 + ∑
y∈W :y<w

Z[Γ<0]Tyw0 ⊆ ∑
y∈W

Z[Γ�0]Ty,

as required. Using this expression for CwTw0 , one easily deduces the following state-
ment. Let h = ∑x∈W axCx ∈ H, where ax ∈ Z[Γ ] for all x ∈W . Then we have

(∗) hTw0 ∈ ∑
y∈W

Z[Γ�0]Ty ⇒ ax ∈ Z[Γ�0] for all x ∈W .

This immediately implies the uniqueness of Cw. Indeed, assume that C̃w ∈ H also
satisfies the desired conditions. Let h := Cw −C̃w. Then we have

h ∈ ∑
y∈W

Z[Γ>0]Ty ⊆ ∑
y∈W

Z[Γ>0]Cy and hTw0 ∈ ∑
y∈W

Z[Γ�0]Ty.

Hence, using (∗), we conclude that, in an expression of h as a linear combination of
basis elements {Cx}, all coefficients must be zero and so C̃w = Cw. ��
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Remark 2.1.7. As in [195], [219], we set C′
w := (−1)l(w)C†

w for all w ∈ W , where †
is defined in Example 1.2.6. (The element C′

w is denoted by cw in [231].) Using the
formula T †

w = (−1)l(w)T−1
w−1 and the relations in 2.1.2, 2.1.3, we obtain

C′
w = ∑

z∈W
(−1)l(z)P̄∗

z,wT †
z = ∑

z∈W
P̄∗

z,w T−1
z−1 = ∑

y∈W

(
P̄∗

z,wR̄∗
y,z

)
Ty = ∑

y∈W
P∗

y,wTy.

Furthermore, applying † to the relation CxCy = ∑z∈W hx,y,zCz, we obtain

C′
xC

′
y = ∑

z∈W
(−1)l(x)+l(y)+l(z) hx,y,zC′

z for any x,y ∈W .

We shall write h′x,y,z := (−1)l(x)+l(y)+l(z) hx,y,z for any x,y,z ∈W .
Thus, any statement about Cw has an equivalent version for C′

w (where typically
some signs need to be arranged). For applications to representation theory, it is more
convenient to work with Cw; see, for example, Remark 2.1.12. In this book, we will
systematically work with Cw.

Theorem 2.1.8 (Kazhdan and Lusztig [195], Lusztig [219], [231, Chap. 6]). For
any x,y,z ∈W, we have hx,y,z = h̄x,y,z. Furthermore, for s ∈ S and w ∈W, we have

CsCw =

⎧⎪⎪⎨
⎪⎪⎩

Csw if L(s) = 0,

−(vs + v−1
s )Cw if L(s) > 0 and sw < w,

Csw − ∑
y∈W :sy<y<w

(−1)l(w)+l(y)μs
y,w Cy if L(s) > 0 and sw > w,

where μs
y,w ∈ Z[Γ ] is such that μ̄s

y,w = μs
y,w.

(The analogous formulae for the elements {C′
w} are proved in [231, Chap. 6];

then it remains to use the conversion formulae in 2.1.7.)

2.1.9. There is a direct recursive algorithm for simultaneously computing

{P∗
y,w | y,w ∈W} and

{μs
y,w | s ∈ S,y,w ∈W such that L(s) > 0 and sy < y < w < sw},

without reference to the polynomials {R∗
y,w}. Recall that, first of all, we have

(a) P∗
w,w = 1 for all w ∈W and P∗

y,w = 0 unless y < w;

see 2.1.3. We shall now list some further properties of these elements. Let y,w ∈W
be such that y < w. Let t ∈ S be such that tw < w. Then we have

P∗
y,w = P∗

ty,tw if L(t) = 0,(b1)

P∗
y,w = v−1

t P∗
ty,w if L(t) > 0, ty > y,(b2)

P∗
y,w = vt P∗

y,tw +P∗
ty,tw − ∑

z∈W :y�z<tw,tz<z
P∗

y,z μ t
z,tw if L(t) > 0, ty < y.(b3)
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Furthermore, for any s ∈ S such that L(s) > 0 and sy < y < w < sw, we have

μs
y,w − vs P∗

y,w + ∑
z∈W :y<z<w,sz<z

P∗
y,z μs

z,w ∈ Z[Γ<0],(c1)

μs
y,w = μs

y,w.(c2)

See [231, Chap. 6] and [132, §11.1]. In order to describe a recursion based on the
above properties, we need to define an ordering on all pairs of elements (y,w), where
y,w ∈W and y � w. This is done as follows:

(y′,w′) 
 (y,w) def⇔ w′ < w or w′ = w and y � y′.

The recursion starts with the pair (y,w) = (1,1). We have P∗
1,1 = 1 and there are

no μ-polynomials to determine for this pair. Now let (y,w) be such that w �= 1 and
y � w. Assume that P∗

y′,w′ and the relevant μ-polynomials are already known for all
pairs (y′,w′) � (y,w). Then we proceed as follows.

(1) First we determine P∗
y,w. If y = w, then P∗

w,w = 1. If y < w, then choose some
t ∈ S such that tw < w. There are three cases to distinguish:

(i) If L(t) = 0, then (ty, tw) � (y,w) and so the right-hand side of (b1) is known
by induction.

(ii) If L(t) > 0 and ty > y, then (ty,w) � (y,w) and so the right-hand side of
(b2) is known by induction.

(iii) If L(t) > 0 and ty < y, then all terms on the right-hand side of (b3) involve
pairs (y′,w′), where w′ < w. In particular, (y′,w′) � (y,w) for all such pairs
and so, by induction, the right-hand side of (b3) is known.

(2) Now assume that y < w. Then we have to determine μs
y,w for any s ∈ S such that

L(s) > 0 and sy < y < w < sw. For this purpose, we set

α := vs P∗
y,w − ∑

z∈W :y<z<w,sz<z
P∗

y,z μs
z,w.

(i) For all z appearing in the above sum, we have (y,z) � (y,w) and (z,w) �
(y,w) and, hence, the corresponding terms are known by induction. By (1),
we also know P∗

y,w. Thus, α is determined.
(ii) Write α = α+ + α0 + α−, where α+ ∈ Z[Γ>0], α− ∈ Z[Γ<0] and α0 ∈ Z

are uniquely determined. By (c1) and (c2), we have μs
y,w = α+ +α0 +α+.

Thus, μs
y,w is determined.

For readers with an interest in “computer algebra” we just mention that it is an ex-
cellent programming exercise to implement the above recursion on a computer. For
further details see, for example, DuCloux [75] and his COXETER system, CHEVIE

[105], [118], and the references in these articles.

The above recursion formulae can actually be used to establish some further
properties of P∗

y,w and μs
y,w. We illustrate this with a few examples.
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Example 2.1.10. Let y,w ∈W and s ∈ S. Then we claim that

(a) vsμs
y,w ∈ Z[Γ>0], where L(s) > 0 and sy < y < w < sw.

Indeed, by 2.1.9(c2), this is equivalent to showing that v−1
s μs

y,w ∈ Z[Γ<0]. Multiply-
ing 2.1.9(c1) by v−1

s , we obtain

v−1
s μs

y,w −P∗
y,w + ∑

z∈W :y<z<w,sz<z
P∗

y,z

(
v−1

s μs
z,w

)
∈ Z[Γ<0].

By an inductive argument, we can assume that we already know that v−1
s μs

z,w ∈
Z[Γ<0] for all z in the above sum. Hence, we also have v−1

s μs
y,w ∈Z[Γ<0], as required.

Assume, furthermore, that we are in the equal-parameter case where Γ = Z and
L(s) = 1 for all s ∈ S. Then Z[Γ ] is the ring of Laurent polynomials in one indeter-
minate v = ε . Let y,w ∈ W and s ∈ S be such that sy < y < w < sw. We have just
seen that vμs

y,w ∈ vZ[v]. Hence, we have μs
y,w ∈ Z[v]. Since μs

y,w = μs
y,w, we conclude

that μs
y,w ∈ Z. In fact, we have

(b) μs
y,w = coefficient of v−1 in P∗

y,w ∈ v−1
Z[v−1].

Indeed, since μs
y,w ∈ Z, the relation in 2.1.9(c1) reduces to the condition that μs

y,w −
vP∗

y,w ∈ v−1
Z[v−1], which immediately yields the above statement.

Example 2.1.11. Let y,w ∈ W be such that y � w and set Py,w := vwv−1
y P∗

y,w. Then
the following holds:

(a) If L(s) > 0 for all s ∈ S, then Py,w ∈ Z[Γ�0] is non-zero, with constant term 1.

This is proved as follows (see also [231, Prop. 5.4]). If y = w, then Pw,w = 1 and so
(a) holds. Now assume that y < w and choose some t ∈ S such that tw < w. If ty > y,
then 2.1.9(b2) yields Py,w = Pty,w and so (a) holds by induction. (Note that y � tw by
2.1.1(b) and, hence, ty � t(tw) = w.) If ty < y, then 2.1.9(b3) yields

Py,w = v2
t Py,tw +Pty,tw − ∑

z∈W :y�z<tw,tz<z
Py,z vtwv−1

z

(
vt μ t

z,tw

)
.

By Example 2.1.10 and induction, we have Py,z ∈ Z[Γ�0] and vt μ t
z,tw ∈ Z[Γ>0] for all

z in the above sum. Hence, we conclude that Py,w ≡ Pty,tw mod Z[Γ>0]. Since ty � tw
by 2.1.1(b), this yields (a) by induction.

Note that if L(s) = 0 for some s ∈ S, then the conclusion in (a) no longer holds.
For example, if L(s) = 0, then C′

s = Ts and so P1,s = 0.

Remark 2.1.12. Assume that L(s) > 0 for all s ∈ S. Then the basis {Cw} gives rise
to a W -graph structure on W . Indeed, let us set I(w) := {s ∈ S | sw < w} for w ∈W .
Furthermore, if y,w ∈W and s ∈ S are such that s ∈ I(y) and s �∈ I(w), we set

ms
y,w :=

⎧⎨
⎩

1 if y = sw,

−(−1)l(w)+l(y)μs
y,w if y < w,

0 otherwise.
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Then we see that the data {I(w)}, {ms
y,w} give rise to a W -graph structure on the set

W , in the sense of Definition 1.4.11. Note that vsms
y,w ∈ Z[Γ>0] by Example 2.1.10.

2.1.13. Recall that H is a symmetric algebra, where {Tw | w ∈ W} and {Tw−1 | w ∈
W} form a pair of dual bases of H. Since each Cw equals Tw plus a Z[Γ>0]-linear
combination of basis elements Tz (z ∈W ), it easily follows that

(a) τ(Cx−1Cy) ∈ δxy +Z[Γ>0] for all x,y ∈W ;

(see [220, 5.3.3] where this appeared in the equal-parameter case). Now set

Dw := Tw + ∑
y∈W :w<y

P
∗
yw0,ww0

Ty (w ∈W ),

where w0 ∈W is the longest element. Then, {Cw | w ∈W} and {Dw−1 | w ∈W} form
a pair of dual bases; that is, we have

(b) τ(CxDy−1) = δxy for all x,y ∈W .

In particular, hx,y,z = τ(CxCyDz−1) for all x,y,z ∈ W , a relation which will be used
repeatedly in what follows. The relation (b) follows from the following identity:

∑
z∈W :y�z�w

(−1)l(w)+l(y)P∗
y,z P∗

ww0,zw0
= δyw for all y � w in W ,

which appeared as [195, Theorem 3.1] in the equal-parameter case; see [231, 10.7
and 11.4] or [103, §2] for the general case. Once the above identity is proved, one
also obtains the following relation (see [231, 11.6] or [103, 2.6]):

(c) μs
ww0,yw0

= −(−1)l(w)+l(y) μs
y,w

for any s ∈ S and y,w ∈W such that sy < y < w < sw.

2.1.14. The A-linear map H → H, h �→ h�, defined by T �
w = Tw−1 (w ∈W ) is an anti-

involution of H; see Example 1.2.5. Applying � to the relation T−1
w−1 = ∑y∈W R̄∗

y,wTy,
we find that R∗

y−1,w−1 = R∗
y,w for all y,w ∈W . Then, using 2.1.3, it also follows that

C �
w = Cw−1 and P∗

y,w = P∗
y−1,w−1 for all y,w ∈W .

We can now apply the general definitions concerning “cells” in Section 1.6 to the
algebra H = H with its basis {Cw |w∈W}. Thus, we obtain pre-order relations �L ,
�R , �LR on W . Recall, for example, that �L is defined as the transitive closure of
the relation ←L ; by the multiplicition formulae in Theorem 2.1.6, we have

y ←L w ⇔
{

either y = sw, where s ∈ S is such that L(s) = 0 or sw > w,
or μs

y,w �= 0, where s ∈ S, L(s) > 0 and sy < y < w < sw.

Furthermore, we have y �R w if and only if y−1 �L w−1. And, finally, �LR is the
union of �L and �R .
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Definition 2.1.15. The left, right or two-sided cells defined, in the sense of 1.6.1,
by taking H = H with its basis {Cw | w ∈W}, are called the left, right or two-sided
Kazhdan–Lusztig cells of W respectively.

From now on, unless explicitly stated otherwise, the symbols �L , �R , �LR ,
∼L , ∼R , ∼LR will always refer to the pre-order relations defined using the
Kazhdan–Lusztig basis {Cw} of H.

Lemma 2.1.16 (Lusztig [231, 8.6]). Given w ∈ W, define L (w) := {s ∈ S | sw <
w and L(s) > 0} and R(w) := L (w−1). Then the following hold:

(a) If z,y ∈W are such that z �L y, then R(y) ⊆ R(z).
(b) If z,y ∈W are such that z �R y, then L (y) ⊆ L (z).

In particular, the function w �→ R(w) is constant on left cells and the function w �→
L (w) is constant on right cells.

Proof. Since the formulation in [231, 8.6] does not include the possibility that
L(s) = 0 for some s ∈ S, let us briefly sketch the argument. To prove (a), we may
assume that z,y are related by an elementary step in the definition of �L ; that is,
there is some s ∈ S such that h′s,y,z �= 0. If L(s) > 0, then the argument is exactly the
same as in [231, 8.6], using the fact that tH := 〈Cw | w ∈W,wt < w〉A ⊆ H is a left
ideal for any t ∈ S such that L(t) > 0; see [231, 8.4].

Now assume that L(s) = 0. Then z = sy by the multiplication formulae in Theo-
rem 2.1.6. Let t ∈ R(y). If sy > y, then R(y) ⊆ R(sy) and so t ∈ R(z), as required.
Finally, assume that sy < y; then l(sy) = l(yt). If we had zt > z, then l(syt) = l(y)
and so syt = y; see [132, 1.2.6]. Hence, s, t would be conjugate in this case and so
L(s) = L(t), which is a contradiction. Thus, we must have zt < z, as required.

The proof of (b) is analogous. ��
Example 2.1.17. Assume that L(s) > 0 for all s∈ S. Let w∈W be such that w∼L 1.
Then Lemma 2.1.16 implies that R(w) = R(1) = ∅ and so w = 1. Hence, {1} is a
left Kazhdan–Lusztig cell.

Similarly, let w ∈W be such that w ∼L w0, where w0 ∈W is the longest element.
Then Lemma 2.1.16 implies that R(w) = R(w0) = S and so w = w0. Hence, {w0}
is a left Kazhdan–Lusztig cell. We have the following explicit formula:

Cw0 = ∑
w∈W

(−1)l(w0)+l(w)εL(w0)−L(w)Tw.

Indeed, if w ∈W is such that w �= w0, then there exists some s ∈ S such that sw > w.
Hence, the formula in 2.1.9(b2) yields that P∗

w,w0
= v−1

s P∗
sw,w0

. By a simple downward

induction on l(w), we conclude that P∗
w,w0

= εL(w)−L(w0), as required.

Example 2.1.18. Let W be of type I2(m) (m � 3); that is, we have W = 〈s1,s2〉,
where s2

1 = s2
2 = (s1s2)m = 1. Let L be a weight function where b := L(s1) � 0 and

a := L(s2) � 0; here, a = b if m is odd.
The relations �L , �R and �LR are determined in [231, 8.8]. (See also [132,

Exc. 11.4] for the case a �= b.) For any k � 0, write 1k = s1s2s1 · · · (k factors) and
2k = s2s1s2 · · · (k factors); note that 1m = 2m. With this notation, we have:
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• If m is odd and a = b > 0, then the left cells are
{10}, {1m}, {21,12,23, . . . ,1m−1}, {11,22,13, . . . ,2m−1}.

• If m is even and a = b > 0, then the left cells are
{10}, {1m}, {21,12,23, . . . ,2m−1}, {11,22,13, . . . ,1m−1}.

• If m is even and b > a > 0, then the left cells are
{10}, {21}, {1m−1}, {1m}, {11,22,13, . . . ,2m−2}, {12,23,14, . . . ,2m−1}.

• If m is even and b > a = 0, then the left cells are
{10,21}, {1m,1m−1}, {11,22,13, . . . ,2m−2}, {12,23,14, . . . ,2m−1}.

The two-sided cells and the partial order induced on them are given by

{1m} �LR W \{10,1m} �LR {10} (a = b > 0),
{1m} �LR {1m−1} �LR W\{10,21,1m−1,1m} �LR {21} �LR {10} (b > a > 0),

{1m,1m−1} �LR W \{10,21,1m−1,1m} �LR {10,21} (b > a = 0).

Recall that, in Definition 1.6.4, we have introduced the left, right and two-sided J̃-
cells of W , using the algebra H = J̃ with its basis {tw |w∈W}. In the above example
where W is of type I2(m), the two-sided Kazhdan–Lustzig cells are precisely the
two-sided J̃-cells determined in Example 1.7.3. If this was known to be true in
general, then our task in this book would be considerably simpler! (We will discuss
this in more detail in Section 2.5.) To close this section, we will show by a general
argument that, at least, the Kazhdan–Lusztig cells are always unions of J̃-cells.

2.1.19. We will now bring back into the picture the balanced matrix representa-
tions {ρλ | λ ∈ Λ} and the corresponding leading matrix coefficients cst

w,λ ; see Sec-
tion 1.4. Recall that, for any w ∈W , we have

εaλ ρλ (Tw) ∈ Mdλ (O0) and cst
w,λ ≡ εaλ ρλ

st(Tw) mod m

for all λ ∈ Λ and s, t ∈ M(λ ). Now consider the expressions for Cw and Dw. Since
P
∗
y,w ∈ Z[Γ>0] for all y �= w, we deduce that

εaλ ρλ
st(Cw) ∈ O0 and εaλ ρλ

st(Dw) ∈ O0,

εaλ ρλ
st(Tw) ≡ εaλ ρλ

st(Cw) ≡ εaλ ρλ
st(Dw) ≡ cst

w,λ mod m,

for all λ ∈ Λ and s, t ∈ M(λ ). Thus, the leading matrix coefficients can be taken
with respect to any of the bases {Tw}, {Cw} or {Dw}.

Proposition 2.1.20. Every left Kazhdan–Lusztig cell of W is a union of left J̃-cells
(see Definition 1.6.4). Analogous statements hold for right and two-sided cells. In
particular, if x,y,z ∈ W are such that γ̃x,y,z �= 0, then the elements x±1, y±1, z±1 all
lie in the same two-sided Kazhdan–Lusztig cell.

Proof. Let y,z ∈W belong to the same left J̃-cell. It will be sufficient to consider an
elementary step in the definition of this relation; that is, we can assume that
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γ̃x,y,z−1 =
(

∑
λ∈Λ

∑
s,t,u∈M(λ )

f−1
λ cst

x,λ ctu
y,λ cus

z,λ

)
�= 0 for some x ∈W .

We deduce that

∑
u∈M(λ )

ctu
y,λ cus

z−1,λ �= 0 for some λ ∈ Λ and s, t ∈ M(λ ).

Using the relations in 2.1.19 we obtain that

ε2aλ ρλ
ts(CyDz−1) ≡ ∑

u∈M(λ )

(
εaλ ρλ

tu(Cy)
)(

εaλ ρλ
us(Dz−1)

)
≡ ∑

u∈M(λ )
ctu

y,λ cus

z−1,λ

modulo m. Since the expression on the right-hand side is non-zero modulo m, we
conclude that ρλ (CyDz−1) �= 0 and so CyDz−1 �= 0. Since τ is non-degenerate, we
have τ(CwCyDz−1) �= 0 for some w ∈ W . This yields hw,y,z = τ(CwCyDz−1) �= 0 and
so z �L y (in the Kazhdan–Lusztig pre-order). Similarly, we find that

ε2aλ ρλ
ts(DyCz−1) ≡ ∑

u∈M(λ )

(
εaλ ρλ

tu(Dy)
)(

εaλ ρλ
us(Cz−1)

)
≡ ∑

u∈M(λ )
ctu

y,λ cus

z−1,λ

modulo m and, hence, DyCz−1 �= 0. Again, we can find some w ∈ W such that
τ(CwDyCz−1) �= 0. It follows that hz−1,w,y−1 = τ(Cz−1CwDy) = τ(CwDyCz−1) �= 0.
Hence, we have y−1 �R z−1 and so y �L z. Thus, we have shown that y,z belong to
the same left Kazhdan–Lusztig cell. The arguments for right and two-sided cells are
analogous. The last statement (involving γ̃x,y,z) follows from Corollary 1.6.7. ��

2.2 A Pre-order Relation on Irr(W )

We have just seen that the weight function L : W → Γ and the monomial order �
on Γ give rise to the Kazhdan–Lusztig pre-order relations �L , �R , �LR on W .
We will now use the two-sided relation �LR to define a pre-order relation on the
set IrrK(W ) = {Eλ | λ ∈ Λ}. Recall that, in Proposition 1.6.11, we constructed a
natural surjective map

IrrK(W ) →{set of two-sided J̃-cells of W}, Eλ �→ Fλ .

By Proposition 2.1.20, we also know that each Fλ is contained in a two-sided
Kazhdan–Lusztig cell. This leads us to the following definition.

Definition 2.2.1 (Cf. Lusztig [220, 5.15]). Let λ ,μ ∈ Λ . Then we define

Eλ �L Eμ def⇔ x �LR y for all x ∈ Fλ and y ∈ Fμ ,

where �LR is the Kazhdan–Lusztig pre-order relation on W ; see 2.1.14. Since each
two-sided J̃-cell is contained in a two-sided Kazhdan–Lusztig cell, we have
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Eλ �L Eμ ⇔ x �LR y for some x ∈ Fλ and some y ∈ Fμ .

Furthermore, we write Eλ ∼L Eμ if Eλ �L Eμ and Eμ �L Eλ . Thus, Eλ ∼L Eμ if
and only if Fλ , Fμ are contained in the same two-sided Kazhdan–Lusztig cell.

We wish to mention right away that the relation ∼L on IrrK(W ) is not yet com-
pletely understood nor explicitly known in all cases (and even less so the relation
�L). In this section we will, therefore, content ourselves with giving some examples
and explaining the open questions. Of particular interest for us will be the relation
between �L and the function Eλ �→ aλ . We will see that even the first example that
one might think of, namely the case where W ∼= Sn, requires a considerable amount
of work; see Example 2.2.13 and Section 2.8. We begin by showing that �L and ∼L

can be expressed without reference to the map Eλ �→ Fλ .

2.2.2. By the general method described in 1.6.1, each left Kazhdan–Lusztig cell C

gives rise to a representation of H. This is constructed as follows. Let [C]A be an
A-module with a free A-basis {ew | w ∈ C}. Then the action of H on [C]A is given by

(a) Cw.ex := ∑
y∈C

hw,x,y ey, where w ∈W and x ∈ C.

(Similarly, right cells give rise to right H-modules and two-sided cells give rise to
H-bimodules.) Now let θ : A → k be a ring homomorphism into a field k. Then
[C]k := k⊗A [C]A is a left module for the specialised algebra Hk. In particular, let
θ1 : A → K be the ring homomorphism such that θ1(εg) = 1 for all g ∈ Γ , as in
1.2.1. Then we obtain a module [C]1 := K⊗A [C]A for KW = K⊗A H. For any
λ ∈ Λ , denote by m(C,λ ) the multiplicity of Eλ as an irreducible constituent of
[C]1. Then the “specialisation argument” in Example 1.2.4 immediately shows that

(b) m(C,λ ) = multiplicity of Eλ
ε as an irreducible constituent of [C]K ,

where [C]K is the HK-module obtained from [C]A by extending scalars from A to K.

Remark 2.2.3. Assume that L(s) > 0 for all s ∈ S. Let C be a left Kazhdan–Lusztig
cell and consider the left cell module [C]A. As in Remark 2.1.12, we see that the
action of H on [C]A is given by a W -graph, where X = C, I(x) = L (x) (x ∈ C) and

ms
x,y =

⎧⎨
⎩

1 if x = sy > y,
−(−1)l(y)+l(x)μs

x,y if sx < x < y < sy,
0 otherwise.

Lemma 2.2.4. Let λ ∈ Λ and C be a left Kazhdan–Lusztig cell such that m(C,λ ) >
0. Then we have Eλ �L w for some w ∈ C, that is, w ∈ C∩Fλ .

Proof. (Compare with the proof of Theorem 1.8.1.) Consider the identity

∑
w∈C

CwDw−1 = ∑
x∈W

∑
y∈C

hx,y,y Dx−1 .
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(This is proved by multiplying both sides by Cz for some z ∈ W and applying the
trace form τ .) Now note that trace(Cx, [C]A) = ∑y∈C hx,y,y. Taking also into account
the formula [C]K ∼=

⊕
μ∈Λ m(C,μ)Eμ

ε , we obtain

∑
y∈C

hx,y,y = ∑
μ∈Λ

m(C,μ)χμ(Cx) for all x ∈W .

Then the orthogonality relations in Proposition 1.2.12 yield that

χλ
(

∑
w∈C

CwDw−1

)
= ∑

μ∈Λ
m(C,μ)

(
∑

x∈W
χμ(Cx)χλ (Dx−1)

)
= m(C,λ )dλ cλ .

Multiplying this relation by ε2aλ and taking constant terms, we deduce that

∑
s,t∈M(λ )

∑
w∈C

cst
w,λ cts

w−1,λ = m(C,λ )dλ fλ .

Since the right-hand side is non-zero by assumption, we conclude that cst
w,λ �= 0 for

some w ∈ C and some s, t ∈ M(λ ), as required. ��

Corollary 2.2.5. Let λ ,μ ∈ Λ and C,C′ be left Kazhdan–Lusztig cells such that
m(C,λ ) > 0 and m(C′,μ) > 0. Then Eλ �L Eμ if and only if w �LR w′ for some w∈
C and some w′ ∈ C′ (where �LR denotes the Kazhdan–Lusztig pre-order relation).

In particular, Eλ ∼L Eμ if and only if C,C′ are contained in the same two-sided
Kazhdan–Lusztig cell.

Proof. First assume that Eλ �L Eμ . By definition, this means that x �LR y for all
x ∈ Fλ and y ∈ Fμ . Now, by Lemma 2.2.4, there exist elements w ∈ C∩Fλ and
w′ ∈ C′ ∩Fμ . Hence, we have w �LR w′, as required.

Conversely, assume that w �LR w′ for some w ∈ C and some w′ ∈ C′. Since
m(C,λ ) > 0, there exists some w1 ∈ C∩Fλ ; see Lemma 2.2.4. Similarly, there
exists some w′

1 ∈C′ ∩Fμ . Hence, we have w1 ∼L w �LR w′ ∼L w′
1 and so w1 �LR

w′
1. As pointed out in Definition 2.2.1, this already implies that Eλ �L Eμ . ��

Remark 2.2.6. Let W = W1×·· ·×Wd be the decomposition into irreducible compo-
nents. Correspondingly, we have

IrrK(W ) = {Eλ1 � · · ·�Eλd | λi ∈ Λi}, where IrrK(Wi) = {Eλi | λi ∈ Λi}.

Thus, as in Remark 1.3.5, we identify Λ = Λ1 × ·· · ×Λd . Furthermore, we have
H ∼= H1 ⊗A · · ·⊗A Hd , where Hi is the generic algebra associated with Wi, L|Wi . The
Kazhdan–Lusztig basis of H behaves well with respect to this decomposition, that
is, if w = w1 · . . . ·wd , where wi ∈Wi, then Cw = Cw1 · . . . ·Cwd . It follows that

Eλ �L Eμ ⇔ Eλi �Li Eμi for i = 1, . . . ,d,

where λ = (λ1, . . . ,λd) and μ = (μ1, . . . ,μd). Thus, the determination of �L can be
reduced to the case where (W,S) is irreducible.
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2.2.7. Assume that W,L are such that the following data are explicitly available:

• The matrices {ρλ (Ts) | s ∈ S} for all λ ∈ Λ . (Recall the algorithm in 1.4.9 for
turning any given representation into a balanced representation.)

• All the polynomials {P∗
y,w} and {μs

y,w}. (See the recursive description in 2.1.9.)

Since the invariants aλ are also known (see Section 1.3), we can then work out all
leading matrix coefficients cst

w,λ and the Kazhdan–Lusztig pre-order relations �L ,
�R , �LR . This, in turn, enables us to explicitly determine the pre-order relation
�L on IrrK(W ), via the characterisation in Corollary 2.2.5. Now, the above data are
available for W of type I2(m) (any m � 3), H3, H4, F4. We will now go through these
examples one by one and describe the relation �L on IrrK(W ) in each case.

Example 2.2.8. Let W be of type I2(m) (m � 3); that is, we have W = 〈s1,s2〉, where
s2

1 = s2
2 = (s1s2)m = 1. Recall from Example 1.3.7 the description of IrrK(W ). By

Example 2.1.18, we know the left and two-sided cells. It it also not difficult to de-
termine the cell modules [C]1 and decompose them into irreducibles. Let ψ denote
the sum of all the two-dimensional representations.

• If m is odd and L(s1) = L(s2) > 0, then the left cell {10} affords 1W , {2m} affords
sgn, and the two remaining left cells afford ψ .

• If m is even and L(s1) = L(s2) > 0, then {10} affords 1W , {2m} affords sgn,
the first of the two remaining left cells affords ψ ⊕ sgn2, and the second affords
ψ ⊕ sgn1.

• If m is even and L(s1) > L(s2) > 0, then {10} affords 1W , {21} affords sgn1,
{1m−1} affords sgn2, {1m} affords sgn, and the two remaining left cells afford ψ .

• If m is even and L(s1) > L(s2) = 0, then {10,21} affords 1W ⊕ sgn1, {1m,1m−1}
affords sgn⊕ sgn2, and the two remaining left cells afford ψ .

Using this information together with the knowledge of �LR (see Example 2.1.18)
and of aλ (see Example 1.3.7), we find that the pre-order �L on IrrK(W ) is “linear”
in the sense that, for any λ ,μ ∈ Λ , we have

Eλ �L Eμ ⇔ aμ � aλ .

In particular, Eλ ∼L Eμ if and only if aλ = aμ .

Example 2.2.9. Let W be of type H3 or H4. Then all generators are conjugate, so we
are automatically in the equal-parameter case. Assume that L(s) > 0 for s ∈ S. Then
Alvis [2] has computed all polynomials P∗

y,w and μs
y,w. In this way, he explicitly

determined the relations �L and �LR ; he also found the decomposition of the
left cell representations into irreducibles (see [216, §5] for type H3). The partial
order induced by �LR on the set of two-sided cells is, in fact, a total order.1 The
equivalence classes of IrrK(W ) under ∼L are explicitly known by [218, §13] and [2,
3.5]. This information, together with the invariants aλ , is listed in [132, Tables C.1
and C.2]. It turns out that, again, the pre-order �L is “linear” such that

1 This statement is not contained in [2]; we thank Alvis (personal communication, 2008) for having
verified this using his programs for producing the data in [2].
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Eλ �L Eμ ⇔ aμ � aλ

for any λ ,μ ∈ Λ . In particular, Eλ ∼L Eμ if and only if aλ = aμ .

Fig. 2.1 Partial order on two-sided cells in type F4
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Brackets 〈 〉 indicate a two-sided cell with several irreducible components, given as follows:

〈42〉 = {21,23,42}, 〈45〉 = {22,24,45}, 〈13〉 = {13,21,83,91}, 〈12〉 = {12,22,84,94},

〈121〉 = {12,13,41,43,44,61,62,92,93,121,161}, 〈161〉 = {41,61,62,121,161}.

Otherwise, the two-sided cell contains just one irreducible respresentation.

Example 2.2.10. Let W be of type F4 with generators labelled as in Table 1.1 (p. 2).
Assume that a := L(s1) = L(s2) > 0 and b := L(s3) = L(s4) > 0. (The case where
L(si) = 0 for some i will be considered in Remark 2.4.13.) We may also assume
without loss of generality that b � a. The pre-order relations �L , �R , �LR have
been determined in [105], based on an explicit computation of all the polynomials
P∗

y,w and μs
y,w using CHEVIE [118]. The resulting pre-order relations �L on IrrK(W )

are given in Figure 2.1. The notation for the irreducible representations is compatible
with that in Table 1.2 (p. 16). For example, 11 is the trivial representation, 14 is the
sign representation and 42 is the reflection representation. The pre-order �L is not
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“linear” in these cases, but by inspection of the tables we notice that, at least, the
following property holds:

Eλ �L Eμ ⇒ aμ � aλ (with equality only if Eλ ∼L Eμ ).

In particular, if Eλ ∼L Eμ , then aλ = aμ .

Remark 2.2.11. The diagrams in Figure 2.1 have a striking symmetry. This is a gen-
eral phenomenon. Indeed, recall the definition of the bijection λ �→ λ † on Λ from
Example 1.2.6. By Corollary 1.6.16, we have IrrK(W | Fw0) = IrrK(W | F )† for
every two-sided J̃-cell F of W . Now, 2.1.13(c) implies that if x,y ∈W are such that
x �LR y, then yw0 �LR xw0. It follows that, for any λ ,μ ∈ Λ , we have

Eλ �L Eμ ⇔ Eμ† �L Eλ †
.

Thus, the pre-order �L admits a natural symmetry with respect to λ �→ λ †.

2.2.12. Assume that W is of crystallographic type and that we are in the equal-
parameter case where Γ = Z and L(s) = 1 for all s ∈ S. It has recently been shown
[113] that then �L admits a geometric interpretation, and this actually yields an
explicit description of �L. It would be beyond the scope of this book to explain this
in detail, but we can at least outline the general idea, assuming some familiarity with
the theory of algebraic groups and Lusztig’s work [220] (see also Section 4.4).

So let G be a connected reductive algebraic group (over C or over Fp, where p is a
large prime), with Weyl group W . Then, by the Springer correspondence (see [197],
[221], [282]), we can naturally associate with every Eλ ∈ IrrK(W ) a pair consisting
of a unipotent class of G, which we denote by Oλ , and a G-equivariant irreducible
local system on Oλ . Thus, we obtain a map

IrrK(W ) →{set of unipotent classes in G}, Eλ �→ Oλ .

(The local system on Oλ will not play a role for our purposes here.) We now need
the concept of a “special” unipotent class. This is defined as follows. Given λ ∈ Λ ,
let bλ be the smallest i � 0 such that Eλ is a constituent of the ith symmetric power
of the natural reflection representation of W . Lusztig [215] observed that we always
have aλ � bλ . We say that Eλ is a special representation if aλ = bλ ; let

S (W ) := {λ ∈ Λ | aλ = bλ}.

Following Lusztig [215], the classes {Oλ | λ ∈S (W )} are called the special unipo-
tent classes of G (although the word “special” only appeared in later references; see
also 4.3.13). By [220, 13.1.1], we have

aλ = dimBu for any λ ∈ S (W ),

where u ∈ Oλ and Bu is the variety of Borel subgroups in G containing u. Now
[113, Cor. 5.6] shows that, for any λ ,μ ∈ S (W ), we have
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(∗) Eλ �L Eμ ⇔ Oλ ⊆ Oμ := Zariski closure of Oμ .

The map Eλ �→Oλ is explicitly known in all cases; see Carter [45, §13.3] and the ref-
erences there. Also, the Zariski closure relation among the special unipotent classes
of G is explicitly known in all cases; see Carter [45, §13.4] and Spaltenstein [280].
Hence, (∗) provides an explicit description of the pre-order �L for special represen-
tations. On the other hand, given any λ ∈ Λ , we have

Eλ ∼L Eλ0 for a unique λ0 ∈ S (W );

see [220, 4.14 and 5.25]. Hence, since the equivalence relation ∼L is explicitly
known by Lusztig [220, 4.4–4.13 and 5.25], the relation �L is determined once
we know it for special representations. Finally, by [220, 5.27], the function λ �→ aλ
is known to be constant on the equivalence classes under ∼L. Hence, by the above
characterisation of aλ for λ ∈ S (W ), we also find that, for any λ ,μ ∈ Λ , we have

Eλ �L Eμ ⇒ aμ � aλ (with equality only if Eλ ∼L Eμ ).

(In the next two sections, we will say more about the proof of this implication.)

Example 2.2.13. In the setting of 2.2.12, let W be of type An−1. Then W ∼= Sn and
Λ is the set of all partitions of n; see Example 1.3.8. By [220, 4.4], all irreducible
representations of W are special. Now W is the Weyl group of G = GLn (over C

or over Fp, where p is a large prime). Let λ = (λ1 � λ2 � . . . � 0) ∈ Λ . Then the
Springer correspondence associates with Eλ the unipotent class Oλ consisting of all
unipotent matrices in G whose Jordan normal form has blocks of size λ1,λ2, . . .; see
Springer [282, p. 293], [45, §13.3]. By [104, §2.6] and 2.2.12(∗), we have

Eλ �L Eμ ⇔ Oλ ⊆ Oμ ⇔ λ � μ ,

where � denotes the dominance order, which is defined as follows. Write λ = (λ1 �
λ2 � · · · � 0) and μ = (μ1 � μ2 � · · · � 0). Then

λ � μ def⇔ ∑
1�i�d

λi � ∑
1�i�d

μi (for all d � 1).

It then follows by a completely elementary argument that we have the implication

λ � μ ⇒ λ = μ or aλ > aμ ;

see, for example, [132, Exc. 5.6]. See Corollary 2.8.14 for a much more direct and
elementary proof of the above characterisation of �L (following [107]).

Example 2.2.14. In the setting of 2.2.12, let W be of type Bn. Then Λ is the set of
all pairs of partitions (λ ,μ) such that |λ |+ |μ | = n; see Example 1.3.9. For any
(λ ,μ) ∈ Λ and (λ ′,μ ′) ∈ Λ , let us define
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(λ ,μ) � (λ ′,μ ′) def⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
1�i�d

(λi + μi) � ∑
1�i�d

(λ ′
i + μ ′

i )

λd + ∑
1�i<d

(λi + μi) � λ ′
d + ∑

1�i<d

(λ ′
i + μ ′

i ),

(for all d � 1)

where λ = (λ1 � λ2 � . . . � 0), λ ′ = (λ ′
1 � λ ′

2 � . . . � 0), μ = (μ1 � μ2 � . . . � 0)
and μ ′ = (μ ′

1 � μ ′
2 � . . . � 0). By [220, 4.5], we have:

(λ ,μ) ∈ S (W ) ⇔ λi +1 � μi � λi+1 (for all i � 1).

Now W is the Weyl group of G = SO2n+1 (over C or over Fp, where p is a large
prime). Then, by Spaltenstein [281, §4] and 2.2.12(∗), we have

E(λ ,μ) �L E(λ ′,μ ′) ⇔ O(λ ,μ) ⊆ O(λ ′,μ ′) ⇔ (λ ,μ) � (λ ′,μ ′)

for (λ ,μ) ∈ S (W ) and (λ ′,μ ′) ∈ S (W ). See [122, §5] for further details.

Example 2.2.15. Let again W be of type Bn and consider the reflection subgroup
W̃ ⊆ W in Example 1.3.10. Then W̃ is of type Dn and this is the Weyl group of
G = SO2n (over C or over Fp, where p is a large prime). To be consistent with
the notation in Example 1.3.10, the equal-parameter weight function on W̃ will be
denoted by L̃. Now IrrK(W̃ ) is described in terms of the restrictions of the irreducible
representations of W to W̃ . Given Ẽ ∈ IrrK(W̃ ) and (λ ,μ) ∈ Λ , we write

Ẽ | E(λ ,μ) def⇔ Ẽ is a constituent of the restriction of E(λ ,μ) to W̃ .

To characterise the special representations in IrrK(W̃ ), it is convenient to define

S̃ (W ) := {(λ ,μ) ∈ Λ) | λi � μi � λi+1 −1 for all i � 1},

where we write λ = (λ1 � λ2 � . . . � 0) and μ = (μ1 � μ2 � . . . � 0). Now let
Ẽ ∈ IrrK(W̃ ). Then, by [220, 4.6], we have

Ẽ is special ⇔ Ẽ | E(λ ,μ) for some (λ ,μ) ∈ S̃ (W ).

Note that if Ẽ is special, then (λ ,μ) on the right-hand side is uniquely determined:
just observe that if both (λ ,μ) and (μ ,λ ) belong to S̃ (W ), then λ = μ .

Now, by Spaltenstein [281, §4] and 2.2.12(∗), we obtain the following result. Let
Ẽ, Ẽ ′ ∈ IrrK(W̃ ) be special representations. Let (λ ,μ)∈ S̃(W ) and (λ ′,μ ′)∈ S̃ (W )
be such that Ẽ | E(λ ,μ) and Ẽ ′ | E(λ ′,μ ′). Then

Ẽ �L̃ Ẽ ′ ⇔
{

Ẽ = Ẽ ′ if λ = λ ′ = μ = μ ′,
(λ ,μ) � (λ ′,μ ′) otherwise,

where (λ ,μ) � (λ ′,μ ′) is defined in Example 2.2.15. See [122, §5] for further de-
tails.



2.2 A Pre-order Relation on Irr(W ) 77

Example 2.2.16. Assume that W is of type E6, E7 or E8. The equivalence classes
of IrrK(W ) under ∼L are listed in Lusztig [220, 4.11–4.13]; see also [132, App. C].
The Springer correspondence is explicitly described in the tables in [45, 13.3].

(E6) We have | IrrK(W )| = 25 and there are 17 equivalence classes under ∼L. The
partially ordered set of special unipotent classes is printed in [45, p. 441].

(E7) We have | IrrK(W )| = 60 and there are 35 equivalence classes under ∼L. The
partially ordered set of special unipotent classes is printed in [45, p. 443].

(E8) We have | IrrK(W )| = 112 and there are 46 equivalence classes under ∼L. The
partially ordered set of special unipotent classes is printed in [45, p. 445].

Example 2.2.17. Let W be of type Bn and L : W → Γ be a weight function given by

Bn �

b 4
�

a
�

a
� � � �

a
where b > (n−1)a > 0.

Recall that Λ is the set of all pairs of partitions (λ ,μ) such that |λ |+ |μ | = n;
see Example 1.3.9. By [122, Example 5.1] (which relies on the series of papers by
Bonnafé, Geck, Iancu [21], [26], [108], [114], [121]), we have

(a) E(λ ,μ) �L E(λ ′,μ ′) ⇔ (λ ,μ) � (λ ′,μ ′).

Here, � denotes the dominance order on pairs of partitions, which is defined by

(b) (λ ,μ) � (λ ′,μ ′) def⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
1�i�d

λi � ∑
1�i�d

λ ′
i

|λ |+ ∑
1�i�d

μi � |λ ′|+ ∑
1�i�d

μ ′
i ,

(for all d � 1)

where λ = (λ1 � λ2 � . . . � 0), λ ′ = (λ ′
1 � λ ′

2 � . . . � 0), μ = (μ1 � μ2 � . . . � 0)
and μ ′ = (μ ′

1 � μ ′
2 � . . . � 0). Furthermore, by [121, Cor. 5.5], we have

(c) E(λ ,μ) �L E(λ ′,μ ′) ⇒ a(λ ′,μ ′) � a(λ ,μ),

with equality only if (λ ,μ) = (λ ′,μ ′).

For the (infinitely many) remaining open cases in type Bn, at least a conjecture is
formulated in [122, 4.11].

Remark 2.2.18. Lusztig’s definition [220, 5.15] of a pre-order relation on IrrK(W )
looks somewhat different from that in Definition 2.2.1, but it is really the same.
Let us briefly indicate why this is the case. By the Artin–Wedderburn theorem, the
split semisimple algebra HK decomposes as a direct sum of simple two-sided ideals
HK =

⊕
λ∈Λ HK(λ ), where HK(λ ) is the sum of all left ideals in HK which are

isomorphic to Eλ
ε (as left HK-modules). On the other hand, for any y ∈W , we have

the two-sided ideals ILR
y and ÎLR

y defined by the general procedure in 1.6.2, with
respect to the basis {Cw |w∈W} of HK . Now let T be a two-sided Kazhdan–Lusztig
cell and λ ∈ Λ . Then we claim that the following two statements are equivalent:
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(a) Eλ �L w for some w ∈ T.
(b) HK(λ ) ⊆ ILR

y and HK(λ ) �⊆ ÎLR
y for some y ∈ T.

Indeed, if (a) holds, then cst
w,λ �= 0 and cuv

w−1,λ �= 0 for some s, t,u,v ∈ M(λ ); see

1.6.10. Hence, by 2.1.19, we have ρλ (Cw) �= 0 and ρλ (Dw−1) �= 0. This yields
Cw.HK(λ ) �= {0} and Dw−1 .HK(λ ) �= {0}. Then the argument in the proof of [220,
Lemma 5.2] shows that (b) holds. Conversely, assume that (b) holds. Then the inclu-
sion HK(λ ) ⊆ ILR

y induces an (HK ,HK)-bimodule homomorphism ϕ : HK(λ ) →
ILR

y /ÎLR
y , which is non-zero since HK(λ ) �⊆ ÎLR

y . Now let us just consider the left

HK-module structure. Since T is a union of left cells, the left HK-module ILR
y /ÎLR

y
has a filtration by left cell modules [Ci]K , where each Ci is a left cell contained
in T. Hence, there exists a non-zero HK-module homomorphism Eλ

ε → [Ci]K for
some i. Then m(Ci,λ ) > 0 and so there exists some w ∈ Ci such that Eλ �L w;
see Lemma 2.2.4. Thus, the equivalence of (a) and (b) is proved. Once this is estab-
lished, we can conclude that

(c) Eλ �L Eμ ⇔
{

there exists some w ∈W such that
HK(λ ) ⊆ ILR

w , HK(μ) ⊆ ILR
w , HK(μ) �⊆ ÎLR

w .

The condition on the right-hand side is the one used by Lusztig [220, 5.15].

2.3 On Lusztig’s Conjectures, I

In the previous section, we have defined a pre-order relation �L on IrrK(W ) and we
have seen that, in many examples, the following implication holds for any λ ,μ ∈Λ :

(♣) Eλ �L Eμ ⇒ aμ � aλ (with equality only if Eλ ∼L Eμ ).

This property will turn out to be the key to our main results on representations of
Hecke algebras at roots of unity. The somewhat weaker implication

(♣′) Eλ ∼L Eμ ⇒ aμ = aλ

was a key ingredient in Lusztig’s work [220] on characters of reductive groups over
finite fields. Now, a general proof of these apparently simple statements is not yet
known. And in those situations where (♣) and (♣′) are known to hold, the proofs
rely on deep results from algebraic geometry, or explicit computations. It is the
purpose of this and the following two sections to discuss this in some more detail.

Assume first that W is a Weyl group and that we are in the equal-parameter case.
Then the proof of (♣′) in [220, Chap. 5] relies on the theory of primitive ideals in
enveloping algebras. Subsequently, Lusztig [225] found a new proof which uses a
geometric interpretation of {Cw} and the results in [222], [223]. This interpretation
implies, for example, that all coefficients of the polynomials P∗

y,w are non-negative
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integers. In the general multiparameter case, such a geometric interpretation is not
known – and the coefficients of P∗

y,w may be strictly negative; see Example 2.1.5!
In his book [231, Chap. 14], Lusztig has extended the known situation in the

equal-parameter case and stated 15 conjectural properties P1–P15 of the basis {Cw}
which should hold for any Coxeter group (finite or infinite) and in the general mul-
tiparameter case. In [231, Chap. 20], Lusztig shows that (♣) and (♣′) are formal
consequences of P1–P15. Thus, P1–P15 appear to provide the appropriate frame-
work for establishing substantial results concerning the representation theory of H.

(See 2.4.1 for a summary of the cases where P1–P15 are known to hold.)

2.3.1. For the convenience of the reader, we state here Lusztig’s conjectures P1–
P15 in [231, Chap. 14] in the general framework involving a totally ordered abelian
group Γ , and taking into account the possibility that L(s) = 0 for some s ∈ S. Also
note that these properties are formulated in [231] with respect to the basis {C′

w}, but,
using the formulae in Remark 2.1.7, it is a straightforward matter to switch back and
forth between Cw and C′

w. The following definitions originally appeared in [222], in
the equal-parameter case. For a fixed z ∈W , we set

a(z) := min{g ∈ Γ�0 | εg hx,y,z ∈ Z[Γ�0] for all x,y ∈W}.

Given x,y,z ∈W , we define cx,y,z−1 ∈ Z by

cx,y,z−1 := constant term of εa(z) hx,y,z ∈ Z[Γ�0].

Furthermore, if z ∈W is such that P∗
1,z �= 0, we define an element Δ(z) ∈ Γ�0 and an

integer 0 �= nz ∈ Z by the condition

εΔ(z) P∗
1,z ≡ nz mod Z[Γ<0]; see [231, 14.1].

(Note that we can only have P∗
1,z = 0 if L(s) = 0 for some s ∈ S; see Example 2.1.11;

this is the only place where we explicitly have to mention if L(s) equals zero or not.)
Finally, we set D := {z ∈W | P∗

1,z �= 0 and a(z) = Δ(z)}.

Conjecture 2.3.2 (Lusztig [231, 14.2]). The following properties hold.

P1. For any z ∈W such that P∗
1,z �= 0, we have a(z) � Δ(z).

P2. If d ∈ D and x,y ∈W satisfy cx,y,d �= 0, then x = y−1.
P3. If y ∈W, there exists a unique d ∈ D such that cy−1,y,d �= 0.
P4. If x,y ∈W are such that x �LR y, then a(y) � a(x). In particular, if x ∼L R y,

then a(x) = a(y).
P5. If d ∈ D , y ∈W, cy−1,y,d �= 0, then cy−1,y,dnd = (−1)l(d).

P6. If d ∈ D , then d2 = 1.
P7. For any x,y,z ∈W, we have cx,y,z = cy,z,x.
P8. Let x,y,z ∈W be such that cx,y,z �= 0. Then x ∼L y−1, y ∼L z−1, z ∼L x−1.
P9. If x �L y and a(x) = a(y), then x ∼L y.
P10. If x �R y and a(x) = a(y), then x ∼R y.
P11. If x �LR y and a(x) = a(y), then x ∼LR y.



80 2 Kazhdan–Lusztig Cells and Cellular Bases

P12. Let I ⊆ S and WI be the parabolic subgroup generated by I. If y ∈ WI, then
a(y) computed in terms of WI is equal to a(y) computed in terms of W.

P13. Any left cell C of W contains a unique element d ∈D . We have cx−1,x,d �= 0 for
all x ∈ C.

P14. For any z ∈W, we have z ∼L R z−1.
P15. If w,w′,x,y ∈W are such that a(x) = a(y), then

∑
z∈W

hx,w′,z ⊗Z hw,z,y = ∑
z∈W

hz,w′,y ⊗Z hw,x,z in Z[Γ ]⊗Z Z[Γ ].

We just remark (a) that there are some logical dependences between these prop-
erties (for example, “P1 + P3 ⇒ P5” by [231, 14.5]) and (b) that some of these
properties seem to be more crucial than others (for example, P4 will appear almost
everywhere while P6 will not be needed in the whole discussion below).

Remark 2.3.3. In 2.1.14, we have seen that C�
w = Cw−1 for all w ∈W , where h �→ h�

is the anti-automorphism of H defined by T �
w = Tw−1 . This immediately implies that

hx,y,z = hy−1,x−1,z−1 , a(z) = a(z−1) and cx,y,z = cy−1,x−1,z−1

for all x,y,z ∈W . Furthermore, we have nz = nz−1 , Δ(z) = Δ(z−1), D = D−1.

Remark 2.3.4. P14 holds for finite W by Lemma 1.6.6 and Proposition 2.1.20. (See
[220, 5.2] for the equal-parameter case.) The reason why it appears in the above list
is that Conjecture 2.3.2 is stated in [231] for arbitrary (possibly infinite) Coxeter
groups satisfying a certain boundedness condition.

Remark 2.3.5. Assume that we are in the equal-parameter case where Γ = Z and
L(s) = 1 for all s∈ S. Now A is the ring of Laurent polynomials in one indeterminate
v = ε . One easily checks that there is a well-defined ring homomorphism α : H →
H such that α(v) = −v, α(r) = r for all r ∈ R and α(Tw) = (−1)l(w)Tw for all
w ∈ W . Hence, by the characterisation in Theorem 2.1.6, we must have α(Cw) =
(−1)l(w)Cw. Applying α to the relation CxCy = ∑z∈W hx,y,zCz, we deduce that

(a) hx,y,z(−v) = (−1)l(x)+l(y)+l(z) hx,y,z(v) for all x,y,z ∈W .

This also implies that

(b) (−1)l(x)+l(y)+l(z)cx,y,z = (−1)a(z)cx,y,z for all x,y,z ∈W .

(These observations are due to Lusztig [222, 3.2].)

Remark 2.3.6. Let J be the free Z-module with basis {tw | w ∈ W}. We define an
element of J by 1J := ∑d∈D nd td . We define a bilinear product on J by

txty = ∑
z∈W

γx,y,z tz−1 , where γx,y,z := (−1)l(x)+l(y)+l(z)cx,y,z−1 .
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(Note that this agrees with the notation in [231, 13.6].) Using P1, P4, one deduces
that J is an associative ring, where 1J is the identity. Since we will not need this
construction here, we refer to Lusztig [231, Chap. 18] for further details. For the
identification with our algebra J̃, see Proposition 2.3.16 below.

Remark 2.3.7. We note that P15 really is a statement about a certain bimodule
structure (which appeared in [216], [222, 9.2]). To see this, consider the ring
A = R[Γ ]⊗R R[Γ ] and let E be a free A -module with basis {ez | z ∈W}. Let

H1 = A ⊗A H, where A is embedded into A via a �→ 1⊗a,

H2 = A ⊗A H, where A is embedded into A via a �→ a⊗1.

By P4 and the definition of the Kazhdan–Lusztig pre-order relation �LR , there is a
left action of H1 on E via

Cw.ex = ∑
z∈W :a(z)=a(x)

(1⊗hw,x,z)ez for x,w ∈W .

Similarly, there is a right action of H2 on E via

ex.Cw = ∑
z∈W :a(z)=a(x)

(hx,w,z ⊗1)ez for x,w ∈W .

Now let x,w,w′ ∈W . Then

Cw.(ex.Cw′) = ∑
z∈W

a(z)=a(x)

(hx,w′,z ⊗1)Cw.ez = ∑
y,z∈W

a(y)=a(z)=a(x)

(hx,w′,z ⊗hw,z,y)ey.

Here, we recognise the terms appearing on the left-hand side of P15. Similarly, when
we expand (Cw.ex).Cw′ , we will recognise the terms appearing on the right-hand side
of P15. Thus, we conclude that P15 holds if and only if E is an (H1,H2)-bimodule.

As already mentioned in the introduction to this section, Lusztig [231, Chap. 20]
has shown that (♣′) formally follows from P1–P15. We will now give a somewhat
streamlined exposition of this deduction which, eventually, only requires P1, P4.
(The stronger property (♣) will be considered in the next section.) For this pur-
pose, we need to relate the functions a(z) and aλ . The following result (which first
appeared in [114]) seems to be the only known connection between these two func-
tions which can be proved without assuming any of the properties P1–P15.

Lemma 2.3.8. Let λ ∈ Λ and w ∈W be such that Eλ �L w. Then a(w) � aλ .

Proof. By assumption, there exist some s, t∈M(λ ) such that cst
w,λ �= 0. Furthermore,

by 2.1.19, we have εaλ ρλ
st(Dw) ≡ cst

w,λ mod m. Now we claim that

(a) ρλ
st(Dw) = ∑

x,y∈W
c−1

λ ρλ
st(Dx−1)ρλ

ss(Dy−1)hx,y,w−1 .
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This is seen as follows. Let x,y ∈ W . Then hx,y,w−1 = τ(CxCyDw); see 2.1.13. Fur-
thermore, τ = ∑μ∈Λ c−1

μ χμ and so hx,y,w−1 = ∑μ∈Λ c−1
μ χμ(CxCyDw). This yields

hx,y,w−1 = ∑
μ∈Λ

∑
u,u′,v∈M(μ)

c−1
μ ρμ

uu′(Cx)ρμ
u′v(Cy)ρμ

vu(Dw).

Now multiply on both sides by ρλ
st(Dx−1)ρλ

ss(Dy−1) and sum over all x,y∈W . Using
the Schur relations in Proposition 1.2.12, a straightforward computation yields (a).

Now note that c−1
λ = f−1

λ ε2aλ /(1+gλ ), where gλ ∈ F [Γ>0]. Hence, we obtain

εa(w) ρλ
st(Dw) = ∑

x,y∈W

f−1
λ

1+gλ

(
εaλ ρλ

st(Dx−1)
)(

εaλ ρλ
ss(Dy−1)

)(
εa(w) hx,y,w−1

)
.

All terms in the above sum lie in O0; see 2.1.19 and also note that a(w) = a(w−1)
by Remark 2.3.3. Hence the whole sum will lie in O0 and so εa(w) ρλ

st(Dw) ∈ O0.
Since εaλ ρλ

st(Dw) �≡ 0 mod m, we conclude that a(w) � aλ , as claimed. ��

Lemma 2.3.9. Let C be a left Kazhdan–Lusztig cell and λ ∈ Λ be such that
m(C,λ ) > 0.

(a) If y ∈W is such that ρλ (Cy) �= 0, then y′ �R y for some y′ ∈ C.
(b) If z ∈W is such that ρλ (Dz−1) �= 0, then z �R z′ for some z′ ∈ C.

Proof. Since m(C,λ ) > 0, we have that Eλ
ε is an irreducible constituent of [C]K ;

see 2.2.2. Now assume that ρλ (Cy) �= 0; that is, Cy does not act as zero on Eλ
ε .

Then Cy cannot act as zero on [C]K either. By the definition of this action, there
exist some x,y′ ∈ C such that hy,x,y′ �= 0. In particular, y′ �R y. Thus, (a) is proved.
Now assume that ρλ (Dz−1) �= 0. Then Dz−1 cannot act as zero on [C]K . So, by the
definition of this action, there exists some z′ ∈ C such that Dz−1Cz′ �= 0. Since τ is
non-degenerate, there exists some x ∈ W such that τ(CxDz−1Cz′) �= 0. This yields
hz′,x,z = τ(Cz′CxDz−1) = τ(CxDz−1Cz′) �= 0 and so z �R z′, as required. ��

Lemma 2.3.10. Assume that P4 holds. Let x,y,z ∈W. Then

cx,y,z = ∑
λ

∑
s,t,u∈M(λ )

f−1
λ cst

x,λ ctu
y,λ cus

z,λ ,

where the first sum runs over all λ ∈ Λ such that aλ = a(z).

Proof. We have hx,y,z−1 = τ(CxCyDz) and τ = ∑λ∈Λ c−1
λ χλ . This yields

hx,y,z−1 = ∑
λ∈Λ

c−1
λ trace

(
ρλ (Cx)ρλ (Cy)ρλ (Dz)

)

= ∑
λ∈Λ

∑
s,t,u∈M(λ )

c−1
λ ρλ

st(Cx)ρλ
tu(Cy)ρλ

us(Dz).

Now note that c−1
λ = f−1

λ ε2aλ /(1+gλ ), where gλ ∈ F [Γ>0]. Hence, we obtain
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εa(z)hx,y,z−1 = ∑
λ∈Λ

∑
s,t,u∈M(λ )

f−1
λ

1+gλ

(
εaλ ρλ

st(Cx)
)(

εaλ ρλ
tu(Cy)

)(
εa(z)ρλ

us(Dz)
)
.

By 2.1.19, the terms εaλ ρλ
st(Cx), εaλ ρλ

tu(Cy) and εaλ ρλ
us(Dz) lie in O0. Let λ ∈Λ be

such that ρλ
us(Dz) �= 0. Let C be a left Kazhdan–Lusztig cell such that m(C,λ ) > 0.

Then, by Lemma 2.3.9(b), there exists some w ∈ C such that z−1 �R w. By P4, we
must have a(w) � a(z−1) = a(z). Furthermore, by Lemma 2.2.4, there exists some
w′′ ∈ C∩Fλ . Hence, by P4 and Lemma 2.3.8, we have aλ � a(w′′) = a(w) � a(z).
But if aλ < a(z), then εa(z)ρλ

us(Dz) ∈ m for all s,u ∈ M(λ ) and so these terms do
not contribute to εa(z)hx,y,z−1 mod Z[Γ>0]. We conclude that

εa(z)hx,y,z−1 ≡
(

∑
λ∈Λ

aλ =a(z)

∑
s,t,u∈M(λ )

f−1
λ cst

x,λ ctu
y,λ cus

z,λ

)
mod m.

This yields the desired formula for cx,y,z. ��

Corollary 2.3.11. Assume that P4 holds. Then {a(z) | z ∈W} ⊆ {aλ | λ ∈ Λ}.

Proof. Given z ∈W , let x,y ∈W be such that cx,y,z �= 0. Then Lemma 2.3.10 shows
that there exists some λ ∈ Λ such that aλ = a(z). ��

Lemma 2.3.12 (Lusztig [222, 6.1]). Assume that P4 holds. Then P7 also holds.
Furthermore, if cx,y,z �= 0, then a(x) = a(y) = a(z).

Proof. We first show that, for any x′,y′,z ∈W , we have

(∗) cx′,y′,z = constant term of εa(z)τ(Tx′Ty′Dz) ∈ Z[Γ�0].

Indeed, as already noted in Definition 2.1.4, we have

Tw = Cw + ∑
w′∈W :w′<w

αw,w′ Cw′ , where αw,w′ ∈ Z[Γ>0].

Since a(z) = a(z−1) and cx′,y′,z ≡ εa(z)τ(Cx′Cy′Dz) mod Z[Γ>0], this shows that

cx′,y′,z ≡ εa(z)τ(Tx′Ty′Dz)+ ∑
x′′<x′

∑
y′′<y′

αx′,x′′αy′,y′′εa(z)τ(Cx′′Cy′′Dz) mod Z[Γ>0].

Since εa(z)τ(Cx′′Cy′′Dz) ∈ Z[Γ�0], we see that (∗) holds.
Now we argue as follows. Let x,y,z ∈ W and set c := cx,y,z. Assume first that

c �= 0. Hence, by (∗), we have that εa(z)τ(TxTyDz) ∈ Z[Γ�0] has constant term c.
Now, writing Dx in terms of the T -basis (see 2.1.13) and using (∗), we see that
εa(z)τ(DxTyDz) ∈ Z[Γ�0] has constant term c and, hence, εa(z)τ(TyDzDx) ∈ Z[Γ�0]
has constant term c. Using once more the expression of Dz in 2.1.13, we obtain

εa(z)τ(TyTzDx) = εa(z)τ(TyDzDx)− ∑
w∈W :z<w

P
∗
ww0,zw0

εa(z)τ(TyTwDx).
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Now, since c = cx,y,z �= 0, we have hx,y,z−1 �= 0 and, hence, z−1 �R x. So, by
P4, we have a(x) � a(z−1) = a(z). Combining this with (∗), we deduce that
εa(z)τ(TyTwDx) ∈ Z[Γ�0] for all y,w ∈W . Consequently,

εa(z)τ(TyTzDx) ≡ εa(z)τ(TyDzDx) ≡ c mod Z[Γ�0].

Using (∗), this shows that a(x) � a(z). Since we also have a(z) � a(x), we conclude
that a(x) = a(z) and, hence, cy,z,x = c. Since c �= 0, we can repeat the whole argument
with cy,z,x and find that cz,x,y = c; furthermore, a(z) = a(y).

Thus, if one of the numbers cx,y,z, cy,z,x, cz,x,y is non-zero, then these three num-
bers are equal to each other and we have a(x) = a(y) = a(z). If all three numbers
are zero, they are again equal. ��

Lemma 2.3.13 (Lusztig [231, 14.5]). Assume that P1 holds. Then

∑
d∈D

(−1)l(d) nd cx−1,y,d = δxy for any x,y ∈W .

Proof. Since Cy−1Cx = ∑z∈W hy−1,x,zCz and τ(Cz) = (−1)l(z)P
∗
1,z, we have

τ(Cy−1Cx) = ∑
z∈W

(−1)l(z)hy−1,x,z P
∗
1,z

= ∑
z∈W :P∗

1,z �=0

(
εa(z)hy−1,x,z

)(
(−1)l(z)ε−a(z)P

∗
1,z

)
.

By 2.1.13(a), the left-hand side is congruent to δxy modulo Z[Γ>0]. Now consider
the right-hand side. By the definition of Δ(z), we have ε−Δ(z)P

∗
1,z ≡ nz mod Z[Γ>0].

Since P1 is assumed to hold, we have a(z) � Δ(z). This yields that

ε−a(z)P
∗
1,z ≡

{
nz mod Z[Γ>0] if z ∈ D ,
0 mod Z[Γ>0] otherwise.

Hence, we obtain δxy ≡ τ(Cy−1Cx)≡∑d∈D (−1)l(d)cy−1,x,d−1nd mod Z[Γ>0]. Finally,
by Remark 2.3.3, we have cy−1,x,d−1 = cx−1,y,d , which yields the desired formula. ��

Proposition 2.3.14. Assume that P1, P4 hold. If λ ∈ Λ and w ∈ W are such that
Eλ �L w, then a(w) = aλ . In particular, (♣′) holds.

Proof. By Lemma 2.3.8, we already know that a(w) � aλ . So it will now be suffi-
cient to prove that a(w) � aλ . For this purpose, we consider the identity

∑
d∈D

(−1)l(d)ndCwCd = ∑
d∈D ,y∈W

(−1)l(d)ndhw,d,y Cy.

Applying ρλ and multiplying by εaλ +a(w), we obtain

∑
d∈D

(−1)l(d)ndεaλ +a(w)ρλ
st(CwCd) = ∑

d∈D ,y∈W

(−1)l(d)nd
(
εa(w)hw,d,y

)(
εaλ ρλ

st(Cy)
)
.
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Assume that the terms corresponding to d ∈ D , y ∈W give a non-zero contribution
to the sum on the right-hand side; that is, hw,d,y �= 0 and ρλ

st(Cy) �= 0. Let C be a
left Kazhdan–Lusztig cell such that m(C,λ ) > 0. By Lemma 2.3.9(a), there exists
some z′ ∈ C such that z′ �R y. On the other hand, since hw,d,y �= 0, we have y �R w.
Furthermore, by Lemma 2.2.4, there exists some w′ ∈ C∩Fλ . Thus, we obtain

w,w′ ∈ Fλ , w′,z′ ∈ C, z′ �R y �R w.

Since every two-sided Kazhdan–Lusztig cell is a union of two-sided J̃-cells (see
Proposition 2.1.20) and also a union of left Kazhdan–Lusztig cells, we conclude that
w,w′,y,z′ all lie in the same two-sided Kazhdan–Lusztig cell. In particular, since P4
holds, we have a(y) = a(w). Hence, using 2.1.19, the right-hand side of the above
identity can be rewritten as

∑
d∈D ,y∈W

(−1)l(d)nd
(
εa(y) hw,d,y

)(
εaλ ρλ

st(Cy)
)

≡ ∑
d∈D ,y∈W

(−1)l(d)nd γw,d,y−1 cst
y,λ mod m.

By Lemma 2.3.12, we have γw,d,y−1 = γy−1,w,d . Hence, Lemma 2.3.13 yields that

∑
d∈D ,y∈W

(−1)l(d)nd γw,d,y−1 cst
y,λ ≡ cst

w,λ mod m.

Since cst
w,λ �= 0, we can go back to the left-hand side of the original identity above

and conclude that ∑d∈D (−1)l(d)ndεaλ +a(w)ρλ
st(CwCd) �≡ 0 mod m. Thus, we have

∑
d∈D

∑
u∈M(λ )

(−1)l(d)nd
(
εa(w) ρλ

su(Cw)
)(

εaλ ρλ
ut(Cd)

)
�≡ 0 mod m.

So there must be some d ∈ D and some u ∈ M(λ ) such that εa(w)ρλ
ut(Cd) �∈ m.

Consequently, by Proposition 1.4.10(c) and 2.1.19, we have aλ � a(w). Thus, we
have shown that a(w) = aλ if Eλ �L w.

Now assume that λ ,μ ∈ Λ are such that Eλ ∼L Eμ . By definition, this means
that w ∼LR w′, where w,w′ ∈W are such that Eλ �L w and Eμ �L w′. Using P4,
we obtain aλ = a(w) = a(w′) = aμ ; that is, (♣′) holds. ��

Remark 2.3.15. In the above discussion, we have not found it necessary to use any
of the properties P2, P3, P5, P6, P13 in Lusztig’s list. All of these express properties
of the elements in D . It seems that these are logically independent of P1, P4, P15.

Finally, we show that our algebra J̃ constructed in Section 1.5 really is an incar-
nation of Lusztig’s asymptotic ring J (see Remark 2.3.6).

Proposition 2.3.16 (Cf. [114, §3]). Assume that P1, P4 hold. Then

γ̃x,y,z = cx,y,z and ñw =
{

(−1)l(w)nw if w ∈ D ,
0 otherwise,
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for all x,y,z,w ∈W. In particular, Conjecture 1.5.12(a) holds; that is, γ̃x,y,z and ñw

are integers. Furthermore, we have D̃ = D .

Thus, the map tw �→ (−1)l(w)tw defines an algebra isomorphism J̃ ∼→ K⊗Z J,
where J is Lusztig’s asymptotic ring; see Remark 2.3.6.

Proof. Let x,y,z∈W . By P4 and Proposition 2.1.20, we have γ̃x,y,z = 0 unless a(x) =
a(y) = a(z). The analogous statement also holds for cx,y,z by Lemma 2.3.12. Thus,
in order to show that γ̃x,y,z = cx,y,z, we can assume without loss of generality that
a(x) = a(y) = a(z). But, in this case, we have

cx,y,z = ∑
λ

∑
s,t,u∈M(λ )

f−1
λ cst

x,λ ctu
y,λ cus

z,λ

by Lemma 2.3.10, where the first sum runs over all λ ∈ Λ such that aλ = a(x) =
a(y) = a(z). On the other hand, we have

γ̃x,y,z = ∑
λ∈Λ

∑
s,t,u∈M(λ )

f−1
λ cst

x,λ ctu
y,λ cus

z,λ .

But, by Proposition 2.3.14, the leading matrix coefficients appearing in the above
expression are zero unless aλ = a(x) = a(y) = a(z). Thus, the desired identity be-
tween γ̃x,y,z and cx,y,z is proved.

The identity in Lemma 2.3.13 and the fact that P7 holds (see Lemma 2.3.12) now
imply that ∑d∈D (−1)l(d)ndtd ∈ J̃ is an identity element in J̃; see the analogous ar-
gument in the proof of Proposition 1.5.5. Since the identity element of J̃ is uniquely
determined, we obtain the desired statement about ñw. ��

2.4 On Lusztig’s Conjectures, II

The conjectural properties P1–P15 are known to hold in a number of situations
(including the equal-parameter case), but a general proof is still missing. There does
not even seem to be a general idea of how to prove one of the crucial properties P1,
P4, P15 for an arbitrary weight function L. In this section, we first give a summary
about the present state of knowledge concerning the validity of P1–P15. This will
be followed by a detailed discussion of the case where L(s) = 0 for some s ∈ S.

2.4.1. Here is a summary of the cases where P1–P15 are known to hold.

(a) P1–P15 hold for any finite W , assuming that we are in the equal-parameter case
where Γ = Z and there is some a > 0 such that L(s) = a for all s ∈ S. (Here, A
is the ring of Laurent polynomials in one indeterminate v = ε .) Indeed, as al-
ready mentioned, Lusztig [231, Chap. 15] deduces P1–P15 from the following
“positivity” properties:

P∗
y,w ∈ Z�0[v,v−1] and h′x,y,z ∈ Z�0[v,v−1] for all x,y,z,w ∈W .
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(Recall that h′x,y,z = (−1)l(x)+l(y)+l(z)hx,y,z; see also Remark 2.3.5.) If W is a
Weyl group, then these “positivity” properties follow from a geometric interpre-
tation; see Kazhdan and Lusztig [196], Lusztig and Vogan [233] and Springer
[283]. If W is of type I2(m) (any m � 2), H3 or H4, they follow by explicit
computations; see Alvis [2] and DuCloux [76].

(b) P1–P15 have been checked by explicit computations for W of type I2(m) (any
m � 3) and any weight function such that L(s) > 0 for s ∈ S; see [76], [114, §5].

(c) P1–P15 have been checked by explicit computations (with the help of a com-
puter and CHEVIE [118]) for W of type F4 and any weight function such that
L(s) > 0 for s ∈ S; see [105], [114, §5].

(d) P1–P15 hold for W of type Bn and any weight function L : W → Γ given by

Bn �

b 4
�

a
�

a
� � � �

a
where b > (n−1)a > 0.

See the series of papers by Bonnafé, Geck, Iancu [21], [26], [108], [114], [121].
(e) P1–P15 hold if (W,S) is irreducible, Γ = Z and L(s) = 0 for some s ∈ S; see

2.4.8 below. (Here, we are essentially reduced to the equal-parameter case; see
also Lusztig [224], [225], where a more general setting is considered.)

It is beyond the scope of this book to discuss the proofs of (a)–(d) in any more detail.
An elementary proof of P1–P15 for W ∼= Sn is given in [107]; see also Section 2.8.
The geometric arguments used in (a) can be extended to the so-called quasi-split
case, in which some choices of unequal parameters occur; see Table 4.1 (p. 227).
(The proofs are sketched in [219] and [231, Chap. 16].) Of course, it would be highly
desirable to find general proofs (at least for P1, P4, P15) which uniformly work for
any W,L. The above results imply the following general statement:

Corollary 2.4.2. Let W be any finite Coxeter group and L0 : W → Γ0 be the univer-
sal weight function in Example 1.1.9. Let � be a monomial order on Γ0 such that we
are in the “asymptotic case” as in Example 1.1.11(c). Then P1–P15 hold for W,L0.

For the remainder of this section, we address in some more detail the question of
what happens when W is a finite Coxeter group and L(s) = 0 for some s ∈ S.

2.4.3. Let Ω ⊆W be the parabolic subgroup generated by all t ∈ S such that L(t)= 0.
Then we can break down the structure of W as follows. Let W1 ⊆W be the subgroup
generated by S1 := {ωsω−1 | ω ∈ Ω ,s ∈ S where L(s) > 0}. Then, by Bonnafé and
Dyer [24, Theorem 1.1], W1 is a normal subgroup of W such that W1 ∩Ω = {1};
furthermore, we have a semidirect product decomposition

(a) W = Ω �W1 and (W1,S1) is a Coxeter system.

Given w ∈W , let w = s1 · · ·sp (si ∈ S) be a reduced expression. We denote by lΩ (w)
the number of i ∈ {1, . . . , p} such that L(si) = 0, and by l1(w) the number of i ∈
{1, . . . , p} such that L(si) > 0. (Note that these two numbers do not depend on the
choice of the reduced expression.) By [24, Cor. 1.3], we have

(b) l(w) = lΩ (w)+ l1(w) and l1|W1 is the length function for (W1,S1).
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(c) l1(ωwω−1) = l1(w) for all w ∈W1 and ω ∈ Ω .

Now let s̃ ∈ S1 and write s̃ = ωsω−1, where ω ∈ Ω and s ∈ S is such that L(s) > 0.
Then one readily checks that L(s̃) = L(s); moreover, we have

(d) The restriction L|W1 : W1 → Γ is a weight function, which we denote by L1.

Indeed, let w ∈ W1 and let w = s̃1 · · · s̃p (s̃i ∈ S1) be a reduced expression for w
with respect to S1. For each i, let si ∈ S and ωi ∈ Ω be such that s̃i = ωisiω−1

i
and L(si) > 0. Writing each ωi as a product of generators t ∈ S such that L(t) =
0, we obtain an expression for w in terms of S which is not necessarily reduced.
But we can extract a reduced expression from it, and this reduced expression will
contain the factors s1, . . . ,sp and various generators t ∈ S such that L(t) = 0. (By
(b), all the factors s1, . . . ,sp must occur since l1(w) = p.) Thus, we have L(w) =
L(s1) + · · ·+ L(sp). The argument also shows that L(s̃i) = L(si) for all i and so
L(w) = L(s̃1)+ · · ·+L(s̃p). Hence, L|W1 : W1 → Γ is a weight function, as required.

Example 2.4.4. Assume that (W,S) is irreducible and that {1} �= Ω �=W . According
to the classification in Table 1.1, we are in one of the following cases.

(a) Let (W,S) be of type Bn, where the generators are labelled as in the diagram
below. Let L(s0) = 0 and L(s1) = · · · = L(sn−1) > 0. Then Ω = {1,s0} and
S1 = {s0s1s0,s1,s2, . . . ,sn−1}. The Coxeter system (W1,S1) is of type Dn:

Bn �

s0 4
�

s1
�

s2
� � � �

sn−1 Dn

s1

s0s1s0 �

�

��
��

�

s2
�

s3
� � � �

sn−1

(b) Let (W,S) be of type Bn (with generators labelled as above), but now let L(s0) >
0 and L(s1) = · · · = L(sn−1) = 0. Then Ω = 〈s1,s2, . . . ,sn−1〉 ∼= Sn and S1 =
{t1, t2, . . . , tn}, where t1 = s0 and ti = si−1ti−1si−1 for 2 � i � n. One easily
checks that all the ti commute with each other and so (W1,S1) is of type A1 ×
·· ·×A1 (n factors).

(c) Let (W,S) be of type F4, where the generators are labelled as in Table 1.1.
Let L(s1) = L(s2) = 0 and L(s3) = L(s4) > 0. Then Ω = 〈s1,s2〉 ∼= S3 and
S1 = {s3,s4,s2s3s2,s1s2s3s2s1}. One easily checks that (W1,S1) is of type D4,
where s3, s2s3s2 and s1s2s3s2s1 commute with each other,

(d) Let (W,S) be of type I2(m), where m � 4 is even. Write S = {s1,s2} and let
L(s1) > 0 and L(s2) = 0. Then Ω = {1,s2〉 and S1 = {s1,s2s1s2}. One easily
checks that (W1,S1) is of type I2(m/2).

Note that, in all of the above cases, L1 is a multiple of the length function of W1.

On the level of H, we have the following result.

Proposition 2.4.5 (Cf. Bonnafé [22, §2.E]). Assume we are in the setting of 2.4.3.

(a) For all ω ,ω ′ ∈ Ω and w ∈W, we have

Tω Tw = Tωw, TwTω = Twω , Tω Tω ′ = Tωω ′ , Tω−1 = T−1
ω .
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(b) For any s̃ ∈ S1 and w ∈W1, we have

Ts̃Tw =
{

Ts̃w if l1(s̃w) > l1(w),
Ts̃w +(εL(s̃) − ε−L(s̃))Tw if l1(s̃w) < l1(w).

In particular, H1 := 〈Tw | w ∈W1〉A ⊆ H is a subalgebra, and this is the generic
Iwahori–Hecke algebra associated with (W1,S1) and L1 : W1 → Γ .

(c) Let {Cw | w ∈W} be the Kazhdan–Lusztig basis of H. Then

CωCw = Cωw, CwCω = Cwω , Cω = Tω

for all ω ∈ Ω and w ∈W. Furthermore, if w ∈W1, then Cw ∈ H1 and this is the
Kazhdan–Lusztig basis element constructed within H1.

Proof. (a) Let t ∈ S be such that L(t) = 0. Then TtTw = Ttw and TwTt = Twt for all
w ∈ W (independently of whether l(tw) > l(w) or l(tw) < l(w)). This yields that
Tω Tw = Tωw and TwTω = Twω for all w ∈W and ω ∈ Ω . Hence, (a) follows.

(b) Let s̃ ∈ S1 and write s̃ = ωsω−1 where ω ∈ Ω and s ∈ S is such that L(s) > 0.
Let w ∈W1 and set w′ = ω−1wω . Using 2.4.3(b), we obtain

l1(s̃w) = l1(ω−1s̃wω) = l1(sω−1wω) = l1(sw′) = l(sw′)− lΩ (sw′).

We certainly have lΩ (sw′) = lΩ (w′). Using 2.4.3(b), this yields that

l1(s̃w)− l1(w) = l(sw′)− l(w′).

Now assume that l1(s̃w) > l1(w). Then the above relation implies that l(sw′) > l(w′)
and so TsTw′ = Tsw′ . By (a), we have Ts̃ = Tω TsT−1

ω and Tw = Tω Tw′T−1
ω . This yields

Ts̃Tw = Tω
(
TsTw′

)
T−1

ω = Tω Tsw′T−1
ω = Tωsw′ω−1 = Ts̃w,

as required. Similarly, if l1(s̃w) < l1(w), then l(sw′) < l(w′) and so TsTw′ = Tsw +
(εL(s) − ε−L(s))Tw′ . Using (a), we deduce that

Ts̃Tw = Tω
(
TsTw′

)
T−1

ω = Tω
(
Tsw′ +(εL(s) − ε−L(s))Tw′

)
T−1

ω

=
(
Tωsw′ω−1 +(εL(s) − ε−L(s))Tωw′ω−1

)
= Ts̃w +(εL(s) − ε−L(s))Tw,

as required; note that L(s̃) = L(s). Once these relations are established, we see that
Ts̃Tw ∈ H1 for all s̃ ∈ S1 and w ∈ W1. It follows that H1 ⊆ H is a subalgebra. The
relations then show that H1

∼= HA(W1,S1,L1), as required.
(c) By the formulae in Theorem 2.1.8, Example 2.1.5 and Remark 2.3.3, we have

Ct = Tt , CtCw = Ctw and CwCt = Cwt for w ∈ W and t ∈ S such that L(t) = 0. This
immediately yields the formulae for Cω , CωCw and CwCω , where ω ∈ Ω . Now let
w ∈ W1 and denote by C̃w the Kazhdan–Lusztig basis element constructed inside
H1. In order to show that C̃w = Cw, we verify that C̃w satisfies the two conditions in
Theorem 2.1.6 (with respect to W ). We have C̃w ∈ Tw + ∑y∈W1

Z[Γ>0]Ty and so the
first condition is satisfied. Now let w̃0 ∈W1 be the longest element (with respect to
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S1). Then w̃−1
0 w0 ∈ Ω and so we can write w0 = w̃0ω0, where ω0 ∈ Ω . By Theo-

rem 2.1.6 (applied to W1), we have C̃wTw̃0 ∈ ∑y∈W1
Z[Γ�0]Ty. Since TyTω0 = Tyω0 for

all y ∈W1, we deduce that C̃wTw0 = C̃wTw̃0 Tω0 ∈ ∑y∈W1
Z[Γ�0]Tyω0 and so the second

condition also holds. Hence, we must have C̃w = Cw, as required. ��

Remark 2.4.6. Define Hω := Tω .H1 = H1.Tω for ω ∈ Ω . Then Proposition 2.4.5
shows that

H =
⊕
ω∈Ω

Hω and Hω .Hω ′ = Hωω ′ for all ω ,ω ′ ∈ Ω .

Thus, H is an extended Iwahori–Hecke algebra and the subspaces {Hω | ω ∈ Ω}
form an Ω -graded Clifford system in H, in the sense of [53, Def. 11.12].

2.4.7. Let w ∈ W and write w = ωw1, where ω ∈ Ω and w1 ∈ W1. By Proposi-
tion 2.4.5(c), we have Tw = Tω Tw1 , Cω = Tω and Cw = CωCw1 , where Cw1 is the
Kazhdan–Lusztig basis element defined within H1. Hence, we obtain

∑
y∈W

(−1)l(ωw1)+l(y)P̄∗
y,ωw1

Ty = Cωw1 = CωCw1 = ∑
y1∈W1

(−1)l(w1)+l(y1)P̄∗
y1,w1

Tωy1 ,

where P∗
y1,w1

is defined by the element C′
w1

∈ H1. Thus, given any y ∈W and writing
y = ω ′y1, where ω ′ ∈ Ω , y1 ∈W1, we have

(a) P∗
y,w =

{
P∗

y1,w1
if ω = ω ′,

0 otherwise.

A similar relation can be established for the structure constants hx,y,z. By definition,
given x1,x2 ∈W1 and ω1,ω2 ∈ Ω , we have

Cω1x1Cω2x2 = ∑
ω3∈Ω ,x3∈W1

hω1x1,ω2x2,ω3x3 Cω3x3 .

Note that, if ω1 = ω2 = ω3 = 1, then hx1,x2,x3 is a structure constant with respect to
the Kazhdan–Lusztig basis in H1. By the relations in Proposition 2.4.5(c), we have

(b) C−1
ω = Cω−1 and Cω−1Cw1Cω = Cω−1w1ω

for any ω ∈ Ω and w1 ∈W1. Using these relations, we obtain

Cω1x1Cω2x2 = Cω1Cx1Cω2Cx2 = Cω1ω2Cω−1
2 x1ω2

Cx2

= ∑
x3∈W1

hω−1
2 x1ω2,x2,x3

Cω1ω2x3 .

Thus, for any x3 ∈W1 and ω3 ∈ Ω , we have

(c) hω1x1,ω2x2,ω3x3 =

{
hω−1

2 x1ω2,x2,x3
if ω3 = ω1ω2,

0 otherwise.
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We see that the structure constants for the Kazhdan–Lusztig basis in H are com-
pletely determined by the structure constants inside H1.

2.4.8. Let a(z), Δ(z) (z ∈W ) and D be defined as in 2.3.1, with respect to the weight
function L : W → Γ . Define a1(z1), Δ1(z1) (z1 ∈ W1) and D1 analogously, with re-
spect to the weight function L1 : W1 → Γ . Then 2.4.7(c) shows that

(a) a(ωz1) = a1(z1) for all ω ∈ Ω and z1 ∈W1.

Furthermore, since L1(s̃) > 0 for all s̃ ∈ S1, we have P∗
1,z1

�= 0 for all z1 ∈W1. Then
2.4.7(a) shows that

(b) Δ(ωz1) = Δ1(z1) (if ω = 1) and D = D1.

Assume now that Γ = Z and that L1 is a multiple of the length function of W1. In
particular, A is the ring of Laurent polynomials in one indeterminate v = ε . Then
the “positivity” properties in 2.4.1(a) hold for W1,L1. Using Remark 2.1.7 and the
formulae in 2.4.7, we conclude that these “positivity” properties also hold for W,L:

P∗
y,w ∈ Z�0[v,v−1] and h′x,y,z ∈ Z�0[v,v−1] for all x,y,z,w ∈W .

Taking into account (a) and (b), we can now follow Lusztig’s arguments in [231,
Chap. 15] to conclude that P1–P15 hold for W,L. In particular, we see that P1–P15
hold for W,L in all situations described in Example 2.4.4 (where Γ = Z).

Proposition 2.4.9 (Bonnafé [22, §2.E]).

(a) Let x1,x2 ∈W1 and ω1,ω2 ∈ Ω . Then ω1x1 �L ω2x2 (with respect to L) if and
only if x1 �L x2 (with respect to L1). Similarly, x1ω1 �R x2ω2 (with respect to
L) if and only if x1 �R x2 (with respect to L1).

(b) The left cells of W (with respect to L) are of the form Ω .C1 where C1 is a left
cell of W1 (with respect to L1). The left cell module [Ω .C1]A is isomorphic to
the induced module IndH

H1

(
[C1]A

)
:= H⊗H1 [C1]A.

(c) Let x1,x2 ∈W1 and ω1,ω2 ∈ Ω . Then ω1x1 �LR ω2x2 (with respect to L) if and
only if there exists some ω ∈ Ω such that x1 �LR ωx2ω−1 (with respect to L1).

(d) The two-sided cells of W (with respect to L) are of the form Ω .F1.Ω , where
F1 is a two-sided cell of W1 (with respect to L1).

Proof. (a) Assume first that ω1x1 �L ω2x2 (with respect to L). It is enough to
consider the case where ω1x1 ←L ω2x2; that is, there exists some w ∈ W such
that hw,ω2x2,ω1x1 �= 0. By 2.4.7(c), this structure constant equals hw1,x2,x1 (for some
w1 ∈ W1). Consequently, we have x1 �L x2 (with respect to L1). Conversely, as-
sume that x1 ←L x2 (with respect to L1). Thus, hw1,x2,x1 �= 0 for some w1 ∈W1. By
2.4.7(c), hw1,x2,x1 also is a structure constant for the Kazhdan–Lusztig basis in H and
so x1 �L x2 (with respect to L). Furthermore, ω1x1 ∼L x1 and ω2x2 ∼L x2. (This
immediately follows from the fact that CωCw = Cωw for all ω ∈ Ω and w ∈W ; see
Proposition 2.4.5(c).) Hence, we also have ω1x1 �L ω2x2 (with respect to L). The
statement about the relation �R is proved using the fact that x �L y ⇔ x−1 �R y−1.
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(b) The statement about the left cells is an immediate consequence of (a). Now
consider the left cell module [Ω .C1]A. This module has a basis {eω1x1 | ω1 ∈ Ω ,x1 ∈
C1}, where the action of Cωw1 (ω ∈ Ω , w1 ∈W1) is given by

Cωw1 .eω1x1 = ∑
ω2∈Ω ,x2∈C1

hωw1,ω1x1,ω2x2 eω2x2 .

Using 2.4.7(c), we obtain that

Cωw1 .eω1x1 = ∑
x2∈C1

hω−1
1 w1ω1,x1,x2

eωω1x2 .

On the other hand, by definition, IndH
H1

([C1]A) has a basis {ω1 ⊗ ex1 | ω1 ∈ Ω ,x1 ∈
C1}, where the action of Cωw1 (ω ∈ Ω , w1 ∈W1) is given by

Cωw1 .(ω1 ⊗ ex1) = ∑
x2∈C1

hω−1
1 w1ω1,x1,x2

(ωω1 ⊗ ex2).

Hence, [Ω .C1]A → IndH
H1

([C1]A), eω1x1 �→ ω1 ⊗ ex1 , is an H-module isomorphism
(c) For any ω ∈ Ω , the map w1 �→ ωw1ω−1 is a Coxeter group automorphism of

(W1,S1). Furthermore, by 2.4.7(b), we have C−1
ω =Cω−1 and Cωw1ω−1 =CωCw1Cω−1

for all w1 ∈W1. Hence, for any x1,x2 ∈W1, we have

(∗) x1 �L x2 ⇔ ωx1ω−1 �L ωx2ω−1 (with respect to L1).

Now let x1,x2 ∈W1 and ω1,ω2 ∈ Ω . Assume first that ω1x1 �LR ω2x2 (with respect
to L). It is enough to consider the case where ω1x1 �L ω2x2 or ω1x1 �R ω2x2 (with
respect to L). Note that, in the latter case, we have (ω1x1ω−1

1 )ω1 �R (ω2x2ω−1
2 )ω2.

Hence, using (a), we conclude that x1 �L x2 or ω1x1ω−1
1 �R ω2x2ω−1

2 (with respect
to L1). Setting ω = 1 or ω = ω−1

1 ω2 according to these two cases, and using (∗), we
obtain x1 �LR ωx2ω−1 (with respect to L1), as required. Conversely, assume that
there is some ω ∈ Ω such that x1 �LR ωx2ω−1 (with respect to L1). But then, by
(a), we have ωx2ω−1 ∼L x2ω−1 ∼R x2 and so x1 �LR x2 (with respect to L).

(d) This immediately follows from (c). ��

Remark 2.4.10. Let F be a two-sided cell of W (with respect to L). By Proposi-
tion 2.4.9(d), we have F ∩W1 �= ∅. We claim that the following implication holds.

(a) If x1,x2 ∈ F ∩W1 are such that x1 �LR x2 (with respect to L1), then we have
x1 ∼LR x2 (with respect to L1).

This is seen as follows. By Proposition 2.4.9(c), since x2 �LR x1 (with respect to
L), there exists some ω ∈ Ω such that x2 �LR ωx1ω−1 (with respect to L1). Hence,
since x1 �LR x2 (with respect to L1), we have x1 �LR ωx1ω−1 (with respect to
L1). Relation (∗) in the proof of Proposition 2.4.9 shows that then we also have
ωx1ω−1 �LR ω2x1ω−2 (with respect to L1). Repeating this argument, we obtain
that ω i−1x1ω−(i−1) �LR ω ix1ω−i (with respect to L1), for all i � 1. But Ω has
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finite order, and so ω i = 1 for some i � 1. We conclude that ωx1ω−1 �LR x1 and,
hence, x2 �LR x1 (with respect to L1). Thus, (a) is proved.

2.4.11. Assume that K ⊆ C is a splitting field for both W1 and W . Then we write

IrrK(W1) = {Eλ1 | λ1 ∈ Λ1} and IrrK(W ) = {Eλ | λ ∈ Λ}.

By the argument in Example 1.2.4, we have the following compatibility between
specialisation and restriction, where λ ∈ Λ and λ1 ∈ Λ1:

multiplicity of Eλ1 in the restriction of Eλ to W1

= multiplicity of Eλ1
ε in the restriction of Eλ

ε to H1,K := K ⊗A H1.

Now, the group Ω acts on W1 and, hence, on IrrK(W1). Thus, there is an action of Ω
on Λ1 (which we write as λ1 �→ ω .λ1) such that

(a) trace(w1,E
ω.λ1) = trace(ω−1w1ω ,Eλ1) for all λ1 ∈ Λ1 and w1 ∈W1.

Using this notation, Clifford’s theorem ([53, 11.1]) states the following: Let λ ∈ Λ
and λ1 ∈ Λ1 be such that Eλ1 is a constituent of the restriction of Eλ to W1. Then
this restriction is a direct sum of simple modules of the form Eω.λ1 , for various
ω ∈ Ω . Since we have an Ω -graded Clifford system as in Remark 2.4.6, there is
also a version of Clifford’s theorem on the level of H (see [53, (11.16)]):

(b) The restriction of Eλ
ε ∈ Irr(HK) is a direct sum of simple H1,K-modules of the

form Eω.λ1
ε , for various ω ∈ Ω .

Now let C1 be a left cell of W1 (with respect to L1) and ω ∈ Ω . Then, by relation (∗)
in the proof of Proposition 2.4.9(c), the set ωC1ω−1 also is a left cell of W1 (with
respect to L1). Now, using the formulae in 2.4.7, one sees that

hx1,x2,x2 = hωx1ω−1,ωx2ω−1,ωx3ω−1 for all x1,x2,x3 ∈W1.

Hence, the action of Cw1 (w1 ∈W1) on ωC1ω−1 is the same as the action of Cω−1w1ω
on C1. Combining this with (a), we conclude that

(c) m(C1,μ1) = m(ωC1ω−1,ω .μ1) for all ω ∈ Ω .

With these preparations, we obtain the following corollary.

Corollary 2.4.12. Let λ ,μ ∈ Λ and λ1,μ1 ∈ Λ1 be such that Eλ1 appears in the
restriction of Eλ to W1 and Eμ1 appears in the restriction of Eμ to W1. Then Fλ1

⊆
Fλ and Fμ1 ⊆ Fμ . Furthermore, we have

Eλ �L Eμ ⇔ Eλ1 �L1 Eω.μ1 for some ω ∈ Ω .

Proof. Let C1, C′
1 be left cells of W1 such that m(C1,λ1) > 0 and m(C′

1,μ1) > 0. By
Proposition 2.4.9(b), C := Ω .C1 and C′ := Ω .C′

1 are left cells of W ; furthermore,
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we have [C]A ∼= IndH
H1

([C1]A) and [C′]A ∼= IndH
H1

([C′
1]A). Hence, by Frobenius reci-

procity, we have m(C,λ ) > 0 and m(C′,μ) > 0. Then Corollary 2.2.5 also shows
that Fλ1

⊆ Fλ (since C1 ⊆ C) and Fμ1 ⊆ Fμ (since C′
1 ⊆ C′).

Now assume that Eλ �L Eμ . By Corollary 2.2.5, this implies that w �LR w′

(with respect to L), for some w ∈ C and some w′ ∈ C′. Let us write w = ω1w1 and
w′ = ω ′

1w′
1 where w1 ∈ C1, w′

1 ∈ C′
1 and ω1,ω ′

1 ∈ Ω . Then, by Proposition 2.4.9(c),
we have w1 �LR ωw′

1ω−1 (with respect to L1) for some ω ∈ Ω . Using the formula
in 2.4.11(c), we conclude that Eλ1 �L1 Eω.μ1 , as required.

Conversely, assume that Eλ1 �L1 Eω.μ1 , where ω ∈ Ω . By 2.4.11(c), we have
m(ωC′

1ω−1,ω .μ1) = m(C′
1,μ1) > 0. So Corollary 2.2.5 implies w1 �LR ωw′

1ω−1

(with respect to L1), for some w1 ∈ C1 and some w′
1 ∈ C′

1. Hence, by Proposi-
tion 2.4.9(c), we also have w1 �LR w′

1 (with respect to L). Since w1 ∈C and w′
1 ∈C′

1,
we can use once more Corollary 2.2.5 and conclude that Eλ �L Eμ . ��

Fig. 2.2 Two-sided cells in type F4 with parameters 0,0,a,a; see Example 2.4.4(c)

D4 (parameter a > 0)

� (∅,1111)

� (1,111)�
�

�

�
�

�
� ��

(∅,211)

(11,−) (11,+)

�

�
�

�

�
�

�

{(11,2),(1,21),(∅,22)}�
�

�

�
�

�
� ��

(∅,31)

(2,−) (2,+)

� (1,3)

�
�

�

�
�

�

� (∅,4)

F4 (parameters 0,0,a,a)

�

�

�

�

�

�

�

{12,14,24} (aλ = 12a)

{43,45,84} (aλ = 7a)

{92,94} (aλ = 6a)

{21,22,41,61,62,81,82,121,161} (aλ = 3a)

{91,93} (aλ = 2a)

{42,44,83} (aλ = a)

{11,13,23} (aλ = 0)

Remark 2.4.13. The above result shows that the relation �L on IrrK(W ) is com-
pletely determined by the relation �L1 on IrrK(W1); an example is given in Fig-
ure 2.2. Note that the converse is not true, at least not in any straightforward way.
For example, using the above notation, assume that λ = μ and ω ∈ Ω is such that
λ1 = ω .μ1 �= μ1. Then both sides of the equivalence in Corollary 2.4.3 are trivially
true, but we cannot tell whether it is true that Eλ1 �L1 Eμ1 or not. One can show
that, in general, we have:
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(a) Eλ1 �L1 Eμ1 ⇔
{

λ1 = μ1 if λ = μ,

Eλ �L Eμ otherwise.

(See Example 2.2.15 for the case where W1 is of type Dn and W is of type Bn; see
Figure 2.2, where W1 is of type D4 and W is of type F4. The remaining cases are
much easier to deal with; we omit further details.)

Proposition 2.4.14 (Cf. [132, 10.5.6], [101, 4.6]). Let λ ∈ Λ and λ1 ∈ Λ1 be such
that Eλ1 appears in the restriction of Eλ to W1. Then

cλ dimEλ = |Ω |cλ1
dimEλ1 , aλ = aλ1

, fλ dimEλ = |Ω | fλ1
dimEλ1 .

Proof. Let dλ = dimEλ and denote by Idλ the identity matrix of size dλ . Consider-
ing a matrix representation ρλ afforded by Eλ

ε , we have that

dλ cλ Idλ = ∑
w∈W

ρλ (Tw)ρλ (Tw−1).

(Indeed, the (s, t)-coefficient of the expression on the right-hand side equals

∑
w∈W

∑
u∈M(λ )

ρλ
s,u(Tw)ρλ

u,t(Tw−1).

By the Schur relations in Proposition 1.2.12, this evaluates to δstdλ cλ , as required.)
Now let us write W = {w1ω | w1 ∈ W1,ω ∈ Ω}. By Proposition 2.4.5(a), we have
Tw1ω = Tw1 Tω and T−1

ω = Tω−1 . This yields that

dλ cλ Idλ = ∑
w1∈W1

∑
ω∈Ω

ρλ (Tw1)ρ
λ (Tω)ρλ (T−1

ω )ρλ (Tw−1
1

)

= |Ω | ∑
w1∈W1

ρλ (Tw1)ρλ (Tw−1
1

).

Since Eλ1 appears in the restriction of Eλ from W to W1, a specialisation argument
(see Example 1.2.4) shows that Eλ1

ε appears in the restriction of Eλ
ε from HK to

H1,K . Thus, choosing a suitable basis of Eλ
ε we can assume that, for each w1 ∈W1,

the matrix ρλ (Tw1) has a block diagonal shape, where one of the blocks equals
ρλ1(Tw1). Let dλ1

= dimEλ1 . Considering the corresponding block in the above
identity arising from the Schur relations, we obtain

dλ cλ Idλ1
= |Ω | ∑

w1∈W1

ρλ1(Tw1)ρ
λ1(Tw−1

1
).

But then the sum on the right-hand side can be evaluated using the Schur relations
for H1,K . This yields the desired identity dλ cλ = |Ω |dλ1

cλ1
. Once this is established,

the identities concerning aλ and fλ are immediate consequences. ��
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2.5 On Lusztig’s Conjectures, III

Our aim now is to formulate a version of the properties P1–P15 purely in terms of
the invariants aλ and our algebra J̃ constructed in Section 1.5.

Proposition 2.5.1 (Cf. Lusztig [231, 18.9(b)]). Assume that P1, P4, P15 hold.

(a) Let w,w′,x,y ∈W and assume that a(x) = a(y). Then

∑
z∈W

γ̃x,w′,z−1 hw,z,y = ∑
z∈W

hw,x,z γ̃z,w′,y−1 .

(b) Let w,w′,y ∈W and assume that a(w′) = a(y). Then

hw,w′,y = ∑
z∈W,d∈D̃
a(z)=a(d)

ñd hw,d,z γ̃z,w′,y−1 .

Proof. (a) Consider the identity P15; by P4, we can assume that on both sides the
sum is over all z ∈W such that a := a(z) = a(x) = a(y). Now, we can write

εahx,w′,z = cx,w′,z−1 +gx,w′,z, where gx,w′,z ∈ Z[Γ>0],

εahz,w′,y = cz,w′,y−1 +gz,w′,y, where gz,w′,y ∈ Z[Γ>0].

Hence, multiplying both sides of P15 by εa ⊗1, we obtain

1⊗
(

∑
z∈W :a(z)=a

cx,w′,z−1 hw,z,y

)
+ ∑

z∈W :a(z)=a

gx,w′,z ⊗hw,z,y

= 1⊗
(

∑
z∈W :a(z)=a

cz,w′,y−1 hw,x,z

)
+ ∑

z∈W :a(z)=a

gz,w′,y ⊗hw,x,z.

Finally, Z[Γ ]⊗Z Z[Γ ] is a free Z-module with basis {εg ⊗ εg′ | g,g′ ∈ Γ }. Compar-
ing the coefficients of 1⊗ εg′ on both sides, we obtain the identity

∑
z∈W

cx,w′,z−1 hw,z,y = ∑
z∈W

hw,x,z cz,w′,y−1 .

The desired identity in (a) now follows from Proposition 2.3.16.
(b) Taking x = d ∈ D̃ , we multiply both sides of the identity in (a) by ñd and then

sum over all d ∈ D̃ such that a(d) = a(y). This yields

∑
z∈W

∑
d∈D̃

a(y)=a(d)

ñd γ̃d,w′,z−1 hw,z,y = ∑
z∈W

∑
d∈D̃

a(y)=a(d)

ñd hw,d,z γ̃z,w′,y−1 .

On the right-hand side, we can replace the condition “a(y) = a(d)” by the condition
“a(z) = a(d)”, since γ̃z,w′,y−1 �= 0 implies a(z) = a(y) by P4 and Proposition 2.1.20.
On the other hand, by Lemma 1.5.3(a), we have γ̃d,w′,z−1 = γ̃w′,z−1,d . Hence, the left-
hand side of the above identity equals
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∑
z∈W

∑
d∈D̃

a(y)=a(d)

ñd γ̃w′,z−1,d hw,z,y = ∑
z∈W

(
∑
d∈D̃

a(y)=a(d)

γ̃w′,z−1,d ñd

)
hw,z,y.

Now, if γ̃w′,z−1,d �= 0, then a(d) = a(w′) by P4 and Proposition 2.1.20. Since
a(y) = a(w′), we can omit the condition “a(y) = a(d)” in the above sum. So
Lemma 1.5.3(b) yields that the above sum evaluates to hw,w′,y, as required. ��

Corollary 2.5.2. Assume that P1, P4, P15 hold. Then P9, P10, P11 also hold.

Proof. To prove P9, let y,w ∈ W be such that y �L w and a(y) = a(w). We
must show that y ∼L w. It is enough to consider the case where y,w are re-
lated by an elementary step of the relation �L ; that is, we have hx,y,w �= 0 for
some x ∈ W . But then Proposition 2.5.1(b) shows that there exist some z ∈ W
and d ∈ D̃ such that a(z) = a(d), hx,d,z �= 0 and γ̃z,y,w−1 �= 0. In particular, by
Lemma 1.6.5 and Proposition 2.1.20, y and w belong to the same Kazhdan–Lusztig
left cell, as required. Once P9 is established, P10 and P11 easily follow as well;
see [231, 14.10, 14.11]. Indeed, to obtain P10, just note that a(z) = a(z−1) and
that y �R w if and only if y−1 �L w−1. Finally, to prove P11, let y �LR w be
such that a(y) = a(w). By definition, there is a sequence y = y0,y1, . . . ,ym = w such
that, for each i ∈ {1, . . . ,m}, we have yi−1 �L yi or yi−1 �R yi. By P4, we have
a(w) = a(ym) � a(ym−1) � . . . � a(y1) � a(y0) = a(y). Since a(y) = a(w), we have
a(y) = a(y0) = a(y1) = . . . = a(ym) = a(w). Applying P9 or P10 to yi−1,yi, we ob-
tain yi−1 ∼L yi or yi−1 ∼R yi. Hence, y ∼LR w. ��

2.5.3. Let us consider the following three statements (♣), (♠), (�). These should be
regarded as our adaptation of Lusztig’s properties P1–P15 in Conjecture 2.3.2 for
the purposes of this book. Note that (♣), (♠), (�) do not refer to the function a(z)
or to γx,y,z, as defined in 2.3.1; these have only played an auxiliary role.

(♣) Let λ ,μ ∈ Λ . If Eλ �L Eμ , then aμ � aλ . In particular, if Eλ ∼L Eμ , then
aλ = aμ . Furthermore, if Eλ �L Eμ and aμ = aλ , then Eλ ∼L Eμ .

(♠) Let w,w′,x,y ∈W be such that x ∼LR y. Then

∑
z∈W

γ̃x,w′,z−1 hw,z,y = ∑
z∈W

hw,x,z γ̃z,w′,y−1 .

(Here, ∼LR refers to the two-sided Kazhdan–Lusztig relation.)
(�) Every Kazhdan–Lusztig left cell contains a unique element of D̃ .

Let us briefly recall how the first two statements are deduced from P1, P4, P15.
To prove (♣), let x ∈Fλ and y ∈Fμ . By Proposition 2.3.14, we have a(x) = aλ and
a(y) = aμ . So, if Eλ �L Eμ , then x �LR y and so aμ = a(y) � a(x) = aλ , using P4.
If Eλ �L Eμ and aλ = aμ , then x �LR y and a(x) = a(y). By Corollary 2.5.2, P11
holds and so x ∼LR y; hence, Eλ ∼LR Eμ , as required. Finally, if w,w′,x,y ∈ W
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are as in (♠), then a(x) = a(y) by P4 and so the desired identity holds by Propo-
sition 2.5.1. (One can show that, conversely, (♣) and (♠) imply P1, P4, P15; see
[114, 3.8, 4.7].)

Finally, if P1, P4, P13 hold, then (�) holds, since D̃ = D by Proposition 2.3.16.

Remark 2.5.4. As in Remark 2.3.7, we note that (♠) really is a statement about a
certain bimodule structure. Indeed, let R ⊆C be an L-good subring and consider the
algebra J̃; see Section 1.5. Then J̃R := 〈tw | w ∈ W 〉R ⊆ J̃ is an R-subalgebra of J̃
and J̃ = K⊗R J̃R. By the identification Cw ↔ tw, the natural left H-module structure
on H (given by left multiplication) can be transported to a left H-module structure
on J̃A := A⊗R J̃R. Explicitly, the action is given by

Cw ∗ tx = ∑
z∈W

hw,x,z tz for all x,w ∈W .

By the definition of the Kazhdan–Lusztig pre-order �LR , we can define a left H-
module structure on J̃A by the formula

Cw � tx = ∑
z∈W :z∼LRx

hw,x,z tz for all x,w ∈W .

For any h ∈ H and x ∈ W , the difference h ∗ tx − h � tx is an A-linear combination
of terms ty, where y �LR w and y �∼LR w (in the Kazhdan–Lusztig pre-order). On
the other hand, we have a natural right J̃A-module structure on J̃A (given by right
multiplication). Then these two actions commute if and only if

Cw � (txtw′) = (Cw � tx)tw′ for all x,w,w′ ∈W .

Writing this out using the defining equations, the above identity is equivalent to

∑
z∈W :z∼LR y

γ̃x,w′,z−1 hw,z,y = ∑
z∈W :z∼LR x

hw,x,z γ̃z,w′,y−1 for all y ∈W .

Now, by Proposition 2.1.20, we can assume that z ∼LR x for all z on the left-hand
side and z ∼LR y for all z on the right-hand side. Thus, if x �∼LR y, then both sides
of the above identity are zero. Hence, the above identity holds if and only if (♠)
holds. So we conclude

(a) (♠) holds if and only if J̃A is an (H, J̃A)-bimodule (with the above actions).

Since the algebra H is generated by {Cs | s ∈ S}∪{T1}, we also conclude

(b) in order to verify (♠), it is sufficient to do this assuming that w = s ∈ S.

The following result was proved by Lusztig [223] in the equal-parameter case and
in [231, 18.9 and 18.10] in general, assuming that P1–P15 hold. Here, we follow the
proof given in [112], which is much less “computational” than that in [223], [231].

Theorem 2.5.5 (Lusztig [231, 18.9]; see also [112, §5]). Assume that property (♠)
in 2.5.3 holds. Then there is a unique unital A-algebra homomorphism φ : H → J̃A
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such that, for any h ∈ H and w ∈ W, the difference φ(h)tw − h ∗ tw is an A-linear
combination of terms ty, where y �LR w and y �∼LR w. Explicitly, φ is given by

φ(Cw) = ∑
z∈W,d∈D̃
z∼LR d

hw,d,z ñd tz (w ∈W ).

Proof. In the setting of Remark 2.5.4, the left H-module structure on J̃A gives rise
to an A-algebra homomorphism

ψ : H → EndA(J̃A) such that ψ(h)(tw) = h� tw.

Since the left action of H on J̃A commutes with the right action of J̃A, the image of
ψ lies in EndJ̃A

(J̃r
A), where the superscript “r” indicates that we consider the right

action of J̃A on itself. Now, we have a natural A-algebra isomorphism

η : EndJ̃A
(J̃r

A) → J̃A, f �→ f (1J̃A
).

We define φ = η ◦ψ : H → J̃A. Then φ is an A-algebra homomorphism such that

φ(h) = ψ(h)(1J̃A
) = h�1J̃A

for all h ∈ H.

This yields φ(h)tw = (h�1J̃A
)tw = h�1J̃A

tw = h�tw or, in other words, the difference
φ(h)tw−h∗ tw is an A-linear combination of terms ty, where y �LR w and y �∼LR w,
as required. Furthermore, we immediately obtain the formula

φ(Cw) = Cw �1J̃A
= ∑

d∈D̃

ñd Cw � td = ∑
z∈W,d∈D̃ :z∼LR d

hw,d,z ñd tz.

Since h1,d,z = δd,z, this yields φ(C1) = 1J̃A
; hence, φ is unital.

Finally, assume that φ ′ : H → J̃A is another homomorphism satisfying the re-
quired conditions. But these imply that φ ′(h)tw = h � tw for all w ∈ W and, hence,
φ ′(h) = φ ′(h)1J̃A

= h�1J̃A
for all h ∈ H. So we have φ ′ = φ as required. ��

Remark 2.5.6. Once Theorem 2.5.5 is established, the further theory of J̃ and H can
be developed as in [231, Chap. 18–20], with essentially the same proofs. We just
single out the following statement; cf. Lusztig [231, 18.11]:

(a) Let θ : A → k be a specialisation, where k is a commutative ring with 1. Let
φk : Hk → J̃k be the induced map. Then ker(φk) is a nilpotent ideal of Hk.

Proof. Let F1, . . . ,FN be the two-sided Kazhdan–Lusztig cells of W , where the
labelling is such that if x �LR y for all x ∈Fi and y ∈F j, then i � j. Consequently,
each Hk,�i := 〈Cw | w ∈ F j, 1 � j � i〉k is a two-sided ideal of Hk. Now let h ∈
ker(φk). Then, by Theorem 2.5.5, h∗ tw is a k-linear combination of terms ty, where
y �LR w and y �∼LR w. Recalling the definition of the ∗-action, we deduce that
hHk,�i ⊆ Hk,�i−1 for all i, where we set Hk,�0 = {0}. Hence, given N elements
h1, . . . ,hN ∈ ker(φk), then we have h1 · · ·hN ∈ Hk,�0 = {0}. Thus, (a) is proved. ��
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Example 2.5.7 (Cf. Lusztig [231, 20.1]). The inclusion A ⊆ K induces an alge-
bra homomorphism φ : HK → J̃K . Since HK is semisimple, Remark 2.5.6(a) shows
that φ is an isomorphism. Next, consider the specialisation θ1 : A → K such that
θ1(εg) = 1 for all g ∈ Γ . Let φ1 : KW → J̃ be the induced map. Since KW
is semisimple, Remark 2.5.6(a) shows that φ1 is an isomorphism. Thus, KW ∼=
J̃ as K-algebras. Finally, the inclusion K ⊆ K induces an algebra isomorphism
(φ1)K : KW → J̃K . Hence, the composition

ψ = (φ1)−1
K ◦φK : HK → KW is an algebra isomorphism.

(This first appeared in [216] in the equal-parameter case.) Thus, using ψ , one obtains
a more natural explanation for the correspondence IrrK(W ) ↔ Irr(HK) in 1.2.1. But
note that the results in 1.2.1 do not rely on the assumption that (♠) holds!

Lemma 2.5.8. Assume that (♠) holds. Let x,y,w ∈W be such that y ∼LR w. Then

hx,w,y = ∑
z∈W,d∈D̃
z∼LRd

ñd hx,d,z γ̃z,w,y−1 .

Proof. The left-hand side of the above identity is the coefficient of ty in the expan-
sion of Cx ∗ tw, and the right-hand side is the coefficient of ty in the expansion of
φ(Cx)tw. By Theorem 2.5.5, these two coefficients must be the same. ��

Lemma 2.5.9. Assume that (♠) holds. Then the left J̃-cells are precisely the left
Kazhdan–Lusztig cells. (Analogous statements hold for right and two-sided cells.)
Furthermore, the following implication holds for any y,w ∈W:

y �L w and y ∼LR w ⇒ y ∼L w,

where �L , ∼L and ∼LR refer to the Kazhdan–Lusztig relations.

Proof. Recall that, by Proposition 2.1.20, every left (or right or two-sided) J̃-cell
is contained in a left (or right or two-sided respectively) Kazhdan–Lusztig cell. To
prove the reverse implications, we begin by showing the following two statements:

(a) Let y,w ∈W be such that y �L w and y ∼LR w (with respect to the Kazhdan–
Lusztig relations). Then y,w belong to the same left J̃-cell (and, hence, y ∼L w).

(b) Let y,w ∈ W be such that y �R w and y ∼LR w (with respect to the Kazhdan–
Lusztig relations). Then y,w belong to the same right J̃-cell.

To prove (a), we may assume that y,w are related by an elementary step in the
Kazhdan–Lusztig pre-order relation �L ; that is, we can assume that hx,w,y �= 0 for
some x ∈ W . But then Lemma 2.5.8 shows that there exist some z ∈ W and d ∈ D̃
such that z ∼LR d, hx,d,z �= 0 and γ̃z,w,y−1 �= 0. In particular, by Lemma 1.6.5, y and
w belong to the same left J̃-cell. Thus, (a) is proved. The proof of (b) is analogous.

Now (a) shows that if y ∼L w, then y,w belong to the same left J̃-cell. Thus,
the left Kazhdan–Lusztig cells coincide with the left J̃-cells. Using (b), a similar
statement holds for right cells. Now consider the two-sided cells. Let y,w ∈ W be
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such that y ∼LR w. Then there is a sequence y = y0,y1, . . . ,ym = w in W such that,
for each i ∈ {1, . . . ,m}, we have yi−1 �L yi or yi−1 �R yi. Since y ∼LR w, all
elements yi belong to the same two-sided Kazhdan–Lusztig cell. Hence, by (a) and
(b), all elements yi belong to the same two-sided J̃-cell. In particular, y,w belong to
the same two-sided J̃-cell. ��
Example 2.5.10. Assume that (♠) holds. Let C be a left Kazhdan–Lusztig cell of
W . By Lemma 2.5.9, the set C also is a left J̃-cell. Then we claim that

m̃(C,λ ) = m(C,λ ) for all λ ∈ Λ ,

where the left-hand side is defined in Theorem 1.8.1 and the right-hand side is de-
fined in 2.2.2. Indeed, by the argument in the proof of Lemma 2.2.4, we have

∑
s,t∈M(λ )

∑
w∈C

cst
w,λ cts

w−1,λ = m(C,λ )dλ fλ .

By Theorem 1.8.1(b), the left-hand side also equals dλ m̃(C,λ ) fλ , as required. We
can now write the relations in Theorem 1.8.1 in the form

∑
w∈C

cw,λ cw−1,μ =
{

m(C,λ ) fλ if λ = μ ,
0 otherwise.

We close this section with some auxiliary results which will be useful at several
places below. The proofs of some of these will only require the following weak
version of (♣) which we already encountered at the beginning of Section 2.3 (p. 78):

(♣′) Eλ ∼L Eμ ⇒ aμ = aλ

Lemma 2.5.11. Assume that (♣′) holds. Let T be a two-sided Kazhdan–Lusztig cell
and a ∈ Γ�0 be the common value of aλ , where λ ∈ Λ is such that Fλ ⊆ T. Then

εahx,y,z ∈ Z[Γ�0] and γ̃x,y,z−1 ≡ εahx,y,z mod Z[Γ>0]

for all x ∈W and y,z ∈ T. In particular, γ̃x,y,z−1 ∈ Z.

Proof. We have hx,y,z = τ(CxCyDz−1) and τ = ∑λ∈Λ c−1
λ χλ . Furthermore, as in the

proof of Lemma 2.3.10, c−1
λ = f−1

λ ε2aλ /(1+gλ ), where gλ ∈ F[Γ>0]. This yields

εa hx,y,z = ∑
λ∈Λ

∑
s,t,u∈M(λ )

f−1
λ

1+gλ

(
εaλ ρλ

st(Cx)
)(

εaλ ρλ
tu(Cy)

)(
εaρλ

us(Dz−1)
)
.

Now assume that λ ∈ Λ and s, t,u ∈ M(λ ) are such that all three terms

εaλ ρλ
st(Cx), εaλ ρλ

tu(Cy), εaρλ
us(Dz−1)

in the above sum are non-zero. Let C be a left Kazhdan–Lusztig cell such that
m(C,λ ) > 0. Then, by Lemma 2.3.9, there exist y′,z′ ∈ C such that y′ �R y and
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z �R z′. Since y,z ∈ T, we deduce that C ⊆ T. By Lemma 2.2.4, there exists some
w ∈ C∩Fλ . Since C⊆T, this implies that Fλ ⊆T and so a = aλ . Consequently, all
of the above three terms lie in O0. Hence, the whole sum lies in O0 and its constant
term can be computed term by term. Thus, we obtain

εa hx,y,z ≡ ∑
λ∈Λ

∑
s,t,u∈M(λ )

cst
x,λ ctu

y,λ cus

z−1,λ ≡ γ̃x,y,z−1 mod m.

Since hx,y,z ∈Z[Γ ], we have γ̃x,y,z−1 ∈Z and the congruences are modulo Z[Γ>0]. ��

Proposition 2.5.12. Assume that we are in the equal-parameter case where Γ = Z

and L(s) = 1 for all s ∈ S. Then property (♠) in 2.5.3 is a consequence of (♣′).

Proof. By Remark 2.5.4, it is enough to prove (♠) assuming that w = s ∈ S. Thus,
we must show that

(a) ∑
z∈W

γ̃x,w′,z−1 hs,z,y = ∑
z∈W

hs,x,z γ̃z,w′,y−1 for all s ∈ S,

where w′,x,y ∈ W are such that x ∼LR y (in the Kazhdan–Lusztig pre-order). Let
T denote the two-sided Kazhdan–Lusztig cell such that x,y ∈ T. First we note that,
by Lemmas 1.6.5 and 1.6.6, we can assume that z ∈ T on both sides of the above
identity; furthermore, we can also assume that w′ ∈ T. Now we argue as follows.

If L(s) = 0, then hs,z,y = δzy; see Theorem 2.1.8. Hence, the left-hand side of
(a) reduces to γ̃x,w′,y−1 . Similarly, since hs,x,z = δxz, the right-hand side reduces to
γ̃x,w′,y−1 . Hence, the assertion is true in this case. We can assume from now on that
L(s) > 0.

Case 1: sx < x. Then, by Theorem 2.1.8, we have CsCx = −(vs + v−1
s )Cx and

so the right-hand side of (a) reduces to −(vs + v−1
s )γ̃x,w′,y−1 . Now let z ∈ W and

assume that the corresponding term on the left-hand side of (a) is non-zero; that is,
γ̃x,w′,z−1 �= 0 and hs,z,y �= 0. By Lemma 1.6.5, this implies that z ∼R x and so sz < z;
see Remark 2.1.16. Hence, the left hand side also reduces to −(vs + v−1

s )γ̃x,w′,y−1 .
Thus, the identity (a) holds in this case.

Case 2: sx > x. Let again z ∈ W and assume that the corresponding term on the
left-hand side of (a) is non-zero; that is, we have γ̃x,w′,z−1 �= 0 and hs,z,y �= 0. Again,
this implies that z ∼R x and so sz > z. Hence, the sum on the left-hand side only
needs to be extended over all z ∈ W such that sz > z. But then, since we are in the
equal-parameter case, we have hs,z,y ∈ Z; see Example 2.1.10(b). Now consider the
usual associativity rule in H: the identity Cs(CxCw′) = (CsCx)Cw′ yields

∑
z∈W

hx,w′,z hs,z,y = ∑
z∈W

hz,w′,y hs,x,z for all y ∈W .

Let z ∈ W be such that the corresponding term on the left-hand side is non-zero.
Then hx,w′,z �= 0 and so z �R x; furthermore, hs,z,y �= 0 and so y �L z. Since x∼LR y,
we deduce that z ∼LR x. Thus, we can assume that z ∈T in the sum on the left-hand
side. Now we use (♣′). Let a ∈ Γ�0 be the common value of aλ , where λ ∈ Λ is
such that Fλ ⊆ T. By Lemma 2.5.11, we have
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εahx,w′,z ≡ γ̃x,w,z−1 mod Z[Γ>0].

Hence, since hs,z,y ∈ Z for all z such that sz > z, we have

εa
(

∑
z∈W

hx,w′,z hs,z,y

)
= ∑

z∈T

(
εa hx,w′,z

)
hs,z,y ∈ Z[Γ>0]

and the constant term of this expression equals the left hand side of (a). A similar
argument applies to the right-hand side of the above associativity identity: the sum
only needs to be extended over all z ∈ T. Furthermore, we have

εahz,w′,y ≡ γ̃z,w′,y−1 mod Z[Γ>0].

Hence, since sx > x and hs,x,z ∈ Z, we have

εa
(

∑
z∈W

hz,w′,y hs,x,z

)
= ∑

z∈T

(
εahz,w′,y

)
hs,x,z ∈ Z[Γ>0]

and the constant term equals the right hand side of (a). Thus, (a) is proved. ��
Lemma 2.5.13. Assume that (♣) holds. Then we have γ̃x,y,z ∈ Z for all x,y,z ∈ W
and ñw ∈ Z for all w ∈W.

Proof. If y,z−1 belong to the same two-sided Kazhdan–Lusztig cell, then we have
γ̃x,y,z ∈ Z by Lemma 2.5.11. Otherwise, we have γ̃x,y,z = 0 by Proposition 2.1.20.
It remains to consider ñw. Let λ0 ∈ Λ be such that Eλ0 �L w. We have P

∗
1,w =

(−1)l(w)τ(Cw). Expressing τ as in the proof of Lemma 2.5.11, we obtain

(−1)l(w)ε−aλ0 P
∗
1,w = ∑

λ∈Λ
∑

s∈M(λ )

f−1
λ

1+gλ
εaλ−aλ0

(
εaλ ρλ

ss(Cw)
)
.

Let λ ∈ Λ be such that ρλ (Cw) �= 0. Then we claim that aλ0
� aλ . Indeed, let C

be a left Kazhdan–Lusztig cell such that m(C,λ ) > 0. By Lemma 2.3.9(a), we have
y �R w for some y ∈ C. By Lemma 2.2.4, there also exists some y′ ∈ C such that
Eλ �L y′. In particular, we now have y′ ∼LR y �LR w and so Eλ �L Eλ0 . Since
(♣) is assumed to hold, we can conclude that aλ0

� aλ , as required. This shows that
the above sum lies in O0 and we have

(−1)l(w)ε−aλ0 P
∗
1,w ≡ ∑

λ∈Λ
aλ =aλ0

∑
s∈M(λ )

f−1
λ css

w,λ mod m.

But then the first sum can be extended over all λ ∈Λ : just note that if css
w,λ �= 0, then

Eλ �L w and so Eλ ∼L Eλ0 ; hence, aλ = aλ0
in this case. So we conclude that

(−1)l(w)ε−aλ0 P
∗
1,w ≡ ñw mod m.

Since the left-hand side lies in Z[Γ ], we deduce that ñw ∈ Z, as required. ��
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Example 2.5.14. Assume that (♠), (♣), (�) are satisfied. Then Conjectures 1.5.12
and 1.6.18 hold. (Indeed, part (a) of Conjecture 1.5.12 holds by Lemma 2.5.13;
using Lemma 2.5.9 and (�), we see that Conjecture 1.6.18 holds; then part (b) of
Conjecture 1.5.12 follows by the argument in Remark 1.6.19.) Now let C be a left
Kazhdan–Lusztig cell of W . Then, by Examples 1.8.6 and 2.5.10, we have

∑
λ∈Λ

f−1
λ m(C,λ ) = 1.

This is a quite powerful statement. (It can also be easily deduced from [231, 21.4].)
For example, it directly shows that if fλ = 1 for all λ ∈ Λ , then [C]1 ∈ IrrK(W ).

Remark 2.5.15. Following Lusztig [223, 2.8], we can now also give a more direct
proof of the fact that φK : HK → J̃K is an isomorphism. Indeed, let us assume that
both (♠) and (♣) hold. For each w ∈ W , choose some λ ∈ Λ such that Eλ �L w
and set aw := aλ . (This does not depend on the choice of λ , thanks to (♣).) Then

εaw φ(Cw) = ∑
z∈W,d∈D̃
z∼LR d

εaw ñd hw,d,z tz = ∑
z∈W

(
∑

d∈D̃ :z∼LR d

εaw ñd hw,d,z

)
tz.

Assume that z and d in the above sum are such that hw,d,z �= 0. Let μ ∈ Λ be such
that Eμ �L z. Since hw,d,z �= 0 and z ∼LR d, we have z �LR w and so Eμ �L Eλ .
Since (♣) holds, this implies that aw � az, with equality only if w ∼LR z. Assume
first that w ∼LR z. Then aw = az and Lemma 2.5.11 shows that εawhw,d,z lies in
Z[Γ�0] and has constant term γ̃w,d,z−1 . Thus, we have

∑
d∈D̃ :z∼LR d

εaw ñd hw,d,z ≡ ∑
d∈D̃ :z∼LR d

ñd γ̃w,d,z−1 mod Z[Γ>0],

where w ∼LR z. Now, if γ̃w,d,z−1 �= 0, then w,d,z belong to the same two-sided
Kazhdan–Lusztig cell; see Proposition 2.1.20. So we can omit the condition z ∼LR

d in the above sum. Then Lemma 1.5.3 shows that

∑
d∈D̃ :z∼LR d

ñd γ̃w,d,z−1 = ∑
d∈D̃

ñd γ̃z−1,w,d = δzw.

Since ñd ∈ Z by Lemma 2.5.13, we finally obtain that

εawφ(Cw) = tw +Z[Γ>0]-combination of terms tz, where z ∼LR w

+Z[Γ ]-combination of terms tz, where z �LR w, z �∼LR w.

So, for a suitable ordering of the elements of W , the matrix of φ with respect to the
basis {εawCw | w ∈W} of H and the basis {tw | w ∈W} of J̃A has a block triangular
shape where the determinant of each diagonal block lies in 1 +Z[Γ>0]. Hence, the
determinant of the whole matrix of φ lies in 1+Z[Γ>0]. In particular, it is non-zero.
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2.6 A Cellular Basis for H

We are now ready to define a new basis of H which will turn out to be a “cellular
basis” in the sense of Graham and Lehrer [144]. We recall the basic definitions first.

2.6.1. Let k be a commutative ring (with 1) and H be an associative k-algebra (with
identity) which is finitely generated and free over k. Following Graham and Lehrer
[144, Def. 1.1], a cell datum for H is a quadruple (Λ ,M,C,∗) satisfying the follow-
ing conditions.

(C1) Λ is a partially ordered set, {M(λ ) | λ ∈ Λ} is a collection of finite sets and
C = {Cλ

s,t | λ ∈ Λ , s, t ∈ M(λ )} is a k-basis for H.

(C2) There is a k-linear anti-involution, h �→ h∗, on H such that (Cλ
s,t)

∗ = Cλ
t,s for

all λ ∈ Λ and all s, t ∈ M(λ ).
(C3) Denote by � the partial order on Λ . If λ ∈ Λ and s, t ∈ M(λ ), then

hCλ
s,t ≡ ∑

s′∈M(λ )
rλ

h (s′,s)Cλ
s′,t mod H(≺ λ ) for all h ∈ H,

where rλ
h (s′,s) ∈ k is independent of t and where H(≺ λ ) is the k-submodule

of H generated by {Cμ
s′′,t′′ | μ ≺ λ ;s′′, t′′ ∈ M(μ)}.

If these conditions hold, we say that {Cλ
s,t} is a cellular basis of H. Assume now

that this is the case. Given λ ∈Λ , we can define a corresponding cell representation
(or cell module) of H as follows. Let W (λ ) be a free k-module with basis {Cs | s ∈
M(λ )}. Then, using (C3), W (λ ) is seen to be an H-module with action given by

h.Cs = ∑
s′∈M(λ )

rλ
h (s′,s)Cs′ for h ∈ H and s ∈ M(λ ).

This module is equipped with a canonical invariant bilinear form; see the following
lemma.

Lemma 2.6.2 (Graham and Lehrer [144, 2.4]). Let λ ∈ Λ . Then there is a well-
defined symmetric bilinear form 〈 , 〉λ : W (λ )×W (λ ) → k such that

Cλ
u,tCλ

s,v ≡ 〈Cs,Ct〉λ Cλ
u,v mod H(≺ λ ) for all s, t,u,v ∈ M(λ ).

Furthermore, we have 〈h.Cs,Ct〉λ = 〈Cs,h∗.Ct〉λ for all s, t ∈ M(λ ) and h ∈ H.

Proof. This is a good exercise to see how the axioms are used. By (C3), we have

Cλ
u,tCλ

s,v ≡ ∑
s′∈M(λ )

rλ
h1

(s′,s)Cλ
s′,v mod H(≺ λ ), where h1 = Cλ

u,t.

On the other hand, by (C2), we have Cλ
u,tCλ

s,v =
(
Cλ

t,u

)∗ (
Cλ

v,s

)∗ =
(
Cλ

v,sCλ
t,u

)∗
.

Applying (C3) to the product Cλ
v,sCλ

t,u and using (C2), we obtain that
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Cλ
u,tCλ

s,v ≡ ∑
t′∈M(λ )

rλ
h2

(t′, t)Cλ
u,t′ mod H(≺ λ ), where h2 = Cλ

v,s.

Hence, we deduce that Cλ
u,tCλ

s,v ≡ α Cλ
u,v mod H(≺ λ ), where α := rλ

h1
(u,s) =

rλ
h2

(v, t). Note that rλ
h1

(u,s) does not depend on v, and rλ
h2

(v, t) does not depend
on u. Consequently, α does not depend on u and not on v. Now choose u = v. Then
we also see that α is not affected if we exchange the roles of s and t. Thus, we obtain
a well-defined symmetric bilinear form 〈 , 〉λ , as required. It remains to show that
this form has the desired invariance property. Let h ∈ H and s, t ∈ M(λ ). Then

〈h.Cs,Ct〉λ = ∑
s′∈M(λ )

rλ
h (s′,s)〈Cs′ ,Ct〉λ .

Now let u,v ∈ M(λ ). Multiplying the above identity by Cλ
u,v and using the defining

formula for 〈 , 〉λ , we obtain

〈h.Cs,Ct〉λ Cλ
u,v ≡ ∑

s′∈M(λ )
rλ

h (s′,s)Cλ
u,s′ C

λ
t,v mod H(≺ λ ).

On the other, by (C2) and (C3), we have

∑
s′∈M(λ )

rλ
h (s′,s)Cλ

u,s′ ≡
(
h.Cλ

s,u

)∗ ≡Cλ
u,sh∗ mod H(≺ λ )

and so

〈h.Cs,Ct〉λ Cλ
u,v ≡Cλ

u,s

(
h∗Cλ

t,v

)
≡ ∑

t′∈M(λ )
rλ

h∗(t
′, t)Cλ

u,sCλ
t′,v

≡ ∑
t′∈M(λ )

rλ
h∗(t

′, t)〈Cs,Ct′ 〉λ Cλ
u,v ≡ 〈Cs,h

∗.Ct〉λCλ
u,v mod H(≺ λ ),

as required. ��
Corollary 2.6.3. Let λ ∈ Λ and s,s′, t,u ∈ M(λ ). Then

rh(s′,s) = δus′ 〈Cs,Ct〉λ , where h = Cλ
u,t.

Proof. This is clear by Lemma 2.6.2 and the definiton of rh(s′,s) in (C3). ��
Definition 2.6.4. Let Lλ := W (λ )/ rad(〈 , 〉λ ) for any λ ∈ Λ . Then Lλ is a left H-
module since, by Lemma 2.6.2, the radical of 〈 , 〉λ is an H-submodule of W (λ ).
Note that we may have Lλ = {0}; this happens if and only if 〈 , 〉λ is identically
zero.

Now we have the following two fundamental results of Graham and Lehrer [144]
whose proof we will not give here. (See also Mathas [245, Chap. 2].)

Theorem 2.6.5 (Graham and Lehrer [144, 3.4, 3.8]). Assume that k is a field. If
〈 , 〉λ �= 0, then Lλ is an absolutely irreducible H-module; furthermore,
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Irr(H) = {Lμ | μ ∈ Λ ◦}, where Λ ◦ = {λ ∈ Λ | 〈 , 〉λ �= 0}.

In particular, the algebra H is split. Finally, H is semisimple if and only if Λ = Λ ◦

and 〈 , 〉λ is non-degenerate for all λ ∈ Λ .

Recall that an algebra is called split if the endomorphism algebra of any irre-
ducible representation consists just of the scalar multiples of the identity.

Theorem 2.6.6 (Graham and Lehrer [144, 3.6]). Assume that k is a field. For λ ∈
Λ and μ ∈Λ ◦, denote by (W (λ ) : Lμ) the multiplicity of Lμ as a composition factor
of W (λ ). Then

(Δ ) (W (μ) : Lμ) = 1 and (W (λ ) : Lμ) = 0 unless λ � μ .

Thus, the decomposition matrix D =
(
(W (λ ) : Lμ)

)
λ∈Λ ,μ∈Λ◦ has a lower unitrian-

gular shape, if the rows and columns are ordered according to the order relation �.

Let us now also assume that H is a symmetric algebra, with trace form τ : H → k.
Then, given a basis {Cλ

s,t | λ ∈ Λ , s, t ∈ M(λ )} as above, we have a corresponding

dual basis Ĉ := {Ĉλ
s,t | λ ∈ Λ , s, t ∈ M(λ )}. We choose the notation such that

τ
(
Cλ

s,t Ĉμ
u,v

)
=

{
1 if λ = μ , s = v, t = u,
0 otherwise.

To state the following result, note that if V is a left H-module, then Homk(V,k)
also is a left H-module where the action is given by h. f (v) = f (h∗.v) for h ∈ H,
f ∈ Homk(V,k) and v ∈V .

Proposition 2.6.7 (Graham [143, 4.12]). Assume that H is symmetric with trace
form τ : H → k such that τ(h∗) = τ(h) for all h ∈ H. Then, with the above notation,
the following hold.

(a) The quadruple (Λ op,M,Ĉ,∗) also is a cell datum for H, where Λ op is the set Λ
endowed with the opposite partial order �op (that is, λ �op μ ⇔ μ � λ ).

(b) Let λ ∈ Λ and Ŵ (λ ) be the cell module with respect to the cell datum in (a).
Then there is an isomorphism of left H-modules Ŵ (λ ) ∼= Homk(W (λ ),k).

(c) If k is a field and H is semisimple, then W (λ ) ∼= Ŵ (λ ) for all λ ∈ Λ .

We shall call (Λ op,M,Ĉ,∗) the opposite cell datum to (Λ ,M,C,∗).

Proof. Let us verify that (C1), (C2), (C3) hold for the quadruple in (a). First note
that (C1) is clear and (C2) is easily seen to hold thanks to the assumption on τ . To
prove (C3), let h ∈ H and consider the product hĈλ

s,t. Let μ ∈ Λ and u,v ∈ M(μ)
be such that Ĉμ

u,v appears with a non-zero coefficient in the expansion of hĈλ
s,t with

respect to the basis Ĉ. Note that this coefficient is given by

τ
(
(hĈλ

s,t)C
μ
v,u

)
= τ

((
(hĈλ

s,t)C
μ
v,u

)∗) = τ
(
(h∗Cμ

u,v)Ĉλ
t,s

)
.
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Hence, by (C3) for the original cell datum, we must have λ � μ ; furthermore, if
λ = μ , then the above expression evaluates to δv,trλ

h∗(s,u). Thus, we have

hĈλ
s,t = ∑

u∈M(λ )
rλ

h∗(s,u)Ĉλ
u,t mod H(≺op λ ).

This shows that (C3) holds. The above formula also proves (b). More precisely, if
ρλ : H → Mdλ (k) is the matrix representation afforded by W (λ ) (with respect to its
standard basis), then the matrix representation afforded by Ŵ (λ ) (with respect to its
standard basis) is given by h �→ ρ(h∗)tr (h ∈ H).

Finally, to prove (c), assume that k is a field and H is semisimple. Let λ ∈ Λ and
Gλ be the Gram matrix of the bilinear form 〈 , 〉λ with respect to the standard basis
of W (λ ). Then Gλ is invertible by Theorem 2.6.5. On the other hand, the invariance
condition in Lemma 2.6.2 implies that Gλ ρλ (h) = ρ(h∗)tr Gλ for all h ∈ H. Hence,
the two representations are equivalent; that is, W (λ ) ∼= Ŵ (λ ). ��

We return to the situation where we consider the generic Iwahori–Hecke algebra
H = HA(W,S,L) associated with a finite Coxeter group W and a weight function
L : W → Γ . Recall that H is defined over A = R[Γ ], where R ⊆ C is a subring such
that ZW ⊆ R; furthermore, we assume that there is a monomial order � on Γ such
that L(s) � 0 for all s ∈ S. Let {Cw | w ∈ W} be the associated Kazhdan–Lusztig
basis of H; see Section 2.1. Write

IrrK(W ) = {Eλ | λ ∈ Λ}, dλ = dimEλ ,

and let M(λ ) be an indexing set for a basis of Eλ , as in Section 1.2; for each Eλ ∈
IrrK(W ), we have a corresponding invariant aλ ∈ Γ�0. In Section 1.5, we used the
leading matrix coefficients cst

w,λ to construct the ring J̃.

Definition 2.6.8 (Cf. [111, §3]). Assume that R ⊆ C is L-good in the sense of Defi-
nition 1.5.9. Let Λ := Λ and M(λ ) := M(λ ) for all λ ∈ Λ . Let ρ̄λ and Bλ be as in
Proposition 1.5.11. Let us write

ρ̄λ (tw) =
(
cst

w,λ
)
s,t∈M(λ ) and Bλ =

(
β λ

st

)
s,t∈M(λ ).

Then, for any λ ∈ Λ and s, t ∈ M(λ ), we define

Cλ
s,t := ∑

w∈W
∑

u∈M(λ )
β λ

tu cus

w−1,λ Cw ∈ H.

We now show in several steps that (C1), (C2), (C3) hold for these data.

Remark 2.6.9. In the defining formula for Cλ
s,t, we can assume that the first sum runs

over all w ∈ Fλ (where Fλ is defined in Proposition 1.6.11). Indeed, if Cw appears
with a non-zero coefficient in that sum, then cus

w−1,λ �= 0 for some u,s ∈ M(λ ), and

so w−1 ∈ Fλ . But then Lemma 1.6.6 also shows that w ∈ Fλ , as required.



2.6 A Cellular Basis for H 109

Lemma 2.6.10. The elements {Cλ
s,t | λ ∈ Λ , s, t ∈ M(λ )} form an A-basis of H. In

fact, let y ∈ W and F be the two-sided J̃-cell containing y. Then Cy is an R-linear
combination of elements Cλ

s,t, where λ ∈ Λ is such that Eλ �L y.

Proof. By the Artin–Wedderburn theorem, |W | = ∑λ∈Λ |M(λ )|2. Hence, the above
set has the correct cardinality. It is now sufficient to show that the elements {Cλ

s,t}
span H as an A-module. Let us fix y ∈W . We claim that

Cy = ∑
λ∈Λ

∑
s,s′,t∈M(λ )

f−1
λ css′

y,λ β̂ λ
s′t Cλ

s,t, where (Bλ )−1 =
(
β̂st

)
.

Note that the coefficients in the above sum lie in R, since fλ and det(Bλ ) are invert-
ible in R (since R is L-good and by Proposition 1.5.11(b)). Furthermore, we have
Eλ �L y if Cλ

s,t occurs with non-zero coefficient in the above sum. Thus, it re-
mains to prove the above identity. For this purpose, we insert the defining formula
for Cλ

s,t into the right-hand side; this yields

∑
w∈W

∑
λ∈Λ

∑
s,s′,u∈M(λ )

f−1
λ css′

y,λ

(
∑

t∈M(λ )
β̂ λ

s′t β λ
tu

)
cus

w−1,λ Cw

= ∑
w∈W

(
∑

λ∈Λ
∑

s,u∈M(λ )
f−1
λ csu

y,λ cus

w−1,λ

)
Cw = Cy

as desired, where the last equality holds by Proposition 1.4.10(b). ��

Lemma 2.6.11. We have (Cλ
s,t)

� = Cλ
t,s for all λ ∈ Λ and s, t ∈ M(λ ), where � is

the anti-involution in 2.1.14.

Proof. By 2.1.14, we have C �
w = Cw−1 for all w ∈W . Thus, we obtain

(Cλ
s,t)

� = ∑
w∈W

∑
u∈M(λ )

β λ
tu cus

w−1,λ Cw−1 = ∑
w∈W

(
Bλ .ρ̄λ (tw−1)

)
t,s

Cw−1 .

By Proposition 1.5.11, we have Bλ .ρ̄λ (tw−1) = ρ̄λ (tw)tr.Bλ . This yields

(Cλ
s,t)

� = ∑
w∈W

(
ρ̄λ (tw)tr.Bλ )

t,s
Cw−1 = ∑

w∈W
∑

u∈M(λ )
cut

w,λ β λ
usCw−1 = Cλ

t,s,

as required. (Recall that Bλ is symmetric.) ��

We can now state the main result of this chapter.

Theorem 2.6.12 (Cf. [111, §3] [112, §5]). Assume that R is L-good and that (♠) in
2.5.3 holds. Then the elements {Cλ

s,t} introduced in Definition 2.6.8 form a cellular

basis of H with respect to the anti-involution Tw �→ T �
w = Tw−1 (see 2.1.14), and the

partial order �L on Λ defined by
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μ �L λ def⇔ μ = λ or Eμ �L Eλ , Eμ �∼L Eλ ,

where �L and ∼L are as in Definition 2.2.1. If property (♣) in 2.5.3 also holds, then
we have

μ �L λ ⇒ λ = μ or aμ > aλ .

Proof. Recall that (C1) holds by Lemma 2.6.10; (C2) holds by Lemma 2.6.11. In
order to prove (C3), we need to consider a product hCλ

s,t where h ∈ H and λ ∈ Λ ,
s, t ∈ M(λ ). It is sufficient to consider the case where h = Cx for some x ∈W . Now,
by the definition of Cλ

s,t and Remark 2.6.9, we have

hCλ
s,t = ∑

y∈W
ry Cy where ry = ∑

w∈Fλ

∑
u∈M(λ )

β λ
tu cus

w−1,λ hx,w,y.

Let Tλ be the two-sided Kazhdan–Lusztig cell such that Fλ ⊆ Tλ . Note that if
ry �= 0, then there is some w ∈ Fλ ⊆ Tλ such that hx,w,y �= 0 and so y �LR w (in the
Kazhdan–Lusztig pre-order).

Assume first that ry �= 0 and y �∈Tλ . By Lemma 2.6.10, Cy is a linear combination
of elements Cμ

u,v, where Eμ �L y. Hence, since y �∈ Tλ , we conclude that Cy ∈
H(	L λ ) and so we do not need to consider these terms in any more detail.

Thus, we can now assume that y ∈ Tλ . Then, by Lemma 2.5.8, we have

hx,w,y = ∑
z∈W,d∈D̃
z∼LR d

ñd hx,d,z γ̃z,w,y−1 for any w ∈ Fλ ⊆ Tλ .

We insert this formula for hx,w,y into the above expression for ry; this yields

ry = ∑
w∈Fλ

∑
z∈W,d∈D̃
z∼LR d

∑
u∈M(λ )

β λ
tu cus

w−1,λ ñd hx,d,z γ̃z,w,y−1

= ∑
z∈W,d∈D̃
z∼LR d

ñd hx,d,z ∑
u∈M(λ )

β λ
tu

(
∑

w∈Fλ

cus

w−1,λ γ̃z,w,y−1

)
.

Now, by 1.6.10 and Proposition 1.6.11, the sum over w ∈ Fλ can be extended to a
sum over all w ∈W . Using the defining equation for γ̃z,w,y−1 , we obtain

∑
w∈Fλ

cus

w−1,λ γ̃z,w,y−1 = ∑
w∈W

cus

w−1,λ

(
∑

μ∈Λ
∑

s′,v,v′∈M(μ)
f−1
μ cs′v

z,μ cvv′
w,μ cv′s′

y−1,μ

)

= ∑
μ∈Λ

∑
s′,v,v′∈M(μ)

f−1
μ cs′v

z,μ cv′s′
y−1,μ

(
∑

w∈W
cus

w−1,λ cvv′
w,μ

)
= ∑

s′∈M(λ )
cs′s

z,λ cus′
y−1,λ

where the last equality holds by Proposition 1.4.10(a). This yields
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hCλ
s,t ≡ ∑

y∈Tλ

ry Cy ≡ ∑
z∈W,d∈D̃
z∼LR d

ñd hx,d,z ∑
s′∈M(λ )

cs′s
z,λ

(
∑

y∈W
∑

u∈M(λ )
β λ

tu cus′
y−1,λ Cy

)

mod H(	L λ ). Since the parenthesised sum equals Cλ
s′,t, we see that

hCλ
s,t ≡ ∑

s′∈M(λ )

(
∑

z∈W,d∈D̃
z∼LR d

ñd hx,d,z cs′s
z,λ

)
Cλ

s′,t mod H(	L λ ).

Thus, we have shown that, for h = Cx (x ∈W ), we have

rλ
h (s′,s) = ∑

z∈W,d∈D̃
z∼LR d

ñd hx,d,z cs′s
z,λ for all s,s′ ∈ M(λ );

in particular, this expression does not depend on t, as required. ��

The model for this theorem, namely the case where W is the symmetric group
Sn, will be considered in detail in Section 2.8.

Remark 2.6.13. Note that the ingredients for a cellular basis of H (that is, the ele-
ments {Cλ

s,t} and the partial order �L) are defined without reference to (♠); this
property is only required for the proof.

Remark 2.6.14. Assume that we are in the equal-parameter case. Then we have seen
in Proposition 2.5.12 that (♠) is a consequence of the following implication:

(♣′) Eλ ∼L Eμ ⇒ aμ = aλ .

Thus, in order to prove Theorem 2.6.12 in the equal-parameter case, we only need to
assume that (♣′) holds. Recall that (♣′) does hold in type I2(m) (any m � 2), H3, H4

by Examples 2.2.8 and 2.2.9. Furthermore, (♣′) was already established by Lusztig
[220, 5.27] (around 1985) for all finite Weyl groups.

Remark 2.6.15. Recall that, by Remark 2.2.11, we have the implication

Eλ �L Eμ ⇒ Eμ† �L Eλ †
.

Now, by Examples 1.2.7 and 1.3.4, the following relation holds between aλ and aλ † :

aλ † −aλ = Nλ = ∑
s∈S′

(Ns trace(s,Eλ )
dimEλ

)
L(s).

It follows that if (♣) is satisfied, then we have the implication

λ �L μ ⇒ λ = μ or Nλ < Nμ .

Thus, Theorem 2.6.12 could be alternatively formulated using Nλ instead of the
invariants aλ . Note that Nλ is much easier to define than aλ ; also, Nλ does not
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depend on the monomial order on Γ . The idea of using the invariants Nλ appears, in
a somewhat different context in Ginzburg et al. [137, §6]; see also Gordon [140].

The following result shows that, for any Iwahori–Hecke algebra associated with
a finite Coxeter group, there does exist at least some cellular structure.

Corollary 2.6.16. Let k be a commutative ring (with 1) and {ξs | s ∈ S} ⊆ k× a
collection of elements such that ξs = ξt whenever s, t ∈ S are conjugate in W. Let
Hk = Hk(W,S,{ξs}) be the corresponding Iwahori–Hecke algebra; see 1.1.2. As-
sume that k is L0-good (see Definition 1.5.9) for the “universal” weight function L0

in Example 1.1.9. Then Hk admits a cellular basis {Cλ
s,t | λ ∈ Λ ,s, t ∈ M(λ )} with

respect to the anti-involution Tw �→ T �
w = Tw−1 and some partial order on Λ .

Proof. Let Γ0, A0 and H0 be “universal”, as in Example 1.1.9. Choose a monomial
order on Γ0 such that, on every irreducible component of type Bn, F4 or I2(m) (m
even), we are in the “asymptotic case” in Example 1.1.11. Then, by Corollary 2.4.2,
we know that P1–P15 hold. Hence, as discussed in 2.5.3, the properties (♣) and (♠)
also hold and so Theorem 2.6.12 applies. Thus, we obtain a cellular basis {Cλ

s,t} for
H0, where the partial order on Λ is given by �L0 .

Since k is L0-good, there is a ring homomorphism R → k. This extends to a ring
homomorphism θ : A0 → k such that θ(v◦s ) = ξs for all s ∈ S′, where {v◦s} are the
parameters of H0. Thus, Hk = k⊗A0 H0, where k is regarded as an A0-module via θ .
Since the elements {Cλ

s,t | λ ∈ Λ , s, t ∈ M(λ )} in H satisfy (C1), (C2), (C3), it is

clear that the elements {Cλ
s,t := 1⊗Cλ

s,t | λ ∈ Λ , s, t ∈ M(λ ))} satisfy (C1), (C2),
(C3) in Hk. Thus, we have constructed a cell datum for Hk. ��
Example 2.6.17. Let W be of type I2(4) = B2, where S = {s1,s2} and (s1s2)4 = 1.
Assume that we are in the equal-parameter case, where Γ = Z and L(s1) = L(s2) =
1. Then A = R[v,v−1] is the ring of Laurent polynomials in one indeterminate v =
ε . Now Theorem 2.6.12 applies where R ⊆ C can be any subring in which 2 is
invertible. In order to determine a cellular basis, we need to work out the leading
matrix coefficients of the irreducible representations of HK . The two-sided cells are
given by {10}, {14} and W \{10,14}, where we use the notation in Example 1.7.3.
First consider the representation σ1. By Example 1.3.7, we have aσ1 = 1 and so

vσ ε
1 (T11) =

(
−1 0
2v v2

)
≡

(
−1 0
0 0

)
mod m,

vσ ε
1 (T21) =

(
v2 v
0 −1

)
≡

(
0 0
0 −1

)
mod m,

vσ ε
1 (T12) =

(
−v −1
2v2 v

)
≡

(
0 −1
0 0

)
mod m,

vσ ε
1 (T22) =

(
v v2

−2 −v

)
≡

(
0 0
−2 0

)
mod m,

vσ ε
1 (T13) =

(
−1 −v
0 v2

)
≡

(
−1 0
0 0

)
mod m,

vσ ε
1 (T23) =

(
v2 0
−2v −1

)
≡

(
0 0
0 −1

)
mod m.
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A corresponding symmetric matrix is given by

Bσ1 =
(

2 0
0 1

)
; see Example 1.4.6.

Performing similar (but much simpler) computations for the one-dimensional repre-
sentations, we obtain the following expressions for Cλ

s,t (see also [111, Exp. 4.3]):

C1W
1,1 = C10 , Cσ1

1,1 = −2C11 −2C13 ,

Csgn
1,1 = C14 , Cσ1

1,2 = −2C12 ,

Csgn1
1,1 = −C21 +C23 , Cσ1

2,1 = −2C22 ,

Csgn2
1,1 = −C11 +C13 , Cσ1

2,2 = −C21 −C23 .

For the case of unequal parameters, see 2.8.19.

Example 2.6.18. Let W be of type I2(6) = G2, where S = {s1,s2} and (s1s2)6 = 1.
(a) Assume that we are in the equal-parameter case where L(s1) = L(s2) > 0. Then,
again, Theorem 2.6.12 applies and so we have a cellular basis {Cλ

s,t}. In this case,

we can take for R any subring of C in which 2, 3 are invertible. Expressions for Cλ
s,t

have been worked out in [129, Exp. 2.7] (using computations similar to those in the
previous example):

C1W
1,1 = C10 , Csgn

1,1 = C16 ,

Csgn1
1,1 = C21 −C23 +C25 , Csgn2

1,1 = C11 −C13 +C15 ,

Cσ1
1,1 = 3C11 +6C13 +3C15 , Cσ2

1,1 = C11 −C15 ,

Cσ1
1,2 = −3C12 −3C14 , Cσ2

1,2 = −C12 +C14 ,

Cσ1
2,1 = −3C21 −3C24 , Cσ2

2,1 = −C21 +C24 ,

Cσ1
2,2 = C21 +2C23 +C25 , Cσ2

2,2 = C21 −C25 .

(b) Assume that the monomial order on Γ is such that L(s1) > L(s2) > 0. By 2.4.1,
P1–P15 hold and, hence, by 2.5.3, the hypothesis of Theorem 2.6.12 is satisfied. In
this case, we can take for R any subring of C in which 2 is invertible. We find the
following expressions for the cellular basis:

C1W
1,1 = C10 , Cσ1

1,1 = C11 +C13 , Cσ2
1,1 = C11 −C13 ,

Csgn
1,1 = C16 , Cσ1

1,2 =−C12 −C14 , Cσ2
1,2 = −C12 +C14 ,

Csgn1
1,1 = C21 , Cσ1

2,1 =−C22 −C24 , Cσ2
2,1 = −C22 +C24 ,

Csgn2
1,1 = C15 , Cσ1

2,2 = C23 +C25 , Cσ2
2,2 = C23 −C25 .

Example 2.6.19. Let W be of type I2(5), where S = {s1,s2} and (s1s2)5 = 1. We are
in the equal-parameter case; assume that L(s1) = L(s2) > 0. Then Theorem 2.6.12
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applies and so we have a cellular basis {Cλ
s,t}. In this case, we can take for R any

subring of C in which 5 is invertible and α := 1
2 (−1+

√
5) ∈ R. We find the follow-

ing expressions for Cλ
s,t:

C1W
1,1 = C10 , Csgn

1,1 = C15 ,

Cσ1
1,1 = (2+α)C11 +(3+2α)C13 , Cσ2

1,1 = (1−α)C11 +(1−2α)C13

Cσ1
1,2 = −(2+α)C12 − (1+α)C14 , Cσ2

1,2 = (α −1)C12 +αC14

Cσ1
2,1 = −(2+α)C22 − (1+α)C24 , Cσ2

2,1 = (α −1)C22 +αC24

Cσ1
2,2 = C21 +(1+α)C23 , Cσ2

2,2 = C21 −αC23 .

2.7 Further Properties of the Cellular Basis of H

Throughout this section (except for Corollary 2.7.14 at the very end), we assume
that we are in the setting of Theorem 2.6.12, where properties (♣) and (♠) in 2.5.3
hold. Thus, we have a cellular basis {Cλ

s,t} of H, and the partial order on Λ satisfies

μ �L λ ⇒ μ = λ or aμ > aλ .

Let {W (λ ) | λ ∈ Λ} be the cell modules constructed from the cellular basis; see
2.6.1. By extension of scalars from A to K, we obtain modules for HK which we
denote by WK(λ ) (λ ∈ Λ ). Since HK is semisimple, Theorem 2.6.5 shows that

Irr(HK) = {WK(λ ) | λ ∈ Λ}.

Proposition 2.7.1. Let λ ∈ Λ . For any h = Cw (w ∈W) and s,s′ ∈ M(λ ), we have

εaλ rλ
h (s′,s) ∈ R[Γ�0], with constant term equal to cs′s

w,λ .

In particular, the representation of HK afforded by WK(λ ) (with respect to its stan-
dard basis) is balanced, and we have WK(λ ) ∼= Eλ

ε .

Proof. At the end of the proof of Theorem 2.6.12, we obtained the formula

rλ
h (s′,s) = ∑

z∈W,d∈D̃
z∼LR d

ñd hw,d,z cs′s
z,λ .

Now assume z ∈W and d ∈ D̃ are such that z ∼LR d and the corresponding terms
in the above sum are non-zero; that is, hw,d,z �= 0 and cs′s

z,λ �= 0. Since cs′s
z,λ �= 0, we

have Eλ �L z. Hence, Lemma 2.5.11 shows that εaλ hw,d,z lies in Z[Γ�0] and has
constant term γ̃w,d,z−1 . Thus, we have εaλ rλ

h (s′,s) ∈ R[Γ�0] and
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εaλ rλ
h (s′,s) ≡ ∑

z∈W

(
∑

d∈D̃ :z∼LR d

ñd γ̃w,d,z−1

)
cs′s

z,λ ≡ cs′
w,λ mod R[Γ>0],

where the last congruence follows as in Remark 2.5.15. Once this is established,
it is clear that the representation afforded by WK(λ ) is balanced. Furthermore, by
Proposition 1.5.7, we also see that WK(λ ) ∼= Eλ

ε . ��

Corollary 2.7.2. Let λ ∈ Λ and denote by Gλ =
(
gλ

st

)
s,t∈M(λ ) the Gram matrix of

the bilinear form 〈 , 〉λ : W (λ )×W (λ ) → A. Then

εaλ gλ
st ∈ R[Γ�0] and εaλ gλ

st ≡ fλ β λ
st mod R[Γ>0].

Proof. Recall that gλ
st = gλ

ts = rλ
h (s,s), where h = Cλ

s,t. Hence, using the defining

formula for Cλ
s,t, we obtain

εaλ gλ
st = ∑

w∈W
∑

u∈M(λ )
β λ

tu cus

w−1,λ
(
εaλ rλ

Cw
(s,s)

)
.

By Proposition 2.7.1, this expression lies in R[Γ�0] and has constant term

∑
w∈W

∑
u∈M(λ )

β λ
tu cus

w−1,λ css
w,λ = ∑

u∈M(λ )
β λ

tu

(
∑

w∈W
cus

w−1,λ css
w,λ

)
= β λ

ts fλ ,

where we used the “Schur relations” in Proposition 1.4.10(a). ��

Example 2.7.3. Let λ ∈Λ and consider the representation ρ̄λ : J̃→Mdλ (K), where
ρ̄λ (tw) ∈ Mdλ (R) for all w ∈ W . By first restricting ρ̄λ to J̃R and then extending
scalars from R to A, we can also regard ρ̄λ as an A-algebra homomorphism

ρ̄λ : J̃A → Mdλ (A).

With this convention, the formula at the end of Theorem 2.6.12 means that
(
rλ

h (s′,s)
)
s′,s∈M(λ ) = ρ̄λ (

φ(Cw)
)

(h = Cw).

By Proposition 2.7.1, we have Eλ
ε
∼= WK(λ ). Hence, the above formula shows that,

for a suitable basis of Eλ
ε , the action of Cw on Eλ

ε is given by the matrix ρ̄λ (φ(Cw)).
We express this by saying that the action of H on Eλ

ε factors through φ .

Example 2.7.4. Let λ ∈ Λ and assume that there exists a left Kazhdan–Lusztig cell
C such that Eλ

ε
∼= [C]K . (This is a very special situation, but we will see in Section 2.8

that it holds, for example, when W ∼= Sn.) Let us write C = {xs | s ∈ M(λ )}. Then
we have a corresponding representation ρC : HK → Mdλ (K) such that

ρC(Cw) =
(
hw,xt,xs

)
s,t∈M(λ ) for all w ∈W .



116 2 Kazhdan–Lusztig Cells and Cellular Bases

By Lemma 2.2.4, there exists some w∈C such that Eλ �L w. Since (♣) is assumed
to hold, we can apply Lemma 2.5.11, which yields that ρC is balanced and, for all
w ∈W and s, t ∈ M(λ ), we have

εaλ hw,xt,xs
≡ γ̃w,xt,x

−1
s

mod Z[Γ>0].

Thus, we can assume that ρλ = ρC and the leading matrix coefficients are given by

cst
w,λ = γ̃w,xt,x

−1
s

for all w ∈W and s, t ∈ M(λ ).

Now, by Lemma 1.5.3, we have γ̃w,xt,x
−1
s

= γ̃x−1
t ,w−1,xs

= γ̃w−1,xs,x−1
t

. This means

that ρ̄λ (tw)tr = ρ̄λ (tw−1) for all w ∈ W . Consequently, the conditions in Proposi-
tion 1.5.11 are satisfied where we take Bλ to be the identity matrix. The formula for
rλ

h (s′,s) in the proof of Proposition 2.7.1 now reads

rλ
h (s′,s) = ∑

z∈W,d∈D̃
z∼LR d

ñd hw,d,z γ̃z,xs,x−1
s′

= hw,xs,x
s′ (h = Cw),

where the last equality holds by Lemma 2.5.8. Thus, we have shown that W (λ ) is
nothing but the left cell module [C]A. Furthermore, the action of H on [C]A factors
through φ , as in Example 2.7.3.

2.7.5. One important feature of the definition of a “cell datum” is that it behaves well
with respect to a specialisation; see [144, (1.8)]. Let θ : A → k be a homomorphism
into a field k. Let Hk = k ⊗A H be the corresponding specialised algebra over k.
Assume that {Cλ

s,t} satisfy (C1), (C2), (C3) in H. Then the elements {1⊗Cλ
s,t}

will satisfy (C1), (C2), (C3) in Hk. Hence, a cell datum for H automatically gives
rise to a cell datum for Hk. Note that then the cell representations of Hk are given
by Wk(λ ) = k⊗A W (λ ) (λ ∈ Λ ), and the bilinear form 〈 , 〉λ on W (λ ) induces the
corresponding form 〈 , 〉λ ,k on Wk(λ ). In particular, we have the following:

(a) Extending scalars from A to K, we obtain a cell datum for HK . As already
mentioned (see Proposition 2.7.1), since HK is semisimple, we have

Irr(HK) = {WK(λ ) | λ ∈ Λ}, where WK(λ ) ∼= Eλ
ε for all λ ∈ Λ .

(b) In general, given any map θ : A → k as above, we set Lλ
k = Wk(λ )/rad(〈 , 〉λ ,k)

for λ ∈ Λ . Then Theorem 2.6.5 implies that

Irr(Hk) = {Lμ
k | μ ∈ Λ ◦

k }, where Λ ◦
k := {λ ∈ Λ | 〈 , 〉λ ,k �= 0}.

Furthermore, the composition multiplicities (Wk(λ ) : Lμ
k ) satisfy the conditions

(Δ ) in Theorem 2.6.6. Hence, since (♣) is assumed to hold, this means

(Δ a)

{
(Wk(μ) : Lμ

k ) = 1 for all μ ∈ Λ ◦
k ,

(Wk(λ ) : Lμ
k ) = 0 unless λ = μ or aλ > aμ .
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Thus, our “fundamental problem” (p. 3) of determining Irr(Hk) now takes the fol-
lowing more precise form (and this will be addressed in the subsequent chapters).

Fundamental Problem (revised). Given a cell datum for Hk, describe the subset
Λ ◦

k ⊆ Λ and determine the dimension of Lμ
k for μ ∈ Λ ◦

k .

Our next result provides an alternative characterisation of the subset Λ ◦
k ⊆ Λ .

In particular, this shows that Λ ◦
k does not depend on the choices involved in the

definition of {Cλ
s,t}. (Recall that, for example, this definition relies on the balanced

representations ρλ , and these are not uniquely determined.)

Proposition 2.7.6. In the setting of 2.7.5, let λ ∈ Λ . Then the following three con-
ditions are equivalent.

(a) λ ∈ Λ ◦
k .

(b) θ
(
χλ (Cw)

)
�= 0 for some w ∈W such that Eλ �L w.

(c) Cw.Wk(λ ) �= {0} for some w ∈W such that Eλ �L w.

Proof. “(a) ⇒ (b)” If λ ∈ Λ ◦
k , then 〈 , 〉λ ,k �= 0 and so 〈Cu,Ct〉λ ,k �= 0 for some

u, t ∈ M(λ ). Now, by Proposition 2.7.1, we have Eλ
ε
∼= WK(λ ) and so

χλ (h) = trace(h,Eλ
ε ) = trace

(
h,WK(λ )

)
= ∑

s∈M(λ )
rλ

h (s,s) for all h ∈ H.

Let h = Cλ
u,t and apply Corollary 2.6.3. This yields rλ

h (s,s) = δus〈Cs,Ct〉λ for

all s ∈ M(λ ) and so χλ (h) = 〈Cu,Ct〉λ . Since 〈Cu,Ct〉λ ,k �= 0, this shows that
θ(χλ (h)) �= 0. Finally, by Remark 2.6.9, h is an R-linear combination of elements
Cw, where Eλ �L w. Hence, (b) follows.

“(b) ⇒ (c)” As above, we have χλ (h) = ∑s∈M(λ ) rλ
h (s,s) for all h ∈ H. Since

Wk(λ ) = k⊗A W (λ ), this implies

θ
(
χλ (Cw)

)
= trace

(
Cw,Wk(λ )

)
for all w ∈W ,

where Cw is regarded as an element of Hk on the right-hand side. Hence, if (b) holds,
then Cw does not act as zero on Wk(λ ) and so (c) holds.

“(c) ⇒ (a)” Let w ∈ W be such that Eλ �L w and Cw.Wk(λ ) �= {0}. By
Lemma 2.6.10, Cw is an R-linear combination of elements Cμ

u,v, where μ ∈ Λ is
such that Eμ �L w. Hence, we also have h.Wk(λ ) �= {0}, where h = Cμ

u,v for
some μ ∈ Λ and u,v ∈ M(μ) such that Eλ ∼L Eμ . In particular, this implies that
h.W (λ ) �= {0}. By the definition of the action of H on W (λ ), this means that there
exist some s,s′, t ∈ M(λ ) such that Cλ

s′,t appears with a non-zero coefficient in the

decomposition of hCλ
s,t = Cμ

u,vCλ
s,t. By (C2) and (C3), this implies that λ �L μ .

Since also Eλ ∼L Eμ , we conclude that λ = μ .
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Thus, we have h.Wk(λ ) �= {0}, where h = Cλ
u,v for some u,v ∈ M(λ ). By the

definition of the action of Hk on Wk(λ ) and Corollary 2.6.3, this implies that

〈Cs,Cv〉λ ,k = θ
(
rλ

h (u,s)
)
�= 0 for some s ∈ M(λ ).

Thus, 〈 , 〉λ ,k �= 0 and so (a) holds. ��

Proposition 2.7.7. Let λ ∈ Λ ◦
k . Then the following hold.

(a) We have θ(χλ (Cw)) = trace(Cw,Lλ
k ) for all w ∈W such that Eλ �L w.

(b) We have Cw.Lλ
k �= {0} for some w ∈W such that Eλ �L w.

Proof. (a) Let w ∈W be such that Eλ �L w. As in the above proof, θ(χλ (Cw)) =
trace(Cw,Wk(λ )). Considering a composition series for Wk(λ ), we obtain

θ(χλ (Cw)) = ∑
μ∈Λ◦

k

(Wk(λ ) : Lμ
k ) trace(Cw,Lμ

k ).

Let μ ∈ Λ ◦
k and assume that the corresponding terms in the sum are non-zero; that

is, we have (Wk(λ ) : Lμ
k ) �= 0 and trace(Cw,Lμ

k ) �= 0. In particular, this means that
Cw.Lμ

k �= {0}. We claim that this implies that Eμ �L Eλ . Indeed, since Cw.Lμ
k �= {0},

we also have Cw.Wk(μ) �= {0} and, hence, Cw.W (μ) �= 0. By Lemma 2.6.10, Cw is
an R-linear combination of elements Cν

u,v, where ν ∈ Λ is such that Eν �L w.
Hence, we also have h.W (μ) �= {0}, where h = Cν

u,v for some ν ∈ Λ and u,v ∈
M(ν) such that Eλ ∼L Eν . Arguing as in the above proof, this implies that μ �L ν .
Since also Eλ ∼L Eν , we conclude that Eμ �L Eλ , as claimed. On the other hand,
since (Wk(λ ) : Lμ

k ) �= 0, we have λ �L μ ; see Theorem 2.6.6. In combination with
Eμ �L Eλ , this implies that λ = μ . Thus, since (Wk(λ ) : Lλ

k ) = 1, we have shown
that θ(χλ (Cw)) = trace(Cw,Lλ

k ).
(b) By Proposition 2.7.6, we have θ(χλ (Cw)) �= 0 for some w ∈ W such that

Eλ �L w. By (a), this implies that trace(Cw,Lλ
k ) �= 0 and so Cw.Lλ

k �= {0}. ��

Remark 2.7.8. Once a cellular structure for H is available, it also natural to consider
the “Jantzen filtration” on cell modules; for recent results and open problems in this
direction, see James and Mathas [183], [184], Shan [277] (type A), Bonnafé and
Jacon [27] and Policzew [266] (exceptional types).

Finally, we discuss the existence of W -graph representations, as already briefly
mentioned at the end of Section 1.4. We begin with a preliminary result about the
structure and the representations of J̃.

Lemma 2.7.9. In addition to (♣) and (♠), also assume that (�) holds. Then:

(a) We have γ̃x,y,z ∈ Z and ñd = ±1 for all d ∈ D̃ .
(b) The elements {ñdtd | d ∈ D̃} are orthogonal idempotents.

Furthermore, for each λ ∈ Λ , the balanced representation ρλ of HK can be chosen
such that the following holds for the corresponding representation ρ̄λ of J̃:
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(c) The conditions in Proposition 1.5.11 hold where ρ̄λ (tw) =
(
cst

w,λ
)
∈ Mdλ (ZW )

for all w ∈W.
(d) For any d ∈ D̃ , the matrix ρ̄λ (td) is diagonal with 0,±1 on the diagonal.

Proof. (a), (b) See Example 2.5.14. Once we know that γ̃x,y,z and ñw are integers,
the fact that ñd = ±1 follows from the formula in Remark 1.6.19(a).

(c), (d) We slightly refine the argument in Proposition 1.5.11. We can assume
that (W,S) is irreducible. First let W be of type I2(m). In the proof of Proposi-
tion 1.5.11, we have seen that the representations in Example 1.3.7 satisfy (c). By
Example 1.7.4, these representations also satisfy (d). Now assume that W is not
of type I2(m). Then ZW is a principal ideal domain. As in the proof of Proposi-
tion 1.5.11, a general argument shows that ρλ can be chosen such that (c) holds. Let
J̃ZW = 〈tw | w ∈W 〉ZW and let Ēλ be a J̃ZW -module (finitely generated and free over
ZW ) which affords the representation ρ̄λ . Since the idempotents ñdtd (d ∈ D̃) lie in
J̃ZW and since ZW is a principal ideal domain, we have a direct sum decomposition
Ēλ =

⊕
d∈D̃ Ēλ

d , where Ēλ
d := ñdtd .Ēλ is a ZW -submodule of Ēλ which is finitely

generated and free over ZW . Now choose a ZW -basis of Ēλ which is adapted to this
decomposition and perform a base change (over ZW ) to this new basis. We replace
ρλ by the representation obtained via this base change (as in the proof of Proposi-
tion 1.5.11). This new representation is balanced, and it satisfies (c) and (d). ��
2.7.10. We keep the assumptions of Lemma 2.7.9. We shall consider the effect of
Lusztig’s homomorphism φ : H → J̃A (see Theorem 2.5.5) on Cs, where s ∈ S is
such that L(s) > 0. For any d ∈ D̃ , we have CsCd = −(vs + v−1

s )Cd if sd < d;
furthermore, if sd > d, then hs,d,z = 0 unless sz < z, in which case we have
hs,d,z = (−1)l(d)+l(z)+1μs

z,d . Thus, the formula in Theorem 2.5.5 can be written as

φ(Cs) = −(vs + v−1
s )

(
∑
d∈D̃
sd<d

ñd td
)

+
(

∑
z∈W,d∈D̃

sz<z<d<sd and z∼LRd

(−1)l(z)+l(d)+1ñd μs
z,dtz

)
.

Following Gyoja [150] (where this is discussed in the equal-parameter case, in a
somewhat different setting), we define elements of J̃A as follows:

s̃0 := ∑
d∈D̃
sd<d

ñd td and s̃1 := ∑
z∈W,d∈D̃

sz<z<d<sd and z∼LRd

(−1)l(z)+l(d)+1ñd μs
z,d tz.

Thus, φ(Cs) = −(vs + v−1
s )s̃0 + s̃1. Now recall that Cs = Ts − vsT1. Then we have

φ(Ts) = φ(Cs)+ vs1J̃ = −v−1
s s̃0 + vs(1J̃ − s̃0)+ s̃1 for any s ∈ S.

The collection of elements {s̃0, s̃1 | s∈ S,L(s) > 0} satisfies the following properties.

Lemma 2.7.11 (Cf. Gyoja [150, 2.4]). In the above setting, we have

s̃2
0 = s̃0, s̃0t̃0 = t̃0s̃0, s̃0s̃1 = s̃1, s̃1s̃0 = 0

for all s, t ∈ S such that L(s) > 0 and L(t) > 0.
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Proof. By Lemma 2.7.9(b), the elements {ñdtd | d ∈ D̃} are orthogonal idempotents
in J̃. This yields that s̃2

0 = s̃0 and s̃0t̃0 = t̃0s̃0 for all s, t ∈ S. Now consider

s̃0s̃1 = ∑
z∈W,d′∈D̃

sz<z<d′<sd′ and z∼LR d′

(−1)l(z)+l(d′)+1ñd′ μs
z,d′

(
∑
d∈D̃
sd<d

ñdtdtz
)
.

In order to show that this equals s̃1, it will be enough to show that ∑d∈D̃ ,sd<d ñdtdtz =
tz for all z ∈W such that sz < z. Now, given any d ∈ D̃ , we have

ñdtdtz = ∑
x∈W

ñd γ̃d,z,x−1 tx = ∑
x∈W

ñd γ̃z,x−1,d tx =
{

tz if z−1 ∼L d,
0 otherwise,

where the second equality holds by Lemma 1.5.3(a) and the third equality holds
by Remark 1.6.19(a). Hence, it remains to show that the unique d ∈ D̃ such that
z−1 ∼L d satisfies sd < d. Now recall that sz < z. Using Lemma 2.1.16, we conclude
that s ∈ L (z) = R(z−1) = R(d). But, by Remark 1.6.19(a), we have d2 = 1 and so
R(d) = L (d). Thus, sd < d, as required. Finally, consider

s̃1s̃0 = ∑
d∈D̃
sd<d

∑
z∈W,d′∈D̃

sz<z<d′<sd′ and z∼LRd′

(−1)l(z)+l(d′)+1ñd′ μs
z,d′ ñdtztd .

Assume, if possible, that this is non-zero. Then for some z,d,d′ in the above sum,
we have μs

z,d′ �= 0 and tztd �= 0. Arguing as above, the latter condition implies that
z ∼L d. On the other hand, since μs

z,d′ �= 0, we have z �L d′. Since we also have
z ∼LR d′, we can conclude that z ∼L d′; see Lemma 2.5.9. Hence, (�) yields that
d = d′. But we have sd < d and sd′ > d′, which is a contradiction. Hence, the
assumption was wrong and so we must have s̃1s̃0 = 0, as claimed. ��

A version of the following result (for equal parameters, and without taking into
account the cellular structure) was first shown by Gyoja [150, §2]; subsequently,
Lusztig [224, 3.8] gave a slightly different argument based on his asymptotic alge-
bra. Our proof is a combination of the techniques used in [150] and [224].

Theorem 2.7.12. Recall our standing assumption that (♠) and (♣) hold; also as-
sume that (�) holds and that L(s) > 0 for all s ∈ S. Then the data in Definition 2.6.8
can be chosen such that the cell modules {W (λ ) | λ ∈ Λ} are afforded by W-
graphs where the elements {ms

x,y} ⊆ A (see Definition 1.4.11) all lie in the subring
ZW [Γ ] ⊆ A.

Proof. By Lemma 2.7.11, the elements {s̃0 | s ∈ S} pairwise commute with each
other. Hence, we can define

FI :=
(
∏
s∈I

s̃0
)(

∏
s∈S\I

(1J̃ − s̃0)
)
∈ J̃ for any subset I ⊆ S.

These elements have the following properties:
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(a) 1J̃ = ∑
I⊆S

FI , F2
I = FI (I ⊆ S), FIFJ = 0 (I �= J).

Indeed, by Lemma 2.7.11, the elements {s̃0 | s ∈ S} do not only commute with each
other, but they are also idempotents. Hence, each FI is an idempotent (possibly zero).
Furthermore, suppose that I �= J. If s ∈ I \ J, then the factor s̃0 occurs in FI and the
factor 1J̃ − s̃0 occurs in FJ . Hence, we have FIFJ = 0. The argument is analogous if

s∈ J\ I. Finally, notice that 1J̃ = 1|S|
J̃

= ∏s∈S

(
s̃0 +(1J̃− s̃0)

)
. Expanding the product

yields that 1J̃ = ∑I⊆S FI , as required. Thus, (a) is proved.
Now assume that the balanced representations {ρλ | λ ∈Λ} are chosen such that

they satisfy the properties in Lemma 2.7.9. In particular, for any λ ∈ Λ and d ∈ D̃ ,
the matrix ρ̄λ (td) is diagonal with 0,±1 on the diagonal. We conclude that ρ̄λ (s̃0)
is a diagonal matrix for any s ∈ S and, hence, ρ̄λ (FI) is a diagonal matrix for any
I ⊆ S. Since FI is an idempotent, the diagonal coefficients of ρ̄λ (FI) will be 0,1.
Since the elements {FI | I ⊆ S} are orthogonal idempotents whose sum is 1J̃, we
conclude that there is a well-defined partition

(b) M(λ ) =
⊔
I⊆S

MI(λ ) such that FI .et = et ⇔ t ∈ MI(λ ).

Let us now extend scalars from R to A. Then Ēλ
A := A⊗R Ēλ is a J̃A-module but it

also becomes an H-module via Lusztig’s homomorphism φ : H → J̃A. The formula
at the end of the proof of Theorem 2.6.12 shows that h ∈ H acts on W (λ ) in the
same way as φ(h) ∈ J̃A acts on Ēλ

A . So let us identify W (λ ) = Ēλ
A . Then, using the

formula for φ(Ts) (s ∈ S) in 2.7.10, we see that the action of H on W (λ ) is given by

Ts.et = −v−1
s s̃0et + vs(1J̃ − s̃0)et + s̃1et, where t ∈ M(λ ).

We will now show that this formula comes from a W -graph structure on W (λ ). First
of all, the definition of a W -graph requires a map from M(λ ) to the set of all subsets
of S. We define such a map as follows. Given t ∈ M(λ ), let I(t) be the unique subset
I ⊆ S such that t ∈ MI(λ ); see (b). This definition implies that

(c) FI .et =
{

et if I = I(t),
0 otherwise.

Next we consider the action of Ts, where s ∈ S. If s ∈ I(t), then s̃1s̃0 = 0 and so
s̃1FI(t) = 0; since et = FI(t).et, we conclude that s̃1.et = 0. Furthermore, s̃0.et = et

(since s̃2
0 = s̃0 and so s̃0FI(t) = FI(t)). Hence, we obtain in this case

Ts.et = −v−1
s et,

as required in the definition of a W -graph. Now assume that s �∈ I(t). Then s̃0.et = 0
(since s̃0FI(t) = 0) and so
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Ts.et = vset + s̃1.et = vset + ∑
u∈M(λ )

ms
u,t eu,

where the terms ms
u,t ∈ A are such that m̄s

u,t = ms
u,t and vsms

u,t ∈ ZW [Γ>0] (by the
defining formula for s̃1, Example 2.1.10 and Lemma 2.7.9(a) and (c)). So it remains
to show that ms

u,t = 0 unless s ∈ I(u). But, for any I ⊆ S such that s �∈ I, we have
(1J̃ − s̃0)s̃1 = 0 by Lemma 2.7.11 and so FIs̃1 = 0. Hence, we have

s̃1.et =
(
∑
I⊆S

FI

)
s̃1.et = ∑

I⊆S,s∈I

FI s̃1.et ⊆ 〈FI .eu | u ∈ M(λ ),s ∈ I ⊆ S〉A.

By (c), the latter submodule is contained in 〈eu | s ∈ I(u)〉A, as required. So the
above formulae show that W (λ ) is afforded by a W -graph. ��

The above result shows that the cell modules {W (λ ) | λ ∈ Λ} arising from our
construction of a cellular basis of H are afforded by W -graphs. The following con-
jecture is a kind of converse to this statement.

Conjecture 2.7.13 (Geck and Müller [129, 4.5]). Assume that L(s) > 0 for all s∈ S
and that, for every λ ∈ Λ , we are given a W-graph affording an H-module V λ

such that K ⊗A V λ ∼= Eλ
ε . Then the data in Definition 2.6.8 can be chosen such that

{V λ | λ ∈ Λ} are the corresponding cell modules.

In order to prove this conjecture, it would be sufficient to show that every W -
graph representation of H factors through Lusztig’s homomorphism φ : H → J̃A.
Somewhat related open problems are formulated by Gyoja [150, Remark 2.18].

The final result in this section holds without any assumptions on W,L.

Corollary 2.7.14. Let H = HA(W,S,L) be any generic Iwahori–Hecke algebra,
where W is finite and the general assumptions in 1.2.1 hold; that is, Γ admits a
monomial ordering and A = R[Γ ], where ZW ⊆ R ⊆ C. Then every irreducible rep-
resentation of HK can be realised over ZW [Γ ].

Proof. Let K be the field of fractions of R and set k := K[Γ ]. Then k certainly is L0-
good and so, as in the proof of Corollary 2.6.16, there exists some cell datum for Hk

which is obtained by extension of scalars from a cell datum in a “universal” algebra
H0 over A0 = K[Γ0], where P1–P15 are known to hold. Let {W0(λ ) | λ ∈ Λ} be the
corresponding cell modules of H0. We have a unique K-linear ring homomorphism
θ : A0 → k such that θ(v◦s ) = vs for all s ∈ S, where {v◦s} are the parameters of H0

and {vs | s∈ S} are the parameters of H. Thus, Hk = k⊗A0 H0, where k is regarded as
an A0-module via θ . Now K (the field of fractions of A) equals the field of fractions
of k. Since HK = K ⊗k Hk is semisimple, we have

Irr(HK) = {WK(λ ) := K ⊗A0 W0(λ ) | λ ∈ Λ};

see Theorem 2.6.5 and 2.7.5. Since each W0(λ ) is realised over ZW [Γ0] by Theo-
rem 2.7.12, we conclude that WK(λ ) is realised over the image of ZW [Γ0] under θ0;
that is, over ZW [Γ ], as required. ��
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2.8 The Case of the Symmetric Group

The aim of this section is to give an elementary proof of the properties (♣), (♠) and
(�) in 2.5.3 when W ∼= Sn. We will then see that the Kazhdan–Lusztig basis {Cw}
itself is a cellular basis in this case. Note that even if we were willing to admit from
the beginning that P1–P15 hold for W , then there would still be a substantial piece
of work to do in order to determine the partial order �L in Theorem 2.6.12.

We begin with a few general (and more or less well-known) remarks related
to longest elements in parabolic subgroups. In 2.8.1–2.8.7, W may be any finite
Coxeter group W and L : W → Γ a weight function such that L(s) > 0 for all s ∈ S.
(Here, we explicitly exclude the possibility that L(s) = 0 for some s ∈ S.)

2.8.1. Let I ⊆ S and consider the parabolic subgroup WI ⊆ W . Let XI be the set of
distinguished left coset representatives of WI in W ; we have

XI = {w ∈W | w has minimal length in wWI}.

The map XI ×WI →W , (x,u) �→ xu, is a bijection and we have l(xu) = l(x)+ l(u) for
u∈WI and x∈XI ; see [132, §2.1]. Let HI = 〈Tw |w∈WI〉A ⊆H be the corresponding
parabolic subalgebra of H. For any w ∈WI , we have Cw ∈ HI and C′

w ∈ HI ; hence,
{Cw | w ∈WI} and {C′

w | w ∈WI} are the Kazhdan–Lusztig bases of HI .

Lemma 2.8.2. Let wI ∈WI be the unique element of maximal length. We have

CwI = (−1)l(wI)εL(wI) ∑
w∈WI

(−1)l(w)ε−L(w)Tw.

Furthermore, the following hold.

(a) For any w ∈WI, we have TwCwI = (−1)l(w) ε−L(w)CwI .
(b) We have C2

wI
= (−1)l(wI)ε−L(wI)PICwI , where PI = ∑w∈WI

ε2L(w); cf. 1.2.11(c).
(c) The set XIwI is a union of left cells in W; we have XIwI = {w ∈W | w �L wI}.

Proof. The formula for CwI already appears in Example 2.1.17. Next, we prove (a),
by induction on l(w). First assume that w = s ∈ I. Then we have swI < wI and so
the multiplication rule in Theorem 2.1.8 shows that CsCwI = −(vs + v−1

s )CwI . Since
Cs = Ts −vsT1, this yields TsCwI = −v−1

s CwI . If l(w) > 1, then write w = w′s, where
s ∈ I, w′ ∈WI and l(w) = l(w′)+1. We have Tw = Tw′Ts, and so the desired formula
follows by induction. Once (a) is established, we compute

C2
wI

= (−1)l(wI)εL(wI) ∑
w∈WI

(−1)l(w)ε−L(w)TwCwI

= (−1)l(wI)εL(wI) ∑
w∈WI

ε−2L(w)CwI = (−1)l(wI)ε−L(wI)PI CwI .

To obtain the last equality, we used the formula l(wwI) = l(wI)− l(w) for all w∈WI .
Thus, (b) is proved. Finally, consider (c). Let w ∈ W be such that w �L wI . Then
R(wI)⊆R(w); see Lemma 2.1.16. Hence, since R(wI) = I, we can write w = xwI ,
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where x ∈ XI . Conversely, if x ∈ XI , then l(xwI) = l(x)+ l(wI) and so xwI �L wI .
(This follows since sw ←L w if s ∈ S, w ∈W are such that sw > w.) Thus, we obtain
XIwI = {w ∈W | w �L wI}. This also shows that XIwI is a union of left cells. ��

Lemma 2.8.3. Let I ⊆ S and IL
wI

⊆ H be the left ideal defined by the general proce-
dure in 1.6.2, with respect to the basis {Cw | w ∈W} of H. Then we have

I
L
wI

= 〈CxwI | x ∈ XI 〉A = 〈 TxCwI | x ∈ XI 〉A.

Proof. By definition, we have IL
wI

= 〈Cw | w �L wI〉A; this equals 〈CxwI | x ∈ XI〉A

by Lemma 2.8.2(c). Now set MI := 〈TxCwI | x ∈ XI〉A. Since IL
wI

is a left ideal, it
is clear that MI ⊆ IL

wI
. Both MI and IL

wI
are free of the same rank over A; this

already implies that K ⊗A MI = K ⊗A IL
wI

. But we also have that H/IL
wI

is free over
A; furthermore, H is free as an HI-module and so H/MI is free as an A-module.
Hence, we must have HI = IL

wI
. ��

Lemma 2.8.4. Let I ⊆ S and μ ∈ Λ be such that Eμ is a constituent of the induced
representation IndW

WI
(sgnI). Then Eμ �L xwI for some x ∈ XI.

Proof. Let sgnε
I denote the sign representation of HI . By Example 1.3.3, we have

sgnε
I (Tw) = (−1)l(w)ε−L(w) for w ∈WI . So Lemma 2.8.2(a) shows that 〈CwI 〉A ⊆ HI

affords sgnε
I . Now, the induction of representations is also defined on the level of H;

see [132, §9.1]. Hence, by Lemma 2.8.3, we have an isomorphism of left H-modules

I
L
wI

∼→ IndH
HI

(〈CwI 〉A), TxCwI �→ Tx ⊗CwI (x ∈ XI).

By a specialisation argument (see Example 1.2.4), our assumption implies that Eμ
ε is

a constituent of IL
wI ,K

:= K ⊗A IL
wI

. Now, for any w ∈W , we have trace(Cw,IL
wI

) =
∑x∈XI

hw,xwI ,xwI . Furthermore, by Lemma 2.8.2(a), we can write XIwI = C1 ∪ . . .∪
Cm, where C1, . . . ,Cm are (pairwise distinct) left cells of W . Consequently, we have

trace(Cw,IL
wI

) = ∑
1�i�m

∑
z∈Ci

hw,z,z = ∑
1�i�m

trace(Cw, [Ci]A) for all w ∈W .

Since HK is split semisimple, this implies that IL
wI ,K

∼= [C1]K ⊕ . . .⊕ [Cm]K . It follows

that Eμ
ε is a constituent of [Ci]K for some i and so m(Ci,μ) > 0; see 2.2.2(b). Hence,

by Lemma 2.2.4, there exists some w ∈ XIwI such that Eμ �L w. ��

Lemma 2.8.5. Let I ⊆ S and μ ∈ Λ be such that ρμ(CwI ) �= 0. Then Eμ is a con-
stituent of IndW

WI
(sgnI).

Proof. As in the above proof, let sgnε
I denote the sign representation of HI . Using

the formula for CwI in Lemma 2.8.2, we obtain

χμ(CwI ) = (−1)l(wI)εL(wI) ∑
w∈WI

sgnε
I (Tw−1)χμ(Tw),
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where we also used the fact that sgnε
I (Tw−1) = sgnε

I (Tw) for all w ∈WI . Now, writing
the restriction of χμ to HI,K as a sum of irreducible characters of HI,K and using the
Schur relations in Proposition 1.2.12, we conclude that

χμ(CwI ) = (−1)l(wI)εL(wI)csgnI
m(I,μ),

where m(I,μ) denotes the multiplicity of sgnε
I in the restriction of χμ to HI,K . By a

specialisation argument (see Example 1.2.4), m(I,μ) also equals the multiplicity of
sgnI in the restriction of Eμ from W to WI . And by Frobenius reciprocity, this is the
same as the multiplicity of Eμ as a constituent of IndW

I (sgnI).
Thus, it remains to show that χμ(CwI ) �= 0. Now, by Lemma 2.8.2(b), CwI is a

non-zero scalar multiple of an idempotent. Hence, ρμ(CwI ) will be conjugate to a
non-zero scalar multiple of a diagonal matrix with 0 and 1 on the diagonal. Since
ρμ(CwI ) �= 0, we conclude that χμ(CwI ) = trace(ρμ(CwI )) �= 0, as required. ��

Corollary 2.8.6. Let I ⊆ S and λ ∈ Λ be such that aλ = L(wI) and Eλ is a con-
stituent of IndW

WI
(sgnI). Then wI ∈ Fλ (where Fλ is defined in Proposition 1.6.11).

Proof. As in the above proof, χλ (CwI ) = ±εL(wI)csgnI
m(I,λ ). Now, we have

csgnI
= ∑

w∈WI

sgnε
I (Tw)sgnε

I (Tw−1) = ∑
w∈WI

ε−2L(w).

Since aλ = L(wI) and L(w) < L(wI) for w ∈W , w �= wI , we obtain that

εaλ χλ (CwI ) ≡±m(I,λ ) ∑
w∈WI

ε2(L(wI)−L(w)) ≡±m(I,λ ) mod m.

Since we also have εaλ χλ (TwI ) ≡ εaλ χλ (CwI ) mod m by 2.1.19, we conclude that
cwI ,λ = ±m(I,λ ) �= 0 and so wI ∈ Fλ . ��

Corollary 2.8.7 (Cf. [107, 4.7, 4.8]). Let I ⊆ S and define

ZI
x,y := P−1

I εL(wI)CxwICwIy−1 ∈ HK for any x,y ∈ XI .

Then the following hold:

(a) We have ZI
x,y = Z

I
x,y ∈ H. Furthermore, ZI

x,y ∈ ILR
wI

, where ILR
wI

is defined by
the general procedure in 1.6.2, with respect to the basis {Cw | w ∈W} of H.

(b) If μ ∈ Λ is such that ρμ(ZI
x,y) �= 0, then Eμ is a constituent of IndW

WI
(sgnI).

Proof. (a) By Lemma 2.8.3, CxwI is an A-linear combination of terms Tx1CwI , where
x1 ∈ XI . By 2.1.14, we have CwIy−1 = C �

ywI
and so CwIy−1 is an A-linear combination

of terms CwI Ty−1
1

, where y1 ∈ XI . Consequently, by Lemma 2.8.2(b), CxwICwIy−1 is

an A-linear combination of terms PITx1CwI Ty−1
1

, where x1,y1 ∈ XI . Hence, we have

ZI
x,y ∈ H and ZI

x,y ∈ ILR
wI

. Since PI = ε−2L(wI)PI , we also see that ZI
x,y = Z

I
x,y.
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(b) Assume that ρμ(ZI
x,y) �= 0. In the proof of (a), we have seen that ZI

x,y is an A-
linear combination of terms PITx1CwI Ty−1

1
, where x1,y1 ∈ XI . Hence, we must have

ρμ(CwI ) �= 0 and so the assertion follows from Lemma 2.8.5. ��

2.8.8. From now on, let W = Sn be the symmetric group where S = {s1, . . . ,sn−1}
and si = (i, i+1) for 1 � i � n−1. The set Λ consists of all partitions of n; we write
λ � n to denote that λ is a partition of n. Furthermore, we assume that Γ = Z and
L(si) = 1 for 1 � i � n−1. By 1.7.6, we have fλ = 1 for all λ � n. So R = Z is an
L-good subring of C; in particular, A = Z[v,v−1], where v = ε is an indeterminate.
By Corollary 1.7.9, the balanced representations {ρλ | λ � n} can be chosen such
that the corresponding leading matrix coefficients satisfy the following condition:

(a) cst
w,λ = cts

w−1,λ ∈ {0,±1} for all w ∈W and s, t ∈ M(λ ).

Consequently, we have a bijection

(b)
⊔

λ∈Λ

(
M(λ )×M(λ )

) 1−1−→ W, (s, t) �→ wλ (s, t),

satisfying the properties in Theorem 1.7.10; in particular, we have

(c) Fλ = {wλ (s, t) | s, t ∈ M(λ )} for all λ � n.

By Proposition 2.1.20, we already know that Fλ is contained in a two-sided
Kazhdan–Lusztig cell. One of our aims is to show that the converse also holds.

2.8.9. For any subset I ⊆ {1, . . . ,n − 1}, denote by WI ⊆ W the parabolic sub-
group generated by {si | i ∈ I}. We now define, for any partition λ � n, a particular
parabolic subgroup of W . For this purpose, we set

I(λ ) := {1, . . . ,n}\{λ ∗
1 ,λ ∗

1 +λ ∗
2 ,λ ∗

1 +λ ∗
2 +λ ∗

3 , . . .},

where λ ∗
1 � λ ∗

2 � λ ∗
3 � . . . � 0 are the parts of λ ∗, the conjugate partition of λ .

(Thus, WI(λ ) ⊆ W is the Young subgroup Sλ ∗ .) For example, if λ = (1n), then
λ ∗ = (n) and so WI = W . Then Young’s rule shows that, for any μ � n, we have

(a) Eμ is a constituent of IndW
WI(λ )

(sgnI(λ )) ⇔ κμ∗λ ∗ �= 0 ⇔ μ � λ ,

where κμ∗λ ∗ is a Kostka number and � denotes the dominance order on partitions,
as defined in Example 2.2.13. (For the first equivalence in (a), see Macdonald [236,
p. 115]; the second equivalence is a combination of [236, I.6.5 and I.7.9]. Note also
that λ � μ if and only if μ∗ � λ ∗; see [236, I.1.11].) Consequently, we have

(b) aλ = l(wI(λ )) and wI(λ ) ∈ Fλ for all λ � n,

where we use Corollary 2.8.6 and [132, 5.4.1, 5.4.3] to relate aλ and l(wI(λ )). Now
we define a two-sided ideal of HK by
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(c) Nλ := {h ∈ HK | ρμ(h) = 0 for all μ � n such that μ �� λ}.

We also set ˆNλ := {h∈Nλ | ρλ (h) = 0}. Note that Nλ is the sum of all Wedderburn
components of the split semisimple algebra HK which correspond to the irreducible
representations Eμ

ε where μ � λ .

2.8.10. We have just seen that wI(λ ) ∈ Fλ for any λ � n. In particular, wI(λ ) =
wλ (t0, t0) for a unique t0 ∈ M(λ ). By Theorem 1.7.10(b) and Proposition 2.1.20,
the set C0 := {wλ (s, t0) | s ∈ M(λ )} is contained in a left Kazhdan–Lusztig cell.
Hence, by Lemma 2.8.2(c), we have C0 ⊆XI(λ )wI(λ ). Consequently, there is a subset
{xs | s ∈ M(λ )} ⊆ XI(λ ) such that wλ (s, t0) = xswI(λ ) for all s ∈ M(λ ). We now set

(a) Zw := ZI(λ )
xs,xt

, where w = wλ (s, t) for s, t ∈ M(λ ).

By Corollary 2.8.7(a), we have Zw = Zw ∈ H. We claim that

(b) Zw ∈ Nλ for all w ∈ Fλ .

This is seen as follows. Let μ � n and assume that ρμ(Zw) �= 0. We must show
that μ � λ . Now, by Corollary 2.8.7(b), Eμ is a constituent of IndW

WI(λ )
(sgnI(λ )). By

2.8.9(a), this implies that μ � λ , as claimed.

Lemma 2.8.11. Let λ ∈ Λ and u,v ∈ M(λ ). Then, for any w ∈ Fλ , we have

vaλ ρλ
uv(Zw) ∈ O0 and vaλ ρλ

uv(Zw) ≡±δsuδtv mod m,

where s, t ∈ M(λ ) are such that w = wλ (s, t).

Proof. We have aλ = l(wI(λ )) by 2.8.9(b). Hence we obtain

vaλ ρλ
uv(Zw) = P−1

I(λ ) v2aλ ρλ
uv

(
CxswI(λ ) CwI(λ )x−1

t

)
= P−1

I(λ ) v2aλ ρλ
uv

(
Cwλ (s,t0)Cwλ (t0,t)

)
= P−1

I(λ ) ∑
r∈M(λ )

(
vaλ ρλ

ur(Cwλ (s,t0))
)(

vaλ ρλ
rv(Cwλ (t0,t))

)
.

First of all, this shows that the above expression lies in O0; note that PI(λ ) ∈ 1+m.
Furthermore, its constant term can be expressed by the leading matrix coefficients
of wλ (s, t0) and wλ (t0, t). Indeed, by 2.1.19 and Theorem 1.7.10, we have

vaλ ρλ
ur(Cwλ (s,t0)) ≡ cur

wλ (s,t0),λ≡±δsuδrt0 mod m,

vaλ ρλ
rv(Cwλ (t0,t)) ≡ crv

wλ (t0,t),λ ≡±δtvδrt0 mod m.

Since PI(λ ) ∈ 1+m, we obtain vaλ ρλ
uv(Zw) ≡±δsuδtv mod m, as desired. ��

Theorem 2.8.12 (Cf. [107, 4.10]). Recall that we are in the setting of 2.8.8, where
W = Sn. Then the following hold for any partition λ � n.
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±Cw ∈ Zw + ˆNλ ⊆ Nλ for all w ∈ Fλ ,(a)

Nλ = 〈Cw | w ∈ Fμ for some μ � n such that μ � λ 〉K ,(b)

ˆNλ = 〈Cw | w ∈ Fμ for some μ � n such that μ 	 λ 〉K ,(c)

where ˆNλ ⊆ Nλ are the two-sided ideals of HK defined in 2.8.9.

Proof. We prove (a) by induction on the dominance order on partitions. The unique
minimal element in this order is the partition (1n). We have F(1n) = {w0} (where
w0 is the longest element of W ), I(1n) = {1, . . . ,n−1}, XI(1n) = {1} and

Zw0 = P−1
I(1n)ε

l(w0)C2
w0

= (−1)l(w0)Cw0 ; see Lemma 2.8.2(b).

Hence, (a) holds in this case. Now assume that λ �= (1n) and that (a) holds for all
partitions μ � n, where μ 	 λ . Let w ∈ Fλ . By 2.8.10(b), we already know that
Zw ∈ Nλ . Since Zw = Zw ∈ H (see Corollary 2.8.7(a)), we can write

Zw = ∑
y∈W

ηy Cy, where ηy = ηy ∈ Z[v,v−1] for all y ∈W .

Let y ∈ W be such that ηy �= 0; we have y ∈ Fμ for a unique μ � n. If μ 	 λ ,
then ±Cy ∈ Zy + ˆNμ by induction. Furthermore, by 2.8.10(b), we have Zy ∈Nμ . By
definition, it is also clear that Nμ ⊆ ˆNλ . Hence, we conclude that Cy ∈ Nμ ⊆ ˆNλ .
So it remains to consider those y where y ∈ Fμ , μ �	 λ . Let us write

C := {y ∈W | ηy �= 0 and y ∈ Fμ where μ �	 λ}

and set m := max{deg(ηy) | y ∈ C }. We claim that

(∗) {y ∈ C | deg(ηy) = m} ⊆ Fλ and m = 0.

This is seen as follows. Let y0 ∈ C be such that deg(ηy0) = m; then y0 = wμ(u,v),
where μ � n, u,v ∈ M(μ) and μ �	 λ . By 2.1.19 and Theorem 1.7.10, we have

vaμ ρμ
uv(Cy) ≡ cuv

y,μ ≡±δyy0 mod m for any y ∈W .

It follows that

vaμ +mρμ
uv(Zw) ≡ ∑

y∈W

(
vmηy

)(
vaμ ρμ

uv(Cy)
)
≡

(
vmηy0

)
cuv

y0,μ �≡ 0 mod m.

In particular, this yields that ρμ(Zw) �= 0 and so μ � λ , since Zw ∈Nλ by 2.8.10(b).
Combined with μ �	 λ , we conclude that μ = λ and so y0 ∈ Fλ , which proves the
first part of (∗). Now the above congruence reads

vm(
vaλ ρλ

uv(Zw)
)
�≡ 0 mod m.
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But then Lemma 2.8.11 implies that m = 0, as required. Thus, (∗) is proved. Conse-
quently, we can now write

Zw ≡ ∑
y∈Fλ

ηy Cy mod ˆNλ , where ηy ∈ Z for all y ∈ Fλ .

Let s, t ∈ M(λ ) be such that w = wλ (s, t). Since ρλ (h) = 0 for all h ∈ ˆNλ , we have

ρλ
uv(Zw) = ∑

y∈Fλ

ηy ρλ
uv(Cy) for any u,v ∈ M(λ ).

We multiply this identity by vaλ and take constant terms. Using Theorem 1.7.10,
Lemma 2.8.11 and 2.1.19, we deduce that

±δsuδtv = ∑
y∈Fλ

ηy cuv
y,λ = ηy0cuv

y0,λ , where y0 = wλ (u,v).

It follows that ηw = ±cst
w,λ and ηy = 0 for all y ∈ Fλ \ {w}, as required. Thus, (a)

is proved. Now let Mλ be the K-subspace of HK defined by the right-hand side of
the desired identity in (b). We claim that Mλ ⊆ Nλ . Indeed, let w ∈ Fμ , where
μ � λ . By 2.8.10(b), we have Zw ∈ Nμ . Hence, using (a), we see that Cw ∈ Nμ .
Furthermore, by definition, it is clear that Nμ ⊆ Nλ . Hence, we have Cw ∈ Nλ ,
as claimed. Now notice that dimMλ = ∑μ�λ |Fμ |; furthermore, by 2.8.8(c), we
have |Fμ | = |M(μ)|2. On the other hand, as already noted in 2.8.9, the ideal Nλ is
the sum of all Wedderburn components of HK which correspond to the irreducible
representations Eμ

ε where μ � λ . Hence, we also have dimNλ = ∑μ�λ |M(μ)|2
and, consequently, Nλ = Mλ . Thus, (b) is proved. This also implies (c) since, by
definition, ˆNλ = ∑μ Nμ , where the sum runs over all μ � n such that μ 	 λ . ��

Remark 2.8.13. The above proof essentially follows [107, Theorem 4.10]. However,
in [107], we referred to the results of Murphy [256], [257] in order to define the ide-
als Nλ and ˆNλ . The discussion here avoids that reference and, thus, is considerably
more self-contained than that in [107].

Corollary 2.8.14. Let λ ,μ � n. Then we have Eμ �L Eλ if and only if μ � λ . In
particular, the equivalence classes of IrrK(Sn) under ∼L are singleton sets. Conse-
quently, the properties (♣) and (♠) (see 2.5.3) hold.

Proof. Assume first that μ � λ . By 2.8.9(a) (Young’s rule) and Lemma 2.8.4, this
implies that xwI(λ ) ∈ Fμ for some x ∈ XI(λ ). But then we have xwI(λ ) �L wI(λ )

and so Eμ �L Eλ ; recall that wI(λ ) ∈ Fλ by 2.8.9(b). Conversely, assume that

Eμ �L Eλ . This means that y �LR w, where y ∈ Fμ and w ∈ Fλ . By definition,
we can find a sequence y = y0,y1, . . . ,ym = w such that, for each i ∈ {1, . . . ,m},
there exist some xi ∈ W such that hxi,yi,yi−1 �= 0 or hyi,xi,yi−1 �= 0. Now, by Theo-
rem 2.8.12(b), we have Cym = Cw ∈ Nλ . Since Nλ is a two-sided ideal, we have
CxmCym ∈ Nλ and CymCxm ∈ Nλ . Hence, we have ym−1 ∈ Fμm−1 , where μm−1 � λ ;
see Theorem 2.8.12(b). We repeat the argument with xm−1, ym−1 and find that
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ym−2 ∈ Fμm−2 , where μm−2 � μm−1 � λ . Continuing in this way, we eventually
obtain that μ = μ0 � λ , as required. It is known that this implies aλ � aμ , with
equality only if λ = μ ; see 2.2.13. Consequently, (♣) holds. But then the weaker
property (♣′) holds and so (♠) also holds; see Proposition 2.5.12. ��

Theorem 2.8.15. The algebra H admits a cellular basis as in Theorem 2.6.12. The
data in Definition 2.6.8 can be chosen such that, for λ � n and s, t ∈ M(λ ), we have

Cλ
s,t = cst

w,λ Cw = ±Cw, where w = wλ (s, t).

Furthermore, the partial order �L is given by the dominance order on partitions;
we have Nλ = HK(�L) and ˆNλ = HK(	L).

Proof. Since (♣) and (♠) hold, we can apply Theorem 2.6.12 and so H admits a
cellular basis where, by Definition 2.6.8, we have

Cλ
s,t = ∑

w∈W
∑

u∈M(λ )
β λ

tu cus

w−1,λ Cw.

Now, since cst
w,λ = cts

w−1,λ for all s, t ∈ M(λ ), we have ρ̄λ (tw−1) = ρ̄λ (tw)tr for all

w ∈ W . Hence, we can take for Bλ = (β λ
st) the identity matrix. Then the above

sum reduces to Cλ
s,t = cst

w,λ Cw, as required. Finally, by Corollary 2.8.14, the partial
order �L in Theorem 2.6.12 coincides with the dominance order. The identities
Nλ = HK(�L), ˆNλ = HK(	L) now follow from Theorem 2.8.12(b) and (c). ��

Remark 2.8.16. This result was first stated by Graham and Lehrer [144, Exam-
ple 1.2], but the argument is very sketchy, especially concerning the ordering
�L. Some more details are contained in Graham’s thesis [143, Example 4.3] and
Williamson’s Honours essay [295]. As far as we are aware, the first elementary
proof of the characterisation of �L in terms of the dominance order appeared in
[107]. In Remark 2.8.18, we show how the signs in Theorem 2.8.15 can be fixed. A
completely different construction of a cellular basis (with respect to the above order-
ing on Λ ) is due to Murphy [256], [257]; the equivalence of the two constructions
is shown in [107].

2.8.17. By Corollary 2.8.14 and Lemma 2.5.9, the Kazhdan–Lusztig cells of W =
Sn are given by Theorem 1.7.10. So, for any λ � n, the following hold.

(a1) The set Fλ = {wλ (s, t) | s, t ∈ M(λ )} is a two-sided Kazhdan–Lusztig cell.
(a2) For t ∈ M(λ ), the set {wλ (s, t) | s ∈ M(λ )} is a left Kazhdan–Lusztig cell.
(a3) For s ∈ M(λ ), the set {wλ (s, t) | t ∈ M(λ )} is a right Kazhdan–Lusztig cell.

In particular, we see that (�) holds. We also obtain the following result originally
due to Kazhdan and Lusztig [195, Theorem 1.4]: for any left Kazhdan–Lusztig cell
C of W , we have

(b) [C]1 ∈ IrrK(W ) and [C]1 ∼= Eλ ⇔ C ⊆ Fλ .
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Indeed, let C be a left cell and λ ∈ Λ be such that m(C,λ ) > 0. Then C ⊆ Fλ by
Lemma 2.2.4. Hence, C is equal to a set as in (a2). But then |C| = |M(λ )| = dλ =
dimEλ and so we must have Eλ ∼= [C]1. Finally, assume that C is a left cell such
that C ⊆ Fλ . Then the same argument shows that [C]1 ∼= Eλ . (If we had [C]1 ∼= Eμ ,
where μ �= λ , then C ⊆ Fμ , which is a contradiction.) Thus, (b) is proved. We can
now also apply the discussion in Example 2.7.4, which shows that, for each λ � n,
the balanced representation ρλ can be chosen such that

(c) W (λ ) = [Cλ ]A, where Cλ ⊆ Fλ is a fixed left Kazhdan–Lusztig cell.

See also McDonough and Pallikaros [251], where the above cell modules are iden-
tified with the original “Specht modules” of Dipper and James [62].

Remark 2.8.18. Once Theorem 2.8.12, Corollary 2.8.14 and 2.8.17 are established,
it is actually not too difficult to show that P1–P15 hold for W = Sn; see [107, §5],
[121, §4]. Furthermore, one can even show a tiny piece of “positivity” by elementary
methods; namely, the fact that γx,y,z � 0 for all x,y,z ∈W ; see [107, Theorem 5.10].
(Recall that γx,y,z = (−1)l(x)+l(y)+l(z)cx,y,z; see Remark 2.3.6.) The argument relies
on basic properties of the “Knuth–Robinson–Schensted correspondence” and the
Kazhdan–Lusztig “star operations”; see Kazhdan and Lusztig [195, §5], Knuth [205,
§5.1.4] and Ariki [8]. We will not go into any more detail here, as these results are
not needed for the further discussions in this book.

Let us just explain how the signs in Theorem 2.8.15 can be fixed, assuming that
P1 and P4 hold and that γx,y,z � 0 for all x,y,z ∈ W (which is also known to be
the case by 2.4.1(a)). This is done as follows. Choosing the balanced representa-
tion ρλ as in Proposition 1.8.9, each coefficient cst

w,λ is equal to a structure constant
γ̃w,x,y for suitable x,y ∈ Fλ . Now, by Proposition 2.3.16, Remark 2.3.5 and Propo-
sition 2.3.14, we have

γ̃w,x,y = (−1)l(w)+l(x)+l(y)γw,x,y = (−1)a(y)γw,x,y and a(y) = aλ .

Since γw,x,y � 0 and cst
w,λ ∈ {0,±1}, we deduce that

cst
w,λ = (−1)aλ , where w = wλ (s, t).

Arguing as in the proof of Theorem 2.8.15, we now let Bλ = (β λ
st) be equal to

(−1)aλ times the identity matrix. Then we obtain Cλ
s,t = Cw, as required.

For a further discussion of the combinatorics involved in the above constructions
(Knuth–Robinson–Schensted correspondence, etc.), we refer the reader to the refer-
ences cited in Remark 2.8.18. In a somewhat different context, we will have more
to say about the combinatorics of Young tableaux in Section 3.5.

2.8.19. Having dealt with W = Sn, it is natural to ask what happens with the other
cases in 1.7.6. So, let W be of type Bn and L : W → Γ a weight function given by

Bn �

b 4
�

a
�

a
� � � �

a
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where a,b > 0 and b �∈ {a,2a, . . . ,(n− 1)a}. Recall that Λ is the set of all pairs
of partitions (λ ,μ) such that |λ |+ |μ | = n; see Example 1.3.9. As in the proof of
Theorem 2.8.15, one sees that, for any (λ ,μ) ∈ Λ and s, t ∈ M(λ ,μ), we have

C(λ ,μ)
s,t = ±Cw, where w = w(λ ,μ)(s, t).

However, property (♠) is not known in general, so we cannot conclude that the
above elements form a cellular basis of H.

Complete results are available in the asymptotic case, where b > (n− 1)a > 0;
denote by Lasy the weight function in this case. Then P1–P15 hold for W,Lasy by
the series of papers by Bonnafé, Geck, and Iancu [21], [26], [108], [114], [121].
Furthermore, as already mentioned in Example 2.2.17, we have

(λ ,μ) �Lasy (λ ′,μ ′) ⇔ (λ ,μ) � (λ ′,μ ′).

Arguing as in 2.8.17, we obtain the following result originally due to Bonnafé and
Iancu [26, Prop. 7.9]: for any left Kazhdan–Lusztig cell C of W (with respect to
Lasy), we have

[C]1 ∈ IrrK(W ) and [C]1 ∼= Eλ ⇔ C ⊆ F(λ ,μ).

Furthermore, for (λ ,μ) ∈Λ , the balanced representation ρ(λ ,μ) can be chosen such
that W (λ ,μ) = [C(λ ,μ)]A, where C(λ ,μ) ⊆ F(λ ,μ) is a fixed left Kazhdan–Lusztig
cell.

A completely different construction of a cellular basis is due to Dipper, James
and Murphy [68]; but, by [124], the above cell modules in the asymptotic case are
naturally isomorphic to the “Specht modules” of [68]. See also Chlouveraki, Gordon
and Griffeth [49] for further realisations of these modules. The construction of [68]
has been further generalised to Ariki–Koike algebras; see Dipper, James and Mathas
[67] (and also Graham and Lehrer [144, §5] for a slightly different approach). We
will describe these results on Ariki–Koike algebras in Section 5.3.
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