
Chapter 2
Local Binary Patterns for Still Images

The local binary pattern operator is an image operator which transforms an image
into an array or image of integer labels describing small-scale appearance of the im-
age. These labels or their statistics, most commonly the histogram, are then used for
further image analysis. The most widely used versions of the operator are designed
for monochrome still images but it has been extended also for color (multi channel)
images as well as videos and volumetric data. This chapter covers the different ver-
sions of the actual LBP operator in spatial domain [42, 45, 53], while Chap. 3 deals
with spatiotemporal LBP [88]. Parts II to IV of this book discuss how the labels are
then used in different computer vision tasks.

2.1 Basic LBP

The basic local binary pattern operator, introduced by Ojala et al. [52], was based
on the assumption that texture has locally two complementary aspects, a pattern and
its strength. In that work, the LBP was proposed as a two-level version of the texture
unit [74] to describe the local textural patterns.

The original version of the local binary pattern operator works in a 3 × 3 pixel
block of an image. The pixels in this block are thresholded by its center pixel value,
multiplied by powers of two and then summed to obtain a label for the center pixel.
As the neighborhood consists of 8 pixels, a total of 28 = 256 different labels can
be obtained depending on the relative gray values of the center and the pixels in the
neighborhood. See Fig. 1.1 for an illustration of the basic LBP operator. An example
of an LBP image and histogram are shown in Fig. 2.1.

2.2 Derivation of the Generic LBP Operator

Several years after its original publication, the local binary pattern operator was
presented in a more generic revised form by Ojala et al. [53]. In contrast to the basic
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14 2 Local Binary Patterns for Still Images

Fig. 2.1 Example of an input image, the corresponding LBP image and histogram

Fig. 2.2 The circular (8,1), (16,2) and (8,2) neighborhoods. The pixel values are bilinearly
interpolated whenever the sampling point is not in the center of a pixel

LBP using 8 pixels in a 3 × 3 pixel block, this generic formulation of the operator
puts no limitations to the size of the neighborhood or to the number of sampling
points. The derivation of the generic LBP presented below follows that of [42, 45,
53].

Consider a monochrome image I (x, y) and let gc denote the gray level of an
arbitrary pixel (x, y), i.e. gc = I (x, y).

Moreover, let gp denote the gray value of a sampling point in an evenly spaced
circular neighborhood of P sampling points and radius R around point (x, y):

gp = I (xp, yp), p = 0, . . . ,P − 1 and (2.1)

xp = x + R cos(2πp/P ), (2.2)

yp = y − R sin(2πp/P ). (2.3)

See Fig. 2.2 for examples of local circular neighborhoods.
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Assuming that the local texture of the image I (x, y) is characterized by the joint
distribution of gray values of P + 1 (P > 0) pixels:

T = t (gc, g0, g1, . . . , gP−1). (2.4)

Without loss of information, the center pixel value can be subtracted from the neigh-
borhood:

T = t (gc, g0 − gc, g1 − gc, . . . , gP−1 − gc). (2.5)

In the next step the joint distribution is approximated by assuming the center pixel
to be statistically independent of the differences, which allows for factorization of
the distribution:

T ≈ t (gc)t (g0 − gc, g1 − gc, . . . , gP−1 − gc). (2.6)

Now the first factor t (gc) is the intensity distribution over I (x, y). From the point of
view of analyzing local textural patterns, it contains no useful information. Instead
the joint distribution of differences

t (g0 − gc, g1 − gc, . . . , gP−1 − gc) (2.7)

can be used to model the local texture. However, reliable estimation of this mul-
tidimensional distribution from image data can be difficult. One solution to this
problem, proposed by Ojala et al. in [54], is to apply vector quantization. They used
learning vector quantization with a codebook of 384 codewords to reduce the dimen-
sionality of the high dimensional feature space. The indices of the 384 codewords
correspond to the 384 bins in the histogram. Thus, this powerful operator based on
signed gray-level differences can be regarded as a texton operator, resembling some
more recent methods based on image patch exemplars (e.g. [73]).

The learning vector quantization based approach still has certain unfortunate
properties that make its use difficult. First, the differences gp − gc are invariant
to changes of the mean gray value of the image but not to other changes in gray lev-
els. Second, in order to use it for texture classification the codebook must be trained
similar to the other texton-based methods. In order to alleviate these challenges,
only the signs of the differences are considered:

t (s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)), (2.8)

where s(z) is the thresholding (step) function

s(z) =
{

1, z ≥ 0
0, z < 0.

(2.9)

The generic local binary pattern operator is derived from this joint distribution. As
in the case of basic LBP, it is obtained by summing the thresholded differences
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weighted by powers of two. The LBPP,R operator is defined as

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2
p. (2.10)

In practice, Eq. 2.10 means that the signs of the differences in a neighborhood
are interpreted as a P -bit binary number, resulting in 2P distinct values for the
LBP code. The local gray-scale distribution, i.e. texture, can thus be approximately
described with a 2P -bin discrete distribution of LBP codes:

T ≈ t (LBPP,R(xc, yc)). (2.11)

In calculating the LBPP,R distribution (feature vector) for a given N × M image
sample (xc ∈ {0, . . . ,N − 1}, yc ∈ {0, . . . ,M − 1}), the central part is only consid-
ered because a sufficiently large neighborhood cannot be used on the borders. The
LBP code is calculated for each pixel in the cropped portion of the image, and the
distribution of the codes is used as a feature vector, denoted by S:

S = t (LBPP,R(x, y)),

x ∈ {�R�, . . . ,N − 1 − �R�}, y ∈ {�R�, . . . ,M − 1 − �R�}. (2.12)

The original LBP (Fig. 1.1) is very similar to LBP8,1, with two differences. First,
the neighborhood in the general definition is indexed circularly, making it easier to
derive rotation invariant texture descriptors. Second, the diagonal pixels in the 3×3
neighborhood are interpolated in LBP8,1.

2.3 Mappings of the LBP Labels: Uniform Patterns

In many texture analysis applications it is desirable to have features that are invariant
or robust to rotations of the input image. As the LBPP,R patterns are obtained by
circularly sampling around the center pixel, rotation of the input image has two
effects: each local neighborhood is rotated into other pixel location, and within each
neighborhood, the sampling points on the circle surrounding the center point are
rotated into a different orientation.

Another extension to the original operator uses so called uniform patterns [53].
For this, a uniformity measure of a pattern is used: U (“pattern”) is the number of
bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered cir-
cular. A local binary pattern is called uniform if its uniformity measure is at most 2.
For example, the patterns 00000000 (0 transitions), 01110000 (2 transitions) and
11001111 (2 transitions) are uniform whereas the patterns 11001001 (4 transitions)
and 01010011 (6 transitions) are not. In uniform LBP mapping there is a separate
output label for each uniform pattern and all the non-uniform patterns are assigned
to a single label. Thus, the number of different output labels for mapping for patterns
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Fig. 2.3 Different texture primitives detected by the LBP

of P bits is P(P − 1) + 3. For instance, the uniform mapping produces 59 output
labels for neighborhoods of 8 sampling points, and 243 labels for neighborhoods of
16 sampling points.

The reasons for omitting the non-uniform patterns are twofold. First, most of
the local binary patterns in natural images are uniform. Ojala et al. noticed that in
their experiments with texture images, uniform patterns account for a bit less than
90% of all patterns when using the (8,1) neighborhood and for around 70% in
the (16,2) neighborhood. In experiments with facial images [4] it was found that
90.6% of the patterns in the (8,1) neighborhood and 85.2% of the patterns in the
(8,2) neighborhood are uniform.

The second reason for considering uniform patterns is the statistical robustness.
Using uniform patterns instead of all the possible patterns has produced better recog-
nition results in many applications. On one hand, there are indications that uniform
patterns themselves are more stable, i.e. less prone to noise and on the other hand,
considering only uniform patterns makes the number of possible LBP labels signif-
icantly lower and reliable estimation of their distribution requires fewer samples.

The uniform patterns allows to see the LBP method as a unifying approach to
the traditionally divergent statistical and structural models of texture analysis [45].
Each pixel is labeled with the code of the texture primitive that best matches the
local neighborhood. Thus each LBP code can be regarded as a micro-texton. Local
primitives detected by the LBP include spots, flat areas, edges, edge ends, curves
and so on. Some examples are shown in Fig. 2.3 with the LBP8,R operator. In the
figure, ones are represented as black circles, and zeros are white.

The combination of the structural and statistical approaches stems from the fact
that the distribution of micro-textons can be seen as statistical placement rules. The
LBP distribution therefore has both of the properties of a structural analysis method:
texture primitives and placement rules. On the other hand, the distribution is just a
statistic of a non-linearly filtered image, clearly making the method a statistical one.
For these reasons, the LBP distribution can be successfully used in recognizing a
wide variety of different textures, to which statistical and structural methods have
normally been applied separately.
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Fig. 2.4 The 58 different uniform patterns in (8,R) neighborhood

2.4 Rotational Invariance

Let UP (n, r) denote a specific uniform LBP pattern. The pair (n, r) specifies a uni-
form pattern so that n is the number of 1-bits in the pattern (corresponds to row num-
ber in Fig. 2.4) and r is the rotation of the pattern (column number in Fig. 2.4) [6].

Now if the neighborhood has P sampling points, n gets values from 0 to P + 1,
where n = P + 1 is the special label marking all the non-uniform patterns. Further-
more, when 1 ≤ n ≤ P − 1, the rotation of the pattern is in the range 0 ≤ r ≤ P − 1.

Let Iα◦
(x, y) denote the rotation of image I (x, y) by α degrees. Under this ro-

tation, point (x, y) is rotated to location (x′, y′). A circular sampling neighborhood
on points I (x, y) and Iα◦

(x′, y′) also rotates by α◦. See Fig. 2.5 [6].
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Fig. 2.5 Effect of image rotation on points in circular neighborhoods

If the rotations are limited to integer multiples of the angle between two sampling
points, i.e. α = a 360◦

P
, a = 0,1, . . . ,P − 1, this rotates the sampling neighborhood

by exactly a discrete steps. Therefore the uniform pattern UP (n, r) at point (x, y)

is replaced by uniform pattern UP (n, r + a mod P) at point (x′, y′) of the rotated
image.

From this observation, the original rotation invariant LBPs introduced in [53] and
newer, histogram transformation based rotation invariant features described in [6]
can be derived. These are discussed in the following.

2.4.1 Rotation Invariant LBP

As observed in the preceding discussion, rotations of a textured input image cause
the LBP patterns to translate into a different location and to rotate about their origin.
Computing the histogram of LBP codes normalizes for translation, and normaliza-
tion for rotation is achieved by rotation invariant mapping. In this mapping, each
LBP binary code is circularly rotated into its minimum value

LBPri
P,R = min

i
ROR(LBPP,R, i), (2.13)

where ROR(x, i) denotes the circular bitwise right rotation of bit sequence x by
i steps. For instance, 8-bit LBP codes 10000010b, 00101000b, and 00000101b all
map to the minimum code 00000101b.

Omitting sampling artifacts, the histogram of LBPri
P,R codes is invariant only to

rotations of input image by angles a 360◦
P

, a = 0,1, . . . ,P − 1. However classifi-
cation experiments show that this descriptor is very robust to in-plane rotations of
images by any angle.
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2.4.2 Rotation Invariance Using Histogram Transformations

The rotation invariant LBP descriptor discussed above defined a mapping for indi-
vidual LBP codes so that the histogram of the mapped codes is rotation invariant. In
this section, a family of histogram transformations is presented that can be used to
compute rotation invariant features from a uniform LBP histogram.

Consider the uniform LBP histograms hI (UP (n, r)). The histogram value hI at
bin UP (n, r) is the number of occurrences of uniform pattern UP (n, r) in image I .

If the image I is rotated by α = a 360◦
P

, this rotation of the input image causes a
cyclic shift in the histogram along each of the rows,

hIα◦ (UP (n, r + a)) = hI (UP (n, r)). (2.14)

For example, in the case of 8 neighbor LBP, when the input image is rotated by
45◦, the value from histogram bin U8(1,0) = 000000001b moves to bin U8(1,1) =
00000010b, the value from bin U8(1,1) to bin U8(1,2), etc. Therefore, to achieve
invariance to rotations of input image, features computed along the input histogram
rows and are invariant to cyclic shifts can be used.

Discrete Fourier Transform is used to construct these features. Let H(n, ·) be the
DFT of nth row of the histogram hI (UP (n, r)), i.e.

H(n,u) =
P−1∑
r=0

hI (UP (n, r))e−i2πur/P . (2.15)

In [6] it was shown that the Fourier magnitude spectrum

|H(n,u)| =
√

H(n,u)H(n,u) (2.16)

of the histogram rows results in features that are invariant to rotations of the input
image.

Based on this property, an LBP-HF feature vector consisting of three LBP his-
togram values (all zeros, all ones, non-uniform) and Fourier magnitude spectrum
values was defined. The feature vectors have the following form:

fvLBP-HF = [|H(1,0)|, . . . , |H(1,P/2)|,
. . . ,

|H(P − 1,0)|, . . . , |H(P − 1,P/2)|,
h(UP (0,0)), h(UP (P,0)), h(UP (P + 1,0))]1×((P−1)(P/2+1)+3).

It should also be noted that the Fourier magnitude spectrum contains rotation-
invariant uniform pattern features LBPriu2 as a subset, since

|H(n,0)| =
P−1∑
r=0

hI (UP (n, r)) = hLBPriu2(n). (2.17)

An illustration of these features is in Fig. 2.6 [6].
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Fig. 2.6 1st column: Texture image at orientations 0◦ and 90◦. 2nd column: bins 1–56 of the
corresponding LBPu2 histograms. 3rd column: Rotation invariant features |H(n,u)|, 1 ≤ n ≤ 7,
0 ≤ u ≤ 5, (solid line) and LBPriu2 (circles, dashed line). Note that the LBPu2 histograms for the
two images are markedly different, but the |H(n,u)| features are nearly equal

2.5 Complementary Contrast Measure

Contrast is a property of texture usually regarded as a very important cue for human
vision, but the LBP operator by itself totally ignores the magnitude of gray level
differences. In many applications, for example in industrial visual inspection, illu-
mination can be accurately controlled. In such cases, a purely gray-scale invariant
texture operator may waste useful information, and adding gray-scale dependent in-
formation may enhance the accuracy of the method. Furthermore, in applications
such as image segmentation, gradual changes in illumination may not require the
use of a gray-scale invariant method [42, 51].

In a more general view, texture is distinguished not only by texture patterns but
also the strength of the patterns. Texture can thus be regarded as a two-dimensional
phenomenon characterized by two orthogonal properties: spatial structure (patterns)
and contrast (the strength of the patterns). Pattern information is independent of the
gray scale, whereas contrast is not. On the other hand, contrast is not affected by
rotation, but patterns are, by default. These two measures supplement each other in
a very useful way. The LBP operator was originally designed just for this purpose: to
complement a gray-scale dependent measure of the “amount” of texture. In [52], the
joint distribution of LBP codes and a local contrast measure (LBP/C, see Fig. 1.1)
is used as a texture descriptor.
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Fig. 2.7 Quantization of the feature space, when four bins are requested

Rotation invariant local contrast can be measured in a circularly symmetric
neighbor set just like the LBP:

VARP,R = 1

P

P−1∑
p=0

(gp − μ)2, where μ = 1

P

P−1∑
p=0

gp. (2.18)

VARP,R is, by definition, invariant against shifts in the gray scale. Since con-
trast is measured locally, the measure can resist even intra-image illumination
variation as long as the absolute gray value differences are not much affected.
A rotation invariant description of texture in terms of texture patterns and their
strength is obtained with the joint distribution of LBP and local variance, denoted
as LBPriu2

P1,R1
/VARP2,R2 . Typically, the neighborhood parameters are chosen so that

P1 = P2 and R1 = R2, although nothing prevents one from choosing different val-
ues.

Variance measure has a continuous-valued output; hence, quantization of its fea-
ture space is needed. This can be done effectively by adding together feature distri-
butions for every single model image in a total distribution, which is divided into
B bins having an equal number of entries. Hence, the cut values of the bins of the
histograms correspond to the (100/B) percentile of the combined data. Deriving
the cut values from the total distribution and allocating every bin the same amount
of the combined data guarantees that the highest resolution of quantization is used
where the number of entries is largest and vice versa. The number of bins used in
the quantization of the feature space is of some importance as histograms with a
too small number of bins fail to provide enough discriminative information about
the distributions. On the other hand, since the distributions have a finite number
of entries, a too large number of bins may lead to sparse and unstable histograms.
As a rule of thumb, statistics literature often proposes that an average number of
10 entries per bin should be sufficient. In the experiments presented in this book,
the value of B has been set so that this condition is satisfied. Figure 2.7 illustrates
quantization of the feature space, when four bins are requested.
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2.6 Non-parametric Classification Principle

In classification, the dissimilarity between a sample and a model LBP distribution
is measured with a non-parametric statistical test. This approach has the advantage
that no assumptions about the feature distributions need to be made. Originally, the
statistical test chosen for this purpose was the cross-entropy principle [32, 52]. Later,
Sokal and Rohlf [65] have called this measure the G statistic:

G(S,M) = 2
B∑

b=1

Sb log
Sb

Mb

= 2
B∑

b=1

[
Sb logSb − Sb logMb

]
, (2.19)

where S and M denote (discrete) sample and model distributions, respectively.
Sb and Mb correspond to the probability of bin b in the sample and model dis-
tributions. B is the number of bins in the distributions [45].

For classification purposes, this measure can be simplified. First, the constant
scaling factor 2 has no effect on the classification result. Furthermore, the term∑B

b=1[Sb logSb] is constant for a given S, rendering it useless too. Thus the G

statistic can be used in classification in a modified form:

L(S,M) = −
B∑

b=1

Sb logMb. (2.20)

Model textures can be treated as random processes whose properties are captured
by their LBP distributions. In a simple classification setting, each class is repre-
sented with a single model distribution Mi . Similarly, an unidentified sample tex-
ture can be described by the distribution S. L is a pseudo-metric that measures the
likelihood that the sample S is from class i. The most likely class C of an unknown
sample can thus be described by a simple nearest-neighbor rule:

C = arg min
i

L(S,Mi). (2.21)

Apart from a log-likelihood statistic, L can also be seen as a dissimilarity mea-
sure. Therefore, it can be used in conjunction with many classifiers, like the k-NN
classifier, the self-organizing map (SOM) or the Support Vector Machine. The log-
likelihood measure works well in many situations, but may be unstable with small
sample sizes. The reason is that with small samples, the histogram is likely to con-
tain many zeros, for which the logarithm is undefined. With small samples, the chi
square distance usually works better [3]:

χ2(S,M) =
B∑

b=1

(Sb − Mb)
2

Sb + Mb

. (2.22)
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Fig. 2.8 Three adjacent LBP4,R neighborhoods and an impossible combination of codes. A black
disk means the gray level of a sample is lower than that of the center

Almost equivalent accuracy can be achieved with the histogram intersection [67],
with a significantly smaller computational overhead:

H(S,M) =
B∑

b=1

min(Sb,Mb). (2.23)

2.7 Multiscale LBP

A significant limitation of the original LBP operator is its small spatial support area.
Features calculated in a local 3×3 neighborhood cannot capture large-scale struc-
tures that may be the dominant features of some textures. However, adjacent LBP
codes are not totally independent of each other. Figure 2.8 displays three adjacent
four-bit LBP codes [42]. Assuming that the first bit in the leftmost code is zero, the
third bit in the code to the right of it must be one. Similarly, the first bit in the code
in the center and the third bit of the rightmost one must be either different or both
equal to one. The right half of the figure shows an impossible combination of the
codes. Each LBP code thus limits the set of possible codes adjacent to it, making
the “effective area” of a single code actually slightly larger than 3×3 pixels. Never-
theless, the operator is not very robust against local changes in the texture, caused,
for example, by varying viewpoints or illumination directions. An operator with a
larger spatial support area is therefore often needed.

A straightforward way of enlarging the spatial support area is to combine the
information provided by N LBP operators with varying P and R values. This way,
each pixel in an image gets N different LBP codes. The most accurate information
would be obtained by using the joint distribution of these codes. However, such
a distribution would be overwhelmingly sparse with any reasonable image size.
For example, the joint distribution of LBP8,1, LBPu2

16,3, and LBPu2
24,5 would con-

tain 256 × 243 × 555 ≈ 3.5 × 107 bins. Therefore, only the marginal distributions
of the different operators are considered even though the statistical independence
of the outputs of the different LBP operators at a pixel cannot be warranted. For
example, a feature histogram obtained by concatenating histograms produced by
rotation-invariant uniform pattern operators at three scales (1, 3 and 5) is denoted
as: LBPriu2

8,1+16,3+24,5.
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Fig. 2.9 LBP and CS-LBP
features for a neighborhood
of 8 pixels

The aggregate dissimilarity between a sample and a model can be calculated as
a sum of the dissimilarities between the marginal distributions

LN =
N∑

n=1

L(Sn,Mn), (2.24)

where Sn and Mn correspond to the sample and model distributions extracted by
the nth operator [53]. Of course, the chi square distance or histogram intersection
can also be used instead of the log-likelihood measure.

Even though the LBP codes at different radii are not statistically independent in
the typical case, using multi-resolution analysis often enhances the discriminative
power of the resulting features. With most applications, this straightforward way of
building a multi-scale LBP operator has resulted in very good accuracy.

2.8 Center-Symmetric LBP

Center-Symmetric Local Binary Patterns (CS-LBP) [23] were developed for inter-
est region description. CS-LBP aims for smaller number of LBP labels to produce
shorter histograms that are better suited to be used in region descriptors. Also, CS-
LBP was designed to have higher stability in flat image regions.

In CS-LBP, pixel values are not compared to the center pixel but to the opposing
pixel symmetrically with respect to the center pixel. See Fig. 2.9 for an illustration
with eight neighbors [23].

Furthermore, to increase the operator’s robustness in flat areas, the differences are
thresholded at a typically non-zero threshold T . CS-LBP operator is thus defined as

CS-LBPR,P,T (x, y) =
(P/2)−1∑

p=0

s(gp − gp+(P/2) − T )2p, s(z) =
{

1 z ≥ 0
0 otherwise,

(2.25)
where ni and ni+(N/2) correspond to the gray values of center-symmetric pairs of
pixels of N equally spaced pixels on a circle of radius R. It should be noticed that the
CS-LBP is closely related to gradient operator, because like some gradient operators
it considers gray level differences between pairs of opposite pixels in a neighbor-
hood.
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Based on the CS-LBP operator, Heikkilä et al. proposed a complete CS-LBP
descriptor for interest regions. The steps of descriptor construction are summarized
in the following. For more details, see [23] and Chap. 5.

1. Assuming that interest region with a known size and orientation has been de-
tected, the region is normalized to a fixed size and orientation. In [23], 41 × 41
pixels was proposed as the size of the normalized region.

2. CS-LBP operator is applied to the normalized region.
3. The region is divided into cells. Authors suggest 3 × 3 or 4 × 4 Cartesian grids.
4. Histogram of the CS-LBP labels is constructed within each cell. To avoid bound-

ary effects, bilinear interpolation is used to share the weight of each label be-
tween four nearest cells.

5. The histograms are concatenated to obtain the descriptor. The descriptor is then
normalized to unit length, values above a pre-set threshold are clipped and finally
the descriptor is re-normalized to unit length.

2.9 Other LBP Variants

The success of LBP methods in various computer vision problems and applications
has inspired much new research on different variants. Due to its flexibility the LBP
method can be easily modified to make it suitable for the needs of different types of
problems. The basic LBP has also some problems that need to be addressed. There-
fore, several extensions and modifications of LBP have been proposed with an aim
to increase its robustness and discriminative power. In this section different variants
are divided into such categories that describe their roles in feature extraction. Some
of the variants could belong to more than one category, but in such cases only the
most obvious category was chosen. A summary of the variants is presented in Ta-
ble 2.1. The choice of a proper method for a given application depends on many
factors, such as the discriminative power, computational efficiency, robustness to il-
lumination and other variations, and the imaging system used. Therefore the LBP
(and LBP with contrast) operators presented in the previous sections will usually
provide a very good starting point when trying to find the optimal variant for a
given application.

2.9.1 Preprocessing

In many applications, it is useful to preprocess the input image prior to LBP feature
extraction. Especially multi-scale Gabor filtering and edge detection have been used
for this purpose.

Gabor filtering has been widely used before LBP computation in face recogni-
tion. A motivation for this is that methods based on Gabor filtering and LBP provide
complementary information: LBP captures small and fine details, while Gabor fil-
ters encode appearance information over a broader range of scales. For example,
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Zhang et al. [85] proposed the extraction of LBP features from images obtained by
filtering a facial image with 40 Gabor filters of different scales and orientations. The
extracted features are called Local Gabor Binary Patterns (LGBP). Due to its high
performance, the LGBP operator has been used as a reference method, together with
the basic LBP method, in many recent face recognition studies. A downside of the
method is the high dimensionality of the LGBP representation.

Tan and Triggs [69] developed a very effective preprocessing chain for compen-
sating illumination variations in face images. It is composed of gamma correction,
difference of Gaussian (DoG) filtering, masking (optional) and equalization of vari-
ation. This approach has been very successful in LBP-based face recognition under
varying illumination conditions (see Chap. 10). When using it for the original LBP,
the last step (i.e. equalization of variations) can be omitted due to LBP’s invariance
to monotonic gray scale changes.

In some studies edge detection has been used prior to LBP computation to en-
hance the gradient information. Yao and Chen [79] proposed local edge patterns
(LEP) to be used with color features for color texture retrieval. In LEP, the Sobel
edge detection and thresholding are used to find strong edges, and then LBP-like
computation is used to derive the LEP patterns. In their method for shape localiza-
tion Huang el al. [26] proposed an approach in which gradient magnitude images
and original images are used to describe the local appearance pattern of each facial
keypoint. A derivative-based LBP is used by applying LBP computation to the gra-
dient magnitude image obtained by a Sobel operator. The Sobel-LBP later proposed
by Zhao et al. [90] uses the same idea for facial image representation. First the So-
bel edge detector is used and the LBPs are computed from the gradient magnitude
images. They also applied Sobel-LBP on both the real and imaginary features of the
Gabor filtered images.

Li et al. [37] proposed an approach based on capturing the intrinsic structural
information of face appearances with multi-scale heat kernel matrices. Heat kernels
perform well in characterizing the topological structural information of face appear-
ance. Histograms of local binary patterns computed for non-overlapping blocks are
then used for face description.

Also other types of preprocessing have been applied prior to LBP feature ex-
traction. For example, computing LBPs from curvelet transformed images provided
very promising performance in medical image analysis problems [35].

2.9.2 Neighborhood Topology

One important factor which makes the LBP approach so flexible to different types
of problems is that the topology of the neighborhood from which the LBP features
are computed can be different, depending on the needs of the given application.

The extraction of LBP features is usually done in a circular or square neighbor-
hood. A circular neighborhood is important especially for rotation-invariant oper-
ators. However, in some applications, such as face recognition, rotation invariance
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is not required, but anisotropic information may be important. To exploit this, Liao
and Chung used an elliptical neighborhood definition, calling their LBP variant an
elliptical binary pattern (EBP). EBP, and EBP combined with a local gradient (con-
trast) measure, provided improved results in face recognition experiments compared
to the ordinary LBP [38]. Nanni et al. investigated the use of different neighborhood
topologies (circle, ellipse, parabola, hyperbola and Archimedean spiral) and encod-
ings in their research on LBP variants for medical image analysis [50]. An operator
using quinary encoding in an elliptic neighborhood (EQP) provided the best perfor-
mance.

Petpon and Srisuk proposed to use lines in vertical and horizontal directions for
LBP computations [56]. The Local Line Binary Pattern (LLBP) method then com-
putes magnitudes by calculating the square root from the sum of the squared re-
sponses in these orthogonal directions.

Wolf et al. [76] considered different ways of using bit strings to encode the simi-
larities between patches of pixels, which could capture complementary information
to pixel-based descriptors. They proposed a Three-Patch LBP (TPLBP) and Four-
Patch-LBP (FPLBP), which have borrowed some ideas from the Center-Symmetric
LBP (CS-LBP) described earlier. For each pixel in TPLBP, for example, a w × w

patch centered at the pixel and S additional patches distributed uniformly in a ring
of radius r around it are considered. Then, the values for pairs of patches located on
the circle at a specified distance apart are compared with those of the central patch.
The value of a single bit is set according to which of the two patches is more similar
to the central patch. The code produced will have S bits per pixel. In FPLBP, two
rings centered on the pixel were used instead of one ring in TPLBP.

2.9.3 Thresholding and Encoding

Instead of using the value of the center pixel for thresholding in the local neighbor-
hood, other techniques have also been considered. Hafiane et al. proposed Median
Binary Pattern (MBP) operator by thresholding the local pixel values, including the
center pixel, against the median (MBP) within the neighborhood [19]. The so-called
Improved LBP, on the other hand, compares the values of the neighboring pixels
against the mean gray level of the local neighborhood [13, 30]. A negative side is
that the histograms for the methods using median or mean values for thresholding
have 512 bins instead of 256 bins of the basic LBP. In fact, the use of the mean value
of the local neighborhood was also considered, but not reported, when developing
the original LBP in late 1992.

A drawback of the LBP method, as well as of all local descriptors that apply
vector quantization, is that they are not robust in the sense that a small change in the
input image would always cause a small change in the output. LBP may not work
properly for noisy images or on flat image areas of constant gray level. This is due
to the thresholding scheme of the operator.

In order to make the LBP more robust against these negligible changes in pixel
values, the thresholding scheme of the operator was modified in [22] by replacing
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Fig. 2.10 Local ternary
pattern operator

the term s(gp − gc) in Eq. 2.10 with the term s(gp − gc + a). The bigger the value
of |a| is, the bigger changes in pixel values are allowed without affecting the thresh-
olding results. In order to retain the discriminative power of the LBP operator, a rel-
atively small value should be used. In the experiments a was given a value of 3. An
advantage of this robust LBP compared to the three-valued LBPs described below
is that the feature vector length remains the same as in the ordinary LBP. A similar
thresholding approach was also adopted to improve the robustness of CS-LBP as
described in Sect. 2.8.

Tan and Triggs proposed a three-level operator called local ternary patterns (LTP)
e.g. to deal with problems on near constant image areas [69]. In ternary encoding
the difference between the center pixel and a neighboring pixel is encoded by three
values (1, 0 or −1) according to a threshold T . The ternary pattern is divided into
two binary patterns taking into account its positive and negative components. The
histograms from these components computed over a region are then concatenated.
Figure 2.10 depicts an example of splitting a ternary code into positive and negative
codes. Note that LTP resembles the texture spectrum operator [74], which also used
a three-valued output instead of two.

Nanni et al. [50] studied the effects of different encodings of the local gray-
scale differences, using binary (B), ternary (T) and a quinary (Q) encodings. In
binary coding, the difference between a neighboring pixel and the center pixel is
encoded by two values (0 and 1) like in LBP, in ternary encoding it is encoded
by three values as in LTP, and in quinary encoding by five values (−2,−1,0,1,2)
according to two thresholds (T1 and T2). A quinary code can be split into four bi-
nary LBP codes. In experiments with three different types of medical images the
elongated quinary patterns (EQP) using elliptical neighborhoods provided the best
overall performance. In their another study dealing with classification of pain states
from facial expressions, the best results were obtained with elongated ternary pat-
terns (ELTP) [49].

A soft three-valued LBP using fuzzy membership functions was proposed to im-
prove the robustness in [1]. In soft LBP, one pixel typically contributes to more than
one bin in the histogram. Fuzzy local binary patterns were also proposed by Iakovdis
et al., with an application in ultrasound texture characterization [29]. A probabilistic
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LBP (PLBP) was developed by Tan et al. [68], allowing to encode the magnitude of
the difference between a neighboring pixel and the center pixel. A disadvantage of
the fuzzy and probabilistic methods is their increased computational cost.

Liao et al. [40] noticed that adding a small offset value (T) for comparison in LTP
is not invariant under scaling of intensity values. The intensity scale invariant prop-
erty of a local comparison operator is very important for example in background
modeling, because illumination variations, either global or local, often cause sud-
den changes of gray scale intensities of neighboring pixels simultaneously, which
would approximately be a scale transform with a constant factor. Therefore, a Scale
Invariant Local Ternary Pattern (SILTP) operator was developed for dealing with
the gray scale intensity changes in complex background. Given any pixel location
(xc, yc), SILTP encodes it as

SILTPτ
N,R(xc, yc) =

N−1⊕
k=0

sτ (Ic, Ik), (2.26)

where Ic is the gray intensity value of the center pixel, Ik are that of its N neigh-
borhood pixels equally spaced on a circle of radius R,

⊕
denotes concatenation

operator of binary strings, τ is a scale factor indicating the comparing range, and sτ
is a piecewise function defined as

sτ (Ic, Ik) =
⎧⎨
⎩

01, if Ik > (1 + τ)Ic,

10, if Ik < (1 − τ)Ic,

00, otherwise.
(2.27)

Since each comparison can result in one of three values, SILTP encodes it with
two bits (with “11” undefined). The scale invariance of SILTP operator can be easily
verified. The advantage of SILTP operator is in three fold. First, it is computation-
ally efficient, which causes only one more comparison than LBP for each neighbor.
Second, by introducing a tolerative range like LTP, the SILTP operator is robust to
local image noise within a range. Especially in the shadowed area, the region is
darker and contains more noise, in which SILTP is tolerable while local comparison
results of LBP would be affected more. Finally, the scale invariance property makes
SILTP robust to illumination changes. Assuming linear camera response, the SILTP
feature is invariant if the illumination is suddenly changed from darker to brighter
or vice versa. Besides, SILTP is robust when a soft shadow covers a background
region, because the soft cast shadow reserves the background texture information
but tends to be darker than the local background region with a scale factor.

A downside of the methods mentioned above using one or two thresholds is that
the methods are not strictly invariant to local monotonic gray level changes as the
original LBP. The feature vector lengths of these operators are also longer.

Trefny and Matas [71] proposed two new encoding schemes, which are comple-
mentary to the standard LBPs and also invariant to monotonic intensity transfor-
mations. The binary value transition coded LBP (tLBP) is composed of neighbor
pixel comparisons in clockwise direction for all pixels except the central, encod-
ing relation between neighboring pixels. Direction coded LBP (dLBP) is related
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to CS-LBP operator, but uses also center pixel information for encoding. Intensity
variation along each of the four basic directions is coded into two bits. The first bit
encodes whether the center pixel is an extrema and the second bit encodes whether
difference of border pixels compared to the center pixel grows or falls. Experiments
with face detection, car detection and gender recognition problems showed the effi-
ciency of their approach. Another operator related to CS-LBP is centralized binary
pattern (CBP) proposed by Fu and Wei [14] for facial expression recognition. CBP
considers the contribution of the center pixel by comparing its value to the average
of all nine pixels in the neighborhood, and encodes this bit with the largest weight.

Mu et al. developed LBP variants with an application in human detection in
personal album [48]. They found that the original LBP does not suit so well for
this problem due to its relatively high complexity and lack of semantic consistency.
Therefore they proposed two variants of LBP: Semantic-LBP (S-LBP) and Fourier-
LBP (F-LBP). First, a binarization of a pixel neighborhood is done on a color space
like CIE-LAB. In S-LBP, several continuous “1” bits on the sampling circle form
an arch, which can be represented with its principal direction and arch length. Non-
uniform ones (with more than one arches) are abandoned. A two-dimensional his-
togram descriptor (arch angle vs. arch length) can be obtained for a given image
region. In F-LBP, real valued color distance between the k-th samples and central
pixel are computed and transformed into frequency domain. Low-frequency coeffi-
cients are then used to capture salient local structures around current pixel.

Inspired by LBP, higher order local derivative patterns (LDP) were proposed by
Zhang et al., with applications in face recognition [81]. The basic LBP represents
the first-order circular derivative pattern of images, a micropattern generated by the
concatenation of the binary gradient directions as was shown in [2]. The higher
order derivative patterns extracted by LDP will provide more detailed information,
but may also be more sensitive to noise than in LBP.

Aiming at reducing the sensitivity of the image descriptor to illumination
changes, a Bayesian LBP (BLBP) was developed by He et al. [20]. This opera-
tor is formulated in a Filtering, Labeling and Statistic (FLS) framework for texture
descriptors. In the framework, the local labeling procedure, which is a part of many
popular descriptors such as LBP and SIFT, can be modeled as a probability and
optimization process. This enables the use of more reliable prior and likelihood in-
formation, and reduces the sensitivity to noise. The BLBP operator pursues a label
image, when given the filtered vector image, by maximizing the joint probability of
two images.

2.9.4 Multiscale Analysis

From a signal processing point of view, the sparse sampling used by multiscale
LBP operators may not result in an adequate representation of the signal, resulting
in aliasing effects [43]. Due to this some low-pass filtering would be needed to make
the operator more robust. From the statistical point of view, however, even sparse
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sampling is acceptable provided that the number of samples is large enough. The
sparse sampling is commonly used for example with the methods based on gray
scale difference or co-occurrence statistics. Mäenpää and Pietikäinen proposed two
alternative ways to multiscale analysis. In the first method Gaussian low-pass filters
are used in collecting texture information from an larger area than the original single
pixel. The filters and sampling position were designed to cope the neighborhood as
well as possible while minimizing the redundant information. With this approach,
the radii of the LBP operators used in the multiresolution version grow exponen-
tially [43]. They also proposed another way of encoding arbitrarily large neighbor-
hoods with cellular automata. It was used in compactly encoding even 12-scale LBP
operators. A feature vector containing marginal distributions of LBP codes and cel-
lular automation rules was used as a texture descriptor. In experiments, however, no
clear improvement was obtained compared to the basic multi-scale approach.

Another extension of multiscale LBP operator is the multiscale block local bi-
nary pattern (MB-LBP) [41] which has gained popularity especially in facial image
analysis. The key idea of MB-LBP is to compare average pixel values within small
blocks instead of comparing pixel values. The operator always considers 8 neigh-
bors, producing labels from 0 to 255. For instance, if the block size is 3 × 3 pixels,
the corresponding MB-LBP operator compares the average gray value of the center
block to the average values of the 8 neighboring blocks of the same size, thus the
effective area of the operator is 9 × 9 pixels. Instead of the fixed uniform pattern
mapping, MB-LBP has been proposed to be used with a mapping that is dynam-
ically learned from a training data. In this mapping, the N most often occurring
MB-LBP patterns receive labels 0, . . . ,N − 1, and all the remaining patterns share
a single label. The number of labels, and consequently the length of the MB-LBP
histogram is a parameter the user can set.

A straightforward way for multiscale analysis is to utilize a pyramid of the in-
put image computed at different resolutions, and then concatenate LBP distributions
computed from different levels of the pyramid. In their research on contextual anal-
ysis of textured scene images Turtinen and Pietikäinen [72] combined this kind of
idea with the original multiscale LBP approach: image patches at three different
scales were resized to the same size and then LBP features were computed using
LBPs with three different radii. Figure 2.11 illustrates the approach.

He et al. [21] developed a pyramid-based multistructure LBP for texture classi-
fication. It is obtained by executing the LBP on different layers of image pyramid,
allowing to extract both micro and macro structures from textures. Five templates
are used for creating the pyramid. The first one is a 2D Gaussian function used
to smooth the image. Other four anisotropic filters are used to create anisotropic
subimages of the pyramid in four directions. Good results are reported for the Ou-
tex textures, but the processing time is much higher than in the original LBP.

Raja and Gong proposed sparse multiscale local binary patterns to better exploit
the discriminative capacity of multiscale features available [59]. A pairwise-coupled
reformulation of LBP-type classification was used which involves selecting single-
point features for each pair of classes to form compact, contextually-relevant multi-
scale predicates known as Multiscale Selected Local Binary Features (MSLBF).
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Fig. 2.11 Multiscale feature
extraction

By the definition, uniform patterns are codes that consist of at most two bitwise
transitions from 0 to 1 or vice versa when the binary string is considered circular.
Therefore they can be considered as sectors on a sampling circle. When multiscale
sampling points are ordered according to the sampling angle, they will also pro-
duce codes that satisfy the bit transition condition. Based on this observation, Kel-
lokumpu et al. [31] proposed a new coding for multiresolution uniform patterns,
obtaining improved results in gait recognition experiments.

2.9.5 Handling Rotation

LBPs have been used for rotation invariant texture recognition since late 1990s [57].
The most widely used version was proposed in [53] (Sect. 2.4.1), where the neigh-
boring n binary bits around a pixel are clockwise rotated n times that a maximal
number of the most significant bits is used to express this pixel.

Recently, in addition the method presented in Sect. 2.4.2, some other LBP vari-
ants for dealing with rotation have also been proposed.

Guo et al. developed an adaptive LBP (ALBP) [18] by incorporating the direc-
tional statistical information for rotation invariant texture classification. The direc-
tional statistical features, specifically the mean and standard deviation of the local
absolute difference are extracted and used to improve the LBP classification effi-
ciency. In addition, the least square estimation is used to adaptively minimize the
local difference for more stable directional statistical features.

In [17], LBP variance (LBPV) was proposed as a rotation invariant descriptor.
For LBPV there are three stages:

(1) putting the local contrast information into the one-dimensional LBP histogram;
the variance VARP,R was used as an adaptive weight to adjust the contribution
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of the LBP code in histogram calculation. LBPV histogram is computed as:

LBPVP,R(k) =
N∑

i=1

M∑
j=1

w(LBPP,R(i, j), k), k ∈ [0,K], (2.28)

where

w(LBPP,R(i, j), k) =
{

VARP,R(i, j), LBPP,R(i, j) = k,

0, otherwise;
(2) learning the principal directions; the extracted LBPV features are used to esti-

mate the principal orientations, and then the features are aligned to the principal
orientations, and

(3) determining the non-dominant patterns and thus by reducing them, feature di-
mension reduction was achieved.

Zhang et al. [84] proposed Monogenic-LBP (M-LBP), which integrates the tra-
ditional rotation-invariant LBP operator with two other rotation-invariant measures:
the local phase and local surface type computed by the first and second order Riesz
transforms, respectively. The local phase corresponds to a qualitative measure of
local structure (step, peak etc.), whereas the monogenic curvature tensor extracts
local surface type information. In experiments with CUReT textures the method
performed better than comparative methods (LBP, MR8, Joint), especially when the
training set was small and not comprehensive.

2.9.6 Handling Color

LBP operator was originally developed for monochrome images. There are many
possible ways for handling color with LBPs.

To describe color and texture jointly, opponent color LBP (OCLBP) [44] was
defined. In opponent color LBP, the operator is used on each color channel indepen-
dently, and then for pairs of color channels so that the center pixel is taken from one
channel and the neighboring pixels from the other. Opposing pairs, such as R-G and
G-R are highly redundant, so either of them can be used in the analysis. In total, six
histograms (out of nine) are utilized (R, G, B, R-G, R-B, G-B), making the descrip-
tor six times longer than the monochrome LBP histogram. Figure 2.12 illustrates
the three situations in which the center pixel is taken from the red channel [42].

The OCLBP descriptor fares well in comparison to other color texture descrip-
tors. It has been later used successfully e.g. for face recognition by Chan et al. [7].
However, the authors of [44] do not recommend joint color and texture descrip-
tion as in their experiments “all joint color texture descriptors and all methods of
combining color and texture on a higher level are outperformed by either color or
gray-scale texture alone”. This approach of handling color and texture separately
has been used in many recent studies.
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Fig. 2.12 Opponent color
LBP for a red center. The
three planes illustrate color
channels

Instead of comparing the color components of pixels, Porebski et al. [58] consid-
ered color pixels represented by a vector when comparing neighboring pixels to the
center pixel. Because there is no total order between vectors, they use a partial color
order relation based on Euclidean distances for comparing their rank. As the result
a single color LBP image is obtained instead of 6–9 provided by the OCLBP.

Another popular way is to apply the ordinary LBP to different color channels sep-
arately. Instead of the original R, G and B channels, other more discriminative and
invariant color features derived from them can be used for LBP feature extraction as
well. Along this line, Zhu et al. [92] proposed multiscale color LBPs for visual ob-
ject classes recognition. Six operators were defined applying multiscale LBP on dif-
ferent types of channels and then concatenating the results together. From these the
Hue-LBP (computed from the hue channel of the HSV color space), Opponent-LBP
(computed over all three channels of the opponent color space) and nOpponent-LBP
(computed over two channels of the normalized opponent space) provided the best
performance on the well-known PASCAL Visual Object Classes Challenge 2007
benchmark (www.pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/).

Connah and Finlayson, on the other hand, used 3D histograms of LBP values
computed from LBP images of three channels in their research on color constant
image indexing [11]. They conclude that the good performance of the joint LBP
histograms is a function of both their illumination invariance and their ability to
encode additional information about the interaction between the color when using
the three channels separately, whereas 10 × 10 × 10 = 1000 bins are needed for a
joint histogram.

2.9.7 Feature Selection and Learning

It has been shown by many studies that the dimensionality of the LBP distribution
can be effectively decreased by reducing the number of neighboring pixels or by
selecting a subset of bins available. In many cases a properly chosen subset of LBP
patterns can perform better than the whole set of patterns.

Already the early studies on LBP indicated that in some problems considering
only four neighbors of the center pixel (i.e. 16 bins) can provide almost as good
results as eight neighbors (256 bins). Mäenpää et al. [46] showed that a major part
of the discriminative power lies in a small properly selected subset of patterns. In
addition to the uniform patterns (Sect. 2.3) they also considered a method based on
beam search in which, starting from one, the size of the pattern set is iteratively

http://www.pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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increased up to a specified dimension D, and the best B pattern sets produced so far
are always considered. In their experiments the method based on feature selection by
beam search performed better than the whole set of patterns or the uniform patterns
when classifying tilted textures and using nontilted samples for training. Thus the
feature selection procedure was able to find those patterns that were able to survive
the tilting best. In [64], Smith and Windeatt used the fast correlation-based filtering
(FCBF) algorithm [80] to select the most discriminative LBP patterns. FCBF op-
erates by repeatedly choosing the feature that is most correlated with a given class
(e.g. person identity in case of face recognition), excluding those features already
chosen or rejected, and rejecting any features that are more correlated with it than
with the class. As a measure of correlation, the information-theoretic concept of
symmetric uncertainty is used. When applied to the LBP features, FCBF reduced
their number from 107,000 down to 120.

Lahdenoja et al. [33] defined a discrimination concept of the uniform LBP pat-
terns called symmetry to reduce the feature vector length for LBP-based face de-
scription. Patterns are assigned different levels of symmetry based on the number
of ones or zeros they contain. By definition these symmetry levels are rotation in-
variant. The patterns with a high level of symmetry were shown to be the most
discriminative in experiments.

Liao et al. [39] introduced dominant local binary patterns (DLBP) which make
use of the most frequently occurred patterns of LBP to improve the recognition
accuracy compared to the original uniform patterns. The method has also rota-
tion invariant characteristics. Zhou et al. considered that the LBP operator based
on uniform patterns discards some important texture information and is sensitive to
noise [91]. They proposed an extended LBP operator, which classifies and combines
the nonuniform local patterns based on analyzing their structure and occurrence
probability. Yang and Wang [78] also found that the nonuniform patterns contain
useful information, incorporating these patterns into uniform patterns by minimiz-
ing the Hamming distance between them.

Guo et al. proposed a learning framework for image descriptor design [15]. The
Fisher separation criterion (FSC) is used to learn the most reliable and robust dom-
inant pattern types considering intraclass similarity and inter-class distance. Im-
age structures are thus be described by a new FSC-based learning (FBL) encoding
method. The learning framework includes three stages: (1) The learning stage. De-
termine most reliable dominant types for each class. Then, all the learnt dominant
types of each class are merged and form the global dominant types for the whole
database; (2) Extract global dominant types learnt in stage (1) of the training set;
(3) Extract the global dominant types learnt in stage (1) of the testing set. Finally,
features obtained in stages (2) and (3) are served as inputs to the classifier. FBL-
LBP outperformed many other methods, including DLBP, in the experiments on
three texture databases.

From the observation that LBP is equivalent to the application of a fixed binary
decision tree, Maturana et al. [47] proposed a new method for learning discrimina-
tive LBP-like patterns from training data using decision tree induction algorithms.
For each local image region, a binary decision tree is constructed from training data,
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thus obtaining an adaptive tree whose main branches are specially tuned to encode
discriminative patterns in each region. Face recognition experiments on FERET and
CAS-PEAL-R1 databases showed good performance compared to many traditional
LBP-like approaches. Among the drawbacks of the proposed decision tree LBP (DT-
LBP) is the high cost of constructing and storage of the decision trees especially
when large pixel neighborhoods are used.

Boosting has become a very popular approach for feature selection. It has been
widely adopted for LBP feature selection in various tasks e.g. 3D face recogni-
tion [36], face detection [83], gender classification [66] etc. AdaBoost is commonly
used for selecting optimal LBP settings (such as the size and the location of local
regions, the number of neighboring pixels etc.) or for selecting the most discrim-
inative bins of an LBP histogram. For instance, Zhang et al. [82] used AdaBoost
learning for selecting an optimal set for local regions and their weights for face
recognition (see Chap. 10). Since then, many related approaches have been used at
region level for LBP-based face analysis. Shan and Gritti [61], on the other hand,
used AdaBoost for learning discriminative LBP histogram bins, with an application
to facial expression recognition.

Another approach for deriving compact and discriminative LBP-based feature
vectors consist of applying subspace methods for learning and projecting the LBP
features from the original high-dimensional space into a lower dimensional space.
For instance, Chan et al. used Linear Discriminant Analysis (LDA) to project high-
dimensional Multi-Scale LBP features into a discriminant space [7, 8], yielding very
promising results. To deal with the small sample size problem of LDA, Shan et
al. [63] constructed ensemble of piecewise Fisher Discriminant Analysis (EPFDA)
classifiers, each of which is designed based on one segment of the high-dimensional
histogram of local Gabor binary pattern (LGBP) features. Their approach was
shown to be more effective than applying LDA to high-dimensional holistic feature
vectors.

Tan and Triggs [70] combined Gabor wavelets and LBP features and projected
them to PCA space. Then, the Kernel Discriminative Common Vectors (KDCV)
is applied to extract discriminant nonlinear compact features for face recognition.
In [24], an AdaBoost-LDA learning algorithm was proposed to select the most dis-
criminative LBP features from a large pool of multiscale features generated by shift-
ing and scaling a subwindow over the image. Dual-Space LDA was also adopted
to select discriminative LBP features in [86]. In another work, the authors applied
Laplacian PCA (LPCA) for LBP feature selection and pointed out the superiority
of LPCA over PCA and KPCA for feature selection [87]. In [28], the authors ex-
ploited the complementarity of three sets of features namely HOG features, local
binary patterns (LBP) and local ternary patterns (LTP), and adopted Partial Least
Squares (PLS) dimensionality reduction for selecting the most discriminative fea-
tures, yielding fast and efficient visual object detector. In [62], Locality Preserving
Projections (LPP) was applied on LBP features for embedding image sequences of
facial expression from the high dimensional appearance feature space into a low
dimensional manifold.



42 2 Local Binary Patterns for Still Images

2.9.8 Complementary Descriptors

A current trend in the development of new effective local image and video descrip-
tors is to combine the strengths of complementary descriptors. From the beginning
the LBP operator was designed as a complementary measure of local image con-
trast. In many recent studies proposing new texture descriptors the role of the LBP
contrast has not been considered when comparing LBP to the new descriptor. The
use of LBP (or its simple robust version using a non-zero threshold [22], Sect. 2.9.3),
can still be the method of choice for many applications, and should be considered
when selecting a texture operator to be used. An interesting alternative for putting
the local contrast into the one-dimensional LBP histogram was proposed by Guo et
al. [17] (see Sect. 2.9.5).

In [16], a completed modeling of the LBP operator was proposed and an associ-
ated completed LBP (CLBP) scheme was developed for texture classification. The
image local differences are decomposed into two complementary components: the
signs and the magnitudes and two operators, CLBP-Sign (CLBPS , also the original
LBP) and CLBP-Magnitude (CLBPM ) were proposed to code them. As well, the
center pixels represent the image gray level and they are converted into a binary
code (CLBPC ) by global thresholding. The CLBPM and CLBPC were combined
with CLBPS as complementary information to improve the texture classification.
Earlier, a related Extended LBP (ELBP) was proposed which also encodes the local
gray level differences in addition to the ordinary LBP computation [25, 27]. LBP
codes are computed at multiple layers to encode the gray level differences between
the center pixel and its neighbors.

Magnitude-LBP contains supplementary information to LBP. It was embedded to
the histogram Fourier framework [89] and concatenated to LBPHF features as com-
plementary descriptors to improve the description power for dealing with rotation
variations.

In addition to applying LBP to Gabor-filtered face images, the use of LBP and
Gabor methods jointly has provided excellent results in face recognition [70, 85].
The HOG-LBP, combining LBP with the Histogram of Oriented Gradients opera-
tor [12], has performed very well in human detection with partial occlusion han-
dling [75]. Combining ideas from Haar and LBP features have given excellent
results in accurate and illumination invariant face detection [60, 77]. A CS-LBP
method for combining the strengths of SIFT and LBP in interest region description
has also been developed [23] (Chap. 5).

2.9.9 Other Methods Inspired by LBP

LBP has also inspired the development of new effective local image descriptors.
The Weber Law Descriptor (WLD) is based on the fact that human perception

of a pattern depends not only on the change of a stimulus (such as sound, lighting)
but also on the original intensity of the stimulus [10]. Specifically, WLD consists of
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two components: differential excitation and orientation. The differential excitation
component is a function of the ratio between two terms: one is the relative intensity
differences of a current pixel against its neighbors; the other is the intensity of the
current pixel. The orientation component is the gradient orientation of the current
pixel. For a given image, the two components are used to construct a concatenated
WLD histogram. Experimental results on texture analysis and face detection prob-
lems have provided excellent performance. Joint use of LBP and the excitation com-
ponent of WLD descriptor in dynamic texture segmentation was considered in [9].
This indicates that this component could be useful in replacing the contrast measure
of LBP also in other problems.

The local phase quantization (LPQ) descriptor is based on quantizing the Fourier
transform phase in local neighborhoods [55]. The phase can be shown to be a blur
invariant property under certain commonly fulfilled conditions. In texture analy-
sis, histograms of LPQ labels computed within local regions are used as a texture
descriptor similarly to the LBP methodology. The LPQ descriptor has received re-
cently wide interest in blur-invariant face recognition [5]. LPQ is insensitive to im-
age blurring, and it has proven to be a very efficient descriptor in face recognition
from blurred as well as sharp images.

Lategahn et al. [34] developed a framework which filters a texture region by a
set of filters and subsequently estimates the joint probability density functions by
Gaussian mixture models (GMM). Using the oriented difference filters of the LBP
method [2], they showed that this method avoids the quantization errors of LBP,
obtaining better results than with the basic LBP. Additional performance improve-
ment of the GMM-based density estimator was obtained when the elementary LBP
difference filters were replaced by wavelet frame transform filter banks.
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