Chapter 2
Propositional- and Predicate-Calculus
Preliminaries

This chapter prepares for the extensive account of our verifier system given in
Chap. 4 by describing and analyzing two of the system’s basic ingredients, the
propositional calculus, from which we take all necessary properties of the logical
operations &, Vv, —, —, and <>, and the (first-order) predicate calculus, which to
these propositional mechanisms adds compound functional and predicate construc-
tions and the two quantifiers V and 3. Then we will show the axioms of a classical
specification of set theory in predicate calculus; to end, we will highlight the much-
debated issue of the consistency of this Zermelo—Fraenkel-Skolem theory and of
some of its proposed extensions.

Why Predicate Calculus? Our aim is to develop a mechanism capable of en-
suring that the logical formulae in which we are interested are universally valid.
Since, as we shall see in Chap. 6, there can exist no algorithm capable of making
this determination in all cases, we must use the mechanism of proof. This embeds
the formulae in which we are interested in some system of sequences of formulae,
within which we can define a property Is_a_proof(p) capable of being verified by an
algorithm, such that we can be certain that the final component ¢ of any sequence p
satisfying Is_a_proof(p) is universally valid. Then we can use intuition freely to find
aesthetically pleasing sequences p, the proofs, leading to interesting end goals 7, the
theorems. In principle, any system of formulae and sequences of formulae having
this property is acceptable. The propositional/predicate calculus and set theory in
which we work is merely one such formalism, of interest because of its convenience
and wide use, and because much effort has gone into ensuring its reliability.

2.1 The Propositional Calculus

The propositional calculus constitutes the ‘bottom-most’ part of the full logical for-
malism with which we will work in this book. It provides only the operations &,
Vv, =, —, and <> and the two constants ‘true’ and ‘false’, all other symbolic con-

J.T. Schwartz et al., Computational Logic and Set Theory, 37
DOI 10.1007/978-0-85729-808-9_2, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-808-9_2

38 2 Propositional- and Predicate-Calculus Preliminaries

structions being reduced (‘blobbed’) down to single letters when propositional de-
ductions must be made. An example given earlier, i.e. the formula

(F(x+y)=F(F(x)) > F(F(x)) =0) > (F(F(x)) #0—> F(x+y) # F(F(x)))
whose ‘blobbed’ propositional skeleton is

(p—q)— ((=g) > (—=p)),

illustrates what is meant.

Formulae of the propositional calculus are built starting with string names desig-
nating propositional variables and combining them using the dyadic infix operators
‘&, Vv’, ‘=, and ‘<’ and the monadic operator ‘—’. Parentheses are used to group
the subparts of formulae. The only precedence relation supported is the rule that ‘&’
binds more tightly than ‘Vv’, so parentheses must normally be used rather liberally.
Syntactically, the propositional calculus is a simple operator language, whose (syn-
tactically valid) formulae parse unambiguously into syntax trees, each of whose
internal nodes is marked either with one of the allowed infix operators, in which
case it has two descendants, or with the monadic operator ‘—’, in which case it
has one descendant. Each leaf of such a tree is marked either with the name of a
propositional variable or with one of the two allowed constant symbols ‘true’ and
“false’.

An example is

(pan — quack) — ((—|quack) — (—|true)).

Here the propositional variables which appear are ‘pan’ and ‘quack’, and the con-
stant ‘true’ also appears.

Since the derivation of the syntax tree of a propositional formula from its string
form (‘parsing’) and of the string form from the syntax tree (‘unparsing’) are both
standard programming operations, we generally regard these two structures as being
roughly synonymous and use whichever is convenient without further ado.

As in other logical systems we can think of our formulae either in terms of the
values of functions which they represent, or as statements deducible from one an-
other under certain circumstances, and so as the ingredients of some system of for-
malized proof. We begin with the first approach. In this way of looking at things,
each propositional variable represents one of the truth values 1 or 0, which the
propositional operators combine in standard ways. The following more formal defi-
nition captures this idea:

Definition 2.1 An assignment for a collection of propositional formulae is a single-
valued function A mapping each of its constants and variables into one of the two
values 1 and 0. Each assignment is required to map ‘true’ into 1 and ‘false’ into O.
The assignment is said to cover each of the formulae in the collection.

Given any such assignment A, and a formula F which it covers, the value
Val(A, F) of the assignment A for the expression F is the Boolean value defined
in the following recursive way.

2.1 The Propositional Calculus 39

(i) If the formula F is just a variable x or is one of the constants ‘true’ and ‘false’,

then Val(A, F) = A(F).

(i1) If the formula F has the form ‘G & H’, then Val(A, F) is the minimum of
Val(A, G) and Val(A, H).

(iii) If the formula F has the form ‘G v H’, then Val(A, F) is the maximum of
Val(A, G) and Val(A, H).

(iv) If the formula F has the form ‘—G’, then Val(A, F) =1 — Val(A, G).

(v) Ifthe formula F has the form ‘G — H’,then Val(A, F) =Val(A, ‘(—=G) Vv H’).

(vi) If the formula F has the form ‘G <> H’, then

Val(A, F) =Val(A, ‘(G & H) V ((=G) & (=H))’).

Definition 2.2 A propositional formula F is a fautology if Val(A, F) = 1 for all the
assignments A covering it.

So tautologies are propositional formulae which evaluate to true no matter what
truth values are assigned to their variables. Examples are

pv(Ep), q—>p—q9. p—(@—> (&),

and many others, some listed below. These are the propositional formulae which
possess ‘universal logical validity’.

Since the number of possible assignments A for a propositional formula F is
at most 2", where n is the number of variables in the formula, we can determine
whether F is a tautology by evaluating Val(A, F) for all such A. An alternative
approach is to establish a system of proof by singling out some initial collection of
tautologies (which we will call ‘axioms’) from which all remaining tautologies can
be derived using rules of inference, which must also be defined. (This is the ‘logical
system’ approach.) The axioms and rules of inference can be chosen in many ways.
Though not at all the smallest possible set, the following collection has a familiar
and convenient algebraic flavor.

(i) (p&q) < (q&p)
(i) (p&q)&r) < (p&(q&r))
(i) (p&p)<p
(i) (pvqg)<(qVp)
V) (pvg)vr)<(pV(gVr))
(vi) (pvp)<p
(vii) (=(p & q)) < ((=p) vV (—=q))
(viii) (=(p Vv q)) < ((—=p) & (—q))
(ix) (pvg)&r)< ((p&r)V(qg&r))
x) (p&g)vr)y< ((pVvr)&(gVvr))
(xi) (p<=q)—> (p&r) < (q&r))
(xii) (p<q)—> ((pVr)<(gVr))

40 2 Propositional- and Predicate-Calculus Preliminaries

(xiil) (p < q) = ((—p) < (—q))
xiv) (p < q)—> (g — p)
xv) (p—>q) < ((—=p)Vq)
(xvi) (p<q) < ((p—>q)&(q— p))
(xvil) (p&q)—p
(xviii) (p<q) —> ((q<r)— (p<r))
(xix) (p <> q) —> (g < p)
(xx) (p < p)
(xxi) (p & (—p)) < false
(xxii) (pV (—=p)) < true
(xxiii) (=(=p)) <> p
(xxiv) (p &true) < p
(xxv) (p & false) < false
(xxvi) (p V true) <> true
(xxvii) (pV false) < p
(xxviii) (—true) <> false
(xxix) (—false) <> true
(xxx) true

The preceding are to be understood as axiom ‘templates’ or ‘schemas’, in the
sense that all formulae resulting from one of them by substitution of syntactically
legal propositional formulae P, Q, ... for the letters p, g, ... occurring in them are
also axioms. For example,

(((qu)V(r—)r))&((p\/q)\/(r—>r)))<—>((p\/q)\/(r—>r))

is a substituted instance of (iii) and therefore is also regarded as an axiom.

The reader can verify that all of the axioms listed are in fact tautologies.

In the presence of this lush collection of axioms we need only one rule of infer-
ence (namely the ‘modus ponens’ of mediaeval logicians). From any two formulae
of the form p and p — ¢ this allows us to deduce g. As with the axioms, this rule
is to be understood as a template, covering all of its substituted instances.

To ensure that the tautologies are exactly the derivable propositional formulae
we must prove soundness, namely that (I) only tautologies can be derived, and com-
pleteness, namely that (II) all tautologies can be derived. (I) is easy. We reason as
follows. All the axioms are tautologies. Moreover, since

Val(A, p — q) =max(1 — Val(A, p), Val(4, q)),

it follows that if Val(A, p — ¢) and Val(A, p) are both 1, so is Val(A, g). So if
‘p — q’ and p are both tautologies, then so is g. This proves our claim (I).
Proving claim (II) takes a bit more work, whose general pattern is much like that
used to reduce multivariate polynomials to their canonical form. Starting with any
syntactically well-formed propositional formula F, we can proceed in the following
way to derive a chain of formulae equivalent to F (via an explicit chain of equiva-
lences F; <> F;41). Note that axioms (xviii—xx) ensure that the equivalence relator

2.1 The Propositional Calculus 41

‘<>’ has the same transitivity, symmetry, and reflexivity properties as equality, while
(xi—xiii) allow us to replace any subexpression of an expression formed using only
the three operators &, Vv, — by any equivalent subexpression.

Using these facts and (xv—xvi) we first descend recursively through the syntax
tree of F, replacing any occurrence of one of the operations —, <> by an equiv-
alent expression involving only &, Vv, —. This reduces F to an equivalent formula
involving only the operators &, Vv, —. Then, using (vii—viii) and (x), we systemat-
ically push ‘=" and ‘V’ operators down in the syntax tree, moving ‘&’ operators
up. Subformulae of the form (—(—p)) are simplified to p using axiom (xxiii). Ax-
ioms (xxiv—xxix) can be used to simplify expressions containing the constants ‘true’
and ‘false’. When this work is complete F will been have reduced to an equivalent
formula F’ which is either one of the constants ‘true’ or ‘false’ or has the form
a1 & - - - & ai, where each a; is a disjunction of the form

biVv---Vby,

each b, being either a propositional variable or the negation of a propositional vari-
able. (ii) and (v) allow us to think of these conjunctions and disjunctions without
worrying about how they are parenthesized. Then (iv) and (vi) can be used to bring
all the b, involving a particular propositional variable together within each a;.

Now assume that F is a tautology, so that every one of the formulae to which
we have reduced it must also be a tautology (since the substitutions performed all
convert tautologies to tautologies), and so our final formula F’ is a tautology. We
will now further reduce F’, so that it becomes the formula ‘true’. Unless F’ is
already ‘true’, in each a;, there must occur at least one pair by, b, of disjuncts such
that by, is a propositional variable of which b, is the negation, ‘—b,,’. Indeed, if this
is not the case, then any propositional variable which occurs in a; will occur either
negated or non-negated, but not both. Given this, we can assign the value 0 to each
non-negated variable and the value 1 to each negated variable. Then every b, in a;
will evaluate to 0, so the whole expression by V - - - Vv by, will evaluate to 0, thatis, a;
will evaluate to 0. But as soon as this happens the whole formula a; & - - - & aj will
evaluate to 0. This shows that there exists an assignment A such that Val(A, F') =0,
contradicting the fact that F” is a tautology. This contradiction proves our claim that
each a; must contain at least one pair by, b, of disjuncts which agree except for the
presence of a negation operator in one but not in the other.

Given this fact, (xxii) tells us that ‘b,, v b, simplifies to ‘true’, so that (xxvi)
can be used repeatedly to simplify a; to ‘true’. Since this is the case for each a;,
repeated use of (xxiv) allows us to reduce any tautology to ‘true’ using a chain
of equivalences. Since this chain of equivalences can as well be traversed in the
reverse direction, we can equally well expand the axiom ‘true’ (axiom (xxx)) into
our original formula F using a chain of equivalences. Then (xiv) can be used to
convert this chain of equivalences into a chain of implications, giving us a proof of
F, by repeated uses of modus ponens.

Any set of axioms from which all the statements (i—xxx) can be derived as theo-
rems can clearly be used as an axiomatic basis for the propositional calculus. This

42 2 Propositional- and Predicate-Calculus Preliminaries

allows much leaner sets of axioms to be used. We refrain from exploring this point,
which lacks importance for the rest of our discussion.

However, it is worth embedding the notion of ‘tautology’ in a wider, relativized,
set of ideas. Suppose that we write

EF
to indicate that the formula F is a tautology, and
FF

to indicate that F is a provable formula of the propositional calculus. The preceding
discussion shows that = F, and I F, are equivalent conditions. This result can be
generalized as follows. Let S designate any finite set of syntactically well-formed
formulae of the propositional calculus. We can then write

SEF

to indicate that, for each assignment A covering both F', and all the formulae in S,
we have Val(A, F) = 1 whenever Val(A, G) =1 for all G in §. Also, we write

SEF

to indicate that F' follows by propositional proof if the statements in S are added to
the axioms of propositional calculus (each of them acting as an individual axiom,
not as a template). Then it is easy to show that

SEF ifandonlyif Sk F.
To show this, first suppose that S = F. Let C designate the conjunction
G & - &Gy

of all the formulae in S. Then since Val(A, H; & H>) = min(Val(A, Hy), Val(A, Hy))
for any two formulae H, H,, it follows that Val(A,C) = 1 if and only if
Val(A, G) =1 for all G in S. We have

Val(A, C — F) =Val(A, (=C) v F) = max(1 — Val(A, C), Val(F))

for all assignments A covering C — F, (i.e. covering both F', and all the formulae
in §). It follows that for each assignment A covering both F, and all the formulae
in S, we have Val(A,C — F) =1, since if 1 — Val(A, C) # 1 then Val(A, C) must
be 1 and so Val(F) must be 1. Thus

=C—F,

and so it follows that FHC — F, i.e. C — F can be proved from the axioms of
propositional calculus alone. But then if the statements in S are added as additional

2.1 The Propositional Calculus 43

axioms we can prove F, by first proving C — F, and then using the statements in
S to prove the conjunction C. This shows that § = F implies S+ F.

Next suppose that S = F, and let A be an assignment covering both F', and all the
formulae in S so that Val(A, G) = 1 for every statement G in S. Then Val(A, G) =1
for every statement G that can be used as an axiom in the proof of F, from the
standard axioms of propositional calculus and the statements in S as additional ax-
ioms. But we have seen above that if Val(A, p — ¢) and Val(A, p) are both 1, so
is Val(A, g). Since derivation of ¢ from p and p — q is the only inference step al-
lowed in propositional calculus proofs, it follows that S = F, completing our proof
that the conditions S |= F, and S + F, are equivalent.

We shall see that similar statements apply to the much more general predicate
calculus studied in the following section. In that section, we will need the following
extension of the preceding results to countably infinite collections of propositional
formulae.

Definition 2.3 A (finite or infinite) collection S of formulae of the propositional
calculus is said to be consistent if the proposition ‘false’ cannot be deduced from S,
ie.

S I false

is false. We say that S has a model A if there exists some assignment A covering
all the formulae of S such that Val(A, F) = 1 for every F in S.

Theorem 2.1 (Compactness) Let S be a denumerable collection of formulae of the
propositional calculus. Then the following three conditions are equivalent:

(i) S is consistent.
(i1) Every finite subset of S is consistent.
(iii) S has a model.

Proof Since subsets of a consistent S are plainly consistent, (i) implies (ii). On
the other hand, any proof of ‘false’ from the statements of S is of finite length by
definition, and so uses only a finite number of the statements of S. Thus (ii) implies
(1), so (ii) and (i) are equivalent.

Next suppose that S is not consistent, so that ‘false’ can be proved from some
finite subset S’ of the statements in S. Let C be the conjunction of all the statements
in §'. It follows from the discussion immediately preceding the statement of the
present theorem that HC — false, and so Val(A, ‘C — false’) = 1 for any assign-
ment A covering all the propositional symbols in S. This gives Val(A, C) = 0 for all
such A, so that S has no model. This proves that (iii) implies (i).

Next we show that (i) implies (iii). For this, let {S;} be an increasing sequence of
finite subsets of S whose union is all of S. Each S; is plainly consistent, so

S; I-false

44 2 Propositional- and Predicate-Calculus Preliminaries

is false for each j, and therefore
S; = false

is false, since we have shown above that these two conditions are equivalent for finite
S;. That is, for each j there must exist an assignment A ; covering all the variables
appearing in any formula of §;, such that Val(A;, S;) = 1. Let vy, v2, v3, ... be an
enumeration of all the variables appearing in any of the formulae of S. Then each
vx must be in the domain of all A; for all j beyond a certain point j = j.

Let Iy designate the sequence of all integers. Since A ;j(vi) must have one of the
two values 0 and 1, there must exist an infinite subsequence I of Iy for all j of
which Aj(vy) has the same value. Call this value B(v{). Arguing in the same way
we see that here must exist an infinite subsequence I of I; and a Boolean value
B(v7) such that

B(v) =Aj(vp) forall jin I>.

Arguing repeatedly in this way we eventually construct values B(vi) for each k such
that for each finite m, there exist infinitely many j such that

B(v,) =Aj(v,) foralln from 1 tom.

Now consider any of the formulae G of S. Since G can involve only finitely many
propositional variables v}, all its variables will be included in the set {vy, ..., v}
for each sufficiently large k. Take any A; for which B(v,) = A (v,) for all n from
1 to k. Then it is clear that for some i greater than j, we have

Val(B, G) = Val(A;, G) = 1.

Hence Val(B,G) =1 for all G in S, so that B is a model of S, proving that (i)
implies (iii), and thereby completing the proof of our theorem. g

Using the Compactness Theorem, we can show that the conditions S - F, and
S = F, are equivalent even in the case in which S is an infinite set of propositional
formulae.

To show this, first assume that S |= F. Then the set S U {—F} of propositions is
plainly not consistent, and so by the Compactness Theorem S must contain some
finite subset Sp such that So U {—F} is not consistent. Then plainly Sy = F, so we
have Sp = F. This clearly implies S+ F; so S = F, follows from S = F.

But, as noted at the end of the proof of the Compactness Theorem, S |= F follows
from S+ F, even if § is infinite, completing the proof of our claim.

2.2 The Predicate Calculus

The predicate calculus constitutes the next main part of the logical formalism used
in this book. This calculus enlarges the propositional calculus, preserving all its

2.2 The Predicate Calculus 45

operations but also allowing compound functional and predicate terms and the two
quantifiers V and 3. An example is the formula

(vx,y | Fx+y)=F(F(x))) > F(F(x)) =0)
— ((3x | F(F(x)) #£0) > (F(x +y) # F(F(x)))).

Formulae of the predicate calculus are built starting with string names of three
kinds, respectively, designating ‘individual’ variables, function symbols, and pred-
icate symbols. These are combined into ‘terms’, ‘atomic formulae’, and ‘formulae’
using the following recursive syntactic rules.

(i) Any variable name is a term. (We assume variable names to be alphanumeric
and to start with lower case letters.)

(i) Each function symbol has some fixed finite number k& of arguments. If f
is a function symbol of k arguments, and ¢, ..., are any k terms, then
f(t,...,t) is a term. (We assume function names to be alphanumeric and
to start with lower case letters.)

(iii) Each predicate symbol has some fixed finite number k of arguments. If P
is a predicate symbol of k arguments, and 7y, ..., # are any k terms, then
P(t1, ..., t) is an atomic formula. (We assume predicate names to be alphanu-
meric and to start with upper case letters.)

(iv) Formulae are formed starting from atomic formulae and using the operators
and syntactic rules of the propositional calculus and the two quantifiers V and

3. More precisely, if e and f are any two predicate formulae and vy, ..., v, are
any n variable names, with n > 0, then the following expressions are predicate
formulae:

e& f, eV f, —e,

e— f, e« f,

Vv, ..., v | €), QAvi, .o un | €.

Like propositional formulae, the formulae of predicate calculus parse unambigu-
ously into syntax trees each of whose internal nodes is marked either (i) with one of
the propositional operators, and then has as many descendants as the corresponding
propositional node, or (ii) with a function or predicate symbol, in which case its
descendants correspond to the arguments of the function or predicate symbol; (iii) a
quantifier V or 3 involving n variable names, in which case the node has n + 1 de-
scendants, the first n marked with the n variable names appearing in the quantifier
and the n 4 1-st which is the syntax tree of the expression e that is being quantified.
Each leaf of such a tree is marked either with the name of an individual variable or a
function symbol of zero arguments. (Such function symbols are called ‘constants’.)

Each occurrence of a variable v at a leaf of the syntax tree of a valid predicate
formula is either free or bound. A variable v is considered to be bound if it appears
as the descendant of some syntax tree node which is marked with a quantifier in

46 2 Propositional- and Predicate-Calculus Preliminaries

whose associated list of variables v occurs; otherwise the occurrence is a free occur-
rence. These notions clearly translate back into corresponding notions for variable
occurrences in the unparsed string forms of the same formulae. For example, in the
predicate formula

(Vx,z,x | Fx+y+2)Vv @y, y | Fix+)

the first three occurrences of x are bound, but the fourth occurrence of x is free.
Likewise the last three occurrences of y are bound, but its first occurrence is free.
Note that, as this example shows, repeated occurrences of a variable in the list fol-
lowing one of the quantifier symbols V or 3 are legal. However, we will see, when
we come to define the semantics of predicate formulae, that such repetitions are al-
ways superfluous since any variable occurrence repeated later in the list following
a quantifier symbol can simply be dropped. For example, the formula shown above
has the same meaning as

(Vz,x | F(x+y+z))\/(EIy | F(x+y)).

Bound variables are considered to belong to the scope of the nearest ancestor quan-
tifier in whose list of variables they appear; this quantifier is said to bind them. For
example, in

(Vx | F(x)Vv (Elx | G(x)) \Y H(x))

the first, second, and final occurrences of x are in the scope of the first quantifier
‘V’, but the third and fourth occurrences are in the scope of the second quantifier
=

As was the case for the propositional calculus, we can think of predicate formulae
either as representing certain functions, or as the ingredients of a system of formal-
ized proof. Again we begin with the first approach. Here the required definitions are
a bit trickier.

Definition 2.4 An interpretation framework for a collection PF of predicate formu-
lae is a triple (%, I, A) such that

(1) 7% is anonempty set, called the universe or domain of the interpretation frame-
work. We write %/ for the k-fold Cartesian product of % with itself.

(i1) 1 is a single-valued function, called an interpretation, which maps each of the
function and predicate symbols occurring in the collection in accordance with
the following rules:

(ii.a) Each function symbol f of k arguments occurring in the collection of
formulae is mapped into a function 7 (f) which sends % * into % .

(ii.b) Each predicate symbol P of k arguments occurring in the collection of
formulae is mapped into a function 7 (P) which sends %% into the set
{0, 1} of values.

(iii) A is a single-valued function, called an assignment, which maps each of the
individual variables occurring freely in the collection PF of formulae into an
element of % .

2.2 The Predicate Calculus 47

As previously we speak of such an interpretation framework as covering the col-
lection PF of predicate formulae.

Suppose that we are given any such interpretation / and assignment A with uni-
verse % , and an expression F which they cover. (Note that F can be either a term
or a predicate formula.) Then the value Val(I, A, F) of the assignment for the ex-
pression is the value defined in the following recursive way.

(1) If F is just an individual variable x, then Val(I, A, F) = A(x).

(i) If F is a term having the form g(z1,...,%), and G is the corresponding
mapping I (g) from Uk to %, then Val(I, A, F)=G\Val(Il, A, t1),...,

Val(1, A, t)).

(iii) If F is an atomic formula having the form P (¢, ...,), and p is the corre-

sponding mapping I (P) from U* t0 {0, 1}, then Val(I, A, F) is the 0/1 value
p(Val(I1, A, ty),...,Val(l, A, t)).

(iv) If F is a formula having the form G & H, then Val(/, A, F) is the minimum
of Val(I, A, G) and Val(I, A, H).

(v) If F is a formula having the form G Vv H, then Val(/, A, F) is the maximum
of Val(I, A, G) and Val(I, A, H).

(vi) If F is a formula having the form —G, then Val(/, A, F) =1 —Val(/, A, G).

(vii) If F is a formula having the form G — H, then Val(I, A, F) =Val(l, A,
‘(=G)V H’).

(viii) If F is a formula having the form G <> H, then Val(/, A, F) = Val(l, A,
(G&H)V(—6) & (—H))").

(ix) If F is a formula having the form (Yvi,..., v, | €), then Val(I, A, F) is
the minimum of Val(I, A’,), extended over all assignments A" such that A’
covers the formula e and A’(x) = A(x) for every variable x not in the list
Uly, ..., Uy.

(x) If F is a formula having the form (Jvy, ..., v, | e), then Val(I, A, F) is the
maximum of Val(I, A’,), extended over all assignments A’ such that A’
covers the formula e and A’(x) = A(x) for every variable x not in the list
Vi, .eney Up.

Since, as seen in (ix) and (x) above, the variables appearing in the lists follow-
ing quantifier symbols ‘Y’ and ‘3’ merely serve to mark occurrences of the same
variables in the quantifier’s scope as being ‘bound’ and hence subject to minimiza-
tion/maximization when values Val(/, A, F) are calculated, it follows that these
variables can be replaced with any others provided that this replacement is made
uniformly over the entire scope of each quantifier, and that no variable occurring
freely in the original formula thereby becomes bound. For example, the formula

(Vx| F(x) v (3x | G(x)) v H(x))
appearing above can as well be written as

(Vx| F(xx)yv (3y | G(») v H(x))
or as

(Vy| F() Vv (3Ex | GW)) v H(Y)).

48 2 Propositional- and Predicate-Calculus Preliminaries

A convenient way of performing this kind of ‘bound variable standardization’ is as
follows. We make use of some standard list L of bound variable names, reserved for
this purpose and used for no other. We work from the leaves of a formula’s syntax
tree up toward its root, processing all quantifiers more distant from the root before
any quantifier closer to the root is processed. Suppose that a quantifier like

~Vup, ... v | €
or

(EL T T)

is encountered at a tree node Q during this process. We then take the first n variables
b1, ..., b, from the list L that do not already appear in any descendant of the node
Q, replace vy, ..., v, by by, ..., b,, respectively, and make the same replacements
for every free occurrence of any of the vy, ..., v, ine.

This standardization will for example transform

Yy | (Yy| FO) v (3x | G&))) v H(p))
into
(Vb3 | (Vb1 | F(b1) v (3b2 | G(b))) Vv H(b3)).

Such standardization of bound variables makes it easier to see what quantifier each
bound variable occurrence relates to. It also uncovers identities between quantified
subexpressions that might otherwise be missed, and so is a valuable preliminary to
examination of the propositional structure of predicate formulae.

It also follows from (ix) and (x) that the value assigned to any quantified formula

(Vu1,v2, ... 0y | €) 2.1
is exactly the same as that assigned to
(Vor | (Yoo | (V- | (You | @) --+))) (2.2)
and, likewise, the value assigned to any quantified formula
Fvr,v2, ..., 04 | € (2.3)
is exactly the same as that assigned to
Qo | Qv | (3 | @ua | @)--)))- (2.4)

Accordingly, we shall regard (2.1) and (2.3) as abbreviations for (2.2) and (2.4).
This allows us to assume (wherever convenient) that each quantifier examined in
the following discussion involves only a single variable.

Definition 2.5 A predicate formula F is universally valid if Val(I, A, F) =1 for
every interpretation framework (%, I, A) covering it.

2.2 The Predicate Calculus 49

In predicate calculus, universally valid formulae are those which evaluate to true
no matter what ‘meanings’ are assigned to the variables, function symbols, and pred-
icate symbols that occur within them. Examples are

P(x,y)v (—-P(x, y)),
(Yya| Q) — (P(x.y) — Q).
(Vx| P(x,y) = (Fy | (Q(x) = (P(x,y) & Q(x))))).

However, the problem of determining whether a given predicate formula is uni-
versally valid is of a much higher order of difficulty than the problem of recognizing
propositional tautologies, since the collection of interpretation frameworks that must
be considered is infinite rather than finite. There is no longer any reason for believ-
ing that this determination can be made algorithmically, and indeed it cannot, as we
shall see in Chap. 6. Thus we have little alternative to setting up the predicate calcu-
lus as a logical system in which universally valid formulae are found by proof. We
now begin to do this, starting with a special subclass of universally valid formulae,
the predicate tautologies, which are defined as follows.

Definition 2.6 A predicate formula F is a tautology if it reduces to a propositional
tautology by descending through its syntax tree and reducing each node not marked
with a propositional operator to a single propositional variable, identical subnodes
always being reduced to the same propositional variable. (In what follows we will
call this latter formula the propositional blobbing of F.)

As an example, note that the indicated reduction sends

P(x,y) V (=P(x,y)) into AV (=A),
(Vy| Q(x) > (P(x,y) = Q(x))) into B,
P(x,y) = (3y| (Q(x) = (P(x,y) & Q(x)))) into A — C.

Thus the first of these three formulae is a predicate tautology, but the two others are
not.

The recursive computation of Val(/, A, F) assigns some 0/1 value to each sub-
tree of the syntax tree of F, and plainly assigns the same value to identical subtrees
of the syntax tree of F. This makes it clear that every predicate tautology is uni-
versally valid. But there are other basic forms of universally well-formed predicate
formulae, of which the most crucial are listed in the following definition.

Definition 2.7 A formula is an axiom of the predicate calculus if it is either

(i) any predicate tautology;
(i1) any formula of the form

(VY[P—> Q) &My | P))— (Vy| Q)

50 2 Propositional- and Predicate-Calculus Preliminaries

(iii) any formula of the form
(=(Vy | =P)) < @y | P);

(iv) any formula of the form P <> (Vy | P), where the variable y does not occur in
P as a free variable;

(v) any formula of the form (Vy | P) — P(y < e), where P(y <> e) is the for-
mula obtained from P by substituting the syntactically well-formed term e for
each free occurrence of the variable y in P, provided that no variable free in e
is bound at the point of occurrence of any such y in P.

We can easily see that all of these predicate axioms are universally valid. Given
a formula P of the predicate calculus, let P’ designate its propositional blobbing.
Predicate tautologies are universally valid since the final stages of computation of
Val(I, A, P) always use the values assigned to certain basic subformulae of P in the
same way that values assigned to corresponding propositional variables are used in
the propositional computation of Val(I, A, P’). To see that (iii) is universally valid,
we have only to note that for 0/1 valued functions f of any number of arguments
we always have

max(f) =1—min(l — f).

(iv) is universally valid because if y does not occur in P as a free variable, we have
val(1, A, “(Vy | P)’)=Val(l, A, P)

for every interpretation / and assignment A covering P.

(v) is universally valid because any interpretation / and assignment A cover-
ing P(y < e) will assign some value ag to e, and then Val(/, A, P(y < e)) =
Val(I, A’, P), where A’ is the assignment identical to A except that it assigns
the value ag to y. Since Val(I, A’, (Vy | P)) is by definition the minimum of
Val(I, B, P) extended over all assignments B which are identical to A except on
the variable y, it follows that Val(Z, A, ‘(Vy | P)’) = 1 implies Val(I, A, P(y —
e)) = 1, so that

max (1 —Val(1, A, ‘(Vy | P)’), Val(I, A, P(y < ¢)))

is identically 1,1i.e. (Vy | P) = P(y <> e) is universally valid.
To show that (ii) is universally valid, note that for any interpretation / and as-
signment A covering (ii)

Val(1,A,*(Vy | P = Q))
and
Val(1, A, “(Vy | P)’)

are, respectively, the minimum of max(1 — Val(/, A’, P),Val(I, A’, Q)) and of
Val(I, A’, P), extended over all assignments A’ which are identical to A except

2.2 The Predicate Calculus 51

on the variable y. If both of these minima are 1, then 1 — Val(I, A’, P) must
be O for all such A’, so Val(/, A’, Q) must be 1 for all such A’, proving that
Val(1, A, “(Vy | Q)’) = 1. This implies the universal validity of (ii), completing our
proof that all predicate axioms are universally valid.

2.2.1 Proof Rules of the Predicate Calculus

The predicate calculus has just two proof rules. The first is identical with the modus
ponens rule of propositional calculus. The second is the Rule of Generalization,
which states that if P is any previously proved result, then

(Vx| P)

can be deduced.
A stronger variant of the Rule of Generalization, which turns out to be very useful
in practice, allows us to deduce the formula

P— (Vx| Q)

from P — Q, provided that the variable x does not occur free in P. This variant can
be justified as follows. Let us assume that the formula P — Q has been derived and
that x is a variable which does not have free occurrences in P. By generalization
and as instance of the predicate axiom (ii) we can derive the formulae

Vx| P> Q), (Vx| P—> Q)& (Vx| P))— (Vx| Q).
By propositional reasoning these imply the formula
Vx| P)— (Vx| Q).

Since we are assuming that the variable x does not occur free in P, we can derive
the formula

P< (Vx| P)

using predicate axiom (iv), and it follows by propositional reasoning that
P— (Vx| Q),

which establishes the strong form of the rule of generalization that we have stated.

In what follows we will not always distinguish between the two variants of the
rule of generalization and we will use whichever version is more convenient for the
purposes at hand. The argument given above shows that any proof which uses the
strong variant of the Rule of Generalization can be transformed mechanically into a
proof which uses only the standard form of this Rule.

52 2 Propositional- and Predicate-Calculus Preliminaries

We can easily see that any formula deduced from universally valid formulae us-
ing the two proof rules just explained must also be universally valid. For the modus
ponens rule this follows as in the propositional case. For the rule of generalization
we reason as follows. If Val(Z, A, P) = 1 for every interpretation / and assign-
ment A covering P, then since for every assignment B covering (Vx | P) the value
v=Val(I, B, ‘(Vx | P)’) is the minimum of Val(I, A, P) extended over all assign-
ments A which give the same value as B to all variables other than x, it follows that
v =1 also.

In analogy with the case of the propositional calculus we write

=F

to indicate that the formula F is a universally valid formula of the predicate calculus,
and write

FF

to indicate that F is a provable formula of the predicate calculus.
The following very important theorem is the predicate analog of the statement
that a propositional formula is a tautology if and only if it is provable.

2.2.2 The Godel Completeness Theorem

For any predicate formula, the conditions
EF and FF

are equivalent.

Half of this theorem is just as easy to prove as in the propositional case. Specifi-
cally, suppose that = F'. Then since all the axioms of predicate calculus are univer-
sally valid and the predicate-calculus rules of inference preserve universal validity,
F must be universally valid, i.e. = F.

The other, more difficult half of this theorem will be proved later, after some
preparation. Much as in the case of the propositional calculus, this result can be
generalized as follows. Let S designate any set of syntactically well-formed formu-
lae of the predicate calculus. Write

SEF

to indicate that, for each interpretation / and assignment A covering both F and all
the formulae in S, we have Val(I, A, F) = 1 whenever Val(/, A, G) =1 for all G
in S. Also, write

SEF

to indicate that F follows by predicate proof if the statements in S are added to the
axioms of predicate calculus. Suppose that none of the formulae in S contain any

2.2 The Predicate Calculus 53

free variables (formulae with this property are usually called sentences). Then for
any predicate formula, the conditions

SEF and SHF

are equivalent. (An easy example, given below, shows that we cannot omit the con-
dition ‘none of the formulae in S contain any free variables’.) The derivation of this
from the more restricted result given by the Godel completeness theorem is almost
the same as the corresponding propositional proof. For the moment we will consider
only the case in which S is finite. Suppose first that S = F and let C designate the
conjunction

G & - &Gy

of all the formulae in S. Let I and A be, respectively, an interpretation and an assign-
ment which cover C — F (i.e. cover both F and all the formulae in §). Then as in
the propositional case it follows that Val(I, A, C) = 1 ifand only if Val(1/, A, G) = 1
for all G in S. Hence

Val(I, A,C — F) =Val(I, A, (=C) V F)
=max(1 —Val(/, A, C),Val(I, A, F)) =1,

for all such 7 and A. Hence
=EC—>F

follows using the Godel Completeness Theorem, as stated above, and so it follows
that

HFC—F,

i.e. C — F can be proved from the axioms of predicate calculus alone. But then if
the statements in S are added as additional axioms we can prove F by first proving
C — F, then using the statements in S to prove the conjunction C, and finally
proving F by modus ponens from C — F and C. This shows that S = F implies
Sk F.

Next suppose that there exists a formula F' such that S+ F, but that S = F is
false. Let F' be such a formula with the shortest possible proof from S, and let /
and A be, respectively, any interpretation and assignment A covering both F and
all the formulae in S such that Val(/, A, G) = 1 for every statement G in S, but
Val(I, A, F) = 0. The final step of a shortest proof of F' from S cannot be either the
citation of an axiom or the citation of a statement of .S, since in both these cases we
would have Val(/, A, F) = 1. Hence this final step is either a modus ponens infer-
ence from two formulae p, p — F appearing earlier in the proof, or a generalization
inference from one such formula p. In the modus ponens case we must have S = p,
S = p — F by inductive assumption. Hence Val(/, A, p — F) and Val(/, A, p) are
both 1, and therefore so is Val(/, A, F), a contradiction.

In the remaining case, i.e. that of a generalization inference, we must have S = p,
where F has the form (Vx | p), for some predicate variable x. Since the statements

54 2 Propositional- and Predicate-Calculus Preliminaries

in § have no free variables we have Val(I, A’, G) = 1 for every statement G in S
and every assignment A" which is identical to A except on the variable x, so that
Val(l, A’, p) = 1. But then

Val(1, A, ‘(Vx | p)’)

is the minimum of Val(/, A’, p), taken over all such A’, and therefore it follows that
Val(1, A, “(Vx | p)’) =1,i.e. Val(I, A, F) = 1, which is again a contradiction. This
shows that S+ F implies S = F, completing our proof that the conditions S &= F
and S F F are equivalent, at least in the case in which S is finite. We will see later
that the condition that the set S is finite can be dropped. In fact, we can notice right
away that the derivation given above of S = F from S F F holds also in the case in
which S is infinite. Thus, in order to fully establish the generalization of the Godel
completeness theorem, we are only left with proving that S = F implies S+ F,
for every infinite set S of predicate formulae none of which has occurrences of free
variables.

We conclude this subsection by noting that the result just stated fails if the for-
mulae in S are allowed to contain free variables. To see this, consider the simple
case in which S consists of the single formula P (x). If this formula were added to
the set of axioms of the predicate calculus, we could give the proof

P(x) [axiom]

(Vx | P(x)) [generalization]

(Vx | P(x)) — P(y) [predicate axiom (V)]
P(y) [modus ponens]

Hence we could have {P(x)} - P(y). But {P(x)} &= P(y) is false, since we can
set up a 2-point universe % = {a, b}, the assignment A(x) =a, A(y) = b, and the
interpretation I such that 7/ (P)(a) =1 and I (P)(b) =0.

2.2.3 Working with Universally Valid Predicate Formulae. A Few
Simple Examples of Predicate Proof
A few basic theorems of predicate calculus are needed for later use. One such is
(Vx| P> Q)& @Ex | P))—> (3x | Q).

The following proof of this statement, and two other sample proofs given later in this
section, illustrate some of the techniques of direct, fully detailed predicate proof. By
predicate axiom (v) we have

Vx| P> Q) > (P - Q),

2.2 The Predicate Calculus 55

and from this by purely propositional reasoning we have
(Vx| P— Q)= ((=0Q) > (=P)).
By the (strong) rule of generalization this gives
Vx| P— Q) = (Vx| ((=Q) = (=P))).

Axiom (ii) now tells us that

(Yx [((=Q) = (=P))) & (Vx | (=Q))) = (Vx | (=P)),
so by propositional reasoning we have

Vx| P = Q)= ((Vx | (=Q)) = (¥x | (=P))),

and also

Vx| P = 0) = ((=(vx | =P))) = (=(Yx | (—=0))))-

Since by predicate axiom (iii) we have
(=(¥x | (=P))) < @x | P)

and

(—=(vx | (=Q))) < @x | 0),

our target statement
(Vx| P> Q) &@x | P))—> 3x| Q)

now follows propositionally.

The following is a useful general principle of the predicate calculus whose uni-
versal validity is readily understood intuitively, and which can also be proved for-
mally within the predicate calculus.

Suppose that a predicate formula of the form

A< B

has been proved and that F' is a syntactically legal predicate formula such that A
appears as a subformula of F. Let G be the result of replacing some such occurrence
of A in F by an occurrence of B. Then F < G is also a theorem.

To show this, note that F can be built up starting from A by steps, each of which
either joins subformulae together using a propositional operator, or quantifies a for-
mula. Hence it is enough to show that if

Hy & H3 (2.5)

has already been proved, then

56 2 Propositional- and Predicate-Calculus Preliminaries

(a) (H & Hy) <> (H) & H3)
(b) (H1V Hy) < (H; V H3)
(©) (H1 < H) <> (Hy <> H3)
(d) (Hy — Hy) < (H — H3)
(e) (H — Hy) < (H; — Hy)
(f) (—H2) <> (—H3)

(g) (Vx| Hb) < (Vx | H3)
(h)y @x | Hy) < (3x | H3)

can be proved as well. Notice that (a)—(f) follow readily from (2.5) by propositional
reasoning. So to prove our claim we have only to establish that (g) and (h) follow
from (2.5) too. This can be shown as follows. By propositional reasoning and the
predicate rule of generalization, statement (2.5) yields

(Vx | Hy — H3).
By axiom (ii) we have
((Vx | Hy— H3) & (Vx | Hy)) — (Vx | H3),
so by propositional reasoning we get
(Vx | Hp) = (Vx | H3).
The formula
(Vx | H3) > (Vx | H2)
can be derived in the same way, and so we have
(Vx | Hy) < (Vx | H3).
Since (2.5) yields
(—H2) < (—H3)
by propositional reasoning, it follows in the same way that
(Vx | (—|H2)) <~ (Vx | (—|H3))
and so
(=(Vx | (=H2))) < (=(Vx | (=H3))).
It follows by predicate axiom (iii) and propositional reasoning that
(Gx | H2) < (3x | H3),

completing the proof of our claim.

The following ‘change of bound variables’ law is still another rule of obvious
universal validity, which as usual can be proved formally within the predicate cal-
culus.

2.2 The Predicate Calculus 57

Let F be a syntactically well-formed predicate formula containing x as a free
variable, let y be a variable not occurring in F, and let F(x < y) be the result of
replacing every free occurrence of x by an occurrence of y. Then

(Vx| F) < (Vy | F(x = y))

and
@x |)< @y| Fix=y))

are universally valid predicate formulae. To show this, we first use predicate axiom
(v) to get

(Vx| F) > F(x < y),
and so
Vx| F) = (Yy | F(x <))

follows by the (strong) rule of generalization, since y does not occur freely in
(Vx| F).

Since replacing each free occurrence of x in F by y and then each y by x brings
us back to the original x, we have

F(x—y)(y—x)=F.

Thus the argument just given can be used again to show that

(Vy | F(x = y)) = (Vx | F),
and so it results propositionally that

(Vy | Fix = y)) < (¥x | F).
Applying the same argument to ‘—F’ we can get

(=(Vy | =F(x = y))) < (=(¥x | =F)),

and so

(| Fx=y) < @Ex | F),

using predicate axiom (iii).

The observations just made allow any predicate formula F to be transformed, via
a sequence of formulae all provably equivalent to each other, into an equivalent for-
mula G all of whose quantifiers appear to the extreme left of the formula. To achieve
this, we must also use the following auxiliary group of predicate rules, which apply
if the variable x does not occur freely in Q:

@@ (Vx| PV Q)< ((Vx | P)V Q)
(b) (Vx| P& Q)< (Vx| P)& Q)

58 2 Propositional- and Predicate-Calculus Preliminaries

© (Vx| P> Q)< (Ex|P)—> Q)
d (Vx| Q= P)< (Q— (Vx| P))
e (FAx | PVvQ)«((Ex| P)VvO)
0 x| P& Q)< (Ex | P)&Q)
(® @x|[P—> Q)< (Vx| P)—> Q)
(h) @Gx [Q— P)«(Q— Ex|P)).

These rules can be proved as follows. Predicate axiom (v) gives
(Vx | P)— P,
and so by propositional reasoning from the tautology
((¥x | P)—> P) = (((¥x | P)v Q) > (P V Q).
we get
(Vx| P)V Q)= (PV Q).
Since x does not occur freely in ((Vx | P) Vv Q), generalization now gives
(Vx| P)v Q)= (Vx | PV Q).
Conversely we get
(Vx| PV Q)= (PV Q)
from predicate axiom (v), and so
((vx | PV Q) & (—0Q)) = P.
Since x does not occur freely in ((Vx | PV Q) & (—Q)), by generalization we get
(Vx| PV Q)& (=Q)) = (Vx | P),
and then
Vx| PV Q)= (Vx| P)V Q),
so altogether
(Vx| PV Q)< ((¥x | P)V Q),

proving (a).
To prove (b) we reason as follows.

Vx| P& Q)— (P& Q)

by axiom (v), so

(Vx| P& Q) —> P

2.2 The Predicate Calculus 59

by propositional reasoning. Since x does not occur freely in (Vx | P & Q), by gen-
eralization we derive

Vx| P& Q)— (Vx| P)
from this. Thus, by propositional reasoning, we obtain
(Vx| P& Q) — ((Vx | P) & Q).
Conversely, since
(Vx| P)& Q) = (Vx| P)
we have
(Vx| P)& Q) —> P

by axiom (v) and propositional reasoning. Since
(Vx| P)& Q)= 0
is propositional, we get
(Vx| P)& Q) — (P & Q),

and now
(Vx| P)& Q) > (Vx | P & Q)

follows by generalization, since x does not occur freely in (Vx | P) & Q. Altogether
this gives

(Vx| P)& Q) < (Vx | P& Q),

ie. (b).
Statement (c) now follows via the chain of equivalences

(Vx| P> Q)< (Vx| (=P)V Q)
< ((vx | (=P)) v Q)
< ((=(vx | =P)) = 0)
< (@x | P)— Q).
Similarly statement (d) follows via the chain of equivalences
(Vx| Q= P) < (Vx| (=Q)V P)
< ((=Q) Vv (Vx| P))
DA (Q — (Vx | P))

The proofs of (e-h) are left to the reader.

60 2 Propositional- and Predicate-Calculus Preliminaries

2.2.4 The Prenex Normal Form of Predicate Formulae

The prenex normal form of a predicate formula F is a logically equivalent formula
in which quantifiers V and 3 appear only at the very start of the formula. Rules
(a—h) can now be used iteratively in the following way to put an arbitrary formula F
into prenex normal form. We first change bound variables, using the equivalences
derived above for this purpose, to ensure that all bound variables are distinct and
that no bound variable is the same as any variable occurring freely. Then we use
equivalences

(P< Q)< (P> Q) &(Q— P))

to replace all ‘<>’ operators in our formula with combinations of implication and
conjunction operators. After this, we search the syntax tree of the formula, looking
for all quantifier nodes whose parent nodes are not already quantifier nodes, and
moving them upward in a manner to be described. If there are no such nodes, then all
the quantifiers occur in an unbroken sequence starting at the tree root, and so in the
unparsed form of the formula they all occur at the left of the formula. The quantifier
node moved at any moment should always be one that is as close as possible to the
root of the syntax tree. Given that the parent of this quantifier is not itself a quantifier
node, the parent must be marked with one of the Boolean operators &, v, —, —. If
the operator at the parent node is ‘—’, we use one of the equivalences

Vx1, ..., x| =P) < (=@x1,....x¢ | P))

and
@xp,.ox | 2P) o (2(Vxy, . x| P))

to interchange the positions of the ‘=’ operator and the quantifier. In the remaining
cases we use one of the equivalences (a-h) to achieve a like interchange. When
this process, each of whose steps transforms our original formula into an equivalent
formula, can no longer continue, the formula that remains will clearly be in prenex
normal form.

2.2.5 The Deduction Theorem

The Deduction Theorem of predicate calculus, which will be useful below, states
that (provided that neither F or any of the statements in S contain any free variables)
the implication F' — G can be proved from a set S of predicate axioms if and only
if G can be proved if F is added to the set S of axioms. Note that this is an easy
consequence of the Godel Completeness Theorem in the generalized form discussed
at the start of this section. But in what follows we need to know that this result can
be proved directly. This will now be shown.

2.2 The Predicate Calculus 61

Theorem 2.2 (Deduction) Let S be a collection of predicate formulae with no free
variables and let S’ be obtained from S by adding to it a predicate formula F with
no free variables. Then

SFF—G ifandonlyif S+ G,

for any predicate formula G.

Proof Let S, S’, F, and G be as above. First assume that S = F — G holds and let
H\,H, ..., Hy,
with H, = F — G, be a proof of F — G from S. Then it follows immediately that
H\,H,...,H,,F,G

is a proof of G from §’.
Conversely, assume that S’ -+ G and let

Hy, H, ..., Hy, (2.6)

with H, = G, be a proof of G from S’. We can suppose without loss of generality
that this proof does not use the strong variant of the rule of generalization stated
earlier, but only the weaker form of this rule. Consider the sequence of predicate
formulae

F—H, F—>H,, ..., F— H,. 2.7

We will show that by inserting suitable auxiliary formulae into this sequence we
can turn it into a proof from S of F — G. Indeed, for each i = 1,2,...,n one of
the following cases will apply:

(i) H; may be a predicate axiom or H; may be an element of S. In this case we
insert the formulae
H;
H; — (F — H,)
(of which the latter is a tautology) into (2.7) just before the formula F — H;.
(ii) H; may follow from H; and Hy = H; — H; by modus ponens step. In this
case we insert the formulae
(F— Hj) > ((F - (Hj > H;)) > (F > H;))
(F— (Hj > H;)) > (F > H))

(of which the former is a tautology) into (2.7) just before the formula F — H;.

(iii) In the remaining possible cases, namely if H; is derived from some earlier
statement of (2.6) by the rule of generalization, or if H; = F, we need not add
any formula to (2.7).

62 2 Propositional- and Predicate-Calculus Preliminaries

Let
K17K27-~7Km

be the sequence of predicate formulae generated in the manner just described. It
is easy to check that this sequence constitutes a proof of K,, = F — G from S,
provided that we now allow use of the strong variant of the rule of generalization.
Since, as shown above, any such proof can be transformed into one in which all uses
of the strong variant of the rule of generalization have been eliminated and only the
weak form of this rule is used, it follows that S = F — G, concluding our proof of
the deduction theorem. d

The deduction theorem admits the following semantic version, whose proof is
left to the reader.

Theorem 2.3 Let S, S’, F, and G be as in the statement of the deduction theorem.
Then

SEF—G ifandonlyif S =G.

2.2.6 Definitions in Predicate Calculus; the Notion
of ‘Conservative Extension’

Since the use of definitions to introduce new predicate and function symbols is fun-
damental to ordinary mathematical practice, it is important to understand the sense
in which the predicate calculus accommodates this notion. The simplest definitions
are algebraic, i.e. they simply introduce names for compound expressions written
in terms of previously defined predicate and function symbols. Such definitions are
unproblematical, since any use of them can be eliminated by expanding the new
name back into the underlying expression which it abbreviates. But another, less
trivial kind of definition is also essential. This is known as definition by introduction
of Skolem functions. More specifically, once we have proved a formula of the form

(V1o | @z | PO 0 D)) (2.8)

using the axioms of predicate calculus and some set S of additional axioms (none
of which should have any free variables), we can introduce any desired new, never
previously used function name f and add the statement

(V1o | POy s O oo W) 2.9)

to S. The point is that, although this added statement clearly allows us to prove new
statements concerning the newly introduced symbol f, it does not make it possible
to prove any statement not involving f that could not have been proved without its
introduction.

2.2 The Predicate Calculus 63

This very important result can be called the fundamental principle of definition.
To prove it we argue as follows. (But note that the following proof uses the Godel
Completeness Theorem, and so is entirely nonconstructive, i.e. it does not tell us
how to produce the definition-free proof whose existence it asserts.) Let P, S, and
f be as above, and let S be obtained from S by adjoining the formula (2.9) to S.
Let F be a formula not involving the symbol f, and suppose that S’ = F. Then we
have S’ = F by the Gddel completeness theorem (as extended above). Our goal is
to show that § = F. By the Godel completeness theorem it is enough to show that
S = F. To this purpose, let (%, I, A) be an interpretation framework covering F
and the statements in S and such that Val(/, A, G) = 1 for each G in S. Then we
must show that Val(I, A, F) = 1.

Introduce an auxiliary Boolean function p(u1, ..., u,, u,+1), mapping the Carte-
sian product %" *! of n + 1 copies of % into {0, 1}, by setting

p(ulv °-'7un7ul‘l+1) =Va|(l5 A(M], "~’una Mn+1)7 ‘P()’l, -~-a)’n7 Z)’)a
where A(uq, ..., Uy, up+1) is the assignment which agrees with A everywhere ex-
cept on the variables y, ..., y, and z, for which variables we take

A(uy, ..o tn, i) (Y1) = up,

A(Ml, e, Up, un+1)(}’n) = Up,

AQur, .oy tty, Up1)(2) = tpy.
Since

SF(V)’ls---»)’n|(E|Z| P(ylvn'vyl’hz)))v

we have

SEMYL ooy | Bz POLL ..o yn. D))

and therefore

1=Val(I,A, (Yy1,....y | Gz | PO1s---, 00 2))))
= miny, ... u, (Maxy,,, (Val(I, A, ..., up, ttng1), PO1s ..., Y00 2))))

= miny, .4, (Maxy, (P, ...t tns1))),

where the minima and maxima over the subscripts seen extend over all values in % .
Hence there exists a function # from %" into % such that

p(ul,...,un,h(ul,...,un)):1

forall uy,...,u, in % . Let I’ be an interpretation which agrees with I everywhere
except on the function symbol f and such that I’(f) is the function & just defined

64 2 Propositional- and Predicate-Calculus Preliminaries
(which is, as required, a mapping from %" to %). Hence

1 =min,, Mn(p(ul,...,u,,,h(ul,...,un)))
=miny,,...u, (Val(I’, Aur, ..., un), P(Y1s.eosyn, fO1 o0 00)))
:Val(l/7A7 (Vyl’---’YnlP(yl’---aYn»f(yl»n-»)’n))))y

where A(uy, ..., u,) is the assignment which agrees with A everywhere except on
the variables yi, ..., y,, for which variables we take

A(ulv"'7un)(y1) =ui,

A(uy, ..., un)(Yn) = uy.
Since no formula G in § involves the function symbol f, we have
Val(I’,A,G)=Val(I,A,G)=1, forallGinS.
Therefore
Val(I', A, F) =1,

since, as observed above, §’ = F. But since the formula F does not involve the
function symbol f, we have

val(l, A, F) =1,

proving that S = F, and so S+ F. This concludes our proof of the fundamental
principle of definition.

The central notion implicit in the preceding argument is worth capturing for-
mally.

Definition 2.8 Let S be a set of predicate formulae not involving any free variables,
and let S" be a larger such set (possibly involving function and predicate symbols
that do not occur in §). Then S’ is called a conservative extension of S if

S’ F implies S+ F,

for every formula F involving no predicate or function symbols not present in one
of the formulae of S.

The argument just given shows that the addition of formula (2.9) to any set S
of formulae not containing free variables for which (2.8) can be proved yields a
conservative extension.

2.2 The Predicate Calculus 65

2.2.7 Proof of the Godel Completeness Theorem

Now we come to the proof of the Godel completeness theorem. To prove it we
first show, without using it, that the theorem holds for a certain very limited form
of Skolem definition, namely if we introduce a single new constant symbol C (i.e.
function symbol of 0 arguments) satisfying P (C), provided that we have previously
proved a predicate formula of the form

(3z | P(2)).

These constants are traditionally called Henkin constants, after Leon Henkin, who
introduced the technique that we will use. Our first key lemma is as follows.

Lemma 2.1 Let S be a collection of (syntactically well-formed) predicate formulae
without free variables and let C be a constant symbol not appearing in any of the
formulae of S. For each formula H, let H(C — x) denote the result of replacing
each occurrence of C in H by an occurrence of x, where x designates a variable
not otherwise used. Then, if S+ H, we have

SHH(C <= x).

In intuitive terms, this lemma tells us that if the axioms S can be used to prove
some statement about a constant which they never mention, they can be used to
prove the same statement in which C is replaced by a variable.

Proof Suppose that Lemma 2.1 fails for some H. Then, proceeding inductively, we
can suppose that Lemma 2.1 holds for all statements having proofs shorter than that
of H. Without loss of generality, we can assume that the variable x is not used
in the proof of H. Consider the final step in the proof of H. This must either be
(1) a citation of a predicate axiom; (ii) a citation of some statement in S; (iii) a
modus ponens step involving two formulae G and G — H proved earlier; (iv) a
generalization step from a formula G proved earlier. Concerning case (i), if H is a
predicate axiom so is H(C < x). In case (ii), namely if H is a member of S, H
cannot involve the constant C, so that H(C < x) = H and therefore we plainly
have S+ H(C — x).

Next consider case (iii). Since in this case G and G — H both have shorter
proofs than that of H, it follows by inductive assumption that S - G(C — x) and
SH(G — H)(C <= x),ie. SFG(C — x) > H(C < x). Therefore it follows by
a modus ponens step that S = H(C — x).

Finally we consider case (iv). In this case G has a shorter proof than that of its
generalization H = (Vz | G). Hence by inductive assumption S + G(C < x), so
that, by the rule of generalization, S (Vz | G(C — x)) and therefore S+ H(C —
X), since

H(C — x)=(Vz | G)(C‘—)x):(‘v’z | G(C;)x)),

proving our claim in case (iv) and thus completing our proof of Lemma 2.1. U

66 2 Propositional- and Predicate-Calculus Preliminaries
Next we prove the following consequence of Lemma 2.1.

Lemma 2.2 Let S be a collection of (syntactically well-formed) predicate formulae
without free variables. Let F be a predicate formula involving the one free variable
y. Let C be a constant symbol not appearing in any of the formulae of S or in F, and
let F(y < C) denote the formula obtained from F by replacing each occurrence of
y by an occurrence of C. Suppose that

SH@y| F).

Let S’ be the union of S and the statement F(y < C). Then S’ is a conservative
extension of S.

Proof Let H be a formula involving only the symbols appearing in S, so that in par-
ticular the constant C does not occur in H. Suppose that S’ - H. By the Deduction
Theorem we have

SFF(y—C)— H.
By Lemma 2.1 this last formula yields

St (F(y= C)— H)(C <= x),
where x is a variable not otherwise used. Therefore
SEFF(y—x)— H,

since F(y — C)(C — x) = F(y — x) and H(C — x) = H. Applying the rule of
generalization we obtain

SE (Vx| F(y = x)— H).
We have shown above that
(Vx| Fo—=>x)—> H)&(3x | F(y—x)))— @x | H)
and
Gy | F) o (3| Fiy—x)

are universally valid. Thus, by propositional reasoning,
SEQ@x | H).
But since the variable x does not occur freely in H, we have
[(Vx | (—|H)) < (—H)
by predicate axiom (iv), and so it follows propositionally that

= —|(Vx | (—-H)) <~ H.

2.2 The Predicate Calculus 67

Predicate axiom (iii) then gives
F@Ex | H) < H

and so S+ H, proving that S’ is a conservative extension of S. 0

2.2.7.1 The Remainder of the Proof: Predicate Consistency Principle

We will now complete our proof of the Godel completeness theorem. For this, it is
convenient to restate it in the following way.

Predicate consistency principle Let S be a set of formulae, none containing free
variables, such that S is consistent, i.e. S - false is false. Then there exists a model
for S, ie. an interpretation framework (%, 1, A) covering all the predicate and
function symbols appearing in S, such that Val(I, A, F) =1 for each F in S. Con-
versely if there is a model for S then S is consistent.

This is simply the statement that S I false is false iff S |= false is false. For ‘S =
false is false’ means that there is an interpretation framework (%, I, A) covering all
the statements F' in S such that Val(/, A, F) =1 for each F in S, but nonetheless
satisfying the (required) condition that Val(/, A, false) = 0.

It is an easy matter to see that the predicate consistency principle implies that
for every set S of predicate formulae with no free variables and for every predicate
formula F the following condition holds:

if S|= F then S F. (2.10)

Indeed, assume that S &= F holds and that S + F is false. Then
S+ (Yvi,...,v, | F), where vy, ..., v, are the free variables of F, must also be
false, because otherwise by repeated use of axiom (v) and the rule of modus ponens
S+ F would follow. Let S’ be the set of predicate formulae obtained by adding the
formula —~(Vvy,...,v, | F) to S. Then S’ I false must be false, because otherwise
by the deduction theorem

SE=Mvy,...,v, | F) — false

would hold and therefore, by propositional reasoning, S + (Vvi,...,v, | F)
would hold. Therefore the predicate consistency principle implies that S’ has
a model, namely there exists an interpretation framework (%, I, A) covering
all the statements G of §’ and such that Val(,A,G) = 1 for all such G.
Thus, in particular, we have Val(/, A,C) = 1 for all the formulae C in S and
Val(1, A, =(Yvi, ..., v, | F)) = 1. This last statement implies that there exists an
assignment A’ such that Val(/, A’, F) = 0. Since all formulae in S have no free
variables, it follows that Val(I, A’, C) = Val(I, A, C) =1 for each formula C in S,
thus contradicting our initial assumption that S = F holds, and thereby proving
statement (2.10).

68 2 Propositional- and Predicate-Calculus Preliminaries

But the statement (2.10) implies, and indeed is a bit more general than, the Godel
completeness theorem. This shows that the Godel completeness theorem will follow
if we can prove the predicate consistency principle.

Proof To this end assume first that S is not consistent. Then S I false holds. But
then, as was shown earlier, S |= false follows, so that S cannot have any model.

For the converse, assume that S is consistent, in which case we must show that
S has a model. We can and shall suppose that all our formulae are in prenex normal
form, since we have seen that given any set of formulae there is an equivalent set
of prenex normal formulae. We proceed in a kind of ‘algorithmic’ style, to generate
a steadily increasing collection of formulae known to be consistent. At the end of
this process it will be easy to construct a model of the set S of statements using
these formulae and a bit of purely propositional reasoning. The idea of the proof is
to introduce enough new constants C to ensure that, for each original existentially
quantified formula

3x | F),
there exists a C for which
F(x— C)

is known to be true. To this end, we maintain the following lists and sets of formulae,
along with one set of auxiliary constants. These lists and sets can be (countably)
infinite and will steadily grow larger. In order to be certain that there exist only
finitely many constants with names below any given length, it will be convenient
for us to suppose that all constants have names like ‘C’, ‘CC’, ‘CCC’, The lists
and sets we maintain are then:

SC: the set of all constants introduced so far.

SUF: the set of all universally quantified formulae generated so far.

SNQ: the set of all formulae containing no quantifiers generated so far.

LEF: the list of all existentially quantified formulae generated so far.
This list is always kept in order of increasing length of the formulae on it.
Formulae of the same length are arranged in alphabetical order. Each formula
on the list LEF is marked either as ‘processed’ or ‘unprocessed’.

These data objects are initialized as follows. SC initially contains all the constants
appearing in functions of S. SUF contains all the formulae of S which start with a
universal quantifier. SNQ contains all the formulae of S which contain no quanti-
fiers. LEF contains all the formulae of S which start with an existential quantifier.
These are arranged in the order just described. All the formulae on LEF are origi-
nally marked ‘unprocessed’.

The auxiliary set FS consists of all function symbols appearing in formulae of S.

The following processing steps are repeated as often as they apply, causing our
four data objects to grow steadily. Note that SC is always finite, becoming infinite
only in the limit, but that SUF, SNQ, and LEF can be infinite during the process that
we now describe.

2.2 The Predicate Calculus 69

(a) Whenever new constants are added to SC or new universally quantified for-
mulae to SUF, all the constants on SC are combined in all possible ways with
function symbols of FS to create new terms, and these terms are substituted in
all possible ways for initial universally quantified variables in formulae of SUF
(all the variables up to the first existentially quantified variable, if any), thereby
generating new formulae, some starting with existential quantifiers (these are
added to LEF if not already there, following which LEF is rearranged into its
required order), others with no quantifiers at all (these are added to SNQ if not
already there).

(b) After each step (a), or if no step (a) is needed, we examine LEF to find the
first formula (3x | F) on it not yet marked ‘processed’. For this formula, we
generate a new constant symbol C, build the formula F(x < C) produced by
replacing each free occurrence of x in F by C, and add this formula to SUF or
LEF or SNQ, depending on whether it starts with a universal quantifier, starts
with an existential quantifier, or has no quantifiers at all, and finally add the new
constant C to SC. It is understood that the list LEF must always be maintained
in lexicographic order. Finally, the formula (3x | F) on LEF is then marked
‘processed’.

Processing begins as if the set of constants appearing in the formulae of S have just
been added to SC, and so with step (a). (If there are no such constants, we must
generate one initial constant symbol C to start processing.)

At the end of this (perhaps infinitely long) sequence of processing steps, we may
have generated a countably infinite list of constants as SC, and put infinitely many
formulae into both of the sets SUF and SNQ and on the list LEF. But we can be
sure that it is never possible to prove a contradiction from our set of formulae. For
otherwise a contradiction would result from some finite set of formulae, all of which
would have been added to our collection at some stage in the process we have de-
scribed. But by assumption our formulae are consistent to begin with. Moreover no
step of type (a) can spoil consistency, since only predicate consequences of previ-
ously added formulae are added during such steps. Nor can steps of type (b) spoil
consistency, since it was proved above that steps of this kind yield conservative
extensions of the set of formulae previously present.

It follows that at the end of the process we have described the set SNQ of un-
quantified formulae that results is consistent, i.e. that every finite subset of this set
of formulae is consistent. We have proved above that this implies that SNQ has a
propositional model, i.e. that we can assign a 0/1 value Va(T') to each atomic for-
mula 7 appearing in any of the formulae F of SNQ, in such a way that each such
F evaluates to ‘true’ if the atomic formulae appearing in it are replaced by these
values, and the standard rules for calculating Boolean truth values of propositional
combinations are then applied. Note for use below that each of the atomic formulae
T of the set AT of all such formulae appearing in any F has the form P(#, ..., %),
where P is a predicate symbol and 1, ..., #; are ‘constant’ terms (i.e. terms devoid
of variables).

Now we show that there exists a model whose universe is the set CT of all con-
stant terms generated by applying the function symbols in FS to the constants in

70 2 Propositional- and Predicate-Calculus Preliminaries

SC in all possible ways. (The resulting set of terms is the so called free universe
FU generated by these constants and the function symbols in FS.) Each k-adic func-
tion symbol f in F'S is trivially associated with a mapping I (f) from the Cartesian
product FUX of k copies of FU into FU, namely we can put

I(f)t,....t)=f@1, ..., 1)

for all lists 1, ..., # of terms. For this I and every possible assignment A it is
immediate that

val(I, A, 1) =t

for each term ¢ in FU. A 0/1 valued function on FU* can now be associated with
each predicate symbol P appearing in a formula of S, namely we can write

I(P)(t1,...,t0x) =Va(P(t1, ..., 1))

for each atomic formula P(#q, ..., #;) appearing in one of the formulae of SNQ,
and define 1 (P)(ty, ..., ty) arbitrarily for all other atomic formulae; here ‘Va’ is the
Boolean assignment of truth values described in the preceding paragraph. It is then
immediate that for every assignment A we have

val(l, A, F) =1,

for each formula of SNQ. It remains to be shown that we must have Val(/, A, F) =1
for the quantified formulae of SUF and LEF also and for every assignment A. Sup-
pose that this is not the case. Then there exists a formula F with n > 0 quanti-
fiers for which Val(Z, A, F) = 0. Proceeding inductively, we may suppose that n is
the smallest number of quantifiers for which this is possible. If F belongs to LEF,
then it has the form (3x | G), and by construction we will have added a formula
of the form G(x — C), with some constant symbol C, to our collection. Since
G (x — C) has fewer quantifiers than n, we must have Val(/, A, G(x — C)) =1,
and so Val(/, A, F), which is the maximum over a collection of values including
Val(l, A, G(x — C)), must be 1 also.

It only remains to consider the case in which F belongs to SUF, and so has the
form

~Vx1, .. xm | G)

for some G. In this case, all formulae G(x1 <> 1, ..., X <> t,,), Where t, ..., ty,
are any terms in our universe, namely the set TERM of all constant terms generated
by applying the function symbols in FS to the constants in SC in all possible ways,
will have been added to our collection. All these formulae have fewer quantifiers
than n, and so we must have

Val(1, A, G(x1 <> ty, ..., Xm > ty)) =1
for all these terms. Hence the minimum of all these values, namely

Val(I, A, (Vx1, ..., xm | G))

2.2 The Predicate Calculus 71

must also have the value 1. This completes our proof of the predicate consistency
principle and in turn of the Godel completeness theorem. g

The argument just given clearly leads to the following slightly stronger result.

Corollary 2.1 Let S be a set of formulae in prenex normal form, and let SNQ be
the set of all unquantified formulae generated by the process described above. Then
S is consistent, i.e. it has a model, if and only if SNQ, regarded as a collection
of propositions whose propositional symbols are the atomic formulae appearing in
SNQ, is propositionally consistent.

Proof As shown above, the set of statements in SNQ must be consistent if S is
consistent. The argument given above establishes the converse, i.e. it shows that S
has a model if SNQ is propositionally consistent. g

2.2.7.2 Immediate Consequences of the Gédel Completeness Theorem

The preceding corollary implies that in situations in which we can be sure that the
procedure described in the proof of the predicate consistency principle will pro-
duce sets SC, SUF, SNQ, and a list LEF all of which remain finite, this procedure
can be used as an algorithm to decide in a finite number of steps whether or not a
given finite set S of prenex normal formulae (none of which involves free variables)
is consistent. One case in which this remark applies is that of pure ‘3.--3V...V’
formulae, as defined by the following conditions:

i. S is a finite set of formulae in prenex normal form not involving free variables.
ii. No formula in § involves function symbols of arity greater than zero (i.e., the
only terms allowed in these formulae are variables and constant terms). Of
course, any number of predicate symbols can be used.
iii. No existential quantifier can follow a universal quantifier in any formula of S.

Note that the condition iii, implies that the sequence of quantifiers prefixed to
any ‘3---3V.--V’ formula has the form

@1,y Ym | (Vx1,...,xp |

To see why in this case the procedure described in the proof of the predicate con-
sistency principle must converge after a finite number of steps, note first of all that
since there are no function symbol the only terms substituted for universally quan-
tified variables in step (a) of that procedure are constants. These constants must
either be present in our initial formulae or be generated in some step of the proce-
dure described. But since all existential quantifiers precede all universal quantifiers,
the aforesaid step (a) will never generate any new formula containing existential
quantifiers. Hence the number of constants generated is no greater than the number
of existential quantifiers contained in our original collection of formulae, and sub-
stitution of these for all the universally quantified variables present will generate no
more than a finite set of formulae.

72 2 Propositional- and Predicate-Calculus Preliminaries

Decidability for the Bernays—Schonfinkel Sentences An interesting special
case of the foregoing is that when we are given a finite set S of pure ‘3.-.3V...V’
formulae, involving no free variables, as described above, and one additional for-
mula F' of the same kind and in which no universal quantifier follows an existential
quantifier, and we want to determine whether S -+ F holds. Let S’ be the set of for-
mulae obtained by adding the formula ‘—F” to S. Then we know that S - F holds
if and only S’ is inconsistent. But by moving the connective — in ‘—F” across the
quantifier prefix of F, we obtain another set S* which is equivalent to S’ and is still
a finite set of pure ‘3-V’ formulae, whose consistency can be tested algorithmically
in the manner just explained.

The Lowenheim—Skolem Theorem The argument given in the proof of the pred-
icate consistency principle allows us to derive another interesting fact, known as the
Lowenheim—Skolem Theorem. This states that any consistent countable set of sen-
tences has a countable model. Indeed, if S is countable (as was implicitly assumed
in our proof of the predicate consistency principle) then all the sets SC, SUF, SNQ,
FS, and the list LEF maintained by the process described in the proof of the predi-
cate consistency principle are countable at each stage, and so must also be countable
in the limit. Therefore the model constructed from SNQ using the technique seen
above must also be countable.

The Compactness Theorem A set S of predicate formulae is said to be satisfiable
if it has a model. The Compactness Theorem states that if S is a set of predicate
sentences such that every finite subset of S is satisfiable, then the whole infinite set
S is satisfiable. This theorem is an easy consequence of the predicate consistency
principle. Indeed, let S be a set of predicate sentences such that every finite subset of
S has a model, and assume that S is not satisfiable. Then S |= false holds, so that by
the predicate consistency principle we have S I false also, i.e. there exists a proof of
‘false’ from S. Since any proof from S can involve at most finitely many formulae
of S, there must exist a finite subset S’ of S such that S’ - false holds, and so by the
predicate consistency principle S’ = false must hold. That is, S’ is not satisfiable,
contradicting our initial hypothesis that every finite subset of S is satisfiable.

2.2.7.3 Some Other Consequences of the Godel Completeness Theorem

Skolem Normal Form Let S be a countable (i.e. finite or denumerable) collection
of syntactically well-formed predicate sentences. Putting each of these formulae into
prenex normal form gives an equivalent set " of formulae, so that if S has a model
(i.e. it is consistent) so does S’. We will now describe a second normal form, called
the Skolem normal form, into which the formulae of S’ can be put. We will see that
if $** denotes the set of formulae in Skolem normal form derived from §’, then S$**
is consistent if and only if S’ (and S) is consistent. However, the formulae of S**
are generally not equivalent to the formulae of S’ from which they derive. Thus S**
and S’ (and §) are only equiconsistent, not equivalent.

2.2 The Predicate Calculus 73

By definition, a formula in prenex normal form is in Skolem normal form if and
only if its prefixed list of quantifiers contains no existential quantifiers. To derive the
Skolem normal form of a formula F in S’, which must already be in prenex normal
form, suppose that F has the form

(Vx1,..oxk | Gy | G)). (2.11)

Introduce a new function symbol f of k variables, along with a statement of the
form

(Vx1,....x | G(y = o)), (2.12)

where G (y < e) is derived from G by replacing every free appearance of the vari-
able y in G by an appearance of the subexpression e = f(x1, ..., xx). Let S1 be the
result of adding (2.12) to §’. We have seen above that S; is a conservative extension
of §’. Hence if S’ I- false is false, so is S| I- false, and conversely. That is, S" and S}
are equiconsistent.

Let S* be the set of statements obtained by dropping (2.11) from S;. We shall
show that §” and S* are equiconsistent. But in S* the existentially quantified state-
ment (2.11) has been replaced by (2.12) which has one fewer existential quantifier.
It should be clear that by repeating this step as often as necessary, we can eliminate
all existential quantifiers from our original set of statements, introducing function
symbols in their stead. The resulting set of statements is the Skolem normal form of
our original set. To prove that S" and S* are equiconsistent, note first of all that, as
we have already noted, S* is consistent if S’ is consistent. Suppose conversely that
S* is consistent. We can deduce G (y < ¢) from (2.12) by k successive applications
of predicate axiom (v) and the rule of modus ponens. More specifically, we have

(Vxl,...,xk | G(y"—)e))FG(y*’—)e).

But since
F(Vy | =G) = (=G(y = e))

by the same axiom (v), it follows that
(Vxl, ek | Gy — e)) F=(Vy | =G).
Thus by predicate axiom (iii) we have
(Vxi,....xc | Gy =) 3@y | G)
and so, by repeated application of the rule of generalization, we obtain
(Vxl,...,xk | G(y — e)) - (Vxl,...,xk | Ay | G)).
The deduction theorem now implies

(Y1, x| Gy @) = (Vxr, ..o | Gy | B))

74 2 Propositional- and Predicate-Calculus Preliminaries

so that
S*I—(Vxl,...,xk | Ay | G)).

This implies that exactly the same formulae can be derived from S; and S*, so that
these two sets of formulae are equiconsistent. Hence S’ and S* are equiconsistent,
as required.

The Herbrand Theorem Herbrand’s theorem, which gives a semi-decision pro-
cedure for the satisfiability of sets of predicate formulae given in Skolem normal
form, can be stated as follows.

Theorem 2.4 (Herbrand) Let S be a countable collection of predicate sentences,
all having Skolem normal form. Let D be the set of all function symbols appearing
in the formulae of S. Let SC be the set of individual constants (function symbols of
zero variables) appearing in the formulae of S. (If there are no such constants, let
SC consist of just one artificially introduced individual constant, distinct from all the
other symbols in D.) Let T be the set of all terms which can be generated from the
constants in SC using the function symbols appearing in formulae of S. Let S’ be the
set of formulae generated from S by stripping off their quantifiers and substituting
terms in T for the variables of the resulting formulae in all possible ways. Then the
set S is consistent if and only if every finite subset of S’ is consistent when regarded
as a collection of propositional formulae in which two atomic formulae correspond
to the same propositional variable if and only if they are syntactically identical.

Proof This is just the Corollary of the Godel completeness theorem stated above,
in the special case in which the formulae of S have Skolem normal form, i.e. they
contain no existential quantifiers. For in this case the construction we have used to
prove that Theorem and Corollary generates no new constant symbols. d

Herbrand’s theorem is often used as a technique for searching automatically for
predicate-calculus proofs. If none of the formulae concerned have any free variables,
we can show that a predicate formula F follows from a set S of such formulae
by adjoining the negative of F to S, then putting all the resulting formulae into
Skolem normal form, and finally searching for the propositional contradiction of
whose existence Herbrand’s theorem assures us.

As a very simple example, consider the predicate theorem

3y | (Vx| P(x,y))) = (Vx| Fy | P(x.y))) (2.13)
whose negation is

@y | (Vx| P(x,y)) & (3x | (Yy | =P(x,), (2.14)
or, in Skolem normal form,

(Vx | P(x, B)) & (‘v’y | =P(A, y)).

2.3 Predicate Calculus with Equality as a Built-in 75

A substitution then gives the propositional contradiction P(A, B) & (—mP(A, B)),
showing the impossibility of the negated statement (2.14), and so confirming the
universal validity of (2.13).

A very large literature has developed concerning optimization of searches of this
kind. Some of the resulting search techniques will be reviewed in Chap. 4.

2.3 Predicate Calculus with Equality as a Built-in

The simplicity of the equality relationship and its continual occurrence in mathemat-
ical arguments make it appropriate to extend the predicate calculus as defined above
to a slightly larger version in which equality is a built-in. Syntactically we have
only to make ‘=" a reserved symbol; semantically we need to introduce axioms for
equality strong enough for the Godel completeness theorem to remain valid. The
following axioms suffice.

The axioms of the equality-extended predicate calculus are all the axioms of the
(ordinary) predicate calculus (cf. Definition 2.7), plus

(vi) Any formula of the form
(Ve yz|x=x&(x=y) = (=2)&((x=y&y=2)— (x=2)).

(vii) Any formula of the form

(Vxy | x =9 = (f&; = x) = f@x; = »)),

where f is a k-adic functional expression f(xi,...,xt), and f(x; < x)
(resp. f(xj = y)) is the result of replacing the jth variable in it by an occur-
rence of x (resp. y).

(viii) Any formula of the form

(Vx,y | x=y) = (P(xj = x) < P(xj < y))),

where P is a k-adic predicate expression P(xy,...,xx), and P(x; <> x)
(resp. P(x; <> y)) is the result of replacing the jth variable in it by an occur-
rence of x (resp. y).

No new rules of inference are added.
The notion of ‘model’ is extended to this slightly enlarged version of the predi-
cate calculus by agreeing that

(xi) If the formula F is of the form ‘¢t =1,’, then
Val(I, A, F) =if Val(I, A,t;) =Val(l, A, ;) then 1 else 0 end if ,

for every interpretation framework (%, I, A).

76 2 Propositional- and Predicate-Calculus Preliminaries

That is, the predicate which models the equality sign is simply the standard predicate
of equality.

As before we want to show that the added predicate axioms evaluate to 1 in
every model. This is clear for (vi), since it simply states the standard properties of
equality. Similarly, since replacement of the arguments of any set-theoretic mapping
by an equal argument never changes the map value, (vii) and (viii) must evaluate to
1 in any model.

Additionally we can show that the Godel completeness theorem carries over to
our extended predicate calculus. For this, we argue as follows. If (%, I, A) is an in-
terpretation framework covering a set S of sentences in our extended calculus, then it
follows as previously that if Val(, A, F) = 1 for each F in §, then Val(I, A, G) =1
for every G such that S = G. Hence, as previously, if such a set S has a model it
is consistent. Suppose conversely that S is consistent. Add the equality axioms (vi—
viii) to S (this preserves consistency since only axioms are added to) and proceed
as above to build the sets SC, SUF, SNQ, and the list LEF. Then the collection of
statements in SNQ must be propositionally consistent, and so must have a proposi-
tional model V for which every statement in SNQ takes on the value ‘true’. It was
seen above that this gives a model (%, I, A) of all the statements in our collection,
with universe % equal to the set of all terms formed from the constants in SC using
the function symbols appearing in formulae of S. This is not quite a model of S in
the sense required when we take ‘=" as a built-in predicate symbol which must be
modeled by the standard equality operator, since there may well exist formulae of
the form #; = #, such that Val(/, A, t; =) = 1 even though 7 and #, are syntacti-
cally distinct. However, the binary relationship

R(t1,1) = (Val(I, A, 1y = 12) = 1) 2.15)

between terms of %/ must be an equivalence relation, since whenever terms t,
and t3 are generated we will have added all the assertions

n=n&((1=n)—H=n)&((h=n&nh=n)—> (1 =n))

to our collection. Moreover, since in the same situation statements like

(== (fC-ti--)=f(12-)))
and
(t1:t2—>(P(--~t1--~)<—>P(--~t2--~)))

will have been added to our collection for all function and predicate symbols, the
terms must always be equivalent whenever their lead function symbols are the same
and their arguments are equivalent, and also we must have Val(Z, A, P(---t;---)) =
Val(I, A, PP(---tp ---)) for atomic formulae when their lead function symbols are
the same and their arguments are equivalent. Therefore we can form a model of our
set of statements by replacing the universe % by the set %’ of equivalence classes
on it defined by the equivalence relation (2.15), and in this new model the symbol
‘="1s represented by the standard equality operation. This concludes our proof that
the Godel completeness theorem carries over to our extended predicate calculus.

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 77

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus

In most of the present book we take a rather free version of set theory (perhaps
this should be called ‘brutal’ set theory) as basic, and use it to hurry onward to
our main goal of proving the long list of theorems found in Chap. 5. The standard
treatment of set theory ties it more carefully to predicate calculus. Specifically, to
ensure applicability of the foundational results presented earlier in this chapter, set
theory is cast as a collection of predicate axioms. In this form it is customarily
referred to as Zermelo—Fraenkel set theory (ZF) if no version of the axiom of choice
is necessarily included, or ZFC if an axiom of choice is present. Here is the standard
list of ZFC axioms.

2.4.1 Zermelo—-Fraenkel Theory with the Axiom of Choice

(1) (Axiom of extension) (Vs, 7 | (s =1) < (Vx | (x €5) <> (x €1))).

(2) (Axioms of elementary sets) There is an empty set {J; for each set ¢ there is a
set Singleton(z) whose only member is ¢; if s and ¢ are sets then there is a set
Unordered_pair(s,) whose only members are s and ¢. That is, we have

(Vs | —(s e @)),
(V2. u | (u € Singleton(r)) <> (u =1)),
(Vs, t, u| (u € Unordered_pair(s, 1)) <> ((u =) v (u =1))).

(3) (Axiom of power set) To every set A there corresponds a set #(A) whose
members are precisely the subsets of A:

(Vs. t|(se 2(0) < (Vx| (xes) < (Vy | (yex) = (yeD))).

(4) (Axiom of union) To every set A there corresponds a set | A whose members
are precisely those elements belonging to elements of A:

(Vs, r‘ <s eUt) NEPY (xet)&(sex))).
(5) (Axiom of infinity) There is at least one set Inf such that

(@ €lnf) & (Vs | (s € Inf) — (Singleton(s) € Inf)).
(6) (Axiom of regularity)

—-(Elx | (x;é@)&(\?’y | (yex)—>(5|z | (zEx)&(zey)))).

(7) (Axiom schema of subsets) If F(y,zy,...,z,) is any syntactically valid for-
mula of the language of ZF that has no free variables other than those shown,
and neither x nor z occur in the list y, z1, ..., 2, then

F| (VY| e (ex) & F(,z1,....20)))

78 2 Propositional- and Predicate-Calculus Preliminaries

is an axiom. Here and below, a formula is said to be a formula of the language
of ZF if it is formed using only the built-in symbols of predicate calculus (i.e.
the propositional operators, V, 3, =) plus the membership operator. (Note that in
stating this axiom, we mean to assert the formula which results by quantifying
it universally over all the free variables z1, ..., z,.)

(8) (Axiom schema of replacement) If F(u,v,zq,...,z,) is any syntactically
valid formula of the language of ZF that has no free variables other than those
shown, and neither u nor v occur in the list zy, ..., 2, then

(Vu,vl,v2| ((F(u,vl,zl,...,zn)&F(u,vz,zl,...,z,,))—> (v1 =U2)))
— (Vb (Fc| (Vy | yeo) < (x| xeb) & F(x,y,21,....2)))))

is an axiom. (Here again, in stating this axiom, we mean to assert the formula
which results by quantifying it universally over all the free variables z1, ..., z,.)

This statement is obscure enough for a brief clarifying discussion of its
equivalent in our informal version of set theory to be helpful. In that less for-
mal system we would proceed by defining an auxiliary ‘Skolem’ function &

satisfying
(Vx.z1,... 20| By | Fx,y, 21,00, 20))
< F(x,h(x,21,....20), 21 - -2 2n))-
Then, since the replacement axiom assumes that F(x, y, z1, ..., z,) defines y
uniquely in terms of x and z1, ..., z,, we have
(VX,)’,ZI,-uaZn | F(x7y7Z]9"'7Zn)_> (y=h(x7117~~71n))),

and so the set ¢ whose existence is asserted by the axiom of replacement can be
written in our ‘working’ version of set theory as

{h(x,zi.coz0) s x €b | F(x,h(x, 21,00 20) 210 -, 2n)).

This ‘set-former’ expression is the form in which such constructs will almost
always be written.
(9) (Axiom of choice)

(Vx| (3f | Svm(f) & (domain(f) = x)
&(Vy[(vex) &y #M) = (fIy]€))))-

Note that this form of the axiom of choice is weaker than the assumption con-
cerning ‘arb’ which our ‘brutal’ set theory uses in its place. Specifically, while
‘arb’ is a universal choice function applicable to any non-null set, the axiom of
choice just stated provides a separate such choice function for each set of sets.

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 79

Most axioms appear in Skolemized version in the above list. Other authors prefer
to write those in unskolemized form, e.g. to write our axiom (Vs | —(s € ¥)) in the
form

(3z| (Vs | =(s €2))).

Similarly the axiom of union will often be written as
(Ve| (Qu| (Vs | seu) < (Ax | (x €1) & (s € 1))))).

The main respects in which the ZFC formulation of set theory differs from our
‘brutal’ version is that no built-in set-former construct is provided, nor are ‘trans-
finite recursive’ definitions like those freely allowed in our version of set theory.
An issue of relative consistency therefore arises: can our version of set theory be
reduced to ZFC in some standard way, or, if ZFC is assumed to be consistent, can it
be demonstrated that our ‘brutal’ version is consistent also?

2.4.2 Concerning the Consistency of ZFC and Various Interesting
Extensions of It

To open a discussion of this problem we first consider the general question of con-
sistency for set-theoretic axioms like the ZFC axioms. Since equality can be treated
as an operator of logic, these axioms involve only one non-logical symbol, the pred-
icate symbol ‘e€’. The Godel completeness theorem tells us that the ZFC axioms are
consistent if and only if they have a model. How can such models be found? Are
there many of them having an interesting variety of properties, or just a few? Since
von Neumann’s 1928 paper on the axioms of set theory and Godel’s 1938 work on
the continuum hypothesis, many profound studies have addressed these questions.
We can get some initial idea of the issues involved by looking a bit more closely at
the hereditarily finite sets. We will see that these are of interest in the present context
since they model all the axioms of set theory other than the axiom of infinity.

2.4.2.1 Basic Facts Concerning Hereditarily Finite Sets

In intuitive terms, the ‘hereditarily finite’ sets s are those which can be constructed
by using the pair formation operation {x, y} and union operation x U y repeatedly,
starting from the null set {} (same as ¢J). Any such set has a string representation r
consisting of a properly matched arrangement of opening brackets ‘{* and closing
brackets ‘}’, ‘properly matched’ in the sense that there are equally many opening
and closing brackets, and that no initial substring of r contains more closing than
opening brackets. Moreover, the string representation r of any such set is inde-
composable, in the sense that no initial substring of r is properly matched. Three
examples are

0o {ol {0{o})

80 2 Propositional- and Predicate-Calculus Preliminaries

The ‘height’ of any such set is one less than the maximum depth of bracket nesting
in its string representation. For example, the three sets just displayed have heights
0, 1, and 2, respectively. The general transfinite induction techniques described in
the preceding section make it possible to prove that the hereditarily finite sets are
precisely those sets which are finite and all of whose elements are themselves hered-
itarily finite; this point is discussed in greater detail in Sect. 4.3.10 and in Chap. 6.

Hereditarily finite sets can be represented in many ways by computer data struc-
tures which allow the basic operations on them, namely {x, y}, x Uy, and x € y, to
be realized by simple code fragments, and therefore allow translation of set-former
expressions and recursive function definitions of all kinds into computer programs.
One way of doing this is to make direct use of string representations like those just
displayed. To this end, note that each properly matched arrangement of brackets is
a concatenation of one or more indecomposable properly matched arrangements of
brackets, and that every indecomposable arrangement has the form {s} where s itself
is properly matched. Moreover the decomposition of any properly matched arrange-
ment of brackets into indecomposable properly matched substrings is unique. (The
reader is invited to prove these elementary facts, and to describe an algorithm for
separating any properly matched arrangement of brackets into its indecomposable
parts.)

It follows from the facts just stated that each hereditarily finite set 7 has a string
representation, itself indecomposable, of the form

{s152 - Sm}, (2.16)

where each of the s; is properly matched and indecomposable, and where all these
sj, which are simply the string representations of the elements of ¢, are distinct.
We can make this string representation unique by insisting that the s; be arranged
in order of increasing length, members having string representations of the same
length then being arranged in alphabetical order of their representations. We can
call a string representation (2.16) having these properties at every recursive level
(and in which all the s; are distinct at every level) a ‘nicely arranged’ properly
matched arrangement of brackets.Then every hereditarily finite set has a unique
string representation of this kind, and conversely every nicely arranged properly
matched arrangement of brackets represents a unique set. Hence these arrangements
give an explicit, 1-1 representation of the family of all hereditarily finite sets.

In this representation, the two elementary operations {x, y} and x U y which suf-
fice for construction of all such sets have the following simple implementations.
The representation of {x, y} is obtained by taking the representations s, and sy of
x and y, respectively, checking them for equality and eliminating one of them if
they are equal, arranging them in order of length (or alphabetically if their lengths
are equal), and forming the string {s, sy} (or simply {s.} if s, and s, are identi-
cal). To compute the standard string representation of x U y, let {152 - - 55, } and
{t1t2 --- 1, } be the standard string representations of x and y, respectively. Then
form the concatenation

S182 - Sml1t2 - - 1n,

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 81

rearrange its indecomposable parts in the standard order described above, eliminate
duplicates, and enclose the result in an outermost final pair of brackets.

In this, or any other convenient representation, it is easy to construct a code frag-
ment which will calculate the value of any set former of the type we allow, for
example

{e(x) :x€s | P(x)},

provided that s is hereditarily finite, and that e is any set-valued expression and
P(x) any predicate expression which can be calculated by procedures which have
already been constructed. For this, we have only to set up an iterative loop over all
the elements of s, and use an operation which calculates e(x) for each element x
of s satisfying P(x) and then inserts all such elements into an initially empty set,
eliminating duplicates.

The powerset operation & (s) (set of all subsets of s) satisfies the recursive rela-
tionship

P(s)=ifs=0 then {0}
else (s \ {arb(s)}) U {x U{arb(s)} : x € 2(s \ {arb(s)})}
end if

which can be used to calculate & (s) recursively for each hereditarily finite s. This
makes it possible to calculate set formers of the second allowed form

{e(x) :xCys | P(x)},
by translating them into
{e(x) 1 x € Z(s) | P(x)}.
Set formers involving multiple bound variables, for example
{e(x,y,2) 1 x €5, yeax), zeb(x,y) | P(x,y,2)},

can be calculated in much the same way using multiply nested loops, provided that
all the sets which appear are hereditarily finite and that e, a, and b are set-valued
expressions, and P(x, y, z) a predicate expression, which can be calculated by pro-
cedures which have already been constructed. Similar loops can be used to calculate
existentially and universally quantified expressions like

(Vxes, yea(x), zeb(x,y) | P(x,y,2)
and

(Axes, yea), zeb(x,y) | P(x,y,2),

or such simpler quantifiers as

(Vx €s | P(x)) and (Elx €s | P(x)).

82 2 Propositional- and Predicate-Calculus Preliminaries

Note, however, that the predicate calculus in which we work also allows quantifiers
involving bound variables not subject to any explicit limitation, for example

(Vx | P(x)) and (Elx | P(x)).

Since translation of expressions of this form into a programmed loop would require
iteration over the infinite collection of all hereditarily finite sets, we can no longer
claim that the values of these unrestricted iterators are effectively calculable. Thus
they represent a first step into the more abstract world of the actually infinite, where
symbolic reasoning must replace explicit calculation.

All the kinds of definition we allow translate just as readily into computer codes
as long as only hereditarily finite sets are considered. Algebraic definitions like

Jx=net{z: yex&zey)

translate directly into procedures whose body consists of a single nested iteration.
Recursive definitions like

enum(X, S) =perif S < {enum(y,S): ye X} then S
else arb(S \ {enum(y, S) : y € X}) end if

translate just as directly into recursive procedures. Thus, as long as we confine our-
selves to hereditarily finite sets, the whole of the set theory in which we work (ex-
cepting only unrestricted quantifiers of the kind shown above) can be thought of
both as a language for the description of mathematical relationships and as an im-
plementable (indeed, implemented) programming language for actual manipulation
of a convenient class of finite objects. This parallelism between language of deduc-
tion and language of computation will be explored more deeply in Chaps. 4 and 6.
We can summarize the preceding discussion in the following way. All hereditar-
ily finite sets can be given explicit finite representations, so that these sets constitute
a ‘universe of computation’ in which all of the properties we assume for sets can be
checked by explicit computation, at least in individual cases. We will see below that
the collection of hereditarily finite sets models all the axioms of set theory, save one:
there is no infinite set, for example no hereditarily finite set # having the property

1#9 & (Vxet|{x}er)

which we will use as our axiom of infinity. By including this statement in our collec-
tion of axioms we cross from the world of computation defined by the hereditarily
finite sets into a more abstract world of objects which can no longer be enumerated
explicitly but which are known only through the statements about them that we can
deduce formally, i.e. as elements of a world of formal computation, whose main
elementary property is simply its formal consistency. Nevertheless, mathematical
experience has shown that the statements that we can prove about the objects of
this abstract world are both beautiful and extremely useful tools for deriving many
properties of hereditarily finite sets which it would be harder or impossible to prove
if we refused to enlarge our universe of discourse to allow free reference to infinite
sets.

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 83

2.4.2.2 Hereditarily Finite Sets: Formal Definition Within General Set Theory

Hereditarily finite sets can be defined formally in either of two ways: either as all
sets satisfying a predicate Is_HF, or as all the members of a set HF. The predicate
Is_HF is defined in the following recursive way (we continue to designate the set of
all integers by N):

Is_HF (x) <>pef ((#x € N) & (Vy € x | Is_HF(y))).

To define the corresponding set HF (thereby showing that the collection of all x sat-
isfying Is_HF(x) is really a set), a bit more work is needed. We proceed as follows.
Begin with the following recursive definition (informally speaking, this defines the
collection of all sets of ‘rank x’):

HF_(x) =pet if x = then @ else U {Z(HF_()) : y €x} endiif .
It is easily proved by induction that
(Vy €HF_(x) | HF_(x) 2 y).

Indeed, if there exists an x for which ‘HF_(x) D 7’ is false for some z in HF_(x),
there exists a smallest such x, which, after renaming, we can take to be x itself.
Then there is a u such that z € HF_(x), u € z, u ¢ HF_(x). Since z € HF_(x), we
have

zEU HF (y) yex},

so z € Z(HF_(y)) for some y € x, i.e. z € HF_(y) for some y € x. Then u €
HF_(y) for some y € x. Since x has no member y for which

(Vw e HF_(y) | HF_(y) 2 w)

is false, it follows that HF_(y) D u, so u € Z(HF_(y)), and therefore

ue| J{Z(HF_(») : yex},

i.e. u € HF_(x), proving our claim. Note also that the function HF_ is increasing in
its parameter, in the sense that if y € x, then HF_(x) © HF_(y). Indeed if u is an
element of HF_(y), then {u} € Z(HF_(y)), so

{u} e U {QZ(HF_(y)) :y ex},

and therefore {1} € HF_(x), so by what we have just proved u € HF_(x).
In what follows we also need the fact that

(Vn e N | #HF_(n) € N),

84 2 Propositional- and Predicate-Calculus Preliminaries

i.e. that all the sets HF_(n) are themselves finite. To prove this, suppose that it fails
for some smallest n. Then

HF_(n) = |_J {2 (HF_(m)) : m e n},

all the sets HF_(m) for which m € n are finite, and so are their power sets. Thus
HF_(n) is the union of a sequence of sets, each of finite cardinality, over a domain
of cardinality less than N (i.e. of finite cardinality). Hence HF_(n) is itself finite, i.e.
#HF_(n) belongs to N, as asserted.

Now we can define the set HF by

HF =per | J {HF_(n) : n e N}. 2.17)
To come to the desired goal we must prove that
(Vy | Is_HF(y) <> y € HF).

This can be done as follows. Suppose that y € HF. Then we have y € HF_(n) for
some n € N. To prove that Is_HF(y), suppose that this is false, and, proceeding
inductively, that n is the smallest element of N for which HF_(n) has an element y
such that Is_HF(y) is false. Then, since

ye€ U {f@(HF_(m)) :me n},

we have y € Z(HF_(m)) for some m € n. All the elements u of y are therefore
elements of HF_(m), and so satisfy Is_HF(u#). We have also proved that HF_(m) is
finite, so all its subsets are finite, and therefore #y € N, proving that Is_HF(y), a
contradiction implying that

(y € HF) — Is_HF(y)

for all y.

Suppose conversely that Is_HF(x), and that x ¢ HF. Proceeding inductively, we
can suppose that x is a minimal element with these properties, i.e. that y € HF for
each y € x. Then it follows from (2.17) that for each y in x there is an n = n(y) in
N for which y € HF_(n(y)). But then since x is finite by definition of Is_HF(x), the
maximum m of all these n(y) is finite, so every y in x belongs to HF_(m) since the
sets HF_(m) clearly increase with their parameter m. Therefore x € & (HF_(m)),
x € HF_(m + 1), and x € HF, a contradiction implying that

Is_HF(y) — (y € HF)

for all y, which leads to the desired conclusion.

It is easily seen that HF is a model of all the ZFC axioms other than the axiom
of infinity. To show this, we simply need to check that all these axioms remain
valid if we interpret all quantifiers as extending over the set HF rather than over the
‘universe of all sets’ that the initial ZFC axioms assume. This can be done as follows.

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 85

(1) The axiom of extension remains true since HF is transitive, i.e. every member
of a member of HF belongs to HF. (2) The null set, singleton, and unordered pair
constructions take elements of HF into themselves since they construct finite sets
all of whose elements are drawn from HF. (3) The power set axiom remains valid
since every subset of an hereditarily finite set is hereditarily finite, and for s in HF,
P (s) consists only of such elements and also is finite. (4) The union set axiom
remains valid since every member of a member of | Js, where s is an hereditarily
finite set, is hereditarily finite, and for s € HF, | Js is the union of finitely many
sets and so is finite. (5) The axiom of infinity fails. (6) The axiom of regularity
clearly remains true, since each z € HF has the same members as an element of
HF that it does as a set. (7) The axiom schema of subsets, which in informal terms
asserts the existence of the set y={u:uex| F(x,zj,...,2,)} for every x and
Z1, ..., Zn, remains true since the y whose existence it asserts is a subset of the x
which it assumes, and so must be hereditarily finite if x is hereditarily finite. (8) In
informal terms, the axiom schema of replacement asserts the existence of the set
y={u:xeb| F(x,u,zi,...,2,)} for every b and zy, ..., z, if the predicate F
defines u# uniquely in terms of x and z1, . .., z,,. This remains true if only hereditarily
finite sets are allowed, since if b is finite and each u is required to be hereditarily
finite the set of whose existence it asserts is a finite set of elements, each of which
is hereditarily finite, and so must be hereditarily finite. (9) The axiom of choice
remains true since the f whose existence it asserts is a single-valued map whose
pairs have their first components in x and their second components in | x: assuming
that x € HF, each such pair plainly belongs to HF and therefore, since f consists of
finitely many such pairs, we conclude that f € HF. (If # € x, we can carry out a
similar argument, after replacing the image f(9) by @.)

2.4.2.3 Large Cardinal Axioms

The preceding observations concerning the set HF suggest that it may be possible
to find a model of set theory, which would imply the consistency of set theory, by
replacing N, the smallest infinite cardinal, by something larger in the crucial formula
(2.17) seen above. If this is done, the argument that we have given can be shown to
go through almost without change for any cardinal having the two properties of N
used in the argument. The following definition gives names to these properties:

Definition 2.9 A non-null cardinal number N is inaccessible if (a) Any set of car-
dinals, all less than N, which has a cardinality smaller than N also has a supremum
less than N. (Cardinals having this property are called regular cardinals.) (b) If M
is a cardinal less than N, then 2¥ (which is #22(M) by definition) is less than N.
(Cardinals which have this property are called strong limit cardinals.)

Note that the set N of integers is inaccessible according to this definition. In-
tuitively speaking, a cardinal number N is inaccessible if it cannot be constructed
from smaller cardinals using any ‘explicit’ set-theoretic operation, so that the very

86 2 Propositional- and Predicate-Calculus Preliminaries

existence of N would seem to involve some new assumption, in the same way that
assuming the existence of an infinite set takes a step beyond anything that follows
from the properties of hereditarily finite sets x € HF.

If we make the following quite straightforward definition, which simply general-
izes the preceding construction of HF to arbitrary cardinal numbers N,

Definition 2.10 7 (N) =per | {HF_(n) : n € N} for every cardinal number N,
then the preceding discussion shows that

Theorem 2.5 If N is an inaccessible cardinal larger than N, then 7 (N) is a model
of the ZF C axioms of set theory.

Corollary 2.2 It there exists any inaccessible cardinal larger than N, then the ZFC
axioms have a model, and so are consistent.

A theorem of Godel to be proved in Chap. 6 shows that no system having at
least the expressive power and proof capability of HF can be used to prove its own
consistency. Thus the corollary just stated implies the following additional result:

Corollary 2.3 Adding the assumption that there exists an inaccessible cardinal
larger than N to the ZFC axioms allows us to construct a model of the ZFC ax-
ioms and hence implies that these axioms are consistent. Therefore the ZFC axioms
cannot suffice to prove that there exists an inaccessible cardinal larger than N.

The situation described by this last corollary is much like that seen in the case of
HF. The ZFC axioms, which include the axioms of infinity, allow us to define the
infinite cardinal number N and so the model HF of the theory of hereditarily finite
sets. The theory of hereditarily finite sets can be formalized by dropping the axiom
of infinity (keeping the other axioms of ZFC, and adding a suitable principle of
induction); but the resulting set of ‘HF axioms’ do not suffice to prove the existence
of even one infinite set.

The technique for forming models of set theory seen in the preceding discussion,
namely identification of some transitive set .72 in which the ZFC axioms remain
true if we redefine all quantifiers to extend over the set .7 only, does not change the
definition of ordinal numbers, since an element ¢ of s is an ordinal (in the overall
ZFC theory) iff its members are totally ordered by membership and each member
of a member of ¢ is a member of ¢. Since the collection of members of ¢ remains
the same in .77, this definition is plainly invariant. Thus the ordinal numbers of
the model JZ, seen from the vantage point of the overall ZFC universe, are just
those ordinals which are members of .77. But the situation is different for cardinal
numbers, which are defined as those ordinals O which cannot be mapped to smaller
ordinals by a 1-1 mapping, i.e. those which do not satisfy

not_cardinal(0) <>pef (3f | 1_1(f) & domain(f) = O & range(f) € O).

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 87

When we cut the whole ZFC universe of sets down to the set .77, the collection of
ordinals will grow smaller, but so will the set of 1-1 mappings (‘1_1s’) f appearing
in the formula seen above, making it unclear how the collection of cardinals (relative
to .7), or the structure of this set, will change. The power set operation can also
change, since for s € JZ the power set relative to JZ is the set & (s) N J of the
ZFC universe. Thus properties and statements involving the power set can change
meaning also. But the union set Js retains its meaning. (Note also that if f is a
member of .77, then the property 1_1(f) holds relative to S if and only if it holds
in the ZFC universe, since it is defined by a formula quantified over the members of
f, and these are the same in both contexts.)

However, in the particularly simple case in which we restrict our universe of
sets to ¢ (N) where N is an inaccessible cardinal, the property ‘not_cardinal’ does
not change. This is because any 1_1 in the ZFC universe for which domain(f) €
JC(N) & range(f) € (N) must itself belong to JZ(N), since it is a set of or-
dered pairs of elements all belonging to 77 (N), whose cardinality is at most that
of domain(f), and so is less than N. It readily follows that the cardinals of JZ(N)
are simply those cardinals of the ZFC universe which lie below N; likewise for the
regular, strong limit, and inaccessible cardinals.

It follows that ZFC, plus the assumption that there are two inaccessible cardi-
nals, allows us to construct a set #Z(N) in which there is one inaccessible cardinal
(namely we take N to be the second inaccessible cardinal), and so implies the con-
sistency of ZFC plus the axiom that there is at least one inaccessible cardinal. Gen-
erally speaking, axioms which imply the existence of many and large inaccessible
cardinals imply the consistency of ZFC as extended by statements only implying the
existence of fewer and smaller inaccessible cardinals, but not conversely. Thus the
addition of stronger and stronger axioms concerning the existence of large cardinal
numbers exemplifies a basic consequence of the incompleteness theorems presented
in Chap. 6, namely that no fixed set of axioms can exhaust all of mathematics, so
that significant extension of consistent systems by the addition of new axioms will
always remain possible. The fact that large cardinal axioms can be formulated in-
dependently of any detailed reference to the syntax of the language of set theory
makes them interesting in this regard, and so has encouraged the study of axioms
which imply the existence of more and more, larger and larger, cardinal numbers.

It is worth reviewing a few of the key definitions that have appeared in such
studies:

Definition 2.11 Let S be a set of cardinal numbers all of whose members are less
than a fixed cardinal number N.

(1) S is said to be closed relative to N if the union of every sequence of elements
of § whose length is less than N is a member of S.
(i1) S is said to be unbounded in N if every cardinal less than N is also less than
some member of S.
(iii) S is said to be thin in N if there exists a closed unbounded set relative to N
which does not intersect S.

88 2 Propositional- and Predicate-Calculus Preliminaries

Definition 2.12 A nonempty set F of nonempty subsets of a set S is called a filter
on S if the intersection of any two elements of F' is an element of F and any superset,
included in S, of an element of F' is an element of S. A filter F' is an ultrafilter if
whenever the union of finitely many subsets of S belongs to F', one of these subsets
belongs to F. Given a cardinal number N, a filter F is said to be N-complete if
whenever the union of fewer than N subsets of S belongs to F', one of these subsets
belongs to F. An ultrafilter F is said to be nontrivial if it is not the collection of all
sets having a given point p as member.

Note that if F' is an N-complete filter on S, the intersection IT of any collection
T of sets in F such that #7T is less than N belongs to F'. Indeed, S belongs to F', and
if G belongs to F then S\ G is not in F, since otherwise F would contain the null
set G N (S\ G). But now S is the union of IT and the collection of all complements
S\ G for G € T, and since #T is less than N and F is N-complete, the union of all
these complements must lie outside F, so IT must belong to F'.

The following definition lists two of the various kinds of large cardinal numbers
that have been considered in the literature.

Definition 2.13

(i) A cardinal number N is a Mahlo cardinal if it is inaccessible and the set of
regular cardinals less than N is not thin.

(i) A cardinal number N is measurable if there is a nontrivial N-complete ultrafil-
ter for N.

Note that if there is a Mahlo cardinal N, then the number of inaccessible cardinals
below N must be at least N. For if there were fewer, then since N is inaccessible
the supremum M of all these cardinals would also be less than N. But then the
set SLC of all strong limit cardinals between M and N is unbounded and closed,
contradicting the assumption that N is Mahlo. Indeed, for each K between M and
N, the supremum of the sequence 2K 22K, ... must be a strong limit cardinal,
showing that SLC is unbounded in N. Also the supremum L of any collection of
strong limit cardinals must itself be a strong limit cardinal, since any L less than
L must plainly be less than some cardinal of the form 2X. This shows that SLC
is closed. Now, no member K of SLC can be regular, since if it were it would be
inaccessible, contradicting the fact that M is the largest inaccessible below N. This
shows that the set of regular cardinals below N is thin, contradicting the assumption
that N is Mahlo, and so completes our proof of the fact that every Mahlo cardinal
N must be the Nth inaccessible.

It follows that the assumption that there is a Mahlo cardinal is much stronger
than the assumption that there is an inaccessible cardinal, since it implies that there
are inaccessibly many inaccessible cardinals.

Suppose next that the cardinal number N is measurable, and let F' be an
N-complete nontrivial ultrafilter on N. Then any set consisting of just one point p
must lie outside F (or else F' would be the trivial ultrafilter consisting of all sets hav-
ing p as member). Since F is N-complete, it follows that every subset of N having

2.4 Set Theory as an Axiomatic Extension of Predicate Calculus 89

fewer than N points lies outside F, and therefore so does every union of fewer than
N such sets. Hence every measurable cardinal is regular. We will now show that if
K is a cardinal less than N, then 2X is less than N also, showing that every measur-
able cardinal is inaccessible. Suppose the contrary, so that there exists a collection
CF of binary-valued functions f(j) defined for all j in K, but having cardinality N,
and so standing in 1-1 correspondence with N. This correspondence maps f to an
N -complete nontrivial ultrafilter F' on CF. For each j in K, let a(j) be that one of
the two Boolean values {0, 1} for which the set of functions {f € S | f(j) =a(j)}
belongs to F’. Then, since F’ is N-complete, it follows, as was shown above, that
the intersection of all the sets {f € S | f(j) =a(j)} must belong to F’, and so F’
contains a singleton and must therefore be trivial, contrary to assumption.

This proves that any measurable cardinal N is inaccessible. Thomas Jech (whose
[Jec97] is a general reference for this area of set theory) proves the much stronger
result (Lemma 28.7 and Corollary, p. 313) that N must be Mahlo, and in fact must
be the Nth Mahlo cardinal. He goes on to define yet a third class of cardinals,
the supercompact cardinals (p. 408), and to show that each supercompact cardinal
N must be measurable, and in fact must be the Nth measurable cardinal (Lemma
33.10 and Corollary, p. 410).

In light of the preceding, we can say that various axioms implying the existence
of very many large inaccessible cardinals have been considered in the literature,
with some hope that they can be used to define consistent extensions of the axioms
of set theory.

The preceding discussion suggests the following transfinite recursive definition,
which generalizes some of the properties of very large cardinals considered above:

P.(N) <perif x = then Is_inaccessible(N)

(2.18)
else (Vyex |#{M: MeN | Py(M)} =N)endif .

Thus Po(N) is true iff N is inaccessible, Py (N) is true iff N is the Nth inaccessible
(which we have seen to be true for Mahlo cardinals), P>(N) is true iff N is the
Nth cardinal having property P; (which we have seen to be true for measurable
cardinals), etc. So the axiom

(Vx | Ord(x) — (3N | P(N)))

implies the existence of many and very large cardinals. And, if one likes, one can
repeat this construction after replacing the predicate ‘Is_inaccessible’ in (2.18) by

(3K | (Vx € K | Ord(x) — (AN | P:(N)))).

These particular statements do not seem to have been studied enough for surmises
concerning their consistency or inconsistency to have developed. But if they are all
consistent, there will exist inner models of set theory, in the sense described in the
next section, in which any finite collection of them are true. This will allow theories
containing such axioms to be covered by ‘axioms of reflection’ of the kind that will
be discussed in Sect. 6.3. Of course, all of this resembles the play of children with
large numbers: ‘a thousand trillion gazillion plus one’.

90 2 Propositional- and Predicate-Calculus Preliminaries
2.4.2.4 More General ‘Inner’ Models of Set Theory

A predicate model of the Zermelo—Fraenkel axioms must provide some set % as
universe and assign a two-variable Boolean function E on % to represent the non-
logical symbol ‘€’. The most direct (but of course not the only) way of doing this is
to choose a set %7 having appropriate properties and simply to define E as

E(x,y)=ifx €y then1 else O end if,
which can be written more simply as
E(x,y) o (xey)

if we agree to represent predicates by true/false-valued, rather than 0/1-valued, func-
tions. (An element A(x) of % must be assigned to each free variable x appearing
in a term or formula whose value is to be calculated.) Using this convention, and
noting that the ZFC axioms involve no function symbols and so they do not require
formation of any terms, we can write our previous recursive rules for calculating the
value associated with each predicate expression F' (cf. Sect. 2.2) in the following
slightly specialized way:

(i) If the expression F is just an individual variable x, then Val(A, F) = A(x).
(i) If F is an atomic formula having the form ‘x € y’, then Val(A, F) is the
Boolean value A(x) € A(y).
(iii) If F is a formula having the form (Yvy, ..., v | e), then Val(A, F) is

(Vx],...,xk | (x1 e%&-u&xkE%)—)VaI(A(xl,...,xk),e)),

where A(x1, ..., xy) assigns the same value as A to every free variable of e,
but assigns the value x; to each v}, for j from 1 to k.
(iv) If F is a formula having the form (Jvy, ..., vk | €), then Val(A, F) is

(EIX],...,xk | (x1 e%&--'&xke%)&VaI(A(xl,...,xk),e)),

where A(x1, ..., xy) assigns the same value as A to every free variable of e,
but assigns the value x; to each v}, for j from 1 to k.
(v) If the formula F has the form ‘G & H’, then Val(A, F) is Val(A,G) &
Val(A, H).
(vi) If the formula F has the form ‘G v H’, then Val(A, F) is Val(A, G) Vv
Val(A, H).
(vii) If the formula F has the form ‘=G’, then

Val(A, F) = (=Val(A, G)).
(viii) If the formula F has the form ‘G — H’, then Val(A, F) is

Val(A, G) — Val(A, H).

References 91

(ix) If the formula F has the form ‘G <> H’, then Val(A, F) is
Val(A, G) <> Val(A, H).

The set % defines a model of ZFC if and only if each of the ZFC axioms eval-
uates to ‘true’ under these rules. We shall pinpoint in Sect. 6.3 conditions on %
sufficient for this to be the case.

We will generally suppose that % is transitive, i.e. that each member of a mem-
ber of % is also a member of %/ . Then axiom (1) of ZFC evaluates to

(Vs,t | (se%&te%)a(s:te(‘v’x | (xe@/)—>((xes)<—>(x€t))))).

This formula clearly has the value true. Indeed, if s =1, then (x € s) < (x €¢) for
every x € %, so clearly

(Vx| x € %) — ((x €5) < (x €1))) (2.19)

must be true. Suppose conversely that s # ¢. Then by the ZFC axiom of extension-
ality, one of these sets, say s, has a member x that is not in the other. Since % is
transitive we have x € %, so (2.19) must be false.

ZFC axiom (6) (axiom of regularity) evaluates to

—|(Elx | (x e %) & (x #0)
&(Vy|[(yeZ)&(yex)— (2| ze) & (zex) & (z€Y)))).

and this also must be true. Indeed, if x in %/ is non-null, then by the ZFC axiom
of regularity it must have an element y which is disjoint from it, and since % is
transitive this y is also in % .

References

[Jec97] Jech, T.J.: Set Theory, 2nd edn. Perspectives in Mathematical Logic. Springer, Berlin
(1997)

2 Springer
http://www.springer.com/978-0-85729-807-2

Computational Logic and Set Theory
Applying Formalized Logic to Analysis
Schwartz, |.T.; Cantone, D.; Omodeo, E.G.
2011, XV, 416 p., Hardcover

ISBN: @78-0-85729-B07-2

	Chapter 2: Propositional- and Predicate-Calculus Preliminaries
	Why Predicate Calculus?
	2.1 The Propositional Calculus
	2.2 The Predicate Calculus
	2.2.1 Proof Rules of the Predicate Calculus
	2.2.2 The Gödel Completeness Theorem
	2.2.3 Working with Universally Valid Predicate Formulae. A Few Simple Examples of Predicate Proof
	2.2.4 The Prenex Normal Form of Predicate Formulae
	2.2.5 The Deduction Theorem
	2.2.6 Definitions in Predicate Calculus; the Notion of `Conservative Extension'
	2.2.7 Proof of the Gödel Completeness Theorem
	2.2.7.1 The Remainder of the Proof: Predicate Consistency Principle
	2.2.7.2 Immediate Consequences of the Gödel Completeness Theorem
	Decidability for the Bernays-Schönfinkel Sentences
	The Löwenheim-Skolem Theorem
	The Compactness Theorem

	2.2.7.3 Some Other Consequences of the Gödel Completeness Theorem
	Skolem Normal Form
	The Herbrand Theorem

	2.3 Predicate Calculus with Equality as a Built-in
	2.4 Set Theory as an Axiomatic Extension of Predicate Calculus
	2.4.1 Zermelo-Fraenkel Theory with the Axiom of Choice
	2.4.2 Concerning the Consistency of ZFC and Various Interesting Extensions of It
	2.4.2.1 Basic Facts Concerning Hereditarily Finite Sets
	2.4.2.2 Hereditarily Finite Sets: Formal Definition Within General Set Theory
	2.4.2.3 Large Cardinal Axioms
	2.4.2.4 More General `Inner' Models of Set Theory

	 References

