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of Geometric Data in 3D Conformal
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Abstract

The motion rotors, or motors, are used to model Euclidean motion in 3D con-
formal geometric algebra. In this chapter we present a technique for estimating
the motor which best transforms one set of noisy geometric objects onto another.
The technique reduces to an eigenrotator problem and has some advantages over
matrix formulations. It allows motors to be estimated from a variety of geometric
data such as points, spheres, circles, lines, planes, directions, and tangents; and
the different types of geometric data are combined naturally in a single frame-
work. Also, it excludes the possibility of a reflection unlike some matrix formu-
lations. It returns the motor with the smallest translation and rotation angle when
the optimal motor is not unique.

2.1 Introduction

The motion rotors or motors, denoted .#, are used to model Euclidean motions in
3D conformal geometric algebra (CGA). It is often useful to be able to estimate
a motor which best maps one data set onto another in some sense. The canonical
problem involves two sets of noisy points where one set is nominally a rotated and
translated version of the other. This situation arises frequently, for example when
two sets of reconstructed 3D points need to be merged and they share some common
points. Several solutions exist to minimise the squared distance between the points,
using matrix techniques based on SVD, polar decomposition, and quaternions [3].
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In addition to points, many other geometric objects such as lines, directions, and
planes provide useful information which can be used to help estimate the rigid body
relationship between the data sets.

In this chapter we present a technique for estimating the motor which best trans-
forms one set of noisy geometric objects onto another. The technique reduces to an
eigenrotator problem and has some advantages over matrix formulations. It allows
motors to be estimated from a wide variety of geometric data such as points, spheres,
circles, lines, planes, directions, and tangents; and the different types of geometric
data to be combined naturally in a single framework. Also, it does not admit the
possibility of a reflection as do some matrix formulations. It returns the motor with
the smallest translation and rotation angle when the optimal motor is not unique. To
assist the development, we will first examine some useful algebraic and differential
properties of the motors.

The following geometric algebra conventions are used in this chapter. The ge-
ometric algebra over R with signature (p, q) (p positive and g negative basis el-
ements) is denoted R, ;. When ¢ = 0 we write R;,. A pure Euclidean multivec-
tor in R3 is usually represented in boldface, such as V. The grade-r elements of
a geometric algebra R, , are denoted R/, . R+ g and R refer to the even and
odd elements of R, ,. The conformal geometric algebra (CGA) of the 3D space
R3 is denoted by R4 1. The dual of X is denoted X* = X - I~'. The CGA vec-
tor n, represents the origin and the CGA vector ny, represents the point at in-

finity, with n, - noc = —1. A CGA point or dual sphere s (which is an element
of ]R}‘ 1) is normalised if s - noo = —1, and a direct sphere (an element of ]Rj D
is normalised if S A noo = —14,1. A round R (including tangents) is normalised if

|R A n| =1, aflat (line or plane) F is normalised if | F/| = 1, and a direction A is
normalised if [n, A A| = 1. The notation (X); ; . is used as an abbreviation for
(X)i +(X)j+- -+ (X

2.2 Thelinear SpacesM, B,andS

The 8D linear space M = span{l, e12, €13, €23, €1100, €20, €3N0, [300} C R4, 1 is
the smallest linear space in which motors reside. It is convenient to restrict most
of the analysis to elements in M because many simplifications arise. Most of these
are consequences of the following split: if X € M, then X = R + Q where R € R;
and Q € Ryneo = (Ve : V €R3}. As Q0 =0, (XX) = RR > 0, so |X|> =
(X X W =(X X ), and we can drop the absolute value. We will use the property that
M is closed under multiplication, so if X, Y € M, and then XY € M. This is clear by
simply multiplying the basis elements. If X, Y € M, then (XY)~’)?) = (X)?)(YI?),
so | XY | =|X]|Y]. In addition, X € M is invertible iff |X| # 0. If X is invertible,
then 1 = |X~'X|=|X"!||X| and |X| # 0. Conversely, if | X| # 0, then

XX)— (XX
1T e
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The denominator of this is simplified because (X X )i vanishes. It is also conve-
nient to split X € M into symmetric and antisymmetric parts X = S + B where
S = %(X + )N() =(X)o4 and B = %(X — f) = (X)>. The antisymmetric grade-2 el-
ements of M will be denoted B = span{ej2, €13, €23, €100, €2100, €3N0}, and the
symmetric grade 0 and 4 elements will be denoted S = span{l, I3ns}. The el-
ements of S are “symmetric” in the sense that for § € S, we have § = S.Sis
closed under multiplication: S1,S2 € S = S15> € S. Note that if X € M, then
XX = (X X ) (X X )a. Therefore the condition X X =1 encodes two constraints:
(X X y=1and (X X )4 = 0 (there is only one grade-4 basis element in M). The fol-
lowing lemma uses these constraints to characterise how the 6D motor manifold .#
sits in the 8D linear space M.

Lemma2l Xe.#Z < XeMand XX =1.

Proof Let X = R+ Q € M where R € Ry and Q € Rynoo. XX = 1 implies RR =
1 and OR = (QR)>. Thus, R is arotator,and X = R+ ORR = (1 + (OR)»)R =
TR where T =1+ (QR); is a translator. O

The space M is incomplete in the sense that, given a basis of M, we cannot find
a reciprocal basis that also lies in M. We can enlarge M to a complete space such as
MU span{en,, ean,, e3n,, Tgno} or RII and then construct a reciprocal basis. The
subspace spanned by reciprocal vectors associated with elements in M is denoted
M= span{l, €12, €13, €23, €11y, €2y, €31,, I3n(,} Almost every result in M has a
counterpart in M. Anelement T = 1 +tn, = s(1 + 2tnoo)s represents a transversor
(reflection in the unit sphere s = n, — %noo followed by a translation 1 + %tnoo and
another reflection in the unit sphere). It is the product of an even number of vectors
and satisfies TT = 1, so it is a rotor. Let # denote the rotors of the form M = TR
where T is a transversor and R a rotator. The counterpart to Lemma 2.1 takes the
form:

Lemma22 Xe.Z < XeMand XX = 1.

The intersection of M and M is R;“. The rotators & lie in R;r and are a subset of
both .# and .# . The relationship between the spaces M, .Z, M, M ,RY, 2, and
RL is shown in Fig. 2.1. We will sometimes want to project an element X € Ry |

onM or M. Let {e;} be a basis for M, and {e”} be the associated reciprocal basis
in M. The projection on M is defined by

Pr(X) = (e’ X)e,

J
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Fig. 2.1 The relationship
between the manifolds of
motors .# , rotators %, and
reciprocal motors .# and the
linear spaces M, ]R;, and M
they reside in

As (PM(X)Y) =Y, (e! X)(e;Y) = (XPy(Y)), the adjoint is the projection onto M
given by

Py (Y) =Py(¥) =Y e’ (e, Y).
J

This can also be expressed using the multivector derivative dy = ) _; el (e;0x):
Ix(XY) =Y ,e’(e;Y) =Py(Y). When no ambiguity arises, it is convenient to
use the terse notation Py for the projection onto the basis of the linear space in
which the element X resides. For example, if X € M, then Py =Py, if R € R;‘,
then Py is a projection onto RY, and if Q € R3 neo, then Py is the projection onto
Ry 1o = span{e1neo, €2n00€3Mc0, 31100}. Using the split X = R + Q € M, where
RGR;’_ and Q_GR;noo, gives Pyy = Py =Pr + Py, and Py; = Py = Py —I—I_’Q
because P = Pp.

2.3  Geometry of the Motors

The following constructions in M directly parallel constructions in matrix theory,
where .# plays the role of the n x p Stiefel manifold, and S the symmetric pos-
itive definite matrices [4]. Refer to Fig. 2.2 which illustrates some of the concepts
introduced in this section. Consider the curve ¥ (t) € .# with M = (0) and A =
¥’ (0). Differentiating the constraint J(t)w(t) = 1 and evaluating at t = 0 gives
MA=—AM.As Ac M, MA e M, and it follows that A = M B where B € B. We
define the tangent space of .4 at M € .# by Ty = MB={MB : B € B} C M.
Any element X € M can be split:

X=MMX)=M(MX)s+ M(MX)4.

The first term in this split is in Z3, while the second term is of the form M S
where S € S. We define the normal space of # at M € .4 (restricted to M)
by /yy=MS={MS:Se€S}.If X=MBe Iy and Y = MS € ¥y, then
(XY)=(MBSM) = (BS) =0, and Jy is orthogonal to A}, so M = T & Ny.
From the split, for X € M we can define the projection on J; along .43 by

Pz, (X)=M(MX),.
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of the geometry of motors .#
in M showing the tangent
space Jy and the normal
space Ay at M, and the
projections onto s, N,
and A

Fig.2.2 An intuitive sketch ANy

It is clear that P &, is idempotent, onto .7, and has null-space .#},. Similarly, for
X € M the projection on .4} along 7y is defined by

Py, (X) =M (MX)o4

It is also clear that P_y4;, is idempotent, along .7, and onto .#}4. Closely related to
A, we can define a polar decomposition for an element in M.

Lemma 2.3 An element X € M with |X| # 0 has a unique polar decomposition
X=MS=SM where M € #, S €S, and (S) > 0.

Proof Suppose that M S = M'S’ are two such decompositions. Then N = M'M =
S’slisa symmetric motor (N = ]\Nl). Hence N =a + Bl3ns and 1 = N?=o?+
20B13n00,50 B =0and o = 1 because (S) > 0and (§’) > 0. As MI3nooA~4 = I,
we have M S = SM. The polar decomposition is given by

o ( <X>?>4> et X ( <X>?>4>
=1X|1+—=), M=XxS'="(1- — . (2.2)
2(XX) |X] 2(XX)

O

As shown, given M € .#, any X € M can be decomposed into components in
Iy and Ay giving X = M S + M B. The polar decomposition can be interpreted
as simply choosing M appropriately so that the component in 73, vanishes leaving
X = MS € Ayy. The polar decomposition is applied to more general elements X €
Ry in [1] (Chap. 5 in this book).

The polar decomposition on M provides a natural way to define the operation of
projection onto .# in the same way as the polar decomposition on R"*? defines a
projection onto the n x p orthogonal matrices in matrix theory. If X € M has polar
decomposition X = M S, we define the projection onto .# by

PX)=XS"len.

The element S~! € S nudges X onto .. It is interesting to note that several other
situations arise where elements of S perform some useful transformation. The el-
ement S~2 €S maps X onto X! = X§2 (refer to (2.1)). An element B € B
can be split into two commuting blades using S_ = (BB)4/(2BB) €Sand S =
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1-S_eS.If By =BSyand B_=BS_,then B=By+B_,and BLB_=B_By,.
This split can be used to factor a motor in accordance with Chasles’s decomposition

M = exp(—%B) = exp(—%B+) exp(—%B_) (2.3)

where exp(—B4/2) is a generalized rotator about an axis, and exp(—B_/2) is a
translator along the axis. Using the polar decomposition, it is a simple matter to
show that for any element ¥ € M with |Y| # 0, we can find an element X =
log(Y) € M such that ¥ = exp(X). Let ¥ have a polar decomposition ¥ = M S’.
The motor M can be expressed M = exp(B) where B € B (an expression for the
motor logarithm may be found in [2]). Also note that if S =« 4+ Q € S, then
exp(S) = exp(a)(1 + Q) = exp(a) + exp(w)Q because o and Q commute and
0?=0.S0if ' =o' + Q' =exp(S), then we take « = Ina’ and Q = Q' /a’ giving
S=Ina’+ Q'/a’. As B and S commute, we can take X = B + S € M.

There is an equivalent polar decomposition for an element X € M with |X| > 0,
of the form X = M S, where M € .# models a rotation and transversion, and S €
S= span{1, 73}10}.

The rotators &% are used to model rotation about the origin and lie in the lin-
ear space ]R;r = span{1, e12, €13, e23}. All the ideas above simplify when restricted
to rotators. If X € R;‘, then XX = (XX), so the equation X X=1 imposes only
one constraint and is equivalent to the statement (X X )y = 1. We will see that the
absence of the constraint (XX)4 = 0 is an important simplification for rotator es-
timation. If R € Z, then Ak = {Rs : s € R} (i.e. just scalar multiples of R),
and the projection on A% is given by P _4,(X) = R (I?X). The tangent space
Ir ={RB : B € span{ei2, e13, e23}}, and P 7, (X) = R(ﬁX)g. The polar decom-
position takes the simple form X = Rs where R = X/|X| and s = | X| € R.

The translators are used to model translation and lie in the linear space T =
span{l, e1nqo, €2N 0, €3Mc0}. A translator 7 =1 — %tnOO has a constant scalar co-
efficient, so there are only three degrees of freedom, as required. If X € T, then
(X)? = XX = (X%), so the equation XX =1 imposes only one constraint as
for rotators. Because (T), is made up of null bivectors, significant simplifica-
tions arise. If 7 is a translator, then 47 = {T's : s € R} (i.e. just scalar multiples
of T), and the projection on .47 is given by P_4; (X) = T(X). The tangent space
I = span{einoo, €2log, €300}, and Pz, (X) = (TX)Z. The polar decomposition
takes the simple form X = T's where T = X/|X| and s = | X| = |(X)]| € R.

24  Estimating Motors

We have two sets of noisy geometric data and wish to estimate the motor that opti-
mally maps one data set onto the other. To solve this problem, we need to be precise
about what optimal means, so we will define a measure that is used to determine if
two geometric objects are similar. For example, if P and Q are normalised points,
then (P Q) = —%dz where d is the distance between the points. Two points are
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considered similar if they are close together. We choose a similarity rather an error
measure only because it avoids a sign change for the most common case of points.
The inner product between points increases as the points get closer; hence it already
has the correct sign. To set the problem up so it has a simple closed-form solution
as an eigenrotator problem, we need to restrict the form of the similarity measure
as described in the next section. However, even with this restriction, not all possi-
bilities for object representation are admissible into the framework for estimating
motors. This is because one of the constraints (X X)4 = 0 for an element X € M
to be a motor (recall Lemma 2.1) is awkward to handle, and we will only want to
consider object representations where it can be dropped so that we can estimate the
motor using linear methods. Surprisingly, this occurs quite often as we will see later.

2.4.1 Similarity Measuresin CGA

In order to set the problem up as a eigenrotator problem, we need to restrict the sim-
ilarity measure between objects P and Q to the simple form (P Q), where the check
operator Q is a grade dependent sign change defined by Q (D)0,13 —(0)2.45.

Note that Q Q if 0 =(0Q)o,1,2 and Q = —Q if QO =(0)3.4,5. This operation is
motivated by the requirements (i) (pg) = (P Q) where p = P* and ¢ = Q* and
(i1) (PQ) = cos(f) when P, Q are flats (see below). This simple form is not as
much of a restriction as it may first seem. If we carefully consider the object rep-
resentation, many physically meaningful quantities can be expressed in this way.
Consider the following examples:

Points and Spheres We have already seen that if P and Q are normalised points
(grade-1), then

. 1
(PO)=(PQ) = —§d2 (2.4)

where d is the distance between them. Points can be considered as dual spheres
with zero radius. When P = p — % p,z,noo and Q0 =¢q — % pgnoo are dual spheres
(grade-1), we get

v 1
(PO) =(PQ) = (pg) + 5 (0} + ;)
1

1
= —3d>+ (0 +p))-

As the radii p, and p, are constant under rigid body motion, this effectively reduces
to the point case, and two spheres are considered similar if their centres are close.
When P and Q are normalised spheres (grade-4), we get exactly the same expres-
sion because of the way the check operator ~ is defined. A physical interpretation of
(P Q) in terms of a line segment joining the spheres is given in [2, Fig. 14.8, p. 418].
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Fig. 2.3 Graph showing
cos(#) and —%92 + 1. As
cos(f) (and sin? (6)) turn up
so frequently in geometric ot
calculations, we should
embrace there advantages
over 62

_o}
_at

_a}t

-4 -2 0 2 4

Flats Flats are objects like planes and lines. A flat can be modelled P = p A
V A ns, where p is a point on the flat and V is a Euclidean blade representing
the direction of the flat. If V is a Euclidean vector, then p A V A ny is grade-3
and represents a line. If V is a Euclidean bivector, then p A V A n is grade-4 and
represents a plane. The other cases are less interesting in the current application: if
V =1, then p Any is a flat point, and if V is a Euclidean trivector, then p AV Ango
represents a volume but is both translation and rotation invariant. If P and Q are
normalised flats so that |[P| =1 and |Q]| = 1, then

(P Q) = cos(8) (2.5)

where 6 is the dihedral angle between them. Two flats are considered similar if the
angle between them is small. Note that for small 6, cos(f) ~ —02/2! + 1 as shown
in Fig. 2.3. There is no drawback in maximising cos(6) as opposed to —62/2! for
many practical situations. Using cos(f) can even have an added benefit. Because
cos(f) > —1, it restricts the influence of outliers, so we are more likely to get an
acceptable solution even with significant outliers. If required, we can then reject
outliers and refit until the fit is acceptable. One potential concern with the measure
is that it does not capture the distance between lines, only the angle. The distance
is usually regarded as the closest distance that the lines pass. It is a simple matter
to determine this distance, for example, by forming the motor P Q and making use
of Chasles’s decomposition. It is not clear how to do this while keeping the simple
form of a scalar product (P Q). This is not so much of a concern with planes as they
will always intersect unless they are exactly parallel, so we are often only interested
in the angle between them. When there is a specific point of interest on a line or
plane, we should consider modelling it as a tangent instead of a flat as discussed
below.

Directions Directions are used to model 1D direction and attitude and can be rep-
resented in CGA in the form A = Vi, where V is a Euclidean blade. They are
translation invariant, so for translator T, we have T AT = A. The case where V is
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grade-1 gives a 1D or line direction, and the case where V is grade-2 gives a 2D
or plane direction. The other cases (scalar and grade-3) are of no practical interest
here. For the scalar case, we get a scale multiple of 7, and for the grade-3 case, we
get a scale multiple of /31, both of which are translation and rotation invariant. If
A, and A, are two directions, then (A [,Avq) = 0, so we cannot use the directions
directly. We can construct a meaningful quantity by representing the directions as
flats n, A A, dual flats n, - A*, or Euclidean directions n, - A. If P and Q are two
normalised directions represented in one of the above three forms, then

(PQ) = cos(6) (2.6)

where 6 is the dihedral angle between them. Two directions are considered similar
if the angle between them is small.

Tangents Tangents have both location and direction and can be used to model
various objects such as tangent planes on a surface, tangent lines on a curve, and
rays leaving a camera where the optical centre is the location. A tangent at location
p with normalised direction A = Vn, can be represented in CGA as a blade T’ =
pA(p- AA). If A is a bivector, then 7' is a tangent line, and if A is a trivector, then T’
is a tangent plane. When A = i, then T’ = p, and when A = I3n, then T’ = p*,
and we see that a point can be regarded as a degenerate tangent. Unfortunately,
except in the case of points, taking the inner product between two tangents in this
form does not give a particularly meaningful quantity. If we are prepared to consider
a broader range of representations than blades, then we can construct a meaningful
quantity using the measure. To be concrete, we will discuss the case of tangent lines
first. Let T = p + A be a flag (nested sequence of linear spaces) representation of the
tangent with grade-1 and 3 parts, where p is the tangent location, and A = T' A n
is the carrier line with p A A = 0. The representations 7" and T’ are equivalent with
T =(T),-T andT_(1+T WT'Ang). I P=p+A,and Q=g+ A, are two
tangent lines, then

(PO) = (pq) + (A, Ay)
—%dZ + cos(0)

—%(d2+92)+1

where d is the distance between the tangent locations, and 6 is the dihedral angle
between the tangent carriers. Two tangents are considered similar if their locations
are close and the angle between them is small. We can adjust ratio of the locational
and angular parts by encoding a weight in the line. For example, if w = | A|, then

(PQ) = —%dz + w? cos(0)

(d2 + w292) + w?.

|
N =
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Exactly the same construction works with tangent planes. Here we take P = p+ 11,
and Q = g + 11, to be two tangent planes where 1, I1, are planes with p ATT,, =0
and g A T1, =0.

Rounds Rounds are objects like spheres, circles, and point pairs. We have already
discussed spheres above, and we will now generalise this to include the remaining
round objects. A direct round can be represented in CGA as a blade of the form
R=sn(s- A) where s is a dual sphere and A = Vn, is the direction. This is
the same expression as for tangents, and tangents can simply be regarded as rounds
with zero radius. A normalised direct round object R can also be represented as
a tangent-like flag object 7 = s + F where s is a dual sphere and F is a carrier
flat with s A F = 0. Just as for tangents the two representations are equivalent with
T=(1+R)(RAnx)and R=(T), - T.1f P=s,+ F, and Q =s, + F, are two
rounds represented in this way, with radii o, and p,, respectively, then

. 1 1
(PO) = _Ear2 + cos(8) + 5(p,% +07),

where d is the distance between the centres of the rounds, and 6 is the dihedral
angle between the carrier flats. As mentioned when discussing spheres, the radii are
invariant under rigid body motion, so this effectively reduces to the tangent case.
If P and Q are direct spheres, then P A noo = —I4,1 and Q A neo = —I4,1 and
cos(f) = 1, and it reduces further to the point case.

We have associated a physically meaningful measure with the basic objects avail-
able in CGA. Some objects, such as points, spheres, and flats, are represented in their
basic blade form, and we will refer to these as primitive objects. Other objects, such
as rounds and tangents, are represented in flag form and constructed using primitive
objects. The directions, on the other hand, are converted to a primitive object repre-
sentation. Other ways of representing the objects P and Q can be designed to give
different measures. The only structural requirement is that they are expressed in the
form (P Q).

2.4.2 Motor Estimation Problem Formulation

We are now in a position to formulate the estimation problem. Let Py, k=1,...,n,
be a set of normalised CGA objects before motion, and Qy, k =1, ..., n, be the set
of objects after motion, wy € R be scalar weights, and M € . . The total similarity
is given by the weighted sum of the symmetrised similarity between M Py M and
QO as follows:

1 <& ~ T o~ o~ ~
E= 3 Z wi((MPM Q) + (QkM PcM)) = (ML M), 2.7
k=1

where
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1 " v < ~
LX = 3 I; Wi (Ok X Pr + Ok X Py). (2.8)

Note that .Z satisfies the useful symmetry property (Z,,ZB) = (E.,%A) for all
A,B e Ry . If P, and Q have the same symmetry and are either both sym-
metric (i.e. A = Z) or both antisymmetric (i.e. A = —AV), then £ X reduces to
ZX = 22’:1 Wik QkX Py. This is clearly true when P; and Qj are homogeneous
(and the same grade). However, in some mixed grade situations (e.g. for the flags
P =(P); + (P)3 and Q = (Q)1 + (Q)3) we require the full form given by (2.8).
The data Py, k =1, ..., n, need not all be of the same object type but could contain
a variety of geometric objects such as points, spheres, flats, and directions. Clearly,
for a given k, P, and Qj represent the same object type as one is simply a rotated
and translated version of the other. The magnitude of the weights wy can be used to
adjust the contribution a data element makes based on its reliability, or to introduce
attractive and repulsive contributions. We can now couch the problem of finding
an optimal motor more precisely as maximising (X.Z X) subject to X € .#. Using
Lemma 2.1, we can rewrite this as

g{nal\)/(ﬂ()?fX) subject to (X X) =1 and (X X)4 = 0. (2.9)
€

2.4.3 Optimal Rotator and Translator Estimation

First consider the simpler case of rotator estimation so that problem (2.9) reduces to

max (X.ZX) subject to (XX) =1 (2.10)
XeR?Y

This has a simple solution which is captured in the following theorem.

Theorem 2.1 Let P, and Qi, k=1, ...,n, be two sets of normalised conformal
objects in Rq 1, wi € R be scalar weights, and £ be defined by

1 <& v T~
LX = 3 I;wk(QkXPk + Ok X Py).

Then the maximiser of (RLR) subject to R € Z is an eigenrotator of PR.L asso-
ciated with the largest eigenvalue, where Py is the projection onto R;‘.

Proof The Lagrange function associated with problem (2.10) is given by L(X) =
%(Xf X) — %((X X)—1) where X € R;‘. Using the first-order optimality condi-
tion dyL = 0 and noting that P X = X gives PR.ZX = «X at the maximiser. In
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addition, o = ()? Z£X), so X is the eigenrotator of Pg.# associated with the largest
eigenvalue. 0

The optimal rotator can be readily obtained by forming the matrix representative
of Pp.% as outlined in the following procedure:

1. Form an orthonormal basis e, k=1, ..., 4, of R;‘ (e.g. {1, e12, €13, €23}).

2. Form the 4 x 4 symmetric matrix L;; = (¢;Pr.Le;) = (¢;Le;).

3. Calculate r € R*, a unit eigenvector of L associated with the largest eigenvalue.

4. Calculate the optimal rotator R = ), rrex € %.

If the dimension d of the eigenspace associated with the largest eigenvalue is greater

than one, then the optimal eigenrotator is not unique. This will happen in degenerate

situations such as estimating a rotator from a single pair of planes. The planes will
be made parallel, but any additional rotation about an axis normal to the planes is
permissible and will not affect the measure. A specific solution can be returned at
the expense of a small increase in complexity as follows. Let V € R*>d g <4,
be an orthogonal matrix whose range is the eigenspace of L associated with the

largest eigenvalue. Any maximum unit eigenvector can be expressed as r = Vx

for unit vector x € R¢. Note cos(%) =(R) =) rilex) = rTz where z € R* with

Zx = (ex), and 6 is the angle of rotation. With the natural basis above we get z =

(1 0 0 0)7.Hencex”VTz canbe identified with cos(§). Maximising x” V7 z

subject to x” x = 1 gives the following enhancement to step 3 above:

3’. Calculate r = unit(VV7z) € R?, the unit eigenvector of L associated with the
largest eigenvalue and the smallest angle of rotation, where z € R* with z; =
(ex), k=1,...,4.

If d = 1, then there is no choice, and r =V or r = —V, as expected.

This approach has an advantage over the standard methods of estimating an or-
thogonal 3 x 3 matrix using polar decomposition (or SVD) because improper ro-
tations are excluded at the outset rather than removed at the end with a determi-
nant check [3]. This advantage can be achieved with a matrix formulation based
on quaternions [3]. However, the rotator formulation is also directly applicable to a
wider range of objects than just points, including spheres, flats, and directions, and
allows all these objects to be incorporated into a single framework.

The translator case is simpler because we can encode the constraint in the pa-
rameterisation of the translator. Let T =1 + Q where Q = gi1e1nco + gae2n00 +
g3e3ns € Rénoo. Let # 7T denote the Moore—Penrose pseudo-inverse of a linear
transformation .% .

Theorem 2.2 Let P, and Q, k=1, ...,n, be two sets of normalised conformal
objects in R4 1, wy € R be scalar weights, and £ be defined by
1 & >
X =3 I; wi(Qk X Py + Ox X Py).

Then the maximiser of (T.,S” T) subjectto T being a translator is given by T = 14 Q
where Q = —(Po.£Po)t.Z1.
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Proof The objective function is given by L(T) = (TZT} (1.£41) + 2(Q$1)
(Qf Q) for T € T. The first-order optimality condition BQL 0 gives PQ,,f 0+

PQ.,?I =0,s0 Q= —(PQ.,?PQ)'i_gl U

The optimal translator can be obtained by forming the matrix representative of
Pr.% as outlined in the following procedure:
1. Form a basis e, k =1,...,4, of T, where the first basis vector is scalar (e.g.
{1, e1neo, €210, €3N0 }). B
2. Form the 4 x 4 symmetric matrix L;; = (¢;P1.ZLe;) = (¢;Le;) and break it into

Ler L
o qu) where L,, e Rand L, € R3*3,
qr

3. Calculate g = —L[ Ly € R

4. Form the full coefficient vector t = (]) e R,

5. Calculate the optimal translator 7 = Z & ke

The use of the Moore-Penrose pseudo-inverse will ensure that the smallest trans-
lation ¢ is returned when there is not a unique maximiser of (T,jf T). This will
happen when no locational information is provided, for example, finding the trans-
lator between two sets of directions. In such a case the above procedure will return
an identity translator 7 = 1.

sub-matrices L = (

2.4.4 Optimal Motor Estimation as an Eigenrotator Problem

It is interesting to see that much of the structure for rotators and translators is pre-
served when we consider the more complex case of motor estimation. First note
that the key difference between the full motor problem (2.9) and the rotator problem
(2.10) is the addition of the extra constraint (X X)4 = 0. We will show that by re-
stricting the representation of CGA objects the constraint (X X )4 = 0 can be dropped
entirely, leaving a problem no more difficult than the rotator estimation problem.
The other difference between problems (2.9) and (2.10) is the linear space involved.
The motors lie in M, while the rotators lie in R;r C M. The only implication is that
M is incomplete in the sense discussed previously: we cannot construct a reciprocal
basis that also lies in M. The following lemma characterises those elements which
are nearly motors, where we have not enforced the constraint (X X ya=0.

Lemma24 XecMand (XX)=1& X=M+ BMIne, M € 4, and B € R.

Proof Let X = M S be the polar decomposition of X € M with § = o 4 S3n. Be-
cause | = (XX)=(S?)=o?and o >0, wehavea =1 and X = M + BM Iznn. If
X =M + BM I3n where M € .Z C M, then X is the sum of products of elements
in M, so X e M, and(XX) (MM)_l 0

On the LHS of Lemma 2.4 we have the 8D space M with one constraint imposed,
and on the RHS we have the 6D motor manifold with an extra degree of freedom
added through g. It is convenient to use the notation ¥ = I3n, = ¥ for the quad-
vector basis element of M as it is used frequently. In addition, we will denote the set
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Fig. 2.4 Sketch showing the
2D normal space A}y of A
at M (restricted to M).
Imposing the constraint
(X)NK) = 1 restricts us the 1D
subspace of .4}, consisting
of elements of the form
M1+ Bl3nc)

defined in Lemma 2.4 by .#" = (M + MY : M € ./, B € R}. One way to study
the problem is to consider the behaviour of the objective function (X.Z X) with ele-
ments X € .#’. This allows us to separate out the terms which result from relaxing
the constraint (X X Y4 =0. When 8 =0, X lies on the motor manifold .Z. As |B|
increases, X leaves .# along a 1D subspace of .#3s. A sketch of the situation is
shown in Fig. 2.4. Note that M is both a point on .# and a direction vector in .#}y.
Expanding the objective function at X = M + BMW € .#’ gives

(XZLX) = (MZLM) +28(M.LMP))+ B2 ML MWP)). 2.11)

For a given M € ., this is a quadratic in 8. We are interested in the cases where
the coefficient of B vanishes and coefficient of 82 is not positive, independently
of M. When the coefficient of B2 is negative, leaving .# decreases the objective
function, and maximising (X.Z X subject to X € .#’ will give us the optimal motor
which solves problem (2.9). If the coefficient of 82 vanishes, then the solution is not
unique, and if M e M is a solution, then so is M (1 + ¥). In such situations we
can maximise (X.Z X) to give a solution, and then project the resulting X onto .#
to get the optimal motor. We first make some general observations which help to
manipulate (2.11). ~

1. When X = % Zzzl wk(QkXPk + ékX};k) is substituted in the coefficients of
B and B2, the term P| = P{(M) = M QM turns up which has the same grades
as Qg and Py. (It represents the same kind of object.)

The coefficient of 8 is made up of terms (llf(ﬁ,g P+ Py }V’,é)).

If P, and Qj have the same symmetry, the coefficient of 8 reduces to 2{¥ }312 P).
The coefficient of A2 is made up of terms (¥ Isléllf Py).

<11/15 WP) = —(nooP'noo P) forall P, P’ € Ry ;.

(XQYP) (Xqu) where p=P*and g = Q* forall X, Y, P, Q e R4 1.

We will examine what conditions need to be imposed on Py, Qy, and wy so that we
can ensure that the coefficient of 8 vanishes and the coefficient of 82 is not positive.
Let us first consider the cases where Py and Q are homogeneous and then extend
to mixed grade elements. We only need to provide proofs for scalars, vectors, and
bivectors because the trivector, quadvector, and pseudoscalar cases follow by obser-
vation 6 above. First examine the case where P and Qy are vectors or quadvectors.

E VRIS
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Lemmg 2.5 Let Py and Q, k=1,...,n, be two sets of vectors or quadvectors.
Then (X LX) = (MZLM) — B*(noo-LNoo).

Proof As Iv’ Py has no grade-4 part, the coefficient of ﬁ vanishes. Also note that for

vector or quadvector Qk, we have noQMQanoo = Mnoo QinooM =noo Qi SO
(nooP Noo Py) = (nooanooPk) and the coefficient of ,32 is independent of M. [

Using Lemma 2.5, we can now provide the following useful results for nor-
malised points, spheres, and dual spheres; and planes and dual planes:

Lemma 2.6 Let Py and Qy, k =1,...,n, be two sets of normalised conformal
points, spheres, or dual spheres in Ry 1, wi be scalar weights with Zk wi > 0, and

1" v < ~
LX = 3 I;wk(QkXPk + Ok X Py).

Then the maximiser of ()NKZX) subject to X € M and (XX) =1 is a motor.

Proof Assume that X is not a motor, so X = M(1 + B¥). For normalised spheres,
dual spheres, and points, we have (nooanooPk) =2,80 (Noo-ZLNoo) =2 Wi >
0. By Lemma 2.5 we have (X,XX) (MZM) 2,32 > 4 Wk, and X cannot be a
maximiser. O

It is interesting that only the sum of the weights >, wx > 0 need be positive.
Some points can have a repulsive force as long as the sum of the attractive contribu-
tion is greater than the repulsive terms. The result for planes is as follows:

Lemma 2.7 Let Py and Qy, k =1,...,n, be two sets of normalised conformal
planes or dual planes in Ry 1, and .,? be defined by (2.8). The maximum value of
(X,,?X) subject to X € M and (XX) =1 is obtained by a motor.

Proof For planes or dual planes P; and Qj, we have (oo Qoo Pr) = 0 s0
(Noo-Lns) =0, and the coefficient of A2 also vanishes. O

This is a weaker result than for points and spheres since we can only state that the
maximum is obtained by a motor because the maximiser is not unique. If M € .#
is a maximiser, then so is X = M + BMWY. The case of bivectors and trivectors is
not quite as clean.

Lemma 2.8 Let P, and Q, k=1,..., n, be two sets of bivectors or trivectors
such that neo Pxloo = Neo Qihoo = 0. Then (X LX) = (ML M).

Proof neo Pxloo = Moo Okl = 0 iff Ok and Py have no terms of the form Vn,
where V is a Euclidean blade. This precludes the appearance of a term Tgn,,
in the product P’ P; hence (¥ 15k Pr) = 0, and the coefficient of 8 vanishes. As
Moo QMoo = 0, we have (¥ }V’klI/Pk) =0, and the coefficient of ﬂ2 also vanishes. [
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While Lemma 2.8 is somewhat restrictive, it is still sufficiently general to allow
the following useful result for lines, which is analogous to Lemma 2.7 for planes.

Lemma?2.9 Let Pyand Q. k=1,...,n,betwo sets of normalised conformgl lines
or dual lines in Ry 1, agd £ be defined by (2.8). The maximum value of (X LX)
subject to X € M and (X X) = 1 is obtained by a motor.

Proof If P, and Qy are lines, then noo Pilioo = Noo Qkhoo = 0. O

For completeness, the case for scalars and grade-5 elements is also given but is
of limited interest as these elements are invariant to rigid body motion.

Lemma 2.10 If P and Ok, k=1,...,n, are scalars or grade-5, then ()N(.,?X) =
(MLM) =3 wi (P Ox).-

Proof If P; and Qy are scalar, (¥ IBIQPk) = ISIQPk(lI/) =0, and the coefficient of
B vanishes. Similarly (¥ IslélI/Pk) = 13,£Pk(11/2> =0, so the coefficient of 82 also
vanishes. Also (M £ M) = Yoot wi(M Oy M Py) = et wi{ Ok Pe). O

The cases where P and Q are mixed grade can now be expressed in terms of
the homogeneous cases. We will only consider the mixed grade case where P =
(P)1 + (P)r and Q = (Q)1 + (Q), because this is all we currently require. The
coefficient of 8 will have terms of the form

v

n)+29(F).(P))

(w(P'P+PP'))=2(w(P) (P
(), - (P + (P - (P'))). (2.12)

wlp
+2(v(
The first two terms involve a single grade and are handled by the homogeneous

cases. The last term can only make a contribution when r = 5. The coefficient of 52
will have terms of the form

v

(W P'W P) = ~(noo{ P}, 10 (P)1) — (o P') o (P))
— (noo{ P') 10 {PYr) — (oo (PY1moo( '), ). (2.13)

Again the first two terms involve a single grade and are handled by the homogeneous
cases. If v = (v)1, then neeVn = 2(V - Roo )0 1s a scale multiple of n,. The last
two terms can only make a contribution if » = 1, which has already been taken into
consideration by the first two terms. Let

—_~—
—

L X =Y wi((QWr X (P + (1) X (P)y)

k=1
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denote the restriction of .Z to the grade-r parts of Py and Q. We can summarise the
above discussion by stating that for mixed grade objects of the form Py = (P)1 +
(Pi)rs Qk = (Qr)1 + (Qk)r, Where r # 5, we have

(XZLX)=(XLX)+ (XZLX). (2.14)

Lemma 2.5 to Lemma 2.10, together with the comments of mixed grade cases,
tell us for which object representations we can ignore the constraint (XX)4=0
during motor estimation. For convenience we, will refer to these objects as admissi-
ble, and we see immediately that all the objects represented earlier when discussing
measures are admissible. We wish to maximise (X.ZX) where X € .# as stated
in problem (2.9). For admissible objects, we can neglect the awkward condition
()NK'X)4 =0 and solve

max(X.ZX) subject to (XX) = 1. (2.15)
XeM

Thus we can maximise ()~( ZX) under the more relaxed constraints X € M and
(XX) = 1. This problem can be readily solved, and we can now present the gener-
alisation of Lemma 2.1 and Lemma 2.2 to the case of motors:

Theorem 2.3 Let Py and Qk, k=1, ...,n be two sets of admissible normalised
conformal objects in Ry 1, wi € R be scalar weights, and £ be defined by

1 n v < ~
LX = 3 ];wk(gkxpk + Ok X Py).

Then the maximiser of (]VID?M) subject to M € . is given by M = R + Q where
R is an eigenrotator of PR associated with the largest eigenvalue, &' = £ —
X(PQXPQ)JFX, and Q = —(PQXPQ)JFXR.

Proof The Lagrange function associated with problem (2.15) is given by L(X) =
HXZX) — 2((XX) — 1) for X € M. The first-order optimality condition dzL = 0
gives Py.Z X = aPy X. Let X = R+ Q € M where R € R} and Q € R; noo. Using
Py =Pg + Pg, we can separate 9y L = 0 into R and Q components as follows:

Pr.ZR —{-PRD?Q =aR,
PpLR+Pp L0 =0.

This is a standard form for quadratic minimisation with a homogeneous quadratic
constraint, and we can calculate Q from the second equation and then eliminate
Q from the first equation in the usual way. This gives Pg.#'R = a R where .¥' =
& — LPoLPo)TZ and Q = —(PoLPp)tZR. At the maximum, « equals
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()? Z X); therefore R is the eigenrotator of Pg.%” associated with the largest eigen-
value. 0

We see that, as for the rotator case, the problem reduces to an eigenrotator prob-
lem. This motor estimation method is easily implemented by forming the matrix
representative of Py;.# as outlined in the following procedure:

1. Formabasis ex, k =1, ..., 8, of M, where the first four basis vectors are associ-
ated with R and orthonormal, and the last four are associated with Q in the split

X =R+ 0 (e.g. {1, e12, €13, €23, €10, €2MNo0, €3N00, [3N00}).

2. Form the 8 x 8 symmetric matrix L;; = (¢;Py.Le;) = (¢;Ze;) and break it into

L, L
(L )

3. Form the 4 x 4 matrix L' = L,, — qu(L;‘qu,).

4. Calculate r = unit(VV77) € R?, the unit eigenvector of L’ associated with the
largest eigenvalue and the smallest angle of rotation, where z € R* with z; =
(ex), k=1,...,4.

5. Calculate g = —(LJ, Lyr)r € RY.

6. Form the full coefficient vector m = (;) e RS,

7. Calculate the optimal motor M =), myex € A .

The key steps of estimating R and estimating Q are both robust in the sense that a

reasonable value will be returned even if insufficient information is provided. Let

M=TR where T =1 — %tnoo is a translator and ¢ is the Euclidean translation

4 x 4 sub-matrices L =

vector. Note that Q = —%tRnoo, so we have |g| = |n, - Q| = %|t|. The use of the
Moore—Penrose pseudo-inverse will ensure that the smallest translation # is returned
when there is not a unique maximiser as discussed after the procedure for estimat-
ing translators. The estimated motor will maximise the measure and provide the
motor with the smallest translation and rotation angle when there is not a unique
maximiser.

2.5 Examples

In this section we provide some illustrations of the algorithm. The data is gener-
ated as follows. A random geometric object Py is generated, such as a point, sphere,
line, circle, or tangent. Noise is added to the data P, by perturbing it with a small
random motor M ~ 1 before applying the general fixed rigid body transformation
M, to give Qx = M, MkPkMkM The noise is sufficient to provide clear delin-
eation between the objects in the figures presented. The motor estimation procedure
is then applied to the data pairs (Pg, Qk), k =1, ..., K, to obtain an optimal esti-
mate M of M,. In the figures presented the dark data is the source data after the
action of the estimated motor Q) = M Py M, and the light data is the target data Q.
The difference between the sets is the error remaining after applying the estimation
procedure and is due to the noise on the data. If no noise is present, the fit is perfect,
and the data sits exactly on top of each other.
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Fig.2.5 Two pairs of
spheres used to estimate the
rigid body motion. The
centres all lie on a line

First consider the problem of fitting spheres. As discussed earlier, the radius of
the spheres plays no role, as it is invariant to rigid body transformations, and the sit-
uation is identical to the case of noisy points. With just one pair of spheres, the fit is
perfect, and the centres of the spheres coincide. The rotational part vanishes because
the smallest angle of rotation is zero and the estimated motor is a pure translator.
With two pairs of spheres, the optimal motor makes their centres lie on the same
axis with equal separation as shown in Fig. 2.5. This example is a typical situation
where there is insufficient information to get a unique maximiser of (M#M). For
the estimated motor, the rotation about the axis is zero, and the rotation is in a plane
parallel with the axis through the points before and after motion. A more general
situation is shown in Fig. 2.6, where there are five pairs of noisy spheres.

The more complex example in Fig. 2.7 shows the algorithm being applied to five
pairs of different objects. We use spheres, lines, circles, and 1D and 2D tangents.
We have not included planes simply because, unlike lines, it is hard to visualise the
separation between planes in a figure.

00

Fig. 2.6 Five pairs of spheres used to estimate the rigid body motion
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Fig. 2.7 Five pairs of different objects (spheres, lines, circles, 1D and 2D tangents) used to esti-
mate the rigid body motion

2.6 Discussion

We have presented a technique for estimating motors from noisy geometric data.
The data may comprise a variety of objects including points, rounds (point pairs,
circles, spheres), flats (lines, planes), tangents, and directions. To assist the devel-
opments, we first studied the geometry of the motors in the smallest linear embed-
ding space M. The estimation technique reduced to a small eigenrotator problem
and allowed the different types of geometric data to be combined naturally in a
single framework while excluding reflection. In order to formulate the problem,
we restricted the similarity measure between geometric objects P and Q to the
simple form (P Q) (with the aid of a grade dependent sign operator). In addition
we restricted the representation of objects to what we referred to as the admissi-
ble objects. These are representations that allow us to ignore the motor constraint
(M M )4 = 0 during optimisation. With these restrictions, we are able to associate a
physically meaningful measure to the primitive objects: points, spheres, lines, and
planes. Other objects such as circles, point pairs, and tangents were incorporated by
representing them as flags using sums of primitive objects. Directions were incor-
porated by representing them as associated flats. The estimation procedure reduced
to a standard constrained optimisation problem with a closed-form solution, which
could be expressed as an eigenrotator problem.

2.7 Exercises

2.1 Find a representation for spheres so that if P and Q are two spheres we get the
following measure (P Q) = —%dz — %(pp — ,oq)2 where d is the distance between
the centres, and p, — p, the difference in radii.
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2.2 Show that for X, Y € Ml we have | XY | = |X]|Y].

2.3 Consider an object of the form F = p + A + I1, where p is a point, A a
line through p, and IT a plane through p. Show that if P = p + A, + I1, and
0 =q + A4 + 1, have this form then (PQ) = —%d2 + cos(8) + cos(¢p) where d
is the distance between the points, 6 is the dihedral angle between the lines, and ¢
the dihedral angle between the planes. Are objects of this form admissible? What if
A and IT are perpendicular?
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