
How to Read This Guide to Geometric Algebra
in Practice

This book is called a ‘Guide to Geometric Algebra in Practice’. It is composed
of chapters by experts in the field and was conceived during the AGACSE-2010
conference in Amsterdam. As you scan the contents, you will find that all chapters
indeed use geometric algebra but that the term ‘practice’ means different things
to different authors. As we discuss the various Parts below, we guide you through
them. We will then see that appearances may deceive: some of the more theoretical
looking chapters provide useful and practical techniques.

This book is organized in themes of application fields, corresponding to the di-
vision into Parts. This is sometimes an arbitrary allocation; one of the powers of
geometric algebra is that its unified approach permits techniques and representa-
tions from one field to be applied to another. In this guide we move, generally, from
the description of physical motion and its measurement to the description of objects
of a geometrical nature.

Basic geometric algebra, sometimes known as Clifford algebra, is well under-
stood and arguably has been for many years. It is important to realize that it is not
just one algebra, but rather a family of algebras, all with the same essential structure.
A successful application for geometric algebra involves identifying, among those in
this family, an algebra that considerably facilitates a particular task at hand. The
current emphasis on rigid body motion (measurement, interpolation, tracking) has
focused the attention on a specific geometric algebra, the conformal model. This
uses an algebra in which such motions are representable as rotations in a carefully
chosen model space (for 3D, a 5D space denoted R

4,1, with a 32D geometric alge-
bra denoted R4,1). Doing so is an innovation over traditionally used representations
such as homogeneous coordinates, since geometric algebra has a particularly pow-
erful representation of rotations (as ‘rotors’—essentially spinors, with quaternions
as a very special case). This conformal model (CGA, for Conformal Geometric Al-
gebra) is used in most of this book. We provide a brief tutorial introduction to its
essence in the Appendix (Chap. 21), to make this guide more self-contained, but
more extensive accessible introductions may be found elsewhere.

Application of geometric algebra started in physics. Using conformal geometric
algebra, we can now update its description of motion in Part I: Rigid Body Motion.
From there, geometric algebra migrated to applications in engineering and computer
science, where motion tracking and image processing were the first to appreciate
and apply its techniques. In this book these fields are represented in Part II: Inter-
polation and Tracking and Part III: Image Processing. More recently, traditionally
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combinatorial fields of computer science have begun to employ geometric algebra
to great advantage, as Part IV: Theorem Proving and Combinatorics demonstrates.

Although prevalent at the moment, the conformal model is not the only kind of
geometric algebra we need in applications. It hardly offers more than homogeneous
coordinates if your interest is specifically in projective transformations. It takes the
geometric algebra of lines (the geometric algebra of a 6D space, for 3D lines), to turn
such transformations into rotations (see Part V: Applications of Line Geometry), and
reap the benefits from their rotor representation. And even if your interest is only
rigid body motions, alternative and lower-dimensional algebras may do the job—
this is explored in Part VI: Alternatives to Conformal Geometric Algebra.

While those parts of this guide show how geometric algebra ‘cleans up’ appli-
cations that would classically use linear algebra (notably in its matrix represen-
tation), there are other fields of geometrical mathematics that it can affect simi-
larly. Foremost among those is differential geometry, in which the use of the truly
coordinate-free methods of geometric algebra have hardly penetrated; Part VII: To-
wards Coordinate-Free Differential Geometry should offer inspiration for several
PhD projects in this direction!

To conclude this introduction, some sobering thoughts. Geometric algebra has
been with us in applicable form for about 15 to 20 years now, with general appli-
cation software available for the last 10 years. There have been tutorial books writ-
ten for increasingly applied audiences, migrating the results from mathematics to
physics, to engineering and to computer science. Still, a conference on applications
(like the one in Amsterdam) only draws about 50 people, just like it did 10 years
ago. This is not compensated by integrated use and acceptance in other fields such
as computer vision (which would obviate the need for such a specialized geometric
algebra based gathering; after all, few in computer vision would go to a dedicated
linear algebra conference even though everybody uses it in their algorithms). So if
the field is growing, it is doing so slowly.

Perhaps a major issue is education. Very few, even among the contributors to this
guide, have taught geometric algebra, and in none of their universities is it a com-
pulsory part of the curriculum. Although we all have the feeling that we understand
linear algebra much better because we know geometric algebra and that it improves
our linear-algebra-based software considerably (in its postponement of coordinate
choices till the end), we still have not replaced parts of linear algebra courses by the
corresponding clarifying geometric algebra.1 Most established colleagues may be
too set in their ways to change their approach to geometry; but if we do not tell the
young minds about this novel and compact structural approach, it may never reach
its potential.

Our message to you and them is: ‘Go forth and multiply—but use the geometric
product!’

1The textbook Linear and Geometric Algebra (by Alan Macdonald, 2010) enables this, and we
should all consider using it!
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Part I: Rigid Body Motion

The treatment of rigid body motion is the first algebraically advanced topic that the
geometry of Nature forces upon us. Since it was the first to be treated, it shaped the
field of geometric representation; but now we can repay our debt by using modern
geometric representations to provide more effective computation methods for mo-
tions. All chapters in this part use conformal geometric algebra to great advantage
in compactness and efficiency.

Chapter 1: Rigid Body Dynamics and Conformal Geometric Algebra uses con-
formal geometric algebra to reformulate the Lagrangian expression of the classical
physics of combined rotational and translational motion, due to the dynamics of
forces and torques. It uses the conformal rotors (‘spinors’) to produce a covariant
formulation and in the process extends some classical concepts such as inertia and
Lagrange multipliers to their more encompassing geometric algebra counterparts. In
its use of conformal geometric algebra, this chapter updates the use of geometric al-
gebra to classical mechanics that has been explored in textbooks of the past decade.
A prototype implementation shows that this approach to dynamics really works,
with stability and computational advantages relative to more common methods.

As we process uncertain data using conformal geometric algebra, our ultimate
aim is to estimate optimal solutions to noisy problems. Currently, we do not yet
have an agreed way to model geometrical noise; but we can determine a form of
optimal processing for conflicting data. This is done in quite general form for rigid
body motions in Chap. 2: Estimating Motors from a Variety of Geometric Data in 3D
Conformal Geometric Algebra. Polar decomposition is incorporated into conformal
geometric algebra to study how motors are embedded in the even subalgebra and
what is the best projection to the motor manifold. A general, dot-product-like simi-
larity criterion is designed for a variety of geometrical primitives. Instances of this
can be added to give a total similarity criterion to be maximized. Langrangian opti-
mization of the total similarity criterion then reduces motor estimation to a straight-
forward eigenrotor problem. The chapter provides a very general means of esti-
mation and, despite its theoretical appearance, may be one of the more influential
applied chapters in this book.

In robotics, the inverse kinematics problem (of figuring out what angles to give
the joints to reach a given position and orientation) is notoriously hard. Chapter 3:
Inverse Kinematics Solutions Using Conformal Geometric Algebra demonstrates
that having spheres and lines as primitives in conformal geometric algebra really
helps to design straightforward numerical algorithms for inverse kinematics. Since
the geometric primitives are more directly related to the type of geometry one en-
counters, they lead to realtime solvers, even for a 3D hand with its 25 joints.

Another example of the power of conformal geometric algebra to translate a
straightforward geometrical idea directly into an algorithm is given in Chap. 4: Re-
constructing Rotations and Rigid Body Motions from Exact Point Correspondences
Through Reflections. There, rigid body motions are reconstructed from correspond-
ing point pairs by consecutive midplanes of remaining differences. Applying the
algorithm to the special case of pure rotation produces a quaternion determination
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formula that is twice as fast as existing methods. That clearly demonstrates that
understanding the natural geometrical embedding of quaternions into geometric al-
gebra pays off.

Part II: Interpolation and Tracking

Conformal geometric algebra can only reach its full potential in applications when
middle-level computational operations are provided. This part provides those for
recurring aspects of motion interpolation and motion tracking.

Chapter 5: Square Root and Logarithm of Rotors in 3D Conformal Geometric
Algebra Using Polar Decomposition, gives explicit expressions for the square root
and logarithm of rotors in conformal geometric algebra. Not only are these useful
for interpolation of motions, but the form of the bivector split reveals the orthogonal
orbit structure of conformal rotors. In the course of the chapter, a polar decompo-
sition is developed that may be used to project elements of the algebra to the rotor
manifold.

Geometric algebra offers a characterization of rotations through bivectors. Since
these form a linear space, they permit more stable numerical techniques than the
nonlinear and locally singular classical representations by means of, for instance,
Euler angles or direction cosine matrices. Chapter 6: Attitude and Position Tracking
demonstrates this for attitude estimation in the presence of the notoriously annoy-
ing ‘coning motion’. It then extends the technique to include position estimation,
employing the bivectors of the conformal model.

An important step in the usage of any flexible camera system is calibration rela-
tive to targets of unknown location. Chapter 7: Calibration of Target Positions Us-
ing Conformal Geometric Algebra shows how this problem can be cast and solved
fully in conformal geometric algebra, with compact simultaneous treatment of ori-
entational and positional aspects. In the process, some useful conformal geometric
algebra nuggets are produced, such as a closed-form formula for the point closest
to a set of lines, the inverse of a linear mapping constrained within a subspace, and
the derivative with respect to a motor of a scalar measure between an element and
a transformed element. It also shows how to convert the coordinate-free conformal
geometric algebra expressions into coordinate-based formulations that can be pro-
cessed by conventional software.

Part III: Image Processing

Apart from the obviously geometrical applications in tracking and 3D reconstruc-
tion, geometric algebra finds inroads in image processing at the signal description
level. It can provide more symmetrical ways to encode the geometrical properties
of the 2D or 3D domain of such signals.

Chapter 8: Quaternion Atomic Function for Image Processing deals with 2D
and 3D signals and shows us one way of incorporating the rotational structure into
a quaternion encoding of the signal, leading to monogenic rather than Hermitian



How to Read This Guide to Geometric Algebra in Practice ix

signals. Kernel processing techniques are developed for these signals by means of
atomic functions.

The facts that real 2-blades square to −1 and their direct correspondence to com-
plex numbers and quaternions have led people to extend classical Fourier transforms
by means of Clifford algebras. The geometry of such an algebraic analogy is not
always clear. In the field of color processing, the 3D color space does possess a per-
ceptual geometry that suggests encoding hues as rotations around the axis of grays.
For such a domain, this gives a direction to the exploration of Clifford algebra ex-
tensions to the complex 1D Fourier transform. Chapter 9: Color Object Recognition
Based on a Clifford Fourier Transform explores this and evaluates the effectiveness
of the resulting encoding of color images in an image retrieval task.

Part IV: Theorem Proving and Combinatorics

A recurrent theme in this book is how the right representation can improve encod-
ing and solving geometrical problems. This also affects traditionally combinatorial
fields like theorem proving, constraint satisfaction and even cycle enumeration. The
null elements of algebras turn out to be essential!

Chapter 10: On Geometric Theorem Proving with Null Geometric Algebra gives
a good introduction to the field of automated theorem proving, and a tutorial on the
authors’ latest results for the use of the null vectors of conformal geometric algebra
to make computations much more compact and geometrically interpretable. Espe-
cially elegant is the technique of dropping hypotheses from existing theorems to
obtain new theorems of extended and quantitative validity.

As a full description of geometric relationships, geometric algebra is potentially
useful and unifying for the data structures and computations in Computer Aided De-
sign systems. It is beginning to be noticed, and in Chap. 11: On the Use of Geometric
Algebra in Geometrical Constraint Solving the structural cleanup conformal geo-
metric algebra could bring is explored in some elementary modeling computations.

Part of the role geometric algebra plays as an embedding of Euclidean geome-
try is a consistent bookkeeping of composite constructions, of an almost Boolean
nature. The Grassmann algebra of the outer product, in particular, eliminates many
terms ‘internally’. In Chap. 12: On the Complexity of Cycle Enumeration for Simple
Graphs, that property is used to count cycles in graphs with n nodes, by cleverly
representing the edges as 2-blades in a 2n-dimensional space and their concatena-
tions as outer products. Filling the usual adjacency matrix with such elements and
multiplying them in this manner algebraically eliminates repeated visits. It produces
compact algorithms to count cycle-based graph properties.

Part V: Applications of Line Geometry

Geometric algebra provides a natural setting for encoding the geometry of 3D lines,
unifying and extending earlier representations such as Plücker coordinates. This is
immediately applicable to fields in which lines play the role of basic elements of
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expression, such as projective geometry, inverse kinematics of robots with transla-
tional joints, and visibility analysis.

Chapter 13: Line Geometry in Terms of the Null Geometric Algebra over R
3,3,

and Application to the Inverse Singularity Analysis of Generalized Stewart Plat-
forms provides a tutorial introduction on how to use the vectors of the 6D space
R

3,3 to encode lines and then applies this representation effectively to the analy-
sis of singularities of certain parallel manipulators in robotics. Almost incidentally,
this chapter also indicates how in the line space R

3,3, projective transformations be-
come representable as rotations. Since this enables projective transformations to be
encoded as rotors, this is a potentially very important development to the applica-
bility of geometric algebra to computer vision and computer graphics.

In Chap. 14: A Framework for n-Dimensional Visibility Computations, the au-
thors solve the long-standing problem of computing exact mutual visibility between
shapes, as required in soft shading rendering for computer graphics. It had been
known that a Plücker-coordinate-based approach in the manifold of lines offered
some representational clarity but did not lead to efficient solutions. However, the
authors show that when the full bivector space

∧2
(Rn+1) is employed, visibility

computations reduce to a convex hull determination, even in n-D. They can then be
implemented using standard software for CSG (Computational Solid Geometry).

Part VI: Alternatives to Conformal Geometric Algebra

The 3D conformal geometric algebra R4,1 is five-dimensional and often feels like a
slight overkill for the description of rigid body motion and other limited geometries.
This part presents several four-dimensional alternatives for the applications we saw
in Part I.

Embedding the common homogeneous coordinates into geometric algebra begs
the question of what metric properties to assign to the extra representational dimen-
sion. Naive use of a nondegenerate metric prevents encoding rigid body motions as
orthogonal transformations in a 4D space. Chapter 15: On the Homogeneous Model
of Euclidean Geometry updates results from classical 19th century work to modern
notation and shows that by endowing the dual homogeneous space with a specific
degenerate metric (to produce the algebra R

∗
3,0,1) one can in fact achieve this. The

chapter reads like a tutorial introduction to this framework, presented as a complete
and compact representation of Euclidean geometry, kinematics and rigid body dy-
namics.

To some in computer graphics, the 32-dimensional conformal geometric alge-
bra R4,1 is just too forbidding, and they have been looking for simpler geomet-
ric algebras to encode their needs. Chapter 16: A Homogeneous Model for Three-
Dimensional Computer Graphics Based on the Clifford Algebra for R

3 shows that a
representation of some operations required for computer graphics (rotations and per-
spective projections) can be achieved by rather ingenious use of R3 (the Euclidean
geometric algebra of 3-D space) by using its trivector to model mass points.
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In Chap. 17: Rigid-Body Transforms Using Symbolic Infinitesimals, an alterna-
tive 4D geometric algebra is proposed to capture the structure of rigid body motions.
It is nonstandard in the sense that one of the basis vectors squares to infinity. The
authors show how this models Euclidean isometries. They then apply their algebra
to Bezier and B-spline interpolation of rigid body motions, through methods that
can be transferred to more standard algebraic models such as conformal geometric
algebra.

Chapter 18: Rigid Body Dynamics in a Constant Curvature Space and the
‘1D-up’ Approach to Conformal Geometric Algebra proposes yet another way to
representing 3D rigid body motion in the geometric algebra of a 4D space. It takes
the unusual approach of viewing Euclidean geometry as a somewhat awkward limit
case of a constant curvature space and analyzes such spaces first. The Lagrangian
dynamics equations take on an elegant form and lead to the surprising view of trans-
lational motion in real 3D space as a fast precession in the 4D representational space.
The author then compares this approach to that of Chap. 15, after first embedding
that into conformal geometric algebra; and the flat-space limit to the Euclidean case
is shown to be related to Chap. 17. Thus all those 1D up alternative representations
of rigid body motions are shown to be closely related.

Part VII: Towards Coordinate-Free Differential Geometry

Differential geometry is an obvious target for geometric algebra. In its classical de-
scription by means of coordinate charts, its structure easily gets hidden in notation,
and that limits its applications to specialized fields. Geometric algebra should be
able to do better, especially if combined with modern insights in the system of geo-
metrical invariants.

Chapter 19: The Shape of Differential Geometry in Geometric Calculus shows
how geometric algebra can offer a direct notation in terms of clear concepts such
as the tangent volume element (‘pseudoscalar’), attached at all locations of a vec-
tor manifold, and in terms of its derivative as the codification of ‘shape’ in all its
aspects. The coordinate-free formulation can always be made specific for any cho-
sen coordinates and is hence computational. The chapter ends with open questions,
intended as suggestions for research projects. The editors are grateful to have this
thought-provoking contribution by David Hestenes, the grandfather of geometric
algebra.

The field of “moving frames” has developed rapidly in the past decade, and struc-
tured algorithmic methods are emerging to produce invariants and their syzygy re-
lationships for Lie groups. We have invited expert Elisabeth Mansfield, in Chap. 20:
On the Modern Notion of Moving Frames, to write an introduction to this new field,
since we believe that its concretely abstract description should be a quite natural
entry to formulate invariants for the Lie groups occurring in geometric algebra. Be-
sides an introductory overview with illustrative examples and detailed pointers to
current literature, the chapter contains a first attempt to compute moving frames for
SE(3) in conformal geometric algebra.
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Part VIII: Tutorial Appendix

In Chap. 21: Tutorial Appendix: Structure Preserving Representation of Euclidean
Motions through Conformal Geometric Algebra, we provide a self-contained tuto-
rial to the basics of geometric algebra in the conformal model.

Leo Dorst
Joan Lasenby
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