Chapter 2
Pointers on Experiments and Results

This chapter is designed as a refresher on the issues of experiment design and pre-
sentation of results. We shall not be presenting an exhaustive survey nor treating
the issues in great depth as there are many books which address the points in this
chapter already, e.g. [1], although a traditional maths and science secondary school
education or science degree ought to cover most of the issues and any university
library will have a selection of research methods texts.

2.1 Hypothesis

In science it would be common to start an experiment by defining a hypothesis. This
is a “proposition made as a basis for reasoning, without the assumption of its truth;
a supposition made as a starting point for further investigation from known facts;
a groundless assumption” [4]. The explanation is proposed because it does not fit
existing models or theories—it may add to them, modify them or replace them. This
requires that we have both observed some phenomenon which requires explaining
or allows us to make a prediction; and have an explanation that we can test. For
some cases the hypothesis will be tested statistically, in others to be true or false.
A variation on this is the “null hypothesis”, that there is no difference between a
sample and either the whole population or some other population according to a
measure—a proposition that this measure is not significant in the definition of the
test sample.

Of course rather than the “science” approach, we might adopt the research meth-
ods of other disciplines. In particular, ethnography is widely used in pervasive
computing—where studies are geared to understanding what people do with the
world around them, in a natural (or at least naturalistic) setting. This approach is
most commonly used in HCI focused research, which isn’t the focus of this book.
However, those expecting to continue with research in this area should be aware of a
variety of methods and the other methods that they might encounter. The following
may be interesting reading in this area: [2].
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We might also try to define a “research question”—wondering “what happens if
...”. This might be “what happens if we give people this system to use” (prompting
ethnography) or “what happens if we apply certain stimulus to a system”, typically
one which is too complex or whose workings are too opaque for us to make a pre-
diction. As we form a better model of how this class of systems are used, or how
the system behaves under a class of stimuli we may move from this open ended
approach (which done badly is poking about in the dark and done well is blue sky
thinking) towards a traditional hypothesis.

Finally, we may set ourselves an engineering problem and define a set of con-
straints and evaluate whether a system meets them, or which system meets them at
least cost. In such an approach we need to beware of setting arbitrary targets. Exist-
ing infrastructure may set constraints and existing competition may set targets, but
with research which is further away from deployment it becomes easier to argue for
revisions in these constraints.

A question or hypothesis in computer systems is often framed in terms of a com-
parison, e.g. “system X is better than system Y”. The systems under comparison
may take various forms:

e Some existing system, which we believe a different approach can better.

e A single system running with different parameters. Parameters may be tuning
variables, number of nodes in a network, deployment hardware, workload data
etc.

e Well known base cases, typified by either an exhaustive algorithm, a random al-
gorithm or a theoretical best case. The first two are often encountered in network-
ing literature while the latter is found when evaluating algorithms that use some
heuristic or approximation to gain a cost advantage.

A null-hypothesis would suggest that two systems are effectively identical under a
given measure, despite whatever difference has been created.

2.1.1 Measures and Conditions

Occasionally it is sufficient to say that an algorithm “works” or meets some criteria,
or provide observations of the use of a system, but more often we want to answer
some combination of questions, such as:

e Is system x or y better under a certain range of conditions, on average and in the
worst case?

e Do algorithms X, y and z scale?

o If we make a change to the configuration of x does this provide an improvement
in speed, memory and network use over a range of work-loads?

e In what situations is x better than y?

In each case we need to make measured comparisons between systems with equiv-
alent conditions. We use the plural as we generally find that we must consider both
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costs and benefits, and claim superiority with a caveat. A measure will typically be
numeric, with units. Care must be taken that any noise in the reading is allowed for
and that sufficient samples are taken that the result is not due to chance, start-up
effects or some external factor. Many experiments need repeating to gain statistical
measures of performance, in which case either the conditions must be repeatable or
any variation in conditions must be subject to a null hypothesis. Repeatable condi-
tions may require stored rather than live data, e.g. from sensors, or fixed seeds in
random number generation for probabilistic simulations.

The necessary dual to measures are conditions. These are the variables that can be
controlled in the study—choice of algorithms, parameters for configuration, choice
of data sets etc. In some cases conditions have many components, such as hardware,
operating systems, other system load, environment, identity of participants etc. Note
the system configuration in your experiments as all kinds of parameters might be
useful for those that follow to understand how their results and yours are related
and might be repeated and in later analysis some aspect may turn out to be more
important than you anticipated.

Examples of measures and controls we might consider in this book include:

e CPU and memory use measured for different benchmark algorithms and work-
loads as controls

e network throughput measured with different packet sizes and loss rates as controls

e distribution of difference (measure, second order) between reported (measured)
and actual (controlled) values from signal processing of a given data set (con-
trolled) with different algorithms (another control)

For numeric measures and conditions we might plot a graph, typically with the mea-
sures on the y axis, the condition of interest on the x axis, and multiple lines repre-
senting discrete conditions—Ilarge scale changes in parameters, different algorithms
or data sets, as illustrated in Fig. 2.1. Such a graph allows us to identify how the
performance of each discrete condition compares to the others. In the example we
note experimental test conditions indicated with a point, connected by lines; a the-
oretical result plotted as a line; “condition two, value B” has no result for x = 1,2
(presumably indicating it does not function under that condition); and the two test
systems each have sections of the x axis condition where they are closer to the the-
oretical result but that “condition two, value A” rises faster as values of “condition
one” get higher.

2.2 Method

There are a number of techniques which are used to test a hypothesis:

e Argument—more or less logical, preferably with citations of facts and figures.
This is a good basis for setting out a position, but does not verify that the position
is correct. One comes across this in the research literature in the form of position
papers, which describe early work; and in research proposals, which argue that
an idea merits funding.
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Example Plots of Measures Against Conditions
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Fig. 2.1 An example plot of a measure under two conditions

Proof—a mathematical process which shows that an idea is correct, often using
logic but may use other analysis techniques. A marvellous thing, which any the-
oretical concept should seek. In addition one can prove properties of algorithms.
However, in this text we tend to focus on applications and implementations. In
these situations logic gives us confidence in an idea but relies on assumptions
which need to be checked; formal techniques in programming can also be used to
give confidence in an algorithm’s properties and so in the smooth running of the
program.

Experiment—setting up controlled conditions and testing an implementation.
This is an approach which we tend to promote in this text, as a good basis for
examining the properties of sensors and of small pieces of developed code. We
would urge the reader to see whether a traditional problem—hypothesis—method—
results—conclusion approach to an issue is viable. If so, the approach makes the
scientist readers relax and the structure tends to lead to results which are easy to
analyse. However, be aware that an “experiment” in this sense usually relies on
well controlled conditions and often a control case, for comparison. As a study
gets closer to natural human use controlled conditions get harder to argue and
complex human and external factors make results harder to analyse (requiring
greater numbers of participants and more complex statistical analysis).
Simulation, a form of experiment deserving special mention here—extracting an
idealised model of the thing being studied, without the problems of live subjects
in an experiment, and performing experiments on this. The models can be sophis-
ticated enough to include some random (usually probabilistic) factors and require
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multiple runs to establish average results and variations. Simulation can also be
used to exhaustively test software. The limits of this approach are (rather like the
mathematical proof) the accuracy of the assumptions made: would the introduc-
tion of the thing being tested change behaviour, is some issue being missed?

e Survey—watching what happens, involving techniques including questionnaires,
interviews, video, observation and note-taking and instrumented software. The
setting is usually as natural as possible (ideally not staged at all) while trying
to minimise the involvement of the watcher for fear of altering what happens
(the Hawthorne effect). The problems here are the effort required to undertake
the survey and analyse the findings; the effect of the observer and the form of
questions asked; the general validity of the set of subjects being observed; the
problems of creating valid comparisons with different human participants—not
to mention issues of funding deployment, research ethics, health and safety etc.

So, no approach works? Of course, each has its place and we would urge the
reader to consider which is the right way of exploring the qualities of the issue
under test. Often there is a progression: argument to convince peers that the idea
merits consideration; then analysis to convince yourself the design is sound; then
simulation to establish expected sub-system behaviour; then controlled experiment
to verify correct function with real users and to review a whole-system design; then
limited natural deployment to explore the subtleties that arise in prolonged use;
then product for sale to make more general conclusions about a broad range of
users—or some sub-set of these. In some cases our hypothesis concerns something
smaller than an application or system, and simulation and experiment are the main
tools, as testing algorithms and devices is usually best carried out in a physical
science / engineering tradition; alternatively if the questions are more open with
unanticipated outcomes then surveys and observational experiments drawing from
the social sciences are more appropriate. In this text we are mostly concerned with
experiments, but many of the comments which follow are applicable to experiment
design through simulation and to survey design.

2.3 Collection of Data

Various data collection methods may be found in pervasive computing, including:

Instrumenting code or log files to note system events

Physical measurement (controlled experiment)

Measurement of simulated system

Timed / monitored activity, either directly, by video, by system logs etc.
Questionnaire, interview, focus group (less applicable to testing of systems but
very relevant to testing the use of systems)

Each has its own strengths and weaknesses and is applicable to different situations.
None is “easy” and it is always possible to use more data—although not always
possible to meet deadlines if there is more than you can process! In all cases keep
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your raw data and process later. It is much easier to generate new statistics and
analyses from raw data in log files than it is to re-run an experiment where data is
generated and processed at run-time.

If relying on instrumented code in a deployment care needs to be taken that the
instrumentation tells you the values you need, with sensible units, accuracy and fre-
quency; that any filtering and aggregation is correct. Testing of the run—data collect—
data analysis cycle is time consuming. Tests in the lab may not reveal problems aris-
ing from deployment scale, timing from multiple users, environmental factors and
unexpected user behaviour. Controlled experiments and simulations do not suffer
from the unpredictability of “the wild” but have requirements for careful set up and
data collection as above. The observation of- and interaction with- users can give vi-
tal information about systems research that tests on algorithms and simulators alone
cannot answer. While our focus in this book has been on systems pervasive com-
puting lends itself to applied research and the connection with users is a desirable
end-point.

2.4 Analysis of Data

There are many analysis techniques and it is not our purpose to address them all.
For statistical data the selection of analysis will depend on the number of variables,
the type, completeness and volume of data. The results in this case will typically be
presented as a correlation, with a given confidence, using a certain test over n data
points—all this information is needed when reporting results. Even when reporting
correct operation the range of tests and number of runs are vital pieces of infor-
mation for any non-trivial system. Where sensors are involved then it is important
to document the tool chain properly: what sensors, what placement, what stimulus,
how many runs, processed with what algorithm, on what platform? For any exper-
iment documenting the tools and data set is important for allowing repeatability;
where interfacing with the real world is concerned proper documentation of a rigor-
ous procedure gives confidence in the findings.

2.4.1 Presentation of Results

The results, in particular any graphs, will be read directly after the abstract by some
readers. A clear message is vital to putting forward an idea, and a well presented
analysis is key. Be sure to address:

e What did you find?
e How can the reader use this finding in their work?

Don’t bury the message in caveats, but do make the bounds of your work clear in
the method and any anomalies or unexpected findings clear in the discussion.
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Fig. 2.2 An example of scatter and box and whisker plots for measurements of a known condition,
20 data points at each real value

So, what tools are useful? Of course this depends on the hypothesis / question
/ observations you made, what the form of the data and analysis is and what the
findings are, but common tools include:

e Tables of data. Really only useful for simple summary data. A graph or analysis
of correlation is often more useful.

e Histograms, where you have several comparisons and a few conditions to com-
pare on one axis.

e Line graphs, where you have a small number of comparisons over a more numer-
ous (tending to continuous) range of test points (x axis). Often the most useful
form of results in considering performance of a number of alternative systems
against time or controlled variables.

e Scatter plots, where something close to raw data with an accompanying discus-
sion aids your narrative.

e Be clear about patterns of noise: is it Gaussian, long tail, something else? What
have you done to mitigate it? Have you shown standard mean, mode or median,
deviation, percentile, limits in e.g. box/whisker plots?

o Textual statement of statistical findings. A simple test of a hypothesis with a clear
claim attached, qualified with confidence and number of data points.

Most research methods texts will expand on the presentation of data, and for a par-
ticular research area following the norms of that community is fairly safe, but for a
deeper read on this Tufte’s book is excellent [3].
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The graph in Fig. 2.2 illustrates the plotting of raw data with a scatter graph (each
value slightly offset on the x axis for clarity) and box and whisker plots of summary
statistics: min, mean — stddev, mean, mean + stddev, max. Standard deviation has
been used due to an assumption about Gaussian noise, percentiles are also common
in this form of plot. It can be seen that where the real value is zero the assump-
tion about normally distributed noise breaks down, as the minimum measurement
is zero. The measurements for x = 100 have a much wider spread, reflected in their
standard deviation and minimum and maximum bars; we also see that although the
noise is essentially Gaussian there is a significant outlier below the mean. We also
show a graph of the cumulative counts of data points at each difference between the
measured and real value, with three lines: one for each real value. The x-axis plots
the error to normalise the scales for each plot. We note that this also shows the wider
range of the x = 100 condition, the positive bias of the x = 0 condition, and also
the steep rise around zero error which implies that many readings are close to the
correct value.

2.5 Research Ethics

Last, but by no means least—when designing experiments which sense human ac-
tivity and are deployed into the world ethics and safety must be considered. Most
research organisations will have a research ethics process, where someone indepen-
dent will ask questions of research involving people, e.g.:

e Is it physically safe? What has been done to manage any risks, e.g. selection of
participants, adjustments to the method, provision of assistance and emergency
procedures.

e Might people be upset? What has been done to avoid this and/or handle it when

it occurs?

Is there any risk to the investigators? What has been done to mitigate this?

Might results be skewed by inappropriate inducements?

Will participants be aware of the experiment? Before, during, after?

Is the experiment collecting sufficient data to give good results but not more than

is needed?

e Will data about people be treated in a legal, secure and ethical manner? When
will it be deleted?

e Will data about participants identify them? If so, can they request its removal?

e Will any publications using the data collected, especially pictures or internet data,
allow association of individuals with the study by the reader?

It is not possible to prevent the unexpected (and if the outcome is guaranteed then
what kind of experiment is it?), but it is possible to show that you have properly
considered any risks and taken care of those that you identify.
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2.6 Summary

In this chapter we have not presented any technique in detail, but have given re-
minders and pointers for a range of tools that will be useful for the lab work in
the rest of the book. As a researcher or as an engineer, there is no single “correct”
approach to extending the subject or better understanding our products. However,
as a professional in these fields one should be aware of what approach we are tak-
ing, why we have chosen it and what the alternatives are. This applies to the choice
between hypothesis, question and ethnography; to the measures we make and anal-
ysis we apply to answer our questions. These choices will inform our methods, the
controls and conditions we apply, the data we collect. There are many possible solu-
tions, and to spark ideas and then test them requires the right sort of enquiry to make
progress. I wish you many revealing, exciting and enjoyable hours of research—I
hope the ideas in this book will inform some of them. Having set the scene, we now
delve into the issues in pervasive computing.
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