Chapter 2

Performance Measurement

and Evaluation in Human-in-the-Loop
Simulations

Ling Rothrock

Abstract A prerequisite for designers of complex systems is a proper under-
standing of human performance characteristics. While human factors texts provide
some insights into basic performance issues, the emergence of highly-automated
computing systems have fundamentally altered the way humans work. The pur-
pose of this paper is to present an approach to quantify and analyze human
performance in human-in-the-loop simulations based on over ten years of research
experience. The approach is centered on a measurement construct, called a time
window, which enables a functional relationship between constraints on operator
activities and time availability. A blackboard model is presented as the mechanism
to generate, maintain, and complete time windows. To demonstrate the utility of
time windows, an existing implementation in a real-time human-in-the-loop
simulation is also described. An extension of time windows to measure team
performance is also discussed. Using time window outcomes, samples of previous
analyses are presented to exhibit the potential of the construct.

2.1 Foundations
2.1.1 Introduction

The emergence of highly-automated computing systems has fundamentally altered
the way humans work. As these systems have increasingly become mediators
between human operators and the work environment, human understanding of how
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work is accomplished has greatly diminished. Remarks of “What happened?” or
“Why did it do that?” are not uncommon as operators seek to understand the
processes of systems designed to improve their work. Rather than serving the
purpose of being tools for human use, these systems have come to be regarded as
autonomous agents to which humans must adapt in the workplace.

To investigate human decision making in these highly-automated systems,
researchers have had to rethink the applicability of traditional laboratory methods
such as expected utility theory (Beach and Lipshitz 1993). The use of traditional
methods assumed that findings from the laboratory environment—where highly
cognitive, single-choice tasks were conducted—could be applied to more realistic
settings. The premise that findings from a static, forced-choice task can be
extended to an operational environment has been called into question (Hammond
1986). In fact, some researchers have recommended that studies of human oper-
ators must occur in settings that are representative of the actual environment
(Suchman 1987; Endsley 2006).

The purpose of this paper is to present a research approach to quantify and analyze
human performance within a human-in-the-loop simulation based on over ten years
of research experience. The key concept introduced here is the notion of a time
window that provides a functional relationship between constraints on operator
activities and time availability. A methodology is proposed to evaluate time windows
as well as to assess operator attunement to them. This paper contains reprints of three
journal articles. Section 2.1 is based on Rothrock (2001) that explains the founda-
tions of time windows, Sect. 2.2 is based on Rothrock et al. (2009) that explores team
performance measurement, and Sect. 2.3 is based on Ma et al. (2011) which extends
performance measurement to service-based industries like call centers.

2.1.2 Situations, Constraints and Time Windows

2.1.2.1 Situativity Theory

In order to extract situations, constraints, and available time, these terms must first
be clearly defined. The meaning of the terms “situation” and “constraint” as they
have been used thus far is consistent with the interpretation provided by Greeno and
Moore (1993) and Greeno (1998). They introduced a theory of situativity in which
cognitive processes are analyzed as relations between operators and other subsys-
tems in the environment. The theory is powerful because it stipulates that a functional
relationship exists between an operator’s decision making activities and the task
environment. The dependency relation between an action and the resultant situa-
tion—also known as a constraint—contains the following form (Greeno 1994,
p- 339):

<Kaction by operator>» => <Kgood effect in situation>,

where the good effects are outcomes that are required for a broader activity to be
successful.
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2.1.2.2 Time Window Extension to Situativity Theory

The notion of a time window is an extension to situativity theory. To computa-
tionally implement the time window extension, therefore, a greater degree of
definitional precision is required. Accordingly, the definition of time windows
conveys the concepts of situativity theory while relying upon temporal logic
(Gabbay et al. 1994; Allen 1983) to provide the basic foundation for a computa-
tional model.

A time window is a construct that specifies a functional relationship between a
required situation and a time interval that specifies availability for action. A time
window does not specify what action must be taken, but only that there exists an
action which will result in the required situation. In the course of operator activity
within a dynamic task, n time windows are denoted as w; for i = 1-n.

At the onset of operator interaction, all time windows are designated as inactive
and represented by the set U,. Until a time window is designated as open,
it remains inactive. Time windows are designated as open if the availability for
action exists for a required situation at the current point in time space. The set of
open time windows at time ¢ is designated as O,. When a required situation no
longer exists, the corresponding time window is designated as closed. The set of
closed time windows at time 7 is denoted as C;. The membership of U, O, and C is
defined to be persistent over time, and will remain the same (i.e., Uy, = U,
Ou1 = O, and Cy,; = C)) unless designated otherwise. Methods to extract con-
ditions specifying the opening and closing of time windows will be covered in
Sect. 2.1.3.

To complete the constraint specified by situativity theory in a temporal context,
one must define operator action and the relationship between action and time
window. An operator action is defined here as a two-tuple that includes a
detectable act performed by the operator at a specific point in time. In the course of
operator interaction within a dynamic task environment, m actions are denoted as
b; for j =1 to m. The relationship between action and time window can be
described by two Boolean indicator functions, I, such that, for | = 1, the function
evaluates whether an action meets the required situation specified by a time
window, and for 1 = 2, the function evaluates the relevance of an action toward a
time window.

Thus,

1 if b meets situation specified in w
IL(b) = , and
0 if b does not meet situation

—_

if b is relevant toward w
L(b) =
0 if b is not relevant toward w

Six predicates, M?(wi, bj) for k = 1-6, will now be constructed to characterize
fundamental relationships between time windows and operators actions over a
time interval 7. In particular, the truth value, |[M*(w;,b;)||;, 7_, of each predicate
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is evaluated for a time interval that starts when operator interaction in the task
begins (7T+) and ends when operator interaction ceases (7—). Given that b; occurs
at time s, equations to evaluate the first five predicates are listed as follows:

¢ An on-time action that results in a required situation, MJ.(w;,b;), is formally
defined as,

[|M" (wi, b)), 7 = 1iff Ji such that [}, (b;) = 1] A (w; € Oy); (2.1)

An early action that results in a required situation, MZ(w;, b;), is defined as,

|IM? (wi, b))l 74 7 = 1iff 3i such that [I, (b)) = 1] A (w; € Uy); (2.2)

A late action that results in a required situation, M3 (w;,b;), is defined as,

1M (wi, b)) |74 = 1 iff 3i such that [I, (b;) = 1] A (w; € Cy); (2.3)

An action that is relevant toward a required situation, but does not result in it,
M3 (w;,b;), is defined as,

|1M* (wi, b))l p_ = 1iff 3i such that [I), (b;) = O] A [I} (b;) = 1];  (2.4)

An action with no corresponding time window, M%(bj)7 is defined as,
||M° (b))|| 7y 7 = Viff Vi, (I} (b;) = 0). (2.5)

Because the sixth predicate is based on a time window instead of action, the
equation to evaluate it is defined separately as follows:

e A time window that has been missed, M%(w;), is defined as,
1M Wil = LHE Y, (L5, (b)) = 0). (2.6)

Because of their reliance on temporal logic, Egs. 2.1-2.5 offer a more explicit
description of constraints than the conceptual distinctions offered by situativity
theory. Specifically, the time window framework can now be utilized as a
dependency relation between an action and a required situation that is also bound
by time.

2.1.2.3 Extracting Time Window Information

To extract time window information, one must view operator decision making in
its experiential context. The focus of the extraction is, therefore, on the use of
analysis methods to discover mappings between operator actions and situations
required to meet system objectives.
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Three techniques meet the criteria for extracting time window information.
Because each technique focuses on a slightly different information source, the
most effective approach is one that integrates the advantages of all three. One
method, cognitive task analysis (CTA) (e.g., Militello and Hutton 1998), is based
on human input. CTA focuses on experienced practitioners in operational contexts
to extract information they deem diagnostic to successfully operate in the task
environment. The two other methods rely on theoretical and empirical studies of
the environment in which the task is performed. Cognitive work analysis (CWA)
utilizes theoretical expertise and engineering analyses of system dynamics to
identify conceptual distinctions within a work domain that can later be used as
modeling tools (Vicente and Rasmussen 1992). Ecological task analysis (ETA) is
focused on analysis of the task environment to determine empirical regularities in
environmental behavior (Kirlik 1995). Time window information extracted
through the integrated method should therefore be: valid from an operator’s per-
spective; consistent with system dynamics; and true to the availability of action
within the task environment. Consider, for example, the process of extracting time
window information in an air traffic control (ATC) domain. CTA is used to
determine normal operator courses of actions to reach established objectives.
CWA is used to ascertain static and kinematic constraints in the ATC domain that
affect the operator’s ability to reach the objectives (e.g., radar range). ETA is used
to discover constraints in the ATC environment (e.g., appropriate regulations) and
empirical regularities to which good controllers must be sensitive.

Once time window information has been extracted, the next step in the pro-
posed research methodology is to implement the construct. The next section
presents an object-oriented simulation architecture that includes a time window
generation and maintenance system based on the blackboard model.

2.1.3 Blackboard Model in Object-Oriented Simulations

The blackboard model was first developed in the early 1970s as a tool for speech
understanding (Erman et al. 1980). Since then, it has been implemented in many
domains for multiple purposes. For example, Vranes et al. (1991) have used it as a
tool to conduct military planning. Rubin et al. (1988) used it as a framework to
construct an operator’s associate in a supervisory control task. More recently,
Adeli and Yu (1995) used it to develop an integrated computing environment to
solve complex engineering problems. Although it has been implemented in vastly
different forms, the blackboard model approach to problem solving remains the
same. In essence, the blackboard model of problem solving is a reasoning scheme
which applies pieces of knowledge at the most opportune time to construct a
solution to the problem.

A blackboard model consists of three major components (Nii 1986): knowledge
sources; the blackboard data structure; and control. The knowledge sources contain
knowledge required to solve the problem. The blackboard data structure is a global
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Fig. 2.1 Air traffic control
example. An unknown
aircraft enters Country X
airspace at point A, enters and
leaves range to establish radio
contact at point B, and leaves
Country X airspace at Point C

Country X
Airspace

database in which partial and full solutions are kept. The blackboard control is an
opportunistic reasoning model that guides problem solving by choosing and
activating appropriate knowledge sources.

2.1.3.1 The Blackboard and Time Windows

To illustrate the use of blackboard model to open, maintain, and close time
windows, consider the following example: In a real-time simulation, a human
operator assumes the role of an ATC monitoring aircraft entering and leaving
Country X’s airspace (Fig. 2.1). The operator has been given specific instructions
to identify all unknown aircraft entering the airspace, and to establish radio contact
with all aircraft that come within radio range. An unknown aircraft, traveling along
the trajectory indicated by the direction vector, enters Country X airspace at point
A, enters and leaves range to establish radio contact at point B, and leaves Country
X airspace at point C.

In the context of time windows, the blackboard knowledge sources include
operators who act on the environment, and entities that produce situations. These
sources contribute not only actions and situations to the blackboard, but also
temporal information that defines constraints within the environment in which the
task is performed.

In the example, the knowledge sources include the ATC and the unknown
aircraft. Moreover, the unknown aircraft also reveals constraints that dictate
expected ATC actions. At point A, w; is designated as open so that w; € O, with
the specification that the situation of a correctly identified aircraft be required. The
time at which the aircraft reaches point A is designated as 7,. At point B, a second
time window, w5, is designated as open to specify the situation of established radio
contact at time #, so that w, € O,,. Since the trajectory of the aircraft is tangential
to the curve bounding the radio contact area, the available time interval for the
ATC to establish radio contact is instantaneous. Therefore, w, is also designated as
closed at time #, so that w, € C;,. At point C, the aircraft exits Country X airspace
and triggers the closing of wy so that w; € C,,.
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The blackboard data structure holds time window information in the form of
computational and solution-state data. Each time window represents a structural
means-ends hierarchy (Vicente and Rasmussen 1992) where the required situation
(ends) is achieved by an expected operator action (means).

While the knowledge sources provide necessary information to generate and
maintain time windows within the blackboard architecture, the activities on the
blackboard are monitored and controlled by the blackboard control. The control
uses opportunistic reasoning to apply backward reasoning as well as forward
reasoning models to maintain time window information. Backward reasoning is
applied at the point of a required situation to determine if the expected operator
action has been taken, while forward reasoning starts at an operator action to
determine if the action outcome meets any required situations.

Returning to the ATC example, assume that the operator takes three actions.
The first action, by, incorrectly identifies the aircraft at time #,, where ¢, is before ¢,
(i.e., f; <'t,). The second action, b,, correctly identifies the aircraft at time #,
where 7, < t, < t.. The third action, bs, alerts Country X’s border patrol at time #;
where f, < t; < f..

Using backward reasoning, the blackboard control examines all open time
windows to determine if any has been met. At time 7,, the control assesses b; as
applicable to w; so that Iﬁ,] (b;) = 1, but does not result in the required situation so
that I}Vl (b;) = 0. Thus, Eq. 2.4 is satisfied and the action is deemed irrelevant. At
time #,, the control determines that b, is consistent with the expected operator
action specified by wy so that IVIV1 (by) = 1. Moreover, because w; € O,,, the control
evaluates w; and b, to satisfy Eq. 2.1 and assesses b, an on-time, required action.

Applying forward reasoning, the control examines all current actions to
determine if they address any required situations. At time 73, the control determines
that b3 is not relevant toward any time window so that Vi, vai (b3) = 0. The control
does not, however, make a determination on the action at this point. Rather, it
seeks resolution of the action’s status by checking backward reasoning results to
ensure that the action is not early for a later time window. Nevertheless, the third
action was eventually determined to be irrelevant.

2.1.3.2 Blackboard Models in a Real-Time, Object-Oriented Simulation

Conceptually, the use of time windows in a blackboard model has been demon-
strated. To illustrate the utility of time windows in a simulation environment, the
implementation of time windows via a blackboard model will now be presented.
The simulation architecture developed at the Georgia Institute of Technology
(Chu et al. 1991; Jones et al. 1995) is used as a baseline for discussion. The
integration of the blackboard model within the simulation architecture is depicted
in Fig. 2.2.

The active simulation object (ASO) is used as a base class so that events can be
scheduled by methods contained in its subclasses. The display class contains
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ASO

i

Display Simulator Platform Blackboard

Blackboard data structure

+openWindow()
+closeWindow()
+updateWindow()
+reconcileWindows()
+backward_chain()
+forward_chain()

Fig. 2.2 Simulation class diagram

parameters as well as methods for generating the graphical user interface. The
simulator class contains methods to control the experimental simulation.
The platform class represents physical platforms (e.g., airplanes) that exist in the
simulation environment, and contains methods that allow those objects to act upon
the environment. The blackboard class contains the knowledge sources within the
blackboard data structures. It also contains methods to control the blackboard by
opening time windows, closing time windows, updating and reconciling time
windows, conduct forward chaining reasoning, or execute backward chaining
reasoning.

An illustration of the blackboard and time window implementation within an
object-oriented simulation framework is represented in the form of a sequence
diagram in Fig. 2.3. A sequence diagram is a model that describes how groups of
objects collaborate in some behavior (Booch et al. 1999). Each box above the
diagram represents an object. Each vertical line represents the object’s life during
the interaction. The flow of events is chronologically ordered from top to bottom.
Methods labeled with an asterisk are iterative.

Revisiting the air traffic control example, the event flow of operator actions and
aircraft movements is reflected in Fig. 2.3. A chronologically-ordered narration on
the sequence of events follows:

1. The flight of the unknown aircraft along the southeasterly trajectory is
accomplished by the iterative call of the modifyPosition() method.

2. The first operator action, by, of incorrectly identifying the aircraft (as a jet) is
posted to the blackboard.

3. When the control detects the aircraft entering the airspace of Country X, w; is
designated as open.

4. The backward-chaining model reasons that b, is an incorrect identification
that has been taken early. Thus, |[|M*(wi,b1)||z 7_ = L.
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time

| Aircraft | Blackboard Control operator actions

* modifyPosition()

‘_| identify Aircraft(jet)

Ll

[enterAirspace]openWindow()

L
[backward_chainJupdateWindow ()

identify Aircraft(prop)

[backward_chainJupdateWindow ()

I |

[enterRadioRange]openWindow()

[leaveRadioRange]closeWindow

alertBorderPatrol()
[forward_chainupdateWindow()

[leaveAirspace]closeWindow

X

[endInteraction]reconcileWindows()

Fig. 2.3 Time window sequence diagram

o

10.
11.

. The second operator action, b,, of correctly identifying the aircraft (as a

propeller-driven aircraft) is posted to the blackboard.
The backward-chaining model determines that a correct identification action

has been taken on-time. Therefore, ||M'(wi,by)||;. 7 = 1.
When the control detects the aircraft entering radio range, w, is designated as
open.

The control immediately detects the aircraft leaving radio range, and closes w».
The third operator action to alert the border patrol, bs, is posted to the
blackboard. The forward-chaining model determines that no time window
specifies the need for b;. Moreover, the action does not serve any required
situation—radio contact or correctly identified aircraft. Therefore, the action is
classified as irrelevant. Thus, ||M5(b3)|\T+7T7 =1.

When the control detects the aircraft leaving Country X airspace, w is closed.
Operator interaction ceases as the aircraft leaves Country X airspace. At this
point, the backward-chaining model reconciles the blackboard by closing all
open windows and assessing if windows have been missed. The only window
in question is w,, and is assessed to be missed so that [[M®(w2)|[;, . = 1.

2.1.3.3 Possible Time Window Outcomes

The
but

utility of a time window is not only in its temporal and functional descriptions,
also in the richness of the possible outcomes. Some time window outcomes

have already been described. Not surprisingly, the complete space of possible time
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Environment
Situation No Situation
Response Required Required
Early On-time Late Eq5
False
Action Correct Eq2;: Eql Eq3 Alarm
Incorrect Eq4
No Action . Eq6 Correct
Miss L.
Rejection

Fig. 2.4 Possible time window outcomes. The environment is delineated in terms of situation
required (time window exists) or no situation is required (time window does not exist).
Equations 2.1-2.4 represent actions that are relevant to a time window. Equations 2.1-2.3
represent actions that result in the required situation (correct actions). Equation 2.4 represents
actions that do not meet the required situation (incorrect actions) even though they are relevant

window outcomes (Fig. 2.4) is represented by the fundamental relationships
between time windows and operator actions outlined in Egs. 2.1-2.6. In itself, the
existence of a required situation does not impact system performance. It is the
presence of operator action in a temporal context that specifies whether perfor-
mance is good or poor. An incorrect, early action (first ATC operator action) is
represented as Eq. 2.4. An on-time, accurate action (second ATC operator action)
is represented as Eq. 2.1. An action with no corresponding required situation (third
ATC operator action) is categorized as Eq. 2.5. A non-action for an existing
situation requirement (no attempt to establish radio contact) is characterized as a
miss and is represented as Eq. 2.6.

It has been shown that time window is a viable construct, both conceptually as
well as in an implemented mechanism within a simulation framework. However,
the value of implementing time windows in a research effort has yet to be dis-
cussed. The following section will discuss the implications of applying time
windows toward human performance measurement and evaluation.

2.1.4 Time Windows and Human Performance

2.1.4.1 Implications Toward Measurement
Wickens and Holland (2000) observed that most performance measures are
associated with one of the following categories of raw data:

1. Measure of speed or time (e.g., how fast can an operator reach for a lever?);
2. Measure of accuracy or error (e.g., how many typing mistakes are made?);
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3. Measure of workload or capacity demands (e.g., how difficult is this task?); and
4. Measure of preference (e.g., is one display preferred over another?).

In most cases, the use of a particular type of measure is dependent on the real-
world task to which the results of the laboratory task generalize. The emphasis,
therefore, is on finding methods that analyze factors in isolation. However, it has
already been noted that research on dynamic and complex environments should
take place in representative settings. Recognizing the problem, researchers have
sought to develop techniques to measure performance in tasks that are more
representative of the operational environment. Sanderson et al. (1989) focused on
the use of verbal protocol data in operational tasks. Howie and Vicente (1998)
used automated log files to construct a number of measures to assess operator
performance in a microworld setting. Still other researchers (Raby and Wickens
1994; Moray et al. 1991; Laudeman and Palmer 1995) focused on recorded data in
time-critical task environment.

The time window construct represents a fundamental shift from existing per-
formance measurement approaches. It is not focused solely on whether a certain
task is completed, or how fast a certain button is pushed, or what percentage of
error is detected. Rather, it provides a computational framework to dynamically
evaluate heterogeneous situation demands and operator abilities to meet them in a
complex domain. The benefit of the framework is the functional link between
operator actions and the domain with which she/he interacts.

2.1.4.2 Implications Toward Evaluation

As shown in Fig. 2.5, utilization of the time window construct leads to a multi-
dimensional space of possible outcomes. As yet, no mathematical formalism exists
to comprehensively evaluate operator performance based on all dimensions.
Instead, two methods are proposed to provide different perspectives on operator
attunement to the constraints. The first method, factor analysis, is designed to
determine correlations among different types of time windows and time window
outcomes. The second method depends on the use of signal detection theory (SDT)
to determine the sensitivity of operator actions to situation requirements.

Factor analysis is a data reduction technique that attempts to find a smaller
number of dimensions, or factors, while retaining most of the information in the
original space (Green 1978). The intent, therefore, is to evaluate which situations
and operator actions can be aggregated into higher order factors. The analysis
process proceeds in three major steps:

1. Rotate original data (i.e., variables consisting of the different time window
outcomes in different types of required situations) to a new orientation that
exhibits dimensions with maximal variance;

2. Reduce the dimension of the transformed data space; and

3. Identify the new dimensions, or factors, in terms of variables that show high
association with each factor.
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Fig. 2.5 Signal detection State of the world
theory outcomes
Signal Noise
Response
. False
Detected Hit Alarm
. Correct
Not Detected Miss Reiecti
ejection

The reader is referred to any multivariate statistics text for details on steps 1 and 2.
To identify underlying factors, a technique called the scree test (Cattell 1966) is
suggested. In essence, the scree test requires plotting the variance accounted by each
factor extracted, and then finding elbow in the curve of the plot. To identify which
variables belong to the selected factors, factor loadings (i.e., correlation between the
variable with a factor) are recommended.

Signal detection theory is a formulation that has been widely used to assess
human ability to detect signals (Green and Swets 1966). The premise of the
paradigm is that there are two states of the world (signal vs. noise) and two
possible human responses (I detect a signal vs. I do not detect a signal). The
possible resulting states produces a 2 x 2 stimulus—response matrix shown in
Fig. 2.5.

A key theoretical representation of signal detection theory is the receiver
operating characteristic (ROC) (Swets 1996). The standard graphical depiction of
the ROC is known as the ROC curve (Fig. 2.6). The curve reveals two important
sources of information about operator performance: an individual’s decision
criterion (the amount of evidence required to detect a signal); and the sensitivity of
an individual’s detection performance (the individual’s ability to discriminate
between signal and noise).

In order to apply SDT to the sensitivity analysis of time window outcomes, one
must develop methods that do not violate assumptions of either formulation. In
particular, the following three issues must be addressed: conversion of time
window outcomes to SDT outcomes, calculating the probability of a false alarm in
time window outcomes, and the development of a sensitivity measure without
distribution assumptions.

The conversion of time window outcomes (Fig. 2.4) to SDT outcomes is
dependent on a common definition of a hit. If a hit is defined to be an on-time and
accurate action, so that Eq. 2.1 holds, then conversions from time window out-
comes to SDT outcomes can readily be made. Table 2.1 shows the conversion
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Fig. 2.6 The ROC curve 1 F "
under different distribution S e
assumptions. If the \\ =

distributions of signal and A
noise are normal, the ’
sensitivity, d’, is determined Vs

by the distance of a point on Probability e .,
the curve, point A, from the of Hit
upper left diagonal. If no

assumptions on the g
distributions can be made, r
the sensitivity can be
approximated by the area
under ROC (e.g., point B)

Probability of False Alarm

from time window outcomes to SDT outcomes. If an action is not executed on
time, it is considered a false alarm. Therefore, a signal is only considered valid and
detectable during a specified time interval in which the associated time window is
designated open.

The original SDT formulation required forced-choice tasks primarily to ensure
that correct rejections were accurate assessments of the absence of a signal.
However, the decision environments for which time windows are intended are
dynamic and interactive, and operators are not forced to take action. To calculate
the probability of false alarm, which requires the number of false alarms and
correct rejections, an accurate accounting method for correct rejections is needed.
In fact, one method to measure correct rejections in these “free response”
(Wickens and Kessel 1979) environments has already been developed. Wickens
and Kessel (1979) computed the probability of false alarms as the number of false
alarms divided by the number of false-alarm intervals. In their formulation, equal-
valued intervals that span the detection task are separated into those that contain
hits, and those that do not—-called false-alarm intervals. Based on this concept,
a false-alarm interval can be defined in the time window context. Consider the
duration of a time window, T, over the lifetime of a simulation, 7. The number of
false-alarm intervals (FAI) can simply be formulated as:

T,
FAI =2 —1 (2.7)
T

The third issue to be addressed is the need for an appropriate sensitivity
measure. If the distributions of the signal and noise are normal, the determination
of the sensitivity, d’, can be visually determined from the ROC curve. In Fig. 2.6,
for instance, the closer point A is from the upper left corner, the higher the
sensitivity value. However, no assumptions can be readily made about distribu-
tions of signal and noise in dynamic domains. Therefore, one must rely on
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Table 2.1 Conversion

: ' Time window outcome SDT outcome
between time window " -
outcomes and SDT outcomes 17 (thf')HH,T— =1 Hit
162 (wi, D)l o = 1 False alarm
|‘M3(Wi7bj)”T+,T— =1
|‘M4(Wi»bj)|‘7+‘r— =1
1M 0)l 7y 7 =1
MO (wi)ll 7y 7o =1 Miss
Correct rejection Correct rejection

nonparametric measures of sensitivity. Wickens and Hollands (2000) recommend
a simple measure based on area under a ROC. The measure, first considered by
Green and Swets (1966), is formulated as follows:

g = P+ 1= P(E) 28)

If only one point is acquired on the ROC, such as point B in Fig. 2.6,
a sensitivity value can now be calculated. While these measures are still dependent
on distributional assumptions (Caldeira 1980), they nevertheless serve as a good
first approximation (Craig 1979).

The research methodology proposed here was implemented in a study to
investigate tactical decision making performance under stress. For experiment
details, see Rothrock (2001).

2.2 Analyses of Team Performance in a Dynamic
Task Environment

In this part of the paper, team performance will be assessed from the perspective of
time windows. Teamwork, a central component of team research, is not readily
observable and must be inferred from the manner in which teams operate. Of
particular interest is the measurement and evaluation of teamwork. The goal of this
section is to explore the assessment of team data using a temporal accuracy
measure called the relative accuracy index (RAI). The generalized mixed model
will be used for the statistical analysis because of the type of data (binomial) and
of the correlation structure within team members. The statistical procedure is
described in detail to guide researchers who encounter similar problems. Using our
statistical analysis, we found that participants whose training focused on coordi-
nation activities outperformed those whose training did not. Moreover, we found
that workload stress accentuates the difference.
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2.2.1 Introduction

An understanding of the relationship between team processes, outcomes and
performance is a necessary prerequisite to the development of team training
processes. Marks et al. (2002) argue that teamwork or team processes are the
mediating links that link the relationship between team training and corresponding
team outcome (performance) within the setting of input-process-outcome models.
Coovert et al. (1990) suggest that team processes relate to the activities, strategies,
responses, and behaviors employed in task accomplishment within teams. Team
outcomes on the other hand pertain to the outcome of the various team processes.
Any team performance measure or TPM (Cannon-Bowers and Salas 1997) must
address the process as well as outcome measures in an appropriate manner.

Cannon-Bowers and Salas (1997) argue that TPMs must consider measurement
at the individual and team levels because both teamwork and taskwork skills
influence team performance. Additionally, TPMs must include measures that
address process as well as outcome. The process measures describe the activities,
strategies, responses and behaviors relevant to the human that are used to
accomplish a task. In the past, researchers have used several instruments to assess
and measure process and outcome measures for operator actions at both individual
and team level. Smith-Jentsch and her colleagues (Smith-Jentsch, Johnston and
Payne 1998) provide a list of such instruments including: sequenced actions and
latencies index (SALI), behavioral observational booklet (BOB), anti-air team-
work performance index (ATPI) and anti-air teamwork observation measure
(ATOM). While SALI and BOB are measures used to evaluate individual level
outcomes and processes, ATPI and ATOM are used to evaluate team level out-
comes and performance. These instruments are used by experts in the field to
provide subjective ratings for process and outcome measures at individual and
team levels, and provide an indication of the expert’s judgment of operator per-
formance. Therefore, these ratings are subject to problems such as inter-rater
reliability. Additionally, the subjective ratings provided by the experts are often
decoupled from the objective measures of team performance.

In contrast to the existing measures listed above, we focus on a measure called
the RAI (Thiruvengada and Rothrock 2007). RAI circumvents the inter-rater bias
problem as it does not involve expert ratings. It is an instrument that provides an
objective assessment of process and outcome measures based on time windows.
Given the potential time window outcomes, RAI can be expressed as the ratio of
the number of ‘on time’ correct actions executed by an operator for a class of time
windows to the total number of time windows that are opened in that class for that
specific operator role. The mathematical formulation for RAI is shown in Eq. 2.9.

Number of ‘on time’ correction actions for a class of time windows

RAI =
Total number of time windows that are opened in that class

(2.9)
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In this study, team performance depends upon four teamwork dimensions:
information exchange, communication, team initiative/leadership, and supporting
behavior. The detailed explanation for each of these dimensions will be given
later. Time windows that relate to a specific teamwork dimension, such as infor-
mation exchange, are grouped together and are said to belong to the same class of
time windows for calculating RAI

2.2.2 Problem Domain

To demonstrate the utility of RAI, we conducted an empirical study with human
participants using a human-in-the-loop simulation known as the team Aegis
simulation platform (TASP). The objective of TASP is to reproduce a naval
command-and-control environment in the combat information centre (CIC) task
context (onboard a Navy ship with aircraft and missile launch capabilities) in
which there are up to three operator roles functioning as a team, an anti air warfare
coordinator (AAWC), an aircraft information coordinator (AIC) and a sensor
operator (SO), acting concurrently. All operators have well defined tasks
(responsibilities) set in a military context and are provided with rules of engage-
ment (RoE) (Table 2.2) to help aid in their decision making process. The operators
are recommended to follow the RoE at all times to achieve team goals. The RoE is
different for each operator role in the team but governs their overall activities.
Each operator is required to perform tasks based on RoE as well as compensate
their teammates through supporting behavior (backup and error correction). The
AAWC is the commander of team (team leader) and is responsible for coordi-
nating the overall activities, including identifying unknown aircraft, assigning and
engaging missiles on hostile aircrafts. The AIC is responsible for monitoring the
activities of all friendly combat aircrafts, known as defensive counter air (DCA)
and requesting visual identification (VID) report from them. The SO interprets any
incoming sensor signals and issues warnings to hostile aircrafts violating the RoE.

There are several distinct as well as overlapping responsibilities among operator
roles in TASP. At least one primary task responsibility on one role is shared among
the other operator role, where the operator under whom the responsibility is listed
has the primary action responsibility for that task. For example, the task of assigning
primary identification label to any unknown aircraft is shared among the three roles,
but the AAWC operator has the primary action responsibility for this task. Tasks on
each role are executed through the use of a graphical user interface. As an example,
Fig. 2.7 shows the graphical user interface for the AIC operator role.

The upper left box in Fig. 2.7 contains information about an object under
consideration (e.g., an aircraft with an unknown identity). The spatial represen-
tation of objects in the vicinity of the AIC’s ship is portrayed through the radar
scope on the right half of the display. Action can be taken through the interface via
function keys or buttons shown on the middle box in the left side of the display.
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Table 2.2 Rules of engagement (RoE)

AIC

SO

1. Engage a Hostile aircraft within 20 nautical
miles (NM) from ownship (hostile aircraft
only). (AAWC RESPONSIBILITY
BACKUP)

2. Assign a missile to a hostile aircraft within

30 NM from ownship (hostile aircraft only).

(AAWC RESPONSIBILITY BACKUP)

3. Maintain safety of DCA (e.g., keep DCA
away from danger zones of hostile aircraft,
do not let DCA run out of fuel, etc.).

4. Keep DCA within 256 NM from ownship.

5. Keep DCA at least 20 NM away from
ownship.

6. Make a primary identification of air contact
(i.e., friendly, hostile).* (AAWC
RESPONSIBILITY BACKUP)

1. Issue level 3 warning to hostile aircraft only
when it is within 20-30 nautical miles (NM).
2. Issue level 2 warning to hostile aircraft only
when it is within 30-40 NM.

3. Issue level 1 warning to hostile aircraft only
when it is within 40-50 NM.

4. Make a primary identification of air contact
(i.e., friendly, hostile).* (AAWC
RESPONSIBILITY BACKUP)

5. Evaluate, correlate and transmit all sensor
value emissions that appear on the EWS
interface.

# Once an aircraft has come within 50 NM from ownship, it should be identified before it travels
an excess of 10 NM. If an aircraft “pops up” within 50 NM it should be identified before it travels

an excess of 10 NM

Two overarching rules

(1) Defend ownship and ships in battle group
(2) Do not engage friendly or civilian aircraft

Fig. 2.7 Graphical user interface for an aircraft information coordinator (AIC) operator in TASP
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For the purpose of this experiment, we consider a two person team of AIC and
SO roles with no team leader AAWC. We use a simulation based approach that
employs a truth maintenance system (TMS) in the background to keep tracks of
information pertaining to time windows as well as operator actions. The time
windows and operator actions data logged by TMS can be converted into a
database using a converter tool in order to provide insights on metrics relating to
RAI along teamwork dimensions. For example, when a hostile aircraft travels
within 20 NM from the ownship, a time window is open specifying the opportunity
of engaging the aircraft exists. When this aircraft travels out of the 20 NM range
from ownship, the time window closes. If the AIC operator successfully engaged
the aircraft within the time window, then AIC executed an ontime correct action.
All these data are logged by TMS and the information can easily be queried from
the database. The data can further be analyzed statistically to reveal the impact of
the training intervention on team performance measures.

2.2.3 Teams and Performance Assessment Measures

Smith-Jentsch et al. (1998) defined four dimensions of teamwork for team
dimensional training that are critical to overall team performance as information
exchange, supporting behavior, communication and team leadership/initiative.
Typically, these dimensions are assessed using post hoc surveys, questionnaires,
and expert ratings. These dimensions are used to classify team outcome measures
(time windows) into team process measures. While verbal communications existed
between team members, specific content that was communicated between team
members was not broken down to classify time window outcomes. Instead, time
windows were opened and closed for each operator role based on the environ-
mental conditions. These time windows are summarized in Table 2.3 and are
classified into the teamwork dimensions.

The information exchange dimension relates to the process of gathering
information and effectively exchanging them to develop a shared mental model for
the team. Therefore, the AIC must fly a DCA within a certain distance to an
unknown aircraft that approaches the vicinity of the ownship to gather its visual
identification information (either friendly or hostile). In a similar fashion, the SO
must detect sensor signal emissions and evaluate the intent of the signal as either
friendly or hostile. The information that is gathered by both operators must be
effectively exchanged among all team members. Therefore, time windows that are
opened for visual identification and sensor evaluation process belong to this
teamwork dimension. The tasks involved in this process are primary to the cor-
responding operator roles. Communication is external to the scope of this research
as both operators exhibit implicit coordination without any overt communication.
Both the AIC and SO operators must exhibit team initiative and leadership for the
team’s survival. Time windows pertaining to flying DCA out of potential threats
and issuing warnings to approaching hostile aircrafts are classified under team
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Table 2.3 Teamwork dimension classification of operator responsibilities for AIC and SO roles

Task type Teamwork Responsibilities for operator roles
dimension Aircraft information coordinator Sensor operator (SO)
(AIC)
Primary Information Request visual identification Evaluate incoming sensor
exchange (VID) report and pass it to other  signals
teammates
Correlate sensor signal to
a particular aircraft
Transmit the correlated
sensor signal
Backup Communication Operators did not use speech Operators did not use
channels for communication speech channels for
(not considered) communication (not
considered)
Primary Team initiative/ Vector defensive counter air Issue level one warning
leadership (DCA) within 256 NM from to hostile aircrafts
ownship Issue level two warning

to hostile aircrafts
Vector DCA outside 20 NM Issue level three warning
from ownship to hostile aircrafts
Vector DCA outside danger
zones. (Vectoring of DCA is
done by changing its speed,
course and altitude)
Backup Supporting Assign identification to Assign identification to
behavior unknown aircrafts unknown aircrafts
Assign missiles to hostile
aircrafts
Engage missiles upon hostile
aircrafts.
Error correct-ion Change the identification of Change the identification
incorrectly identified aircrafts of incorrectly
identified aircrafts

initiative/leadership dimension for AIC and SO, respectively. Finally, identifying
the unknown aircraft and error correcting incorrect identifications are part of the
supporting behavior dimension for AIC and SO roles. AIC is also responsible for
supporting AAWC role by assigning and engaging a missile on hostile aircrafts
that pose a high threat within close proximity to the ownship.

Consider the following example to translate behavior data into RAI outcomes.
Suppose performance data is collected from a scenario as shown Table 2.4. Based on
the classification of operator responsibilities along with teamwork dimensions (see
Table 2.3), RAI scores can be calculated for each dimension. For example, AIC’s
performance on the SB dimension involves two types of task activities, which are
primary identifications (Primary ID) and assign and engage (A&E). We then can
calculate RAI (AIC on SB) = [RAI (AIC on Primary ID) + RAI (AIC on A&E)])/
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Table 2.4 Performance data from a sampled scenario

AIC
Primary identification VID Assign and engage RAI
Opened time  On time  Opened On Opened Ontime IE TI/ SB

windows  correct time time time correct L

actions windows  correct windows  actions
actions

16 2 2 2 1 0 01 NA 0.0625
SO
Primary identification Sensor operation Issue level warnings ~ RAI
Opened On time Opened time On Time Opened On IE TI/L SB

time windows correct ~ windows correct time time

actions actions windows correct

2 = (2/16 4 0/1)/2 = 0.0625. In the same manner, the performance data for each
group of participants can be collapsed to get their respective set of RAI scores.

2.2.4 Methodology

Participants in this research were first-year graduate and junior and senior-level
undergraduate students at the Pennsylvania State University. A total of 78 students
(39 two person teams), between the ages of 18 and 25, participated in this study.
Of the total, 46 were male and 32 were female. They were skilled computer users
and did not have any disabilities that restricted them from adequate use of mouse/
keyboard interface. Additionally, the participants did not have any prior experi-
ence with the simulation environment. The participants engaged in a single session
that lasted for about 3.5 h on average, and were provided with monetary com-
pensation at the end of the study.

The two independent variables used in the study include training and workload.
No training (NT), team coordination training (TCT) and task delegation training
(TDT) are used as the training conditions. In NT condition, team members are not
trained with any teamwork skills. They are required to read an article that illus-
trates the utility of team coordination and task delegation. However they are not
provided with any information that prescribes how team coordination and task
delegation can be achieved. Team members in the TCT condition are provided
with excerpts of coordination strategies, which includes monitoring designated
areas and passing information to other teammates as needed. The training helps
team members in creating a shared mental model and allows them to anticipate the
expectancies of their teammates. In TDT condition, specific tasks are delegated to
the team members. The AIC is delegated tasks relating to assigning and engaging
upon hostile aircrafts with missiles and issuing identifications based on visual
identification information. The SO is delegated with tasks relating to assigning
identifications based on sensors values that are evaluated. Differences between



2 Performance Measurement and Evaluation in Human-in-the-Loop Simulations 35

Table 2.5 Types of training

No training (NT) Team coordination training Task delegation training (TDT)
(TCT)

No specific training is Team coordination is Task delegation is emphasized
imparted emphasized during training during training

Team members are provided Team members are instructed The radar scope on the
with information on the on how to achieve effective operator’s GUI is split into
definition of team coordination via two distinct areas and is
coordination and task demonstration of good and designated to each of the
delegation bad practices two roles. Operators monitor

No specific tasks are delegated No specific tasks are delegated ~ and perform actions within
to each operator role to each operator role the designated area, while

passing information
pertaining to the other area
onto their team mate
Specific tasks are delegated to
each operator role based on
KSA competencies and
operator capabilities

training interventions are listed in Table 2.5. Workload stress levels are controlled
by setting them at low and high levels. Different scenarios were developed for
setting the stress levels of workload. The high stress workload scenarios include a
relatively high number of hostile aircrafts that must be identified, assigned and
engaged with missiles for both members within the team than in low stress
workload scenarios.

Thirteen teams (one-third of 39 total teams) randomly received one of the three
training conditions. The team members were randomly assigned to AIC or SO role.
Each team was subjected to scenarios with both low and high workload stress levels.

The participants underwent an initial training of specific skills, which lasted for
about an hour. This initial training enabled them to acquire skills that are necessary to
accomplish tasks that are specific to their current roles. Four practice sessions
(practice sessions 1-4) of 10 min duration each were provided to the participants to
hone their role specific skills. During these practice sessions, the participants were
given feedback on their performance relating to taskwork skills and were encouraged
to ask any clarification questions. At the end of the four practice sessions, the teams
were subjected to the first learning evaluation session for a duration of 10 min, which
assessed their learning on taskwork skills. During this session, each team member
was assigned specific tasks that would require them to use their taskwork skills and
feedback about their performance was provided at the end of the session. After
taskwork skills training, the teams were randomly exposed to one of the three team
training interventions. In NT intervention, there was no hands-on training provided
to the team regarding teamwork. Instead, they were instructed to read articles that
explained the importance of teamwork and coordination. In “team coordination
training” or TCT intervention, the teams were presented with instances of good and
poor team coordination policies and were exposed to a video that demonstrated the
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same. In TDT intervention, the teams were provided with a presentation of different
tasks that were delegated to their roles as part of the training intervention and were
also shown a video that demonstrated teamwork associated with task delegation.
After the appropriate training intervention was provided, the teams were given an
opportunity to practice teamwork skills through two 10 min practice sessions. Then,
the teams were exposed to a second learning evaluation session that assessed their
teamwork skills. The teams were instructed to perform tasks that required the
effective use of taskwork and teamwork skills. The teams were then subjected to two
sessions (of 10 min duration each) with low and high stress levels of workload where
data relating to the performance of each team member (SO and AIC) were collected
for further analysis.

2.2.4.1 The Statistical Model

The linear regression of team performance is modeled such that:

J
Y, = infﬁf + &, where & ~N(0,0?). (2.10)
=1

In such a model we assume that the error terms are normally distributed, zero
mean and the same variances for all cases. However, outcomes that are propor-
tions, as are the RAI’s yield a distribution which violates the normality and
homoscedasticity assumptions. Accordingly, analyzing proportions with linear
regression may lead to misleading inference about the explanatory variables. This
led researchers to consider logistic regression as the model for analyzing data in
which the dependent variable is a proportion. The logistic regression is modeled
as:

exp(31 Xiif;)

E(Y) = =pi = : (2.11)
L+ exp(7 Xyh;)
where, E(Y;) = p;.
Equation 2.11, that can also be expressed as:
P %
log; _’p’ = Xp; (2.12)
1 j:l

is a particular case of the Generalized Linear model, in which linear regression
models are extended to the exponential family of distributions that includes both
the normal and the binomial distributions. Such models involve a link function
which is some transformation g(.) that linearizes the expected value of Y;, such that
g(u;) =mn;, and n; = ZLI B;X; is a linear combination of the predictors. The

normal error regression model is a generalized linear model with the identity
function as the link function, such that u; = n;. For logistic regression model
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Table 2.6 Raw means and predicted means of the experimental data

Teamwork Training intervention Workload stress
dimension

NT TCT TDT Low stress High stress

R P’ R P R P R P R P
IE 0.2550 0.4556 0.4008 0.563 1 0 .3178 0.5039 0.3385 0.5545 0.2694 0.4607
TI/L 0.1714 0.1465 0.2434 0.2280 0.2823 0.2586 0.2697 0.2425 0.195 0.1795
SB 0.1549 0.1346 0.1629 0.1327 0.1740 0.1407 0.1704 0.1426 0.1574 0.1296

% R is the raw mean from the observed data,
° P is the predicted means by the model

Table 2.7 Type III test of fixed effects

Teamwork dimensions Training intervention Workload stress Interaction

df F df F df F
IE (2, 36) 3.76* (1, 36) 13.94° - -
TI/L (2, 35.68) 1.05 (1, 72) 2.66 (2,72) 4.48*
SB (2, 36) 0.81 (1, 36) 4.04* - -

2 p<0.05,°p <001

g(p) =log I”Tp , which is known as the logit function. Our experiment was designed

to evaluate the effect of a certain type of training on an outcome Y, which is the
proportion RAI. Since the dependent variable (RAI) is a proportion, the suitable
distribution for modeling it, is the binomial distribution. The dependent variable Y
in our experiment, was measured for each one of the two team members, at two
stress levels (low/high), where each team belonged to one of three training groups
(NT, TCT, TDT). The main aim in analyzing the data is to compare the groups on
the outcome (RAI). For each of the 39 teams, divided randomly among the three
types of training, there are four dependent measures of RAI since each team
member (SO and AIC) has two outcome measures, corresponding to high and low
levels of stress.

In the inference based on linear as well as generalized linear models, it is
assumed that the observations are independent. Extending these models to account
for correlated data led to the development of mixed models, for normal data, and
more generally, to Generalized linear mixed models for the generalized linear
models. Details of the model can be found in Rothrock et al. (2009).

2.2.4.2 Analysis and Results

The raw mean values and predicted mean values are shown in Table 2.6. Statistics
of type III test of fixed effects are summarized in Table 2.7. The detailed analysis
and results are elaborated for each teamwork dimension.
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Table 2.8 Estimated covariance matrix for training and information exchange behavior

AIC low AIC high SO low SO high
AIC low 1.222 (0.285) 0.438 (0.233) 0.443 (0.283) 0.154 (0.403)
AIC high 1.286 (0.296) 0.311 (0.264) —0.280 (0.428)
SO low 1.522 (0.382) 0.534 (0.356)
SO high 1.771 (0.590)

Standard errors are in parentheses

In the following, the standard errors (SE) of each estimate are displayed in
brackets.

Training and Information Exchange

The analysis was performed based on 130 observations (26 were dropped due to
zero value in the denominator). Since the interaction training x stress was found
to be insignificant, it was dropped out from the model. The estimated covariance
matrix for the experiment is shown in Table 2.8. From this matrix, we can observe
the relationships of team member’s performance (AIC and SO) on different stress
workload levels (low and high). Though not significant, we observe a negative
correlation between the AIC and SO in the high stress condition. We also observe
higher variances for SO, compared with the AIC.

The results indicate significant differences between the two training conditions
TCT and NT (p = 0.01). The estimated RAI for TCT and NT were 0.563
(SE = 0.029) and 0.456 (SE = 0.028), respectively. Additionally, significant
difference were found between the two stress levels (p = 0.0007), where the
estimated RAI was 0.554 (SE = 0.017), for the low level of stress and 0.461
(SE = 0.025), for the high level.

Training and Supporting Behavior

The analysis was performed on 156 observations (no missing values).

Here too, the interaction training x stress was found to be insignificant,
therefore it was dropped out from the model. The estimated covariance matrix for
the experiment (Table 2.9) indicates negative and significant correlations between
the AIC and SO both in the high and low stress conditions. In other words, when
the RAI of the AIC was higher than average, the corresponding RAI of the SO was
lower than average. A positive and significant correlation is observed between the
low and high stress for each member. In other words, when a team member was
higher/lower than average in one stress condition he was also higher/lower than
average in the other stress condition. The results also indicate higher variances in
the low stress condition, where the low stress variance of the SO was even higher
than that of the AIC.
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Table 2.9 Estimated covariance matrix for training and supporting behavior

AIC low AIC high SO low SO high
AIC low 3.058 (1.055) 2.012 (0.781) —4.668 (1.205) —1.449 (0.583)
AIC high 1.949 (0.702) —2.835 (1.082) —1.073 (0.358)
SO low 9.880 (2.683) 2.774 (1.254)
SO high 1.955 (0.666)

Standard errors are in parentheses

No significant difference was found among the training levels (p = 0.81), yet a
significant difference was found between the two stress levels. The estimated RAI
least-squares mean (Ismean) was 0.143 (SE = 0.006) for the low stress, while it
was only 0.130 (SE = 0.007), for the high stress (p = 0.05).

Training and Team Initiative/Leadership

The time windows data indicated none of the AIC operators were able to perform
the DCA manipulations in the experiment. Therefore we only have data corre-
sponding to the SO (78 observations). Nevertheless, in order to allow a correlation
between the two conditions measured for the same person, a repeated measures
structure was used. The intra-class correlation, indicating the correlation within
each team member (i.e., the correlation between two observations that belong to
the same team member) was high (0.874).

For this outcome variable, the interaction between stress and training was
significant, (p = 0.013). There are six different combinations of stress with
training which led to 15 pairwise comparisons. Among these 15 tests, three were
found to be significant. The most significant was the difference between the stress
levels in the TCT training condition. The estimated RAI Ismean was 0.346
(SE = 0.093) for the low stress, and only 0.11 (SE = 0.039) for the high stress
(p = 0.002). A significant difference was also found between the two training
conditions TCT and TDT in the high stress condition (p = 0.03). While the
estimated RAI Ismean was only 0.11 (SE = 0.039) for the TCT it was 0.288
(SE = 0.070) for TDT. Finally, a significant difference was also found between
the NT group in the high stress and the TCT group in the low stress (p = 0.04),
where the estimated RAI Ismean was 0.346 (SE = 0.093) for the low stress TCT
and only 0.14 (SE = 0.046) for the high stress NT.

2.2.5 Discussion

The statistical analysis revealed an interesting view of team performance. Under
the information exchange dimension—where information about the visual identity
and sensor signature of tracks is shared—we found that TCT training significantly
improved performance. Moreover, we also noticed a trend toward a negative
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correlation between the AIC and the SO under stress, which suggests that teams
tend to depend on a single source of information (either visual identification from
the AIC or sensor information from the SO).

For the supporting behavior dimension, the effects of stress are more pro-
nounced. A closer look at the type of activities involved with supporting behavior
showed that they required longer key sequences to execute and that, under stress,
fewer identification assignments were made. More importantly, as one role took on
more activities under stress, the other role executed fewer activities. Therefore,
just as information exchange tended toward uncertainty (i.e., only one source vs.
two sources of information), supporting behavior also tended toward brittleness
(i.e., one person assigning identities vs. two people).

In the team initiative and leadership dimension, our analysis discovered two
interesting findings. The first is the absence of DCA activities, which suggests that
the AIC either did not have the cognitive resources available to manipulate
the DCA assets, or that the teams were not sufficiently trained to do so. In any case,
the only data we had was the issuance of level warnings by the sensor operator.
The second interesting finding was that participants exposed to TCT outperformed
participants trained under either TDT or NT conditions. While the effect of the
training was not universal across all stress combinations, our analysis suggests that
TCT was more effective under high stress conditions. The comparison between the
effects of TCT and TDT under the high stress condition was especially telling
because TDT was developed to routinize responsibilities so that the effects of
stress are mitigated.

2.3 Performance Assessment in an Interactive
Call Center Simulation

In this part of the paper, a new performance assessment methodology call center
systems at the level of customer-agent interactions (CAI) is proposed. A team-
in-the-loop simulation test bed has been developed to analyze CAl-level perfor-
mance using time windows. The proposed framework should allow researchers to
collect and analyze individual as well as team performance at a finer granularity
than current call center efforts.

2.3.1 Introduction

Today, we live in a service-based economy which faces challenges to assess and
manage the performance of human-in-the-loop service systems (Chesbrough and
Spohrer 2006). A case in point is the telephone call center which requires customer
interactions for its operation. Because it is normally the first touch point of a
business with which customers make contact, impressions on the total service
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Table 2.10 Queue-centered call center measures

Measures Description

Average speed of answer The average time taken: for the call to be picked up

Average talk time The average time that acaller waited to be connected to an agent

Queue time The amount of time taken for a caller to wait in the line

Calls per hour The average number of calls that an agent handles per hour

Hold time The average time taken for an agent to place a customer on hold

Occupancy The average time taken for an agent in his or her seat

Blocked calls The total number of busy and out-of-order telephone trunks that block
calls

Abandonment rate The percentage of callers who disconnect prior to be answered

First call resolution The percentage of calls closed on the first connect

Service level Transactions that must be handled within given time frame

quality can be made from call center interactions. Traditionally, quality assessment
has been made through direct call monitoring for every agent, which consumes
tremendous amount of resources and times. In this regard, the proper modeling and
evaluation of service systems can enable managers to effectively monitor service
performance (Fleming et al. 2005).

Generally, a call center consists of trained customer service agents who answer
customers’ calls and coordinate their requests. Call center systems can provide a
variety of functions such as help desk support, customer service, technical support,
contact centers service, and tele-marketing etc. In this paper, we specifically focus
on inbound call centers in which agents’ assistance is sought by callers. Inbound
call centers are very labor-intensive systems with high agent turnover rates
amounting to “typically comprising 60-80% of the overall operating budget”
(Aksin et al. 2007; Gilmore and Moreland 2000; Wallace et al. 2000). For this
reason, managers tend to make an effort to improve the effectiveness of interaction
between agents and customers through proper training and performance evalua-
tion. Therefore, it should be priceless that managers can get a framework to
provide quality information on their agents and customers interactions.

In previous research, the performance analysis of call centers has been mostly
performed by using Erlang formulas that were designed for traditional queueing
systems (Mehrotra and Fama 2003; Gilmore and Moreland 2000; Tanir and Booth
1999). These queueing based models may be useful and provide plentiful gross-
level metrics in the case of evaluating the service performance in quantity
assessments, as most call center research (Gans et al. 2003; Garnet et al. 2002)
consider call centers as queueing system which consists of customers (callers),
servers (telephone agents), and queues. Using this queue-centered approach,
a variety of measures can be acquired and a representative sample of key per-
formance indicators from Anton (1997) is shown on Table 2.10. Above all, the
measure of a telephone service factor or grade of service, which is the percentage
of calls answered in a given time frame, is widely used as a core measure (Sharp
2003). The previous works presented above, however, are only focused on quantity
measures at a gross-level, while neglecting metrics of customer-agent interactions
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which specify the service quality within an individual service activity of call center
operations. Aksin et al. (2007) also noted that a macro research theme such as
“improving the way in which the tension between efficiency and quality of service
is modeled” is significant for future call center operations research. Therefore, one
can no longer simply equate service quality with customer waiting times.

While queue-centered analytic models are still popular, Mehrotra and Fama
(2003) noted that several factors such as complex call traffic, rapid change oper-
ations, and cheaper and faster computing, have recently increased the demand for
analysis of ever more complex call centers through simulation. Although there are
simulation approaches which deal with call center problems based on the opti-
mization such as linear programming and scheduling (Avramidis et al. 2009;
Atlason et al. 2004; Cezik and L’Ecuyer 2008), still they focus on gross-level
metrics. However, in order to provide training feedback and manage call centers
effectively with proper performance metrics, managers should know the quality of
interactions between agents and customers during services.

To address the limitations of exiting analytic queue-centered approaches, this
paper presents a configurable help desk call center team-in-the-loop (TITL) sim-
ulation test bed called the call center workforce simulation platform (CCWSP),
which is the interactive simulation framework for performance analysis at the team
as well as individual-task levels. The proposed framework uses time windows to
develop a performance measure at the CAI level. Specifically, a new metric is
proposed, called the index of interactive service performance (IISP), to measure
service quality at CAI level with consideration of temporal service success rates
within service operations. CAls are expressed as pre-defined time windows and
can be mapped to gross-level measures.

2.3.2 Human-in-the-Loop Discrete-Event Simulation

A human-in-the-loop simulation provides both realistic as well as controllable
interactive task environments. With a human-in-the-loop simulation, users interact
in real-time with the simulation through a graphical interface, and we can directly
gather user data in a controlled experimental environment. In many service
applications, however, agents in the systems may work as a team as well as
individually. The team performance can be much more important than an indi-
vidual performance when designing service operations with human inclusions.

2.3.3 The Proposed Framework: Call Center Workforce
Simulation Platform with Time Windows

In this section, a framework for the CCWSP based on an interactive TITL sim-
ulation is presented. The Information Technology Services (ITS) help desk at Penn
State is modeled as a problem domain of the simulation. The CCWSP software
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Fig. 2.8 Framework of the call center simulation application

architecture, the roles of time windows, and the call center simulation module are
explained. In this discussion, we refer to the customer who makes a call to the call
center as the caller and the service provider who answers a call as the agent.

The inbound help desk at Penn State University is used as the problem domain.
The university ITS office runs the help desks system to handle calls by the Penn
State user community on technical problems related to their computer hardware,
software, network, and user account. In order to understand the help desk process,
the operations of ITS help desk call center were analyzed through detailed field
observations and a task analysis.

The application architecture for the help desk call center is built upon an
interactive TITL discrete-event simulation that is comprised of three major parts:
Call Initiation Tools Server, Agent Server, and Agent Workstation as shown in
Fig. 2.8. The Call initiation server is a software component that provides an
interface for live calls through computer telephony integration (CTI) equipment
and updates the simulation about information pertaining to incoming calls.
Currently, the server is driven by a pre-defined script file that simulates the caller
information based on predefined scenarios. The Agent Server plays the role of a
central server, not only in synchronizing the updates between various agents but
also in placing a call in the caller queue as well as tracks gross-level performance
metrics which can also be obtained from traditional queue-centered approaches.
This server also maintains and tracks all individual workstation events through a
global event calendar as well as windows of opportunity that exist for taking an
action. The Agent Workstation simulates the events (based on a local event list and
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Fig. 2.9 Task flow diagram for the call center simulation framework

time windows) that are rendered on the graphical user interface (GUI) on each
agent’s workstation.

Three distinct phases collectively contribute to the performance measurement
within the simulation framework. Figure 2.9 shows the task flow diagram of the
three phases of the call center simulation framework. In Phase 1, the script files
required to run the simulation are generated and initialized within the call center
agent server. In Phase 2, the scenarios generated during Phase 1 are executed in
real-time networked mode on each call center agent’s workstation. This allows
researchers to capture and log their actions into various data logs for further
analysis. Finally, in Phase 3, the raw simulation output files are converted into a
relational database for further performance evaluation.

In call center environments, the operations of time windows are not as
restrictive and critical as those in command-and-control environments. Instead, a
single operation is simply considered a link in the chain of the agent’s activities
required to perform a service call. For instance, if two consecutive actions
(e.g., authentication and update a record) are needed to finish one service call, the
situation of updating problems would be triggered by the agent’s authentication
action. On the other hand, in command-and-control operations, external factors
based on rules of engagement, such as distance, altitude, and speed in a military
radar system can situate agents’ actions. Therefore, instead of specifying time
duration for each time window, the opening and closing states are defined by
agent’s actions except in the case of a call drop. The latency in the agent’s action is
measured by the duration of each time window. As a result, only on time-correct
actions, on time-incorrect actions, false alarms, and missed actions in Fig. 2.4 are
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Fig. 2.10 HTA for a “Resolve email problem” task

possible results in the help desk simulation. The information of time window is
logged for further performance analyses.

In call center environments, one call might be serviced by more than one agent
(e.g., general agents can transfer technical calls to responsible agents). To handle
this situation in a proper way, two levels of time windows are managed as global
and local time windows. The Agent Server deals with global time windows to trace
transferring calls, and the Agent Workstation takes care of each agent’s local time
windows.

To demonstrate the multi-level time windows in call center environments,
“Update PSU account” and “Resolve email problem,” are used as required tasks
in our example domains. The result of hierarchical task analysis (HTA) of “resolve
email problem” is illustrated in Fig. 2.10. This task is required to solve problems
related to emails and has similar steps with the “updating PSU account” task
except the “Selecting computer configuration.” Both tasks need to be authenti-
cated by caller’s PSU ID. Once the caller’s PSU ID is valid, the agent can proceed
to communicate to figure out the problem by clicking the “Problem” prompt. Or
the agent can go to the step of making an after-call documentation directly and
indicate the caller is invalid. Next, the use of knowledge base will be determined
based on the level of agent’s expertness to provide proper information. By clicking
the “Confirm FAQ” button, the agent determines whether the agent searches the
right information. After changing the user’s profile and clicking the “Update user
profile” button, an after-call documentation with a proper diagnosis should be
made by clicking the “Update notes” button. Finally, the agent can terminate the
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call. Within the two hierarchical tasks, 12 specific actions such as updating a user
ID or removing a saved password are available.

Based on this task domain, the list of time windows is formulated as shown in
Table 2.11. We define two types of time windows, primary and error-correction time
window. The primary time window indicates the first available opportunity for an
action. If the agent wants to revise his or her previous actions, then the error
correction time window will gather the information. For the tasks at hand, there are a
total of 19 time windows. Table 2.11 provides a breakdown of 11 primary and eight
error-correction time windows with the action outcomes and open/close conditions.

Figure 2.11 illustrates the sequence of tasks along with the opening and closing
conditions for each time window. At first, a caller places an incoming call which
opens an overall time window for the call. Next, agents can see this incoming call
on their call stack. Then, one of the agents picks up the call, which opens an
authentication time window until the agent authenticates the caller. Once the caller
is authenticated, the agent is able to complete other tasks such as creating problem
profile, searching solutions, verifying user ID, verifying password, and resetting
the password information. The TMS (truth maintenance system) opens primary
time windows for these processes until the related action is performed. For
example, if the agent creates a problem profile, the primary problem time window
is closed by TMS and a secondary error correction time window is opened and
remains open until the call ends. When the error correction time window is
opened, the agent can correct any previous incorrect actions and all such agent
actions along with the time window information are recorded in the output files for
further performance evaluation.

From the time window’s structure, we can categorize agent performances. If a
time window is opened but no related agent action exists, then such an action is
treated as a missed action, as shown in Fig. 2.9. On the other hand, if a time
window is not opened but an agent action exists, then such actions would be
related to a false alarm action. Only a related action is taken when a time window
is opened can the action be considered on time and correct.

After gathering the time window information, the agent’s performance at the
CAl level is evaluated during the data analysis phase. In comparison to the queue-
centered measure which gives overall values of system performances, the time
windows-based measure in call center systems would give more detailed perfor-
mance information related with human-interactions and deeper insights for call
center managers. Nonetheless, the Agent Server in this simulation framework
provides queue-centered measures, too.

To analyze and evaluate the quality of services in the CAI level, the appropriate
method to describe quantitative service-related parameters is necessary. In the
existing time windows approaches, Rothrock (2001) provide two method of evalu-
ating operator performance based on time windows. The first method of factor
analysis represents a technique that reduces factors to evaluate which situations and
operator actions can be aggregated into higher order factors. The second method,
signal detection theory (SDT), is designed to reveal an individual’s decision
criterion and the sensitivity of an individual’s detection performance. Based on these
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Table 2.11 List of 19 time windows in the task domain

Name of time window Type Open condition Close condition
Overall call Primary Calls comes in the Call drop or end
simulation
Authentication Primary Pick-up button clicked Authentication button clicked
or call drop
Computer profile Primary Authentication button Create profile button clicked or
clicked call drop
Error correction for computer  Error Create profile button Call drop or end
profile correction clicked
Diagnosis for the problem Primary Authentication button Confirm button in knowledge
clicked base clicked or call drop
Error correction for diagnosis ~ Error Confirm button in Call drop or end
correction knowledge
base clicked
Change password Primary Authentication button Updated in password text field
clicked under proper and reset button clicked
problem ID
Reset ID Primary Authentication button Updated in user ID and reset
clicked under proper button clicked
problem ID
Change name Primary Authentication button Updated in name test field and
clicked under proper reset button clicked
problem ID
Change phone number Primary Authentication button Updated in phone number text
clicked under proper field and reset button clicked
problem ID
Change E-mail address Primary Authentication button Updated in e-mail address text
clicked under proper field and reset button clicked
problem ID
Change address Primary Authentication button Updated in address text field
clicked under proper and reset button clicked
problem ID
Error correction for Change Error Updated in password text  Call drop or end
password correction field and reset button
clicked
Error correction for reset ID Error Updated in User ID and Call drop or end
correction  reset button clicked
Error correction for change Error Updated in name text field Call drop or end
name correction and reset button clicked
Error correction for change Error Updated in phone number Call drop or end
phone number correction text field and reset
button clicked
Error correction or change E-  Error Updated in e-mail text Call drop or end
mail address correction field a and reset button
clicked
Error correction for change Error Updated in address text Call drop or end
address correction field and reset button
clicked
Notes Primary Authentication button Update button clicked or call

clicked

drop

two methods, Thiruvengada and Rothrock (2007) suggested the RAI to evaluate team
performance in acommand-and-control human-in-the-loop simulation. The RAI can
give quick and quantitative measures of performance data for system evaluation.
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Fig. 2.11 Sequence diagram for time windows

However, the proposed index of RAI is difficult to be applied to measuring the CAI
level metrics in service systems because of its strict adherence to time constraints in
fixed-rule domain such as military operations.

To make the quantitative measures and analyze time windows-based measures
in call centers by linking up with service quality and customer satisfaction, we
suggest a new index, called an Index of IISP. We define IISP as an agent’s ability
to provide the correct service within a service level. The term service level refers
to transactions that must be handled on arrival at the call centers. In this paper, the
service level corresponds to the one of service quality standards and is expressed
as the time limitation of the service. IISP is interpreted as the ratio of the number
of “within service level” correct actions conducted by an agent for a class of time
windows to the total number of time windows that should be opened in the class.
Because there are two types of time windows, primary and error correction, in the
list of time windows in Table 2.2, total time windows would be calculated as an
average of the two types of time windows. The mathematical representation for
IISP is formulated as follows, where SL._Correct is the area @ in Fig. 2.12:

>~ SL_Correct(i)

nsp == 2.13
. (2.13)

(SL = service level, n = number of time windows)
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Table 2.12 Metrics of human performance based on time windows
1IN RAI Factor analysis SDT
Purpose Quantitative index for  Quantitative index for Determination Determination of
time windows in less time windows in of the sensitivity
strict domain fixed-rule domain correlations of operator
(service domain) (command-and- among actions to
control) different situation
time requirements
windows
Outcome The ratio of the time  The ratio of the time Correlations ROC curve which
windows number of windows number of among is represent the
“within service ontime-correct factors receiver
level” correct actions to the total operating
actions to the total number of time characteristic
number of time windows that
windows that should should be opened
be opened
Note A guideline of IISP A guideline of RAI Screen test can Accurate
score is needed for score is needed for be used accounting
subject matter subject matter method for
experts experts correct
rejections is
needed

The comparison among the performance measures of time windows is shown in
Table 2.12. The proposed IISP is for less strict domains such as service systems
and can give users to judge the service quality and performance of the systems. For
more details on a simulation study involving CCWSP, see Ma et al. (2011).

2.3.4 Discussion

The IISPs can show the degradation of service qualities while queue-centered
gross level approach, which counts only on processing time, cannot capture the
overall service performance in detailed levels. Time windows approach provides
information of what kinds of specific sub-processes are required to be improved

for either an individual agent or a group of agents.
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The proposed framework consists of not only queue-centered measures but also
CAI ones. In particular, small-sized call centers could benefit from IISP measures
due to the large variance of agents’ performance. For middle and large-sized call
centers, the framework also provides benefits in terms of training and investigating
agents’ performance under interested situations. If the agents repeatedly miss or
fail some time windows, then remediation can be the training of tasks that improve
performance on those windows. Also, the framework enables managers to simulate
specific situations or new service systems. For example, if a manager wants to
know the effect of new call distribution system towards agents’ performance, then
he or she can compare the simulation results in the system.

In comparison with gross measures such as queue time and call duration (talk
time), IISP is more diagnostic of individual tasks performed. Therefore, managers
can easily understand both a system and workforce information with it. The
detailed meaning of IISP would be captured from the raw time windows infor-
mation. [ISP also enables managers to compare their agents and help to generate a
workforce performances profile.

In order to analyze time windows information from CCWSP, time windows must be
categorized and defined clearly. For the ITS help desk task domain, 19 time windows
were pre-defined. Also, managers need to set the service level correctly. Finally, by
testing participants with the target scenario, time windows information can be gath-
ered, and IISP can be calculated along with other queue-centered measures.

2.3.5 Conclusions

A research approach to evaluate operator performance in human-in-the-loop simu-
lations has been proposed. The key concept within the approach is a notion of time
windows. The time window construct provides a computational framework to
dynamically evaluate operator actions in the context of heterogeneous task demands.

To implement time windows in a working model, a blackboard paradigm was
introduced. The blackboard model is suited to accommodate the time window
construct because of its ability to reason opportunistically about the availability of
situations and the timeliness of operator actions. It was argued that human-in-the-
loop simulations are ideal tools to investigate dynamic phenomena without
concerns of the oversimplified laboratory environment or the unconstrained real-
world. Therefore, requirements for implementation of the blackboard model were
discussed. Moreover, a study which implemented the blackboard model in a
human-in-the-loop simulation was used to illustrate the viability of the time
window construct to provide a framework for operator performance. Two methods
for analysis of time window outcomes were discussed to provide complementary
perspectives on operator attunement to the constraints.

Time windows were then used to develop the RAI as a measure of team
performance, a proposed standard that cuts across disciplines and enables the use
of statistical techniques to aid researchers in better understanding team decision
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making. By using RAI as the primary metric, inter- and intra-rater reliability
difficulties faced by the researchers are avoided. Ultimately, the effectiveness of an
RAI-based measure is contingent on the ability of evaluators to establish the rules
that govern a particular task domain. For example, temporal rules in a command-
and-control domain are fairly straight-forward to extract whereas rules in a
political debate are much more difficult to obtain. In general, RAl-based measures
are more effective in domains where standard operating procedures and time
constraints are clearly defined.

Finally, RAI was extended to a service enterprise—the call center. An
approach using time windows-based assessment of an inbound call center system
was proposed, which enables researchers not only to explain queue-centered
measures utilized by most call center researchers, but also to explicate CAI
measures. A configurable Team-in-the-loop simulation of a help desk, the
CCWSP, was used to demonstrate the utility of this methodology. We also
suggested a new quantitative index of agent performance, the Index of IISP
which can provide a quantitative analysis of the agent service performance based
on time windows. From the IISP, time windows-based measures from CCWSP
can be systematically analyzed.
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