Chapter 2
Introduction to Sequence Analysis for Human
Behavior Understanding

Hugues Salamin and Alessandro Vinciarelli

2.1 Introduction

Human sciences recognize sequence analysis as a key aspect of any serious attempt
of understanding human behavior [1]. While recognizing that nonsequential analysis
can provide important insights, the literature still observes that taking into account
sequential aspects “provide[s] an additional level of information about whatever
behavior we are observing, a level that is not accessible to nonsequential anal-
yses.” [2]. The emphasis on sequential aspects is even higher when it comes to
domains related to social interactions like, e.g., Conversation Analysis: “[...] it is
through the knowledge of the place of an action in a sequence that one reaches an
understanding of what the action was (or turned out to be).” [4]. Furthermore, social
interactions are typically defined as “sequences of social actions” in the cognitive
psychology literature [21].

In parallel, and independently of human sciences, sequence analysis is an impor-
tant topic in machine learning and pattern recognition [5, 7]. Probabilistic sequential
models, i.e. probability distributions defined over sequences of discrete or continu-
ous stochastic variables, have been shown to be effective in a wide range of problems
involving sequential information like, e.g., speech and handwriting recognition [6],
bioinformatics [3] and, more recently, Social Signal Processing and social behavior
understanding [27].
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Given a sequence X = (x1, ..., xy), where x; is generally a D-dimensional vec-
tor with continuous components, the sequence analysis problem (in machine learn-
ing) takes typically two forms: The first is called classification and it consists in

assigning X a class ¢ belonging to a predefined set C = {cy, ..., cx}. The second is
called labeling and it corresponds to mapping X into a sequence Z = (21, ...,2N)
of the same length as X, where each z; belongs to a discrete set S = {s1,...,s7}.

An example of classification in Human Behavior Understanding is the recognition
of gestures, where a sequence of hand positions is mapped into a particular gesture
(e.g., hand waving) [29]. An example of labeling is role recognition in conversa-
tions, where a sequence of turns is mapped into a sequence of roles assigned to the
speaker of each turn [24].

In both cases, the problem can be thought of as finding the value Y* satisfying
the equation

Y*=arg m{?x P(X,Y), 2.1

where Y* can be one of the classes belonging to C, or a sequence Z of the same
length as X. In this respect, the main problem is to find a model P(X, Y) suitable
for the problem at hand, i.e. an actual expression of the probability to be used in
the equation above. This chapter adopts the unifying framework of graphical mod-
els [14] to introduce two of the most common probabilistic sequential models used
to estimate P(X, Y), namely Bayesian Networks (in particular Markov Models and
Hidden Markov Models [10, 23]) and Conditional Random Fields [15, 26].

The chapter focuses in particular on two major aspects of the sequence analysis
problem: On one hand, the role that conditional independence assumptions have in
making the problem tractable, and, on the other hand, the relationship between in-
dependence assumptions and the particular factorization that the models mentioned
above show. The text provides some details of inference and training as well, in-
cluding pointers to the relevant literature.

The rest of the chapter is organized as follows: Sect. 2.2 describes the graphical
models framework, Sects. 2.3 and 2.4 introduce Bayesian Networks and Conditional
Random Fields, respectively, Sect. 2.5 proposes training and inference methods and
Sect. 2.6 draws some conclusions.

2.2 Graphical Models

The main problem in estimating P(X, Y) is that the state spaces of the random vari-
ables X and Y increase exponentially with the length of X. The resulting challenge
is to find a suitable trade-off between two conflicting needs: to use a compact and
tractable representation of P(X, Y) on one side and to take into account (possibly
long-term) time dependencies on the other side. Probability theory offers two main
means to tackle the above, the first is to factorize the probability distribution, i.e. to
express it as a product of factors that involve only part of the random variables in X
and Y (e.g., only a subsequence of X). In this way, the global problem is broken into
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small, possibly simpler, problems. The second is to make independence assumptions
about the random variables, i.e. to make hypotheses about which variables actually
influence one another in the problem.

As an example of how factorization and independence assumptions can be effec-
tive, consider the simple case where Y is a sequence of binary variables. By applying
the chain rule, it is possible to write the following:

N
P(Y1,...,YN)=P(Y1)l_[P(Y,-|Y1,...,Y,-_1). (2.2)
i=2

As the number of possible sequences is 2, a probability distribution expressed
as a table of experimental frequencies (the percentage of times each sequence is
observed) requires 2V — 1 parameters.

In this respect, the factorization helps to concentrate on a subset of the variables
at a time and maybe to better understand the problem (if there is a good way of
selecting the order of the variables), but still it does not help in making the rep-
resentation more compact, the number of the parameters is the same as before the
factorization. In order to decrease the number of parameters, it is necessary to make
independence assumptions like, e.g., the following (known as Markov property):

P(Yi|Y1, ..., Yi—1) =PXi|Yi—p). (2.3)

The above transforms (2.2) into

N
P(Y1,....Yn) =P [ [PilYio0), 2.4)
i=2

where the number of parameters is only 2(N — 1) 4 1, much less than the original
2N — 1. The number of parameters can be reduced to just three if we consider that
P(Y;]Y;—1) is independent of i, thus it does not change depending on the particular
point of the sequence. The combination of factorization and independence assump-
tions has thus made it possible to reduce the number of parameters and model long
sequences with a compact and tractable representation.

Probabilistic graphical models offer a theoretic framework where factorization
and independence assumptions are equivalent. Distributions P(X, Y) are represented
with graphs where the nodes correspond to the random variables and the missing
edges account for the independence assumptions. More in particular, the graph acts
as a filter that out of all possible P(X, Y) selects only the set DF of those that factor-
ize over the graph (see below what this means depending on the type of graph). In
parallel the graph acts as a filter that selects the set DI of those distributions P(X, Y)
that respect the independence assumptions encoded by the graph (see below how to
identify such independence assumptions). The main advantage of graphical mod-
els is that DF = DI, i.e. factorization and independence assumptions are equivalent
(see [5] for an extensive description of this point). Furthermore, inference and train-
ing techniques developed for a certain type of graph can be extended to all of the
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distributions encompassed by the same type of graph (see [13] for an extensive ac-
count of training techniques in graphical models).

The rest of this section introduces notions and terminology that will be used
throughout the rest of this chapter.

2.2.1 Graph Theory

The basic data structure used in the chapter is the graph.

Definition 2.1 A graph is a data structure composed of a set of nodes and a set of
edges. Two nodes can be connected by a directed or undirected edge.

We will denote by G = (N, E) a graph, where N is the set of nodes and E is the
set of the edges. We write n; — n; when two nodes are connected by a directed
edge and n;—n ; when they are connected by an undirected one. If there is an edge
between n; and nj, we say that these are connected and we write that n; = n;. An
element of E is denoted with (i, j) meaning that nodes n; and 7 ; are connected.

Definition 2.2 If n = m, then m is said to be a neighbor of n (and vice versa). The
set of all neighbors of n is called the neighborhood and it is denoted by Nb(n). The
set of the parents of a node n contains all nodes m such that m — n. This set is
denoted by Pa(n). Similarly, the set of the children of a node n contains all nodes m
such that n — m. This set is denoted by Ch(n).

Definition 2.3 A path is a list of nodes (p1, ..., pn) such that p; — p;41 or pi—
pi+1 holds for all i. A trail is a list of nodes (p1, ..., pn) such that p; = p;11 holds
forall i.

The difference between a trail and a path is that a trail can contain p; < p;y1
edges. In other words, in a trail it is possible to follow a directed edge in the wrong
direction. In undirected graphs, there is no difference between paths and trails.

Definition 2.4 A cycle is a path (p1, ..., pn) such that p; = p,. A graph is acyclic
if there are no cycles in it.
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2.2.2 Conditional Independence

Consider two random variables X and Y that can take values in Val(X) and Val(Y),
respectively.

Definition 2.5 Two random variables X and Y are independent, if and only if
P(Y|X) =P(X) Vx € Val(X),Vy € Val(Y). When X and Y are independent, we
write that P = (X LY).

The definition can be easily extended to sets of variables X and Y:

Definition 2.6 Two sets of random variables X and Y are independent, if and only
if P(Y|X) =P(X) VX € Val(X), VY € Val(Y). When X and Y are independent, we
write that P = (XL1Y).

Definition 2.7 Let X, Y, and Z be sets of random variables. We say that X is con-
ditionally independent of Y given Z if and only if:

P(X,Y|Z) = P(X|Z)P(Y|Z)

We write that P = (X_LY|Z).

The rest of the chapter shows how the notion of conditional independence is
more useful, in practice, than the simple independence. For example, the Markov
property (see above) can be seen as a conditional independence assumption where
the future X;4 is conditionally independent of the past (X1, ..., X;—1) given the
present X,. Such an assumption might not be true in reality (X, is likely to be
dependenton X1, ..., X;_1), butit introduces a simplification that makes the simple
model of (2.4) tractable.

2.3 Bayesian Networks

Bayesian Networks [11, 12, 20] are probabilistic graphical models encompassed by
Directed Acyclic Graphs (DAGs), i.e. those graphs where the edges are directed
and no cycles are allowed. The rest of the section shows how a probability distri-
bution factorizes over a DAG and how the structure of the edges encodes condi-
tional independence assumptions. As factorization and independence assumptions
are equivalent for graphical models, it is possible to say that all of the distributions
that factorize over a DAG respect the conditional independence assumptions that
the DAG encodes. Inference and training approaches will not be presented for di-
rected models because each directed graph can be transformed into an equivalent
undirected one and related inference and training approaches can be applied. The
interested reader can refer to [9, 13] for extensive surveys of these aspects.
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Fig. 2.2 The picture shows
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2.3.1 Factorization

Definition 2.8 Let X = (X;, ..., Xy) be a set of random variables and G be a DAG
whose node set is X. The probability distribution P over X is said to factorize over
G if
n
PX)= ]‘[ P(X;|Pa(X;)). (2.5)
i=1

A pair (G, P) where P factorizes over G is called Bayesian Network.

2.3.2 The d-Separation Criterion

A DAG allows one to read conditional independence assumptions through the con-
cept of d-separation for directed graphs.

Definition 2.9 Let (G, P) be a Bayesian Network and X| = ... = Xy apathin G.
Let Z be a subset of variables. The path is blocked by Z if there is a node W such
that either:

e W has converging arrows along the path (— W <) and neither W nor its descen-
dants are in Z
e W does not have converging arrows (— W — or <~ W —),and W € Z

Definition 2.10 The set Z d-separates X and Y if every undirected path between
any X € X and any Y €Y is blocked by Z

The definition is more clear if we consider the three structures depicted in
Fig. 2.2. In the case of Fig. 2.2(a), Z, d-separates X and Y and we can write the
following:

P(X,Y, Z) = P(X)P(Z|X)P(Y|Z) = P(Z)P(X|Z)P(Y|Z). (2.6)

AsP(X,Y,Z)=P(X,Y|Z)P(Z), the above means that P = (X _1Y|Z). The case of
Fig. 2.2(b) leads to the same result (the demonstration is left to the reader), while
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the structure of Fig. 2.2(c) has a different outcome:
P(X,Y|Z2)=P(X|Z2)P(Y|2)P(Z). 2.7)

In this case, Z does not d-separate X and Y and it is not true that P = (X LY|Z),
even if P = (X_Y). This phenomenon is called explaining away and it is the rea-
son of the condition about the nodes with converging arrows in the definition of
d-separation. In more general terms, the equivalence between d-separation and con-
ditional independence is stated as follows:

Theorem 2.1 Let (G, P) be a Bayesian Network. Then if Z d-separates X and Y,
P = (XLY|Z) holds.

Thus, the conditional independence assumptions underlying a Bayesian Network
can be obtained by simply applying the d-separation criterion to the corresponding
directed graph.

2.3.3 Hidden Markov Models

The example presented in Sect. 2.2, known as Markov Model (see Fig. 2.3), can be
thought of as a Bayesian Network where Pa(Y;) = {Y;_1}:

N N
P(Y1..... Yn) =P [ [P(i[Yiep) = [ [P(Yi[Pa(ry). (2.8)
i=2 i=1

The DAG corresponding to this distribution is a linear chain of random variables.
An important related model is the Hidden Markov Model (HMM) [10, 23], where
the variables can be split into two sets, the states Y and the observations X:

N
P(X,Y) =P(Y)P(X1|Y1) HP(Yt 1Yi—DP(X;[Yy), (2.9)
=2

where the terms P(Y;|Y;_1) are called transition probabilities, the terms P(X;|Y;)
are called emission probability functions, and the term P(Y}) is called initial state
probability. The underlying assumptions are the Markov Property for the states and,
for what concerns the observations, the conditional independence of one observation
with respect to all of the others given the state at the same time.

HMMs have been used extensively for both classification and labeling problems.
In the first case, one class is assigned to the whole sequence X. For C classes,
different sequences of states Y' are used to estimate the probability P(X, Y!) and
the one leading to the highest value is retained as the winning one:
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Fig. 2.3 The figure depicts the Bayesian Networks representing a Markov Model (a) and a Hidden
Markov Model (b)

k=arg max = P(X Y‘) (2.10)
ie[l,C]

where k is assigned to X as class. In the labeling case, the sequence of states Y that
satisfies

Y= argmax = P(X,Y), 2.11)
Ye¥

is used to label the observations of X (% is the set of the state sequences of the same
length as X). Each element X, is labeled with the value y, of variable Y, inY.

HMM have been widely used for speaker diarization (i.e. the task of segmenting
an audio recording in speaker turn). In this scenario, the HMM is used as an unsu-
pervised clustering algorithm. The hidden states Y of the model correspond to the
speakers and the observations are features extracted from the audio spectrum (usu-
ally Mel-frequency cepstral coefficients [17]). For a description of a state of the art
system using this approach see [8].

HMM suffers from two main limitations. The first is that the observations are
assumed to be independent given the states. In the case of human behavior analysis,
this assumption does not generally hold. The model presented in the next section,
the Conditional Random Field, can address this problem.

The second limitation is that the Markov property makes it difficult to model
the duration of the hidden states, i.e. the number of consecutive observations la-
beled with the same state. The reason is that the probability of transition to a state
y: depends only on y,_;. The Hidden Semi-Markov Model [25] was developed to
address this limitation. A complete description of this model is beyond the scope of
this chapter, but the key idea is to have the transition probabilities to y; that depend
not only on y,_1, but also on the number of consecutive observations that have been
labeled with y;_.
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2.4 Conditional Random Fields

Conditional Random Fields [14, 15, 26] differ from Bayesian Networks mainly in
two aspects: The first is that they are encompassed by undirected graphical models,
the second is that they are discriminative, i.e. they model P(Y|X) and not P(X,Y).
The former aspect influences the factorization, as well as the way the graph encodes
conditional independence assumptions. The latter aspect brings the important ad-
vantage that no assumptions about X need to be made (see below for more details).

2.4.1 Factorization and Conditional Independence

Definition 2.11 Let G = (N, E) be a graph such that the random variables in Y
correspond to the nodes of G and let P be a joint probability distribution defined
over Y. A pair (G, P) is a Markov Random Field if:

P(YIY\{Y})=P(YINb(Y)) VY €Y. (2.12)
The factorization of P is given by the following theorem:

Theorem 2.2 Let (G, P) be a Markov Random Field, then there exists a set of func-
tions {¢c|c is a clique of G} such that

1
POY) = — [ [ee(Ylo), (2.13)

where Y| is the subset of Y that includes only variables associated to the nodes in
¢, and Z is a normalization constant:

z=3 Tlewlo, (2.14)
y ¢

where'y iterates over all possible assignments on'Y.

The functions ¢, are often called potentials. They need to be positive functions
but they do not necessarily need to be probabilities, i.e. they are not bound to range
between 0 and 1. The conditional independence assumptions underlying the factor-
ization above can be inferred by considering the definition of the Markov Network.
Each variable is conditionally independent of all of the others given those who cor-
respond to the nodes in its neighborhood: P = (Y LY \ {Y, Nb(Y)}INb(Y)).

Conditional Random Fields (see Fig. 2.4) are based on Markov Networks and are
defined as follows:

Definition 2.12 Let G = (N, E) be a graph such that the random variables in Y
correspond to the nodes of G. The pair (X, Y) is a Conditional Random Field (CRF)
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if the random variables in Y obey the Markov property with respect to the graph G
when conditioned on X:

PYIX,Y\Y)= P(Y|X, Nb(Y)) (2.15)
the variables in X are called observations and those in 'Y labels.

The definition above does not require any assumption about X and this is an
important advantage. In both labeling and classification problems, X is a constant
and the value of P(X, Y) must be maximized with respect to Y:

Y= argm‘.';le(Y|X)P(X) =arg m‘?xP(Y|X). (2.16)

Thus, modeling X explicitly (like it happens, e.g., in Hidden Markov Models) is not
really necessary. The model does not require conditional independence assumptions
for the observations that might make the models too restrictive for the data and affect
the performance negatively. In this respect, modeling P(Y|X) makes the model more
fit to the actual needs of labeling and classification (see equation above) and limits
the need of conditional independence assumptions to the only Y.

The factorization of Conditional Random Fields is as follows:

Theorem 2.3 Let (G, P) be a Markov Network; then there exists a set of functions
{@c|c is a clique of G} such that

1
PO = 7o [ [ecle . 2.17)

Z is a normalization constant called the partition function:

Zx) =Y []ecyle:®), (2.18)
y ¢

where 'y iterates over all possible assignments on'Y.

The problem left open so far is the definition of the potentials. As this chapter
focuses on sequence analysis, the rest of this section will consider the particular case
of Linear Chain Conditional Random Fields, one of the models most commonly
applied for the sequence labeling problem.
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Fig. 2.5 Linear Chain
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2.4.2 Linear Chain Conditional Random Fields

In linear chain CRFs, the cliques are pairs of nodes corresponding to adjacent ele-
ments in the sequence of the labels or individual nodes (see Fig. 2.5):

Definition 2.13 A graph is a chain if and only if £ = {(y;, yi+1), 1 <i < |Y|}.

Here E is the set of the edges and (y;, yi+1) represents the edge between the
nodes corresponding to elements ¥; and Y; 1 in Y.

The following assumptions must be made about the potentials to make the model
tractable:

1. The potential over {y;, y;+1} depends only on y; and y;41.
2. The potential over {y;} depends only on y; and x;.

3. The potentials are the same for all 7.

4. The potentials are never zero.

These first three assumptions mean that the marginal distribution for y; is fully de-
termined by y;_1, yr+1 and x;. The fourth assumption means that every sequence
of labels Y has a probability strictly greater than zero. This last assumption is im-
portant in practice, because it allows the product of potentials to be replaced by the
exponential of a sum as [14]

exp(XN, finx) + XN A yie)
Z(X) ’

N N-1
Z(X)= Z eXP(Zfl(}’t,Xt)'FZfz(yp}’t—i-l)),
=1

YeN =1

P(Y|X) =

where f and f> represent potentials having as argument only one label y; or a pair
of adjacent labels {y;, y;+1}. Thus, the potentials have been represented as a linear
combination of simpler terms called feature functions.

In general, the feature functions used for f; are
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x, ify, =y,

. (2.19)
0 otherwise,

fy,t(})tax) Z{

where x; is the observation at time ¢. This family of feature functions can capture
linear relations between a label and an observation x;. For f5, the feature functions
are typically

1 ify,=yandy 1=y,
v (g, = 2.20
Ty O yeet) {O otherwise. ( )
In summary, Linear Chain CRFs estimate p(Y|X) as
N
Z Z ay fy.: (e, Xt)
P(YX, ) = exp | 7' 2.21)

Z(X) N-1
+Z Z ay»)”fy,y’()’t,Yt+l)

1=1 (y,yhe®?

The weights o, of the feature functions of form fy (X, Y) account for how much
the value of a given observation is related to a particular label. The weights o, s of
the feature functions of form f) (X, Y) account for how frequent it is to find label
y followed by label y’.

Linear Chain CRF have been used with success in role recognition [24], where
the goal is to map each turn into a role. In this case, the labels correspond to a
sequence of roles. The observations are feature vectors accounting for prosody and
turn taking patterns associated to each turn.

CRFs have several extensions aimed at addressing the weaknesses of the basic
model, in particular the impossibility of labeling sequences as a whole and of mod-
eling latent dynamics. Two effective extensions are obtained by introducing latent
variables in the model. The first of these extensions is the hidden Conditional Ran-
dom Field (HCRF) [22] and it aims at labeling a sequence as a whole. The HCRFs
are based on linear chain CRFs, where the chain of labels Y is latent and a new
variable C is added (see Fig. 2.6). The new variable C represents the class of the
observations and is connected to every label. All of the potentials are modified to
depend on the class C (see Fig. 2.6).

The second extension aims at modeling latent dynamics like, for example, a sin-
gle gesture (e.g., hand waving) that can have several states (hand moving left and
hand moving right) associated with a single label. CRFs cannot model these states
and the dynamics associated with them. The Latent Discriminative Conditional Ran-
dom Fields (LDCRF) [18] were introduced to overcome this drawback. LDCRF in-
troduce a linear chain of latent variables between the observations and the labels
(see Fig. 2.7). The labels are disconnected and thus assumed to be conditionally in-
dependent given the hidden states. Also, the labels are not directly connected to the
observations.
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Fig. 2.6 Hidden Conditional Random Fields. The class is represented by the C. The variables
Y; are not observed. The potentials are functions of (i) adjacent nodes and the class ( fy,y,,c) or
(ii) a node, the corresponding observation, and the class ( fy,c). The potentials fy,c are not drawn
connected to C to keep the figure readable
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Fig. 2.7 Latent Dynamic Conditional Random Fields. The variables H; are not observed and
capture the latent dynamic. The potentials are functions of (i) adjacent hidden states, (ii) a hidden
state and the corresponding label, or (iii) a hidden state and the corresponding observation

2.5 Training and Inference

The models presented so far cannot be used without appropriate training and infer-
ence techniques. The training consists in finding the parameters of a model (e.g., the
transition probabilities in a Hidden Markov Model or the o coefficients in a Con-
ditional Random Field) that better fit the data of a training set, i.e. a collection of
pairs 7 = (X1, YY)} (i=1,...,|.7]|) where each observation is accompanied by a
label supposed to be true. By “better fit” we mean the optimization of some criterion
like, e.g., the maximization of the likelihood or the maximization of the entropy (see
below for more details).

The inference consists in finding the value of Y that better fits an observation
sequence X, whether this means to find the individual value of each Y; that better
matches each X:

P =yX)= Y. P(YX) (2.22)
Ye({Y,Y; =y}
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or finding the sequence Y* that globally better matches X:

Y*=arg m‘?x P(Y|X). (2.23)

The number of possible sequences increases exponentially with Y, thus training and
inference cannot be performed by simply estimating P(Y|X) for every possible Y.
The next two sections introduce some of the key techniques necessary to address
both tasks with a reasonable computational load.

2.5.1 Message Passing

One of the main issues in both training and inference is to estimate the probability
P(Y; = y) that a given label Y; takes the value y. The Message Passing algorithm
allows one to perform such a task in an efficient way by exploiting the local struc-
ture of the graph around the node corresponding to Y; (see [30] for an extensive
survey of the subject). In particular, the key idea is that the marginal distribution of
anode Y; can be determined if the value of the variables corresponding to its neigh-
boring nodes are known. In practice, those values are unknown, but it is possible
to estimate the belief that measures the relative probability of the different values.
For this reason, the message passing algorithm is sometimes referred to as belief
propagation.

This section will focus in particular on the message passing algorithm for Pair-
wise Markov Networks, namely Markov Networks where the cliques include no
more than two nodes. While being an important constraint, still it includes cases of
major practical importance such as chains, trees and grids (the Linear Chain Condi-
tional Random Fields fall in this class).

The beliefs are defined by

bioN=0;v) [] miop, (2.24)
keNb(Y;)

where ¢;(y;) is the potential for node Y, my; is the message from node Y to node
Y; (see below for the definition of the messages). Formally, a belief is a function
that maps each possible value of Y; into a real number.

A message is another function that maps the value of one node into a real number
and it represents the influence that the sending node has on the receiving one:

mk,-<y,~>=Z<¢k(yk>¢,-k(y,-,yk) I1 mnk<yk>> (2.25)

Yk neNb(Y)\{Y;}

where ¢ is the potential of the clique including Y; and Y} (this equation motivates
the name sum-product algorithm that it is used sometimes for this algorithm).

The belief propagation requires the variables to be ordered and this might create
problems when a graph contain cycles. When cycles are absent (which is the case
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for the models considered in this chapter), the following procedures allow one to
find a suitable ordering:

1. Choose a root node
2. Compute messages starting at the leaf, moving to the root
3. Compute messages starting at the root, going to the leafs

It is important to note that the value of the message is independent of the order in
which the messages are passed.

At the end of the procedure, each node is associated with a belief that can be used
to compute the marginal probabilities as shown by the following:

Theorem 2.4 Let G be a pairwise random field on Y and b; the beliefs computed
using the message passing algorithm, then the following holds:

bj(yj)
P(Y;i=yj)=—=""L"_. (2.26)
DY 3 b (i)
In the case of Conditional Random Fields, the observations in X have to be taken

into account. The message and the beliefs are now dependent on X:

bi(y;, X)=9¢;(yj,X) l—[ mi(yj, X), (2.27)
Y, eND(Y,)

mkj<y,,~,X)=Z<¢k<yk,X>go,,~k(y,-,yk,X> I1 mnk(yk,X)>. (2.28)

Yk, X Y, eNb(Y)\{Y;}

As X is a constant and as it is known a priori, it is possible to apply exactly the
same equations as those used for the Markov Networks.

2.5.1.1 Inference

There are two possible inference scenarios (see beginning of this section): The first
consists in finding, for each label, the assignment that maximizes the marginal prob-
ability. The second consists in finding the assignment that maximizes the joint prob-
ability distribution over the entire label sequence Y.

The first case is a straightforward application of the message passing algorithm.
For a given label Y}, it is sufficient to use the beliefs to find the particular value y*
that maximizes the following probability:

y* =argmaxP(Y; = y) = argmaxb;(y). (2.29)
y y

It can be demonstrated that this particular way of assigning the values to the labels
minimizes the misclassification rate.
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In the second case, the expression of the messages in (2.25) must be modified as
follows:

mkj(y,,)=rgax(¢k(yk>¢,,~k(y,-,yk> I1 mnk(yk)>, (230)
. neNb(YO\(Y;)

where the initial sum has been changed to a maximization. This ensures that the
message received by the node corresponding to label Y; brings information about
the sequence (Y1, ..., Y;_1) with the highest possible probability rather than about
the sum of the probabilities over all possible sequences.

It is again possible to assign to each Y, the value y;’f that maximize the beliefs
obtained using the modified messages:

yi= argmjlxbj ). (2.31)
It can be shown that the resulting assignment Y* = {y}, ..., y;} is the sequence
with the maximum probability:

Y*=arg mYax P(Y). (2.32)

2.5.1.2 Training

The last important aspect of probabilistic sequential models is the training. The topic
is way too extensive to be covered in detail and the section will focus in particular on
Markov Networks as this can be a good starting point toward training Conditional
Random Fields. If the assumption is made that the potentials are strictly greater than
zero, then Markov Networks can be factorized as

1 i
P(Y|w) = exp (Z > alf (Y|c)>, (2.33)

¢ j=1

Z= Zexp(Z Zc:a;'. f (Y|C)>, (2.34)
Y

c =1

where the fg (Y|.) are feature functions defined over a clique c. The same expres-
sion as the same as the one used for Conditional Random Fields, but without the
observations X.

Training such a model it means to find the values of the coefficients « that opti-
mize some criteria over a training set. This section considers in particular the maxi-
mization of the likelihood:

_ j
o* = arg max Z logP(Yt), (2.35)
J
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where the YJ are the sequences of the training set.

The main problem is that solving the above equation leads to an expression for
the o coefficients which is not in closed form, thus it is necessary to apply gradient
ascent techniques. On the other hand, these are effective because of the following:

Theorem 2.5 The log-likelihood function is concave with respect to the weights.

In practice, the limited memory Broyden—Fletcher—Goldfarb—Shanno (LBFGS)
algorithm [16] works well and this has two main motivations: The first is that the
algorithm approximates the second derivative and thus converges faster, the second
is that it has a low memory usage and it works well on large scale problems. One of
the main steps of the LFBGS is the estimation of the derivative of the log-likelihood
with respect to «.

P CZlogP YJ = 6210g<—exp<22af YJ )) (2.36)

c i=l1

(zzaf i)

c i=l1

Z 1Y) - E[£]). (2.38)
J

The equation above shows that the optimal solution is the one where the theoretical
expected value of the feature functions is equal to their empirical expected value.
This corresponds to the application of the Maximum Entropy Principle and it further
explains the close relationship between Conditional Random Fields and Maximum
Entropy Principle introduced in this section.

2.6 Summary

This chapter has introduced the problem of sequence analysis in machine learning.
The problem has been formulated in terms of two major issues, namely classification
(assigning a label to an entire sequence of observations) and labeling (assigning a
label to each observation in a sequence). The chapter has introduced some of the
most important statistical models for sequence analysis, Hidden Markov Models
and Conditional Random Fields. The unifying framework of Probabilistic Graphical
Models has been used in both cases and the emphasis has been on factorization
and conditional independence assumptions. Some details of training and inference
issues have been provided for Conditional Random Fields, and more generally, for
undirected graphical models.

The models introduced in this chapter are not aimed in particular at human be-
havior understanding, but they have been used successfully in the domain (see [27]
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for an extensive survey of the domain). Sequences arise naturally in many behavior
analysis problems, especially in the case of social interactions where two or more
individuals react to one another and produce sequences of social actions [21].

While trying to provide an extensive description of the sequence analysis prob-
lem in machine learning, this chapter cannot be considered exhaustive. However,
the chapter, and the references therein, can be considered a good starting point to-
ward a deeper understanding of the problem. In particular, graphical models have
been the subject of several tutorials (see, e.g., [19] and Chap. 8 of [5]) and dedicated
monographs [14]. The same applies to Hidden Markov Models (see, e.g., [23] for a
tutorial and [10] for a monograph) and Conditional Random Fields (see, e.g., [28]
for a tutorial and [14] for a monograph).

Last, but not least, so far Human Sciences and Computing Science (in particular
machine learning) have looked at the sequence analysis problem in an independent
way. As the cross-pollination between the two domains improves, it is likely that
models more explicitly aimed at the human behavior understanding problem will
emerge.

2.7 Questions
Question 2.1 What is the rationale behind (2.1)?
Question 2.2 Consider the graph represented in Fig. 2.2(c). Let X, Y and Z be

binary random variables. Let the probability of the Bayesian Network be defined by
the following conditional probabilities:

X Y P(Z=0|X,Y) P(Z=I|X,Y)

X P(X) Y PY)

0 0 038 0.2
0 06 0 05 0 1 06 04
1 04 1 05 1 0 05 0.5
1 1 06 0.4

Without using Theorem 2.1, prove the following:

1. PE(XLY).

2. PE(XL1Y|2).

Question 2.3 Consider the Markov Model (MM) and the Hidden Markov Model
(HMM) presented in Fig. 2.3. Find a smallest possible set that:

1. d-separates Y| from Yy in the case of MM.
2. d-separates Y| from Yy in the case of HMM.

Prove that there is no subset of the observations X that d-separates Y] from Yy in
the case of HMMs.
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Question 2.4 What is the conditional independence assumption made by the Linear
Chain Conditional Random Fields?

Question 2.5 Let (G, P) be a Markov Random Field, where G is the undirected
graph in Fig. 2.1. By applying (2.25) and (2.24) give the expressions for:

1. mas(ys).
2. bs(ys).
3. 25 bs(ys).

Mark that the product in the third case can be rearranged to yield Z as this is a
special case of Theorem 2.4.

Question 2.6 Prove Theorem 2.5: The log-likelihood function is concave with re-
spect to the weights. This proof requires some background in analysis and should
use materials not presented in this chapter. A proof is given in [14, Chap. 20.3].

2.8 Glossary

e Probabilistic Sequential Model: Probability distribution defined over sequences
of continuous or discrete random variables.

e Sequence: Ordered set of continuous or discrete random variables, typically cor-
responding to measurements collected at regular steps in time or space.

e Probabilistic Graphical Model: Joint probability distribution defined over a set of
random variables corresponding to the nodes of a (directed or undirected) graph.

e Graph: Data structure composed of a set of nodes and a set of edges, where two
nodes can be connected by a directed or undirected edge.

e Conditional Independence: Let X, Y, and Z be sets of random variables. We say
that X is conditionally independent of Y given Z if and only if:

P(X,Y|Z) =P(X|Z)P(Y|Z).

References

1. Abbott, A.: Sequence analysis: New methods for old ideas. Annu. Rev. Sociol. 21, 93-113
(1995)

2. Bakeman, R., Gottman, J.M.: Observing Interaction: An Introduction to Sequential Analysis.
Cambridge University Press, Cambridge (1986)

3. Baldi, P,, Brunak, S.: Bioinformatics: the machine learning approach. MIT Press, Cambridge
(2001)

4. Bilmes, J.: The concept of preference in conversation analysis. Lang. Soc. 17(2), 161-181
(1988)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

6. Camastra, F., Vinciarelli, A.: Machine Learning for Audio, Image and Video Analysis: Theory
and Applications. Springer, Berlin (2008)



40

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

H. Salamin and A. Vinciarelli

Dietterich, T.: Machine learning for sequential data: A review. In: Caelli, T., Amin, A., Duin,
R., de Ridder, D., Kamel, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition.
Lecture Notes in Computer Science, vol. 2396, pp. 227-246. Springer, Berlin (2002)
Friedland, G., Vinyals, O., Huang, Y., Muller, C.: Prosodic and other long-term features for
speaker diarization. IEEE Trans. Audio Speech Lang. Process. 17(5), 985-993 (2009)
Heckerman, D.: A tutorial on learning with bayesian networks. In: Holmes, D., Jain, L. (eds.)
Innovations in Bayesian Networks, pp. 33-82. Springer, Berlin (2008)

Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1997)
Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)

Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, Berlin (2007)
Jordan, MLL: Learning in Graphical Models. Kluwer Academic, Dordrecht (1998)

Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press, Cambridge (2009)

Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic models for
segmenting and labeling sequence data. In: Proceedings of the International Conference on
Machine Learning, pp. 282-289 (2001)

Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.
Math. Program. 45, 503-528 (1989)

Mermelstein, P.: Distance measures for speech recognition, psychological and instrumental.
Pattern Recognition and Artificial Intelligence 116 (1976)

Morency, L.P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous
gesture recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1-8. IEEE Press, New York (2007)

Murphy, K.: An introduction to graphical models. Technical Report, University of British
Columbia (2001)

Pearl, J.: Bayesian networks: A model of self-activated memory for evidential reasoning.
Computer Science Department, University of California (1985)

Poggi, 1., D’Errico, F.: Cognitive modelling of human social signals. In: Proceedings of the
2nd International Workshop on Social Signal Processing, pp. 21-26 (2010)

Quattoni, A., Wang, S., Morency, L.P., Collins, M., Darrell, T.: Hidden conditional random
fields. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1848-1852 (2007)

Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc. IEEE 77(2), 257-286 (1989)

Salamin, H., Vinciarelli, A., Truong, K., Mohammadi, G.: Automatic role recognition based on
conversational and prosodic behaviour. In: Proceedings of the ACM International Conference
on Multimedia, pp. 847-850. ACM, New York (2010)

Sansom, J., Thomson, P.: Fitting hidden semi-Markov models to breakpoint rainfall data.
J. Appl. Probab. 38, 142-157 (2001)

Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning.
In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press,
Cambridge (2007)

Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: survey of an emerging do-
main. Image Vis. Comput. 27(12), 1743-1759 (2009)

Wallach, H.M.: Conditional random fields: an introduction. Technical Report MS-CIS-04-21,
Department of Computer and Information Science, University of Pennsylvania (2004)

Wu, Y., Huang, T.: Vision-based gesture recognition: A review. In: Braffort, A., Gherbi, R.,
Gibet, S., Teil, D., Richardson, J. (eds.) Gesture-Based Communication in Human-Computer
Interaction. Lecture Notes in Computer Science, vol. 1739, pp. 103—115. Springer, Berlin
(1999)

Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generaliza-
tions. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millen-
nium, pp. 239-270. Morgan Kaufman, San Mateo (2003)



2 Springer
http://www.springer.com/978-0-85729-993-2

Computer Analysis of Human Behavior
Salah, AA.; Gevers, T. (Eds.)

2011, XV, 412 p., Hardcover

ISBN: @78-0-85729-993-2



	Chapter 2: Introduction to Sequence Analysis for Human Behavior Understanding
	2.1 Introduction
	2.2 Graphical Models
	2.2.1 Graph Theory
	2.2.2 Conditional Independence

	2.3 Bayesian Networks
	2.3.1 Factorization
	2.3.2 The d-Separation Criterion
	2.3.3 Hidden Markov Models

	2.4 Conditional Random Fields
	2.4.1 Factorization and Conditional Independence
	2.4.2 Linear Chain Conditional Random Fields

	2.5 Training and Inference
	2.5.1 Message Passing
	2.5.1.1 Inference
	2.5.1.2 Training


	2.6 Summary
	2.7 Questions
	2.8 Glossary
	 References


