
Chapter 2
Beyond the Static Camera:
Issues and Trends in Active Vision
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Abstract Maximizing both the area coverage and the resolution per target is highly
desirable in many applications of computer vision. However, with a limited number
of cameras viewing a scene, the two objectives are contradictory. This chapter is
dedicated to active vision systems, trying to achieve a trade-off between these two
aims and examining the use of high-level reasoning in such scenarios. The chapter
starts by introducing different approaches to active cameras configurations. Later,
a single active camera system to track a moving object is developed, offering the
reader first-hand understanding of the issues involved. Another section discusses
practical considerations in building an active vision platform, taking as an example
a multi-camera system developed for a European project. The last section of the
chapter reflects upon the future trends of using semantic factors to drive smartly
coordinated active systems.
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2.1 Introduction

Many applications in the computer vision field benefit from high-resolution imagery.
These include, but are not limited to, license-plate identification [4] and face recog-
nition, where it has been observed that higher resolution improves accuracy [27]. For
other applications, such as identifying people in surveillance videos, having highly
zoomed images is a must. The problem with zoom control is that two opposing aims
are desirable: the first one is obtaining a maximum resolution of the tracked object,
whereas the second is minimizing the risk of losing this object. Therefore, zoom
control can be thought of as a trade-off between the effective resolution per target
and the desired coverage of the area of surveillance.

With a finite number of fixed sensors, there is a fundamental limit on the total area
that can be observed. Thus, maximizing both the area of coverage and the resolution
of each observed target requires an increase in the number of cameras. However,
such an increase is highly costly in terms of installation and processing. Therefore,
a system utilizing a smaller number of Pan–Tilt–Zoom (PTZ) cameras can be much
more efficient if it is properly designed to overcome the obvious drawback of having
less information about the target(s).

Toward this end, different works have investigated the use of PTZ cameras to
address this problem of actively surveying a large area in an attempt to obtain high-
quality imagery while maintaining coverage of the region [25]. Starting two decades
ago, the area of active vision has been gaining much attention, in an attempt to:
i) improve the quality of the acquired visual data by trying to keep a certain object
at a desired scale, and ii) react to any changes in the scene dynamics that might risk
the loss of the target.

Accurate reactive tracking of moving objects is a problem of both control and
estimation. The speed at which the camera is adjusted must be a joint function of
current camera position in pan, tilt and focal length, and the position of the tracked
object in the 3D environment.

This chapter deals with active vision systems, offering the reader hands-on expe-
rience and insights into the problem. Section 2.2 discusses the different design alter-
natives for active cameras configurations, such as the autonomous camera approach,
the master-slave approach and the active camera network approach, in addition to
touching upon the advantages that environment reasoning lends to the problem. In
Sect. 2.3, an autonomous camera system is designed, where the problem of jointly
estimating the camera state and 3D object position is formulated as a Bayesian es-
timation problem and the joint state is estimated with an extended Kalman filter.
The authors of this chapter had the opportunity to be part of a dedicated consortium
working on a European project, called HERMES, where an integrated platform in-
volving active cameras was built. Therefore, in Sect. 2.4, practical considerations
involved in building real-time active camera systems are discussed taking the HER-
MES platform as a case study. This chapter is concluded in Sect. 2.5, where the
lessons learned are summarized and the future directions are noted.
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2.2 Active Camera Configurations

The interest in active camera systems started as early as two decades ago. Beginning
in the late 1980s, Aloimonos et al. introduced the first general framework for active
vision in order to improve the perceptual quality of tracking results [3]. Since then,
numerous active camera systems have been developed. In this section, we take a
look at different approaches for configuring these systems.

2.2.1 The Autonomous Camera Approach

Autonomous cameras are those that can self-direct in their surrounding environ-
ment. Recent work addressing this topic includes that of Denzler et al., where the
motion of the tracked object is modeled using a Kalman filter. The camera focal
length that minimizes the uncertainty in the state estimation is selected [12]. The
authors used a stereo set-up, with two zoom cameras, to simplify the 3D estimation
problem.

A newer approach is described by Tordoff et al., which tunes a constant velocity
Kalman filter in order to ensure reactive zoom tracking while the focal length is
varying [26]. Their approach correlates all the parameters of the filter with the focal
length. However, they do not concentrate on the overall estimation problem, and
their filter does not take into account any real-world object properties.

In the work by Nelson et al., a second rotating camera with fixed focal length is
introduced in order to solve the problem of lost fixation [19].

The latter two works are primarily focused on zoom control and do not deal with
total object-camera position estimation and its use in the control process. An attempt
to join estimation and control in the same framework can be found in the work of
Bagdanov et al., where a PTZ camera is used to actively track faces [5]. However,
both the estimation and control models used are ad hoc, and the estimation approach
is based on image features rather than 3D properties of the target being tracked.

2.2.2 The Master/Slave Approach

In a master/slave configuration, a supervising static camera is used to monitor a wide
field of view and to track every moving target of interest. The position of each of
these targets over time is then provided to a foveal camera, which tries to observe the
targets at a higher resolution. Both the static and the active cameras are calibrated to
a common reference, so that data coming from one of them can be easily projected
onto the other, in order to coordinate the control of the active sensors.

Another possible use of the master/slave approach consists of a static (master)
camera extracting visual features of an object of interest, while the active (slave)
sensor uses these features to detect the desired object without the need of any train-
ing data. In this case, features should be invariant to illumination, viewpoint, color
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distribution and image resolution, and usually consist of any kind of coarse-to-fine
region descriptors, as in [31].

The master/slave approach is a simple but effective formulation that has been re-
peatedly used for solving many active vision problems [16, 20, 31]. Nonetheless, the
use of supervising cameras has the disadvantage of requiring a mapping of the im-
age content to the active cameras. This mapping needs to be obtained from restricted
camera placements, movements or observations extended over time [6, 13].

2.2.3 The Active Camera Network Approach

In recent years, interest has grown in building networks of active cameras and
optional static cameras, in order to cover a large area while also providing high-
resolution imagery of multiple targets [7, 11, 17, 21]. An active camera network is
a scaling up of a basic active camera approach, which can be either an autonomous
active camera or a master/slave configuration, depending on whether fixed master
cameras are deployed or not.

Due to the fact that an active camera network involves multiple cameras and
is usually required to accomplish multiple tasks, the challenges of this approach
mainly arise from two aspects: i) task assignment and ii) task hand-over.

Task assignment is the problem of deciding which camera resources are to be
allocated to which task, or in other words, the problem of camera scheduling. On
the other hand, task hand-over describes model transferring from one camera to
another.

Furthermore, like the master/slave configuration, active camera networks also re-
quire calibration information, as well as extensive networking infrastructure. Com-
munications within such systems require clever networking algorithms for routing
and decision making. Though theoretically appealing, active camera networks are
expensive to build and maintain, and do not scale well.

2.2.4 Environmental Reasoning

In some cases, low-level approaches such as those described above are not enough
to address ambitious applications requiring more complex strategies toward sen-
sors collaboration. Smart coordination among camera sensors requires exploiting
resources that are often related to artificial intelligence and symbolic models, in-
cluding techniques for camera selection according to the given task, protocols for
allocating such tasks, tools for reasoning about the environment and mechanisms to
resolve conflicts.

Some examples in which such techniques are used to enhance the collabora-
tion among sensors in a camera network include constraint satisfaction formula-
tions [22], Situation Graph Tree (SGT) [14] and Petri net coordination models [29].
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2.3 The Autonomous Camera: A Hands-on Experience

This section is aimed at providing the reader with a hands-on experience to develop
an autonomous active camera system that is able to track a moving object, taking
proper decisions on when to zoom in, to maximize the resolution, and when to zoom
out, to minimize the risk of losing the object. It is dedicated to an exemplary sys-
tem showing all the design decisions that has been taken in the process, namely the
camera-world model, the estimation process and the control process. Some perfor-
mance indicators of the system are shown at the end. This section is based on the
paper “Reactive object tracking with a single PTZ camera” by Al Haj et al., which
appeared in the 20th International Conference on Pattern Recognition [2], ©2010
IEEE.

2.3.1 Camera-World Model

We use a pinhole camera model as shown in Fig. 2.1. The camera center is located
at the origin of the world coordinate system. The principal point is at the origin of
the plane of projection at zero pan and tilt. The axis of projection is aligned with the
z-axis.

The object being tracked is assumed to be a rigid rectangular patch perpendicu-
lar to the axis of projection. It is located at world position (X,Y,Z) with known
width W and height H . It is important to note here that upper-case characters,
(X,Y,Z,W,H), will be used to denote values in the real-world while lower-case
characters, (x, y,w,h), will be used to denote values in the image projection plane.

Changes in camera orientation due to panning and tilting are modeled as pure
rotations of the coordinate system:

Fig. 2.1 The pinhole camera model with the camera positioned at the origin of the world coordi-
nates
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M(φ, θ) =
⎡
⎣

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦

⎡
⎣

cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤
⎦ , (2.1)

where φ and θ represent the pan and tilt angles, respectively.
We assume that the camera projection is reasonably approximated using equal

scaling in the x and y directions (i.e. square pixels). The center of projection is also
assumed to be at the origin of the world coordinate system. Then, the camera matrix,
N, is fully parameterized by the focal length parameter f :

N(f ) =
⎡
⎣

f 0 0
0 f 0
0 0 1

⎤
⎦ . (2.2)

The projection of the object at position o = [X,Y,Z] onto the plane of projection
can now be written as

p(φ, θ, f,o) =
[

X′

Z′
Y ′

Z′

]
, (2.3)

where X′, Y ′ and Z′ are given by the transformation
⎡
⎣

X′
Y ′
Z′

⎤
⎦ = N(f )M(φ, θ)o�. (2.4)

The camera model relates the geometry and position of the tracked object in the
3D world to the internal camera parameters. In the next section, we describe how
the estimation problem can be formulated.

2.3.2 Estimation

In this section we formulate the problem of jointly estimating the camera and world
parameters in a recursive Bayesian filter framework.

At time t , the state configuration of the joint camera/object model is represented
by the spatial coordinates of the tracked object in the real-world, the camera intrin-
sics and the velocities corresponding to the object position and camera intrinsics:

st = [ot | ct | ȯt | ċt ]�, (2.5)

where each component is defined by

ot = [Xt,Yt ,Zt ], (2.6)

ct = [φt , θt , ft ], (2.7)

ȯt = [Ẋt , Ẏt , Żt ], (2.8)

ċt = [φ̇t , θ̇t , ḟt ]. (2.9)

[Xt,Yt ,Zt ] is the position of the planar patch in world coordinates at time t , and
[φt , θt , ft ] represent the camera pan angle, tilt angle and focal length at time t ,
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respectively. The remaining elements, [Ẋt , Ẏt , Żt , φ̇t , θ̇t , ḟt ], represent the velocities
of the previously mentioned components.

From time t − 1 to time t , the state is updated by the linear matrix U:

st = Ust−1 + vt−1, (2.10)

where U is defined by

U =
[

I6 I6

06 I6

]
, (2.11)

and where In and 0n are the n×n identity and zero matrices, respectively. The term
vt−1 in (2.10) is considered to be a zero-mean, Gaussian random variable adding
noise to the system update.

At each time t , an observation zt of the unknown system st is made:

zt = [xt , yt ,wt , ht , φ̂t , θ̂t , f̂t ], (2.12)

where (xt , yt ) is the center of the object in the image plane measured in pixels,
(wt , ht ) are the width and height of the object in the image plane, also measured
in pixels, please refer again to Fig. 2.1. (φ̂t , θ̂t , f̂t ) are the camera parameters arriv-
ing from the camera imprecise measurements of the pan angle, tilt angle and focal
length.

The measurement equation, against which the observation zt is compared, is
given by:

h(st ) = [
p(φt , θt , ft ,ot ) |p

(
0,0, ft , [W,H,Z′

t ]
) | ct

]� + [
no

t |nc
t

]�
, (2.13)

where no
t and nc

t are zero-mean Gaussian noise processes on the object and cam-
era measurements, respectively. Z′

t is the projection of the depth Zt in the new
coordinate system resulting from the pan and tilt of the camera. p(φt , θt , ft ,ot ) rep-
resents the projection of the object position ot into the image plane and, similarly,
p(0,0, ft , [W,H,Z′

t ]) is the projection of the known object size W × H into the
image plane. The camera vector ct consists of the pan angle, tilt angle and focal
length, as estimated by the state vector.

Given the system update and measurement processes defined in (2.10) and (2.13),
the Bayesian estimation problem is to find an estimate of the unknown state st that
maximizes the posterior density p(st |z1:t ).

Toward this end, an Extended Kalman Filter (EKF) is used to recursively solve
this estimation problem [28]. The EKF approximates the likelihood as a Gaussian
density with argument st , mean mt and covariance Pt :

p(st |z1:t ) ≈ N (st ;mt ,Pt ). (2.14)

Defining Ĥt as a local linearization, given by the Jacobian, of the non-linear
measurement function, h(st ):

Ĥt = ∂h(st )

∂st

∣∣∣∣
st=mt |t−1

, (2.15)
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the update from time t − 1 to time t is given by the set of equations

mt |t−1 = Umt−1, (2.16)

Pt |t−1 = Q + UPt−1U�, (2.17)

mt = mt |t−1 + Kt

(
zt − h(mt |t−1)

)
, (2.18)

Pt = Pt |t−1 − Kt ĤtPt |t−1, (2.19)

St = ĤtPt |t−1Ĥ�
t + R, (2.20)

Kt = Pt |t−1Ĥ�
t S−1

t . (2.21)

St is the covariance of the innovation term zt − h(mt |t−1) and Kt is the Kalman
gain. Q and R are the covariance of the Gaussian noise added to the system update
and measurement, respectively.

2.3.3 Control

The estimated state outputted at each step of the filter is used to control the move-
ment of the camera. Two PID controllers are used: one for controlling the pan and
tilt and another one for the zoom. The control signal, outputted by a PID controller,
is given by

u(t) = Kpe(t) + Ki

∫ t

0
e(τ ) dτ + Kd

d

dt
e(t), (2.22)

where e(t) is the error signal, Kp is the proportional gain, Ki is the integral gain
and Kd is the derivative gain.

In our case, and at each time t , the error in pan is defined as the difference
between the estimated pan angle and the estimated horizontal angle that the object
forms with the world coordinate system, while the error in tilt is defined as the
difference between the estimated tilt angle and the estimated vertical angle of the
object:

epan = arctan(Xt/Zt ) − φt , (2.23)

etilt = arctan(Yt/Zt ) − θt . (2.24)

The gains are experimentally set to: Kp = 1, Ki = 0 and Kd = 0.2.
To calculate the error for the zoom controller, we define the desired area Da ,

which is the maximum area in pixels we aim to have and which is usually achieved
when the object is static. The error is then defined, at each time t , as:

ezoom = Da − wproj ∗ hproj, (2.25)

where wproj and hproj are the projections of the width W and height H of the object
in the image plane. The gains are experimentally set to: Kp = 0.01, Ki = 0 and
Kd = 0.
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The integral phase was bypassed in both controllers, by setting Ki to 0, because
the output of the filter was found to be accurate at steady state, i.e. when the object
is centered with maximum zoom.

The error ezoom is considered only when both |epan| and |etilt| are constant or
decreasing; otherwise, a zoom out operation is executed.

2.3.4 System Performance

In this section, we will show the reader the performance of the system on both sim-
ulated scenarios and live scenes of a PTZ camera. The simulated scenario consisted
of a random motion of an object whose size is 10 × 10 cm, and the error was av-
eraged over many runs. The camera used in the live scenes was an Axis 214 PTZ
network camera.

2.3.4.1 Simulated Data

The error metric we used in all model parameters estimation is the root mean square
deviation (RMSD) defined as:

RMSD(ηi) =
√

E
(
(η̄i − ηi)2

)
, (2.26)

where ηi is one of the model parameters, [X,Y,Z,φ, θ, f, Ẋ, Ẏ , Ż, φ̇t , θ̇t , ḟt ], com-
posing the state vector in (2.5), and η̄i is the estimated model parameter. The expec-
tation, E, is taken over the entire sequence. The RMSD is measured for several runs
of the simulation (we used 100 runs in our experiments), and the average RMSD is
used as a measure of estimation performance.

Figure 2.2a shows a box-and-whisker summary of the RMSD for a simulation
where a moving object is tracked by a moving camera. In these experiments, we

Fig. 2.2 a Error in 3D position parameters (X,Y,Z), measured in millimeters. b Error in pan
angle, tilt angle and focal length. Angles are measured in radians, focal length in millimeters
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simulate the motion the camera would execute due to corrections coming from the
PID controllers described in the previous section. Also, some noise is introduced
in the different state parameters. To investigate sensitivity to varying measurement
noise, this value is scaled by a constant a ∈ {1,5,10}. Similar results can be seen in
Fig. 2.2b for camera parameters estimation. From these figures, one can conclude
that scaling the uncertainty, by a = 5 and a = 10, predictably scales the RMSD error
as well as the spread (most notably in Z and f ) and increases outliers. However,
even with such increase, the estimates of both the object position and the camera
parameters are very good.

2.3.4.2 Live Cameras

A commodity PTZ camera (Axis 214) was used for tracking different objects. Sim-
ple assumptions about object sizes were made: the cup tracked in Fig. 2.3 is assumed
to be 8 × 12 cm, while the faces in Figs. 2.4 and 2.5 are assumed to be 18 × 18 cm.
For the detection of the blue cup, a simple heuristics-based classifier for detecting
blue regions in the normalized RGB colorspace was used; while for face detection,
we used the method developed in [1]. The two red dots represent the center of the
object and the upper left corner, outputted by the detection process. The green dots
represent the projection of the estimates of the center and the bounding box position.
The tracker was able to successfully follow the objects taking correct decisions on
when to zoom in and when to zoom out.

Fig. 2.3 Reactive tracking of a stationary object

Fig. 2.4 Reactive tracking of a moving face
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Fig. 2.5 Another example of reactive face tracking

2.3.5 Closing Remarks

In this section, a method for reactive object tracking has been described. The system
uses a single PTZ camera and jointly estimates, in a Bayesian framework, the orien-
tation and focal length of the camera and the position of the tracked object in the 3D
environment. The output of the estimation process is used to drive the control pro-
cess, allowing the camera to reactively track the moving target. The main limitation
of this method is that the EKF output is dependent on the detection, i.e. the measure-
ment process; therefore, and although the method is tolerant to measurement noise,
continuous erroneous detection leads to inaccurate tracking. Also, this method does
not support multiple objects tracking. Other than that, the estimates are robust in the
presence of camera motion and increased measurement noise.

2.4 Active Vision in Practice: A Case Study

Imagine a user communicating with a set of distributed PTZ cameras, as if they
were humans reporting what they see. This would require converting a video stream
into a textual description of temporal events. The user should, then, be able to re-
quest summaries of recent developments in chosen languages, to obtain responses
to his questions for details, and to send commands, e.g., to zoom in on a particular
body.

The challenge of building a cognitive system showing the aforementioned behav-
ior involves addressing multiple research areas, such as computer vision, artificial
intelligence and computational linguistics, to cite only a few. The term Human Se-
quence Evaluation (HSE) was coined to refer to this set of requirements, modules
and flows of knowledge (numeric or semantic) that is essential for designing such
a complex system [15]. As a result, HSE provided a theoretical framework upon
which a European project called HERMES1 was conceived and subsequently im-
plemented thanks to the European Commission. HERMES was a consortium project
that concentrated on extracting descriptions of people behavior from videos in re-

1http://www.hermes-project.eu

http://www.hermes-project.eu
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stricted discourse domains, such as pedestrians crossing inner-city roads, approach-
ing or waiting at bus stops and even humans in indoor locations like halls or lob-
bies.

In this section, we present the resulting HERMES system that uses active cam-
eras to help researchers in exploring a coherent evaluation of human movements
and facial expressions across a wide variation of scale. The challenging objectives
were the integration, demonstration and validation of different image processing
techniques: in essence, the outputs of such techniques were pooled and integrated to
build a coherent hardware and software system that can extract a subset of semanti-
cally meaningful behaviors from a scene.

To meet such objectives, the system uses active cameras to take high-resolution
images of subjects, while still monitoring a large area in a manner similar to [24].
In such settings, the main issues tackled are:

• How to direct an active camera over a moving target while zooming on it. This
process is referred to as foveation. Existing solutions to this problem only employ
active tracking of motion and appearance to drive the camera motors [18].

• In the presence of several targets, how to select the most semantically relevant
one to foveate on, according to a user-determined definition of relevance.

Solutions to this last problem select targets based on Earliest Deadline First poli-
cies, assigning higher relevance to those subjects that are going to leave the scene
sooner [10]. Also, a solution based on the Dynamic Traveling Salesperson Problem
has been proposed in [5]. While these approaches attempt to maximize the num-
ber of targets acquired over time, little effort has been made, yet, to maximize the
quality, defined in semantically meaningful terms, of acquired images.

In the literature, active cameras are commonly used to provide a distribution of
bodies and faces in the scene that can be exploited to select the best, most mean-
ingful view. In [8], the technology to support tracking in a multiple-camera system
is defined and is exploited for extracting and comparing the best view of each de-
tected agent. Also, camera zoom allows active camera systems to supply imagery
at the appropriate resolution for motion analysis of the human body and face, thus
facilitating expression analysis [9, 30].

However, in our proposed framework the use of active sensors enhances the pro-
cess of cognition via controlled responses to uncertain or ambiguous interpretations.
In particular, the use of zoom provides a unification of interpretations at different
resolutions, and bestows the ability to switch the sensing process between differ-
ent streams in a controlled fashion. This integration of the cycle of perception–
knowledge acquisition–abstraction–reasoning–action generation was also an inter-
esting avenue of research.

In the rest of this section, we describe the resulting prototypical system that cov-
ers the aforementioned requirements. As a result, a slimmed-down demonstrator
system, with both fixed and PTZ cameras, was able to generate natural language
text based on activities of a particular agent (human or road vehicle) from schematic
conceptual representations inferred using trajectory data.
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2.4.1 Practical Considerations

An integrated hardware platform was designed, built and installed. This hardware
platform consists of two high-speed cameras (one fixed and one PTZ) and three
dedicated servers to host HERMES systems: for analysis of agent motion, active
camera control and inferring high-level descriptions of agent behavior in the scene.

As noted before, the main objective of the HERMES project was set to improve
active camera foveation ability by introducing semantics into active sensor guidance
systems. This leads to the following specific sub-objectives:

• selecting the most appropriate low-level tracking techniques capable of focusing
on specific aspects of agent motion like whole-body, limbs and face;

• constructing systems capable of classifying specific scene trajectories and human
actions which form the basic attentive vocabulary for low-level scene description;

• improving active camera control systems to maximize the quality of acquired
imagery based on low-level features;

• incorporating semantic feedback and requests from high-level scene description
and reasoning into the active sensor control system, enabling it to acquire knowl-
edge used for a robust and accurate description of the scene;

• designing active camera controllers capable of responding to uncertain or am-
biguous interpretations;

• controlling active cameras in a manner that allows the analysis of three different
degrees of human motion: agent, body and face, depending on the recognized
behaviors;

• controlling active cameras to supply visual data while directing camera attention
to those agents whose behaviors are deemed interesting.

These objectives allow a cognitive vision system to provide sensor data for each
of the modules considered in HERMES, but more importantly, to bring all of the sys-
tem modules together in a sensor perception/action cycle. Cooperating PTZ sensors
enhance the process of cognition via controlled responses to uncertain or ambiguous
interpretations. As a result, the use of zoom provides a unification for interpretations
at different resolutions while exploiting the ability to switch the sensing process be-
tween different streams in a controlled fashion.

2.4.2 HERMES Hardware Platform

The HERMES-outdoor demonstrator platform was installed on top of the Com-
puter Vision Center (CVC) building at the Universitat Autònoma de Barcelona, see
Fig. 2.6. Based on a design of a demonstrator for indoor active surveillance scenar-
ios [7], the demonstrator at CVC extends such a prototype to an outdoor scenario.

The hardware integration architecture is illustrated in Fig. 2.7. The hardware
platform for the HERMES demonstrator consists of a fixed camera, another camera
mounted in a pan/tilt platform and fitted with a zoom lens, three dedicated servers
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Fig. 2.6 The view from atop
of the Computer Vision
Center

Fig. 2.7 The HERMES demonstrator hardware architecture

to provide raw computational power and a fast 10 Gb Ethernet switch. The main
components of the hardware infrastructure are:

Cameras Two Pulnix TMC-1405 cameras are used. These cameras are GigE-
compatible and deliver high-resolution images (1392×1040 pixels) at high framer-
ate (30 frames per second). Each camera is connected by a dedicated, 100base-TX
Ethernet connection to ensure constant, high-framerate streaming.
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PTZ Platform One of the Pulnix cameras is mounted in a Directed Perception
PTU-D100 pan/tilt platform that allows complete 360-degree pan and 180-degree
tilt surveillance of the scene. The active camera is also fitted with a ServoLens
zoom lens adjustable to focal lengths from 12.5 to 75 mm. Both the zoom lens and
the PT platform are connected by direct RS-232/435 serial connections.

Compute Servers Three dedicated servers are used. Two of them are directly con-
nected to the Pulnix cameras and are primarily dedicated to video acquisition. The
third server is used for components not requiring direct access to the cameras,
such as the supervisor tracker and SGT reasoning subsystems (explained later).
These three machines are referred to as hermes-super, hermes-fixed, and
hermes-active to emphasize their roles in the demonstrator platform.

Network Infrastructure The three servers are switched onto a 100baseTZ gigabit
Ethernet segment in order to ensure the maximum possible bandwidth for commu-
nication among the demonstrator components.

2.4.3 HERMES Software Platform

Here we discuss the software integration of the demonstration platform. A modular
software architecture was designed, see Fig. 2.8, which illustrates how the software
components are distributed across the HERMES demonstrator machines.

The aim is to support a set of distributed static and PTZ cameras and visual track-
ing algorithms, together with a central supervisor unit. Each camera (and pan–tilt

Fig. 2.8 The HERMES demonstrator software infrastructure
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device) has a dedicated process and processor. Asynchronous interprocess commu-
nications and archiving of data are achieved in a simple and effective way via a cen-
tral repository, implemented using a MySQL database. Visual tracking data from
static views are stored dynamically into tables in the database via client calls to the
SQL server. A supervisor process running on the SQL server determines if active
zoom cameras should be dispatched to observe a particular target, and this message
is sent via writing demands into another database table.

Video Acquisition Video acquisition is performed using the JAI Advanced Imag-
ing SDK. Frames captured by the two cameras at high resolution (1392×1040 pix-
els) are scaled to the desired resolution (640 × 480 pixels) for processing. Scaled
frames are made available to the Player/Stage architecture through a shared mem-
ory interface. Video is delivered to the HERMES demonstrator components at a
constant 25 frames per second.

PTZ Controller The Directed Perception P/T platform and ServoLens zoom lens
were integrated into the Player/Stage driver system. A custom driver for the
ServoLens was created in order to control the zoom lens through the standard
Player/Stage PTZ interface.

Real Time Tracker The Real Time Tracker (RTT) is one of the fundamental com-
ponents in the demonstrator platform [23]. The RTT tracks multiple moving targets
in the fixed camera view and writes its observations into a table on the MySQL
server.

Supervisor Tracker A Supervisor Tracker (SVT) is responsible for performing
data fusion, smoothing and association based on observations made by the RTT; it
is also responsible for issuing commands for the PTZ controller to actively track
targets in order to acquire high-resolution imagery of active targets in the area of
surveillance.

SGT Reasoner In order to demonstrate high-level reasoning and to support gen-
eration of natural language text from surveillance scenes, a SGT traversal system
was integrated into the demonstrator platform [14]. The SGT reasoner listens for
fused, smoothed observations coming from the SVT and records its inferences in
a dedicated table on the MySQL database.

Angus2 NLTG The Angus2 system for natural language text generation has been
adapted to read inferences generated by SGT traversal from the database [14].

Player/Stage Hardware Abstraction Layer Integration and communication be-
tween low-level components in the demonstrator system is achieved through the
use of the Player/Stage system which provides a level of abstraction, allowing the
video consuming components to receive streaming video without having to deal
with the low-level details of the camera device itself.

MySQL DBMS At a very fundamental and low level, communication between
the high-level components of the demonstrator is accomplished through a central
MySQL database.

A user interface for controlling the real-time demonstrator was also built, allow-
ing the user to administer and monitor the components of the demonstrator platform,
see Fig. 2.9.
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Fig. 2.9 The GUI for the real-time active surveillance demonstrator

Working with images of size 640 × 480 pixels at 25 frames per second, our
system can track up to 8 agents at a time. The PTZ camera can easily shift from
one target to another; the time needed for the shift is between half a second and one
second, depending on the angular distance between targets. The textual descriptions
that can be generated include terms that describe status/gesture, such as: Run, Walk,
Hand Wave, etc., and terms describing contextualized events, such as: Join, Appear,
Disappear, Cross, Meet, Enter, etc.

The use of Player/Stage as an interface for low level modules and MySQL as an
interface for high level modules was crucial to the success of the system.

2.5 Conclusions: Learning from the Past to Foresee the Future

The problem of covering relatively large scenarios with surveillance cameras, in
such a manner that the targets of interest are captured with sufficient resolution,
is still nowadays an open and active research field. Whereas camera networks are
expensive and hard to manage and scale, active vision appears as a more natu-
ral solution to minimize the number of sensors while tackling the aforementioned
goal.
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Nevertheless, balancing the trade-off between area coverage and resolution per
target calls for sensible techniques to control, integrate, and coordinate the possible
passive and active components of an active vision system. Moreover, vision sys-
tems should be capable of providing human-interpretable descriptions of the occur-
rences being observed, and react according to certain policies. Thus, integrating the
cameras with high-level semantic reasoning seems to be required for the intelligent
capture and description of the interactions in a scene.

Toward extracting a semantic inference of what is happening in a scene and/or
identifying semantically meaningful attentional factors, the possible future lines of
research are:

• how the process of interpretation can be enhanced by PTZ sensors via semantic-
based controlled responses to uncertain or ambiguous interpretations of human
behaviors;

• how PTZ sensors can work on three different degrees of human motion analysis,
i.e. agent, body and face, depending on the recognized behavior;

• how PTZ sensors can optimize transitions between these three degrees of resolu-
tion to supply visual data at the coarsest resolution, while subsequently directing
the camera’s attention to those agents deemed interesting;

• how the use of standard body and face detection algorithms can provide an atten-
tional mechanism for controlling PTZ sensors.

The most interesting goal in the future is the control of zoom based on semantics
and responding to uncertainty, in particular uncertainties and ambiguities due to
high-level interpretations. Toward this goal, one could generate Natural Language
descriptions for the active camera itself: a description and justification of what the
camera is doing not only numerically but also semantically at a conceptual level.

In this context, semantics-driven control of active cameras will allow a computer
vision system to better detect, track and reason about human motion using behavior
models. Since these models are semantically rich, inference over them allows us to
derive more meaningful targets toward which the active sensors should focus.

All in all, the automatic acquisition and exploitation of scene motion and context
is compulsory to enhance the richness and expressiveness of semantic descriptions
of human behaviors. By recognizing and labeling regions and objects associated
with human activity, active systems will be able to reason about areas where humans
are likely to be present and about the expected interactions with scene elements.
Contextual reasoning will help to bridge the semantic gap by improving the ability
to articulate high-level requests about human behaviors and send them to the active
sensors acquiring low-level descriptions of the scene.
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