
Chapter 2

Electronic Structure of Transparent

Conducting Oxides

J. Robertson and B. Falabretti

2.1 Introduction

Metallic oxides are a materials class showing one of the greatest range of properties –

superconducting, ferroelectric, ferromagnetic [1], multiferroic, magneto-resistive,

dielectric, or conducting. Of particular interest are the so-called transparent conduct-

ing oxides (TCOs) and amorphous semiconducting oxides (ASOs). The TCOs are

heavily used for flat panel displays, photovoltaic cells, low emissivity windows,

electrochromic devices, sensors and transparent electronics [2–4]. Oxides are of

particular interest because the metal-oxide bond is strong so that the oxides have a

combination of a high heat of formation and a wide band gap, compared to any

similar compound.

This chapter describes the basic electronic structure of oxides that allows this to

occur, why they can be doped, what controls the polarity of the doping, and the

effect of disorder on their properties. The majority of the TCOs are n-type electron

conductors. A few p-type hole conductors have been discovered following the

break through of Kawazoe et al. [5].

2.2 Band Structures of n-Type Oxides

There are numerous n-type TCOs. We will focus here on the electronic structure of

a subset of them, SnO2, In2O3, ZnO, Ga2O3 and CdO, which illustrate their main

properties. These all are oxides of group IIB-IVB metals. They have smaller ions

and are not as electropositive as the corresponding alkaline earth metals of groups
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IIA. They are predominantly ionic bonded except for ZnO. Their crystal structures

are summarised in Fig. 2.1.

SnO2 is perhaps the simplest of the TCOs. It has the rutile structure, in which

each tin atom is surrounded by six oxygens in an octahedral array, and each oxygen

is surrounded by three tin atoms in a planar array. Figure 2.2 shows the band

Fig. 2.1 Crystal structures of SnO2, In2O3, CdO, 2H-CuAlO2 and SrCu2O2 (oxygen = darker
balls)
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structure of SnO2. The band gap is 3.6 eV and direct. The band structure shown here

was calculated by the plane wave pseudopotential method, using the generalised

gradient approximation (GGA) of the local density formalism (LDF). The GGA

functional represents the exchange-correlation energy of the electron gas. These

LDF and GGA methods under-estimate the band gap. This error has been corrected

in the band structure shown by the “scissors operator,” a rigid upward shift of the

conduction bands. The band structure of SnO2 was first calculated correctly by

Robertson [6], followed by numerous calculations using improved methods [7–9].

The most obvious feature in Fig. 2.2 is the free-electron-like conduction band

minimum at the zone centre G. It is noticeable that this state from 3.6 eV upwards is

a single minimum, without any subsidiary minima leading to indirect gaps. This

main minimum is formed out of Sn 5s states [6]. In a tight-binding description, it

consists of 96% of Sn s states. The band gap is direct. The electron effective mass is

0.23–0.3, reasonably small, but not 0.1 like for example Si.

The upper valence band from 0 eV down to �8.1 eV consists mainly of O 2p

states, mixed with some Sn s and p states. The ionicity of SnO2 is about 60%, so this

sets the Sn content of the valence band, averaged over the Brillouin zone, as rather

low. Finally, at �16 eV, there are O 2s states which do not contribute to the

bonding. Any Sn 4d states lie below this, and can be ignored.

The upper valence band in SnO2 is typical of many oxides. It is relatively flat,

and thus has a large effective mass, which does not favour conduction by holes. The

valence band maximum has a G2
� symmetry, which leads to a direct forbidden band

gap [10]. The valence band is consistent with the experimental ultraviolet photo-

emission spectra [11].

The next most important TCO, In2O3, has the bixbyite structure, in which the

oxygens form a close packed lattice and the In ions lie at sixfold and fourfold
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Fig. 2.2 Band structure of SnO2. Band gap fitted
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interstices. The In sites are sixfold coordinated by oxygen. The overall symmetry is

cubic, but the unit cell is large, 40 atoms. Figure 2.2 shows our calculated band

structure of In2O3. The band gap was originally believed to be 3.7 eV. The first good

band calculation of In2O3 was by the Shigesato et al. [12], followed by Mi et al. [8],

and Mryasov and Freeman [13].

We see again in Fig. 2.3 that In2O3 has a single free-electron-like conduction

band minimum, formed from In s states. The minimum band gap is direct. The

effective mass is 0.3 m. Thus, the conduction band minimum of In2O3 has the same

nature as that of SnO2. The main valence band is 5.2 eV wide, less than that of

SnO2, indicating that In2O3 is more ionic than SnO2. This is consistent with the ultra

violet photoemission spectra of Christou et al. [14] and Klein [15]. Below the O 2p

states come In 4d states, then O 2s states.

The band gap of In2O3 has recently been re-appraised. A smaller indirect gap

was once proposed [16]. However, there can be no indirect gap due to the parabolic

nature of the conduction band. It is now realised by Walsh et al. [17–19] that the

minimum band gap is 2.9 eV, direct and forbidden. The screened exchange band

structure in Fig. 2.3 gives this value. The upper valence bands all have the wrong

symmetry for allowed optical transitions to the conduction band, as in SnO2. The

first allowed optical transition is 0.8 eV below the valence band top [17]. This now

gives a consistent view of the band structure, optical gap and surface band bending

of In2O3.

A third important TCO, especially for photovoltaic applications, is ZnO. Interest

in ZnO is wider than just as a TCO, because it is a prototype direct-gap, wide band

gap optoelectronic semiconductor in competition with GaN [20]. It has been an

important phosphor. It is also easy for make as “nanorods.” ZnO typically has the

hexagonal wurzite structure in which each Zn or O atom is surrounded by four

neighbours of the other type. There is also a hypothetical zinblende polymorph of

ZnO, with the same bonding. The band structure of this zincblende phase is shown

Fig. 2.3 Band structure of In2O3 by screened exchange
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in Fig. 2.4, as the gaps and band widths are the same. It band gap is 3.35 eV and

direct, and the conduction band minimum is again a single broad minimum formed

from Zn s states [8]. There are numerous band calculations of ZnO [21, 22], some at

high levels of accuracy such as GW [23]. Note that the uncorrected GGA band gap

of ZnO is only �0.9 eV, very small compared to experiment. Donors such as

interstitial Zn or substitutional Al are shallow in ZnO, but other defects like the O

vacancy are deep.

Ga2O3 is the least studied of the binary oxides. It has more complex crystal

structure such as the b-Ga2O3 structure. In this, the Ga sites are both fourfold or

sixfold coordinated. Its band structure is shown in Fig. 2.5. The band structure has a

minimum direct band gap of 4.52–4.9 eV [24, 25]. The broad conduction band
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Ga2O3
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Fig. 2.5 Band structure of zincblende (cubic) ZnO

2 Electronic Structure of Transparent Conducting Oxides 31



minimum at G is formed of Ga s states. The valence band maximum is very flat, a

slightly indirect gap and a maximum at M 0.05 eV above G.
The last n-type oxide considered is CdO. This has the rock-salt structure, in

which each Cd or O ion is surrounded by 6 neighbours. Its band structure is shown

in Fig. 2.6. This is similar to that found by others [22, 26, 27]. In contrast to the

other TCOs, the minimum gap of CdO is indirect, at 0.8 eV [28, 29]. The conduc-

tion band minimum is at G, free-electron-like, and is formed from Cd s states.

However, the valence band maximum is not at G. It is displaced to the zone

boundary at the L point and along GW, due to a repulsion of the O p states in the

upper valence band by Cd d states lying at�7 eV. The three upper valence bands in

CdO consist mainly of O 2p states. However, instead of Cd p states leading to a

downward repulsion of these states away from G, the upward repulsion of Cd d

states is stronger. This leads to a calculated minimum indirect gap of 0.6 eV and a

minimum direct gap of 2.1 eV, compared to experimental values of 0.8 and 2.3 eV,

respectively. The valence band width is consistent with that seen experimentally by

photoemission [30].

When these various oxides are doped with donors, the free electrons lie in the

lowest conduction band. The next available empty state after this is not the conduction

band minimum itself, but higher unoccupied conduction states. This increases the

energy of the lowest optical transition, the optical gap. This is the Moss-Burstein

shift, and varies inversely with the effective mass [3].

An aspect that is not so important for the overall understanding of TCOs, but

nevertheless relevant to this chapter, is the question of the calculated band gaps.

The standard method of calculating electronic structure uses the local density

functionals such as the GGA to represent the electron’s exchange-correlation
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energy. These so-called ab initio methods are able to give the structure, bond

lengths and total energies quite well. However, they under-estimate the band gap

of semiconductors and insulators. It is generally found that this under-estimate is of

order 30%, as is the case of Si. However, for the oxides of interest here, the under-

estimate is very large, typically 70%. For SnO2 the GGA band gap is 1.2 eV

compared to the experimental value of 3.6 eV. The largest problem is for CdO,

where LDF gives a negative band gap of �0.5 eV.

In Figs. 2.2 and 2.7–2.11 we have corrected the GGA band gaps by the scissors

operator, rigidly shifting the conduction bands upwards. The conduction band

dispersions in GGA are correct. Thus, once corrected for the error, the band

structures shown are correct.

There are a number of methods beyond LDF which do give better band gaps. The

best known of these is the GW method [31], but this is computationally very

expensive. Other popular methods are the self-interaction correction (SIC) [32]

and the B3LYP functional [33–35]. B3LYP is a hybrid functional, that is a LDF-

type functional of the exchange-correlation energy containing a fraction of the

Hartree-Fock function, which can give the correct total energy and reasonable

eigenvalues. Other hybrid functionals are PBE0, HSE and screened exchange.

A hybrid functional which is valuable is the method of screened exchange. This

was first implemented by Kleinman [36]. It was then taken up by Freeman et al. [37,

38] and applied to various oxides of interest here [26]. We have also used screened

exchange for TCOs [39, 40]. The CdO band structure shown in Fig. 2.6 is that

calculated by the screened exchange method. It gives a reasonable band gap

compared to experiment. In other cases, the sX or WDA band structures can be

used to verify that the conduction bands formed by the scissors operator are indeed

correct, and that gaps do have the character as shown in Figs. 2.2–2.10.
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2.3 Band Structures of p-Type Oxides and Other Cu Oxides

For many years, the only apparent p-type conducting oxide was Cu2O. This was

used since early days in Cu-Cu2O rectifiers. However, its band gap is only 2.17 eV.

Its band structure calculated in the GGA method is shown in Fig. 2.7. The Cu2O
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Fig. 2.8 Band structure of 3R-CuAlO2
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crystal structure is unusual, the oxygens are fourfold coordinated, and the Cu atoms

are only twofold coordinated, in a linear configuration (Fig. 2.1). In the band

structure, there is again a broad conduction band minimum at G due to Cu s states

[41–45]. The Cu 3d states are all filled. They lie as a mass of narrow bands at around
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Fig. 2.10 Band structure of 3R-CuInO2

–10

–5

0

5

10

E
ne

rg
y 

(e
V

)

Γ A H K Γ M L H

CuAlO2 (2H)

Fig. 2.11 Band structure of 2H-CuAlO2

2 Electronic Structure of Transparent Conducting Oxides 35



�1 to�3 eV. The Cu d states mix with the O 2p states and form a continuous band,

which extends down to �7 eV.

Kawazoe et al. [5] noted that the main problem with oxides is the high effective

mass of their holes. Thus acceptors would not ionise. The high hole effective mass

arises in SiO2 or SnO2 because the valence band maximum states are nonbonding

pp states, directed perpendicular to the bonding direction. Thus, they have a small

dispersion. ZnO is one case without nonbonding p states, but it still has a rather

large hole mass. Kawazoe et al. [5] noted that we should try to increase the

dispersion of the valence band top states, and the way to do this is to hybridise

(mix) them with d states of a cation at a similar energy. The Cu d states are the best

case of this. Thus, the interaction of Cu d and O 2p states should reduce the effective

hole mass in Cu2O.

However, the problem with Cu2O itself is that its 2.17 eV band gap is too

narrow to be transparent across the optical spectrum. This arises because its

conduction band is too broad, and its conduction band minimum falls too low.

The dispersion of the Cu s band is mainly due to Cu-Cu interactions. The width

of the Cu s band is proportional to the number of Cu neighbours. By using CuAlO2

in the defossalite structure, we can reduce the Cu-Cu coordination from 12 to 3,

and this should reduce the conduction band dispersion and increase the band gap

[5]. This indeed occurs [46]. Of course, the largest interest in Cu based oxides

arose from high temperature superconductivity, so the role of holes in Cu-O layers

is well known.

CuAlO2 has a layered structure in which the Cu ions a linearly coordinated to

two O atoms, as in Cu2O. The Al ions are surrounded by six oxygens. These

AlO6 units form a layer of hexagonal symmetry. The AlO6 and Cu layers can be

stacked in various patterns. A two-layer repeat gives the 2H (P63/mmc) form and a

three-layer repeat gives the 3R (R-3m) rhombohedral form. Despite having more

layers, the primitive cell of the 3R form has the fewer atoms. Figure 2.8 shows the

band structure of 3R-CuAlO2 calculated using the GGA functional. The indirect

band gap has been adjusted to the experimental value. The bands are very similar to

those given by Ingram et al. [47]. The other important calculations of CuAlO2 are

by Yanagi [48] and Zhang [49]. We see that 3R-CuAlO2 is an indirect gap

semiconductor. The conduction band minimum is at G and consists of Cu s states,

while the valence band maximum is at F. The upper valence band from 0 eV down

to �8 eV consists of a mixture of Cu d and O 2p states, with the Cu d states tending

to lie higher. There are O 2s states at �20 eV.

The minimum indirect gap is 3.0 eV, and the minimum direct gap is 3.5 eV at L.

Ingram et al. [47] and Zhang et al. [49] have discussed the nature of the optical

transitions. We see that the conduction band has subsidiary minima at F and L, so it

is not as simple as those in Cu2O or SnO2.

In Fig. 2.8, when using the scissors operator, we fitted the main direct gap at

3.5 eV, not the minimum gap, which is not well known experimentally. The

resulting band gap is nevertheless consistent with that found by the screened

exchange method or weighted density approximation [39, 40].
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Figures 2.9 and 2.10 show the band structures of 3R-CuGaO2 and 3R-CuInO2

calculated using the GGA functional. In each case, the main direct gap was fitted

[49]. We see that the conduction band minimum of CuInO2 is mainly at G, and there
are no other subsidiary minima as was found in CuAlO2. The valence band of

CuInO2 is reasonably similar to that of CuAlO2. The band width is slightly smaller

and the band dispersions flatter, so the hole effective mass is larger. There is also a

mass of flat bands at �14 eV due to In d states.

The minimum indirect band gap of CuInO2 is now 1.4 eV, and the minimum

direct gap is 3.9 eV at L. Thus, the indirect gap decreases from CuAlO2 to CuInO2,

but the direct gap increases, which is unusual [47, 49]. This gives the appearance

that the optical gap increases when changing from CuAlO2 to CuInO2, which is

against the trend in ionic radii.

CuCrO2 is an oxide with the defossalite structure which also shows p-type

behaviour [50]. Now the band gap appears in the middle of the Cr d states. This

is consistent with the insulating property of Cr2O3. The alloy CuAl1�xCrxO2 can be

doped p-type [51] by substitutional MgAl.

Figure 2.11 shows the band structures of the 2H polymorph of CuAlO2 [35].

It confirms that the stacking does not alter the main band gaps so much.

The final oxide considered is SrCu2O2. This is an amipolar oxide [52–54].

SrCu2O2 has the body-centred tetragonal D4h
10, 4/mmm space group. Its structure

consists of O-Cu-O zig-zag chains in the x and y direction, separated by SrO6

octahedra. Cu is again twofold coordinated by O. There are four Cu atoms in

the primitive unit cell. The band structure of SrCu2O2 is shown in Fig. 2.12. The

conduction band has a minimum at G and the valence band has a weak maximum at

G. The bands have been calculated by Ohta et al. [53], Robertson et al. [35] and
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Nie et al. [44]. The different appearance of some of the published bands arises

because not all authors used the primitive cell. There are a number of other ternary

oxides of interest which are covered elsewhere [47, 48].

2.4 Band Line-ups and Work Functions

An important application of TCOs is as electrodes on semiconductor devices, such

as solar cells or organic light emitting diodes. A key criterion is that these

electrodes form ohmic rather than injecting contacts. This depends on the band

alignment of the conducting oxides to the semiconductor, the Schottky barrier

height. The barrier height can be measured by photoemission, internal photoemis-

sion or by electrical means. It can be estimated by a variety of theoretical means,

which we now discuss.

An often-used method is to compare the work function of the conductor fM with

the electron affinity (EA) of the semiconductor (for the n-type case), w, each
measured from the vacuum level. The barrier height is then taken as the difference,

fn ¼ fM�w (2.1)

This approximation is the so-called electron affinity rule. It can work for very

wide gap semiconductors, or those with van der Waals bonding such as organic

semiconductors.

Figure 2.13 plots the work functions of the various TCOs, data taken fromMinami

et al. [56]. It is interesting that the n-type TCOs have very high work functions, their

conduction band minima lying well below the vacuum level. The work functions of

the oxide films are often maximised by ensuring an oxygen-rich outer surface, by

processing. It is interesting in Fig. 2.13 that the conduction bandminima of SnO2, and

In2O3 lie deeper than the Fermi level of the parent metal. This behaviour distin-

guishes the best n-type TCOs from normal oxides.
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In fact, the electron affinity rule does not work for metals on typical semicon-

ductors [57–59]. This is because the semiconductor interfaces possess mid gap

states which tend to pin the metal Fermi level from changes in barrier height. The

semiconductor’s mid gap states on the neutral surface are filled up to some energy,

which we will call the charge neutrality level (CNL). The effect of these states is to

try to pin the metal work function towards this CNL. The degree of pinning depends

on the density of these states and their extent into the semiconductor.

The net effect is that the Schottky barrier heights tend to follow the equation

fn ¼ SðFM�FSÞ þ ðFS� wsÞ (2.2)

Here FS is the CNL energy measured from the vacuum level. S is the Schottky

barrier pinning factor. S = 1 for the strongly pinned case, a narrow gap semicon-

ductor, and S = 0 for the unpinned case, like SiO2, as in the electron affinity rule.

Monch [57] found that S follows an empirical dependence on the electronic

dielectric constant, e1,

S ¼ 1

1þ 0:1ðe1 � 1Þ2 (2.3)

This model can also be applied to the interfaces between two semiconductors

[60], to derive their band offsets, where the electron barrier fn or conduction band

(CB) offset between semiconductors a and b is given by

fn ¼ ð wa�FS;aÞ�ð wb�FS;bÞ þ SðFS;a�FS;bÞ (2.4)

There are more detailed methods of calculating the band offsets, as for example

given by van de Walle et al. [61], or by Zunger et al. [62], based on calculations of

explicit interface structures.

The CNL can be calculated from the oxide band structure as the energy at which

the simple Greens function is zero;

GðEÞ ¼
Z

BZ

Z1

�1

NðE0ÞdE0

E� E0 ¼ 0 (2.5)

The CNL can be calculated from the bands calculated by the local density

approximation/pseudopotential method, after adjusting the band gap to the experi-

mental value.

The CNL normally lies near the centre of the band gap. For most ionic oxides,

the CNL energy tends to vary with the metal valence, because the large number of

oxygen-related valence states repels the CNL up in the gap [60, 63]. The transparent

oxides are different. The CNL is effectively the mid point of the average gap over

the Brillouin zone. But the s-band oxides have a broad CB minimum, which comes
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well below the average CB energy. This causes the CNL to lie either close to the

CB, as in ZnO, or even above the CB minimum, as in SnO2 and In2O3 (Fig. 2.14).

This is an unusual situation.

Parameters are listed in [64]. The S value is calculated from their experimental

refractive index (e1 ¼ n2). The electron affinities are taken from experiment for

poly-crystalline oxide films; those for the dielectrics are tabulated previously [60].

The work function of doped SnO2 is large, 4.5 eV or more [50]. This is partly

because the surface is treated to be O-rich, to maximise the work function.

2.5 Ability to Dope

Substitutional doping is a key requirement for a semiconductor to be used in

practical devices. It is often stated that doping of both polarities is required. This

not strictly accurate; thin film transistors of amorphous hydrogenated silicon

(a-Si:H) are the main-stay of the flat panel display industry and only use n-type

doping.

There are three requirements for successful doping of a given polarity;

l Solubility of the dopant in the lattice
l Shallowness of the dopant level
l Lack of compensation of the dopant by an intrinsic defect

When designing the p-type TCOs, Kawazoe et al. [5] only considered point 2.

Point 1 is usually easily satisfied, it is only a problem in cases like diamond where

there is a large mismatch between the atomic radii of a shallow donor (e.g. Sb) and

the small diamond lattice.

CB

CNL

σ∗

σ

E
ne

rg
y

VB

Fig. 2.14 Schematic of the

charge neutrality level in an

oxide with a deep s-like

conduction band minimum of

low density of states

40 J. Robertson and B. Falabretti



Compensation, point 3, is the most interesting case [65–68]. In wide gap

semiconductors, a donor electron can lower its energy if it falls into an empty

intrinsic defect state (such as a vacancy state) at the bottom of the gap. Indeed the

energy gain can be so much that this energy gain exceeds the cost of creating the

defect. In that case, the donor action is completely compensated by the defect, if

there is thermal equilibrium.

Another way to express this is that the creation energy of the intrinsic defect (say

the vacancy) depends on the Fermi energy, EF as [66].

DHðEfÞ ¼ qEf þ DE

This is shown schematically in Fig. 2.15. It means that there will be some Fermi

energy at which the cost of the vacancy is zero. If a dopant would move the Fermi

level to this energy, called the dopant pinning energy, then vacancies will be

spontaneously created at no cost. There will be two pinning energies, one for

n- and one for p-type doping. Thus, if equilibrium holds, it will be impossible to

shift the Fermi level beyond these two pinning energies Epin, n and Epin, p. Practical

doping will only occur if these pinning energies lie in the conduction or valence

band, respectively, and not in the gap. If for example, Epin, p lies above the valence

band edge Ev, then there will be no p-type doping, because it will not be possible to

shift EF to the valence band edge. Note that the type of defect doing the compensa-

tion will differ for n- and p-type doping.

The NREL group have applied these ideas to study the limits to doping of the

tetrahedral semiconductors such as III-Vs, ZnO and the chalcopyrites [66–68]. The

bands of the various semiconductors are aligned with each other using the calcu-

lated or observed band offsets, and the pinning energies are found to lie at a roughly

constant energy across the series, Fig. 2.16. Zunger [68] prefers to reference band

offsets to the vacuum level Evac. In their picture, a semiconductor cannot easily

be doped n-type if its conduction band energy lies too high towards Evac, i.e.

its electron affinity is too small. AlN would be an example. On the other hand,

a semiconductor cannot easily be doped p-type if its valence band lies too far below

Evac, if its photoelectric threshold is too large. ZnO is a good example.
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This method gives a good view of doping possibilities in TCOs. The n-type

TCOs SnO2, In2O3, ZnO stand out as having very large work functions (when

n-type). As they have the same band gap, their valence band maxima are very deep

below Evac. In this model, p-type ZnO is only possible by inhibiting thermal

equilibrium occurring.

There is a second, related view of doping limits, which is more consistent with

band offset models. The semiconductor oxides of interest here have e1 � 3.7–4.0,

giving S � 0.5. Thus, the bands should be aligned [55] using CNLs and (2.3) not

just electron affinities. This is done in Fig. 2.17.
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In addition, van de Walle and Neugebauer [69] note that for AB compounds the

CNL tends to equal the average of the dangling bond energies of the cation and

anion species. This arises because defect levels ultimately depend on bulk band

structures. Turning to ABn compounds, the CNL will be a weighted average of

cation and anion site defect levels. Thus, in our view [70] shown in Fig. 2.17, each

semiconductor is aligned according to the band offset, using primarily the CNL,

with no reference to the vacuum level. The doping pinning levels then lie at some

energy above and below the CNL. (This energy is not necessarily constant.) In this

case, n-type doping is difficult if the conduction band edge lies too far above the

CNL, and p-type doping becomes difficult if the valence band edge lies too deep

below the CNL.

This is consistent with experiment. SnO2, In2O3 are very unusual in that their

CNLs actually lie above the conduction band edge [18, 70], rather than in the gap as
normal. In ZnO, the CNL lies close to the conduction band edge. This accounts for

their ease of n-type doping. On the other hand, that the CNL is so far above the

valence band edge in SnO2, In2O3 and ZnO accounts for why these oxides are

difficult to dope p-type.

In the case of CuAlO2 and Cu2O, the CNL is calculated to lie closer to the

valence band, and this is consistent with their p-type behaviour. In contrast, in

CuInO2, the CNL lies higher in the gap [64], and now this oxide can be doped both

n- and p-type. SrCu2O2 also has a CNL near midgap, allowing ambipolar doping.

What controls the CNL energy? From (2.5), the CNL lies between the density of

states (DOS) of valence band (VB) and conduction band (CB). A larger DOS repels

the CNL away [60, 64]. A large VB DOS repels the CNL to the upper gap. A high

valence and large O content gives a large VB DOS and a high CNL energy. But a

second factor is the nature of the conduction band minimum. The CNL lies mid-

way in the indirect gap. A deep CB minimum with only a small DOS as in SnO2

makes only a small contribution to the integral in (2.5) and has little effect on the

CNL. The CNL lies high in SnO2, In2O3 and ZnO because the DOS in their CB

minima is small. On the other hand, in CuAlO2 its multiple CB minima push the

CNL down.

A complicating factor which is not discussed here is the “self” doping of TCOs,

in which vacancies are generated in multi-component oxides such as CdxSnO3.

2.6 Effect of Disorder–Disorder in Amorphous Semiconductors

We now turn to a different question, why n-type TCOs work well even when they

are amorphous [71, 72]. The ineffectiveness of disorder scattering has been noted

for some time [73, 74]. The n-type TCOs consist of the oxides of post-transition

metals, Sn, In, Ga, Zn, Cd, etc. As we noted above, the conduction band minima of

these oxides are free-electron-like states, localised on the metal s states. Unlike the

alkaline earth metal oxides, because of their lower ionicity, these metal oxides can

be made amorphous [71].
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Since the work of Anderson [75], it is known that disorder will cause a localiza-

tion of electron states in the band structure. Mott [76, 77] then showed that disorder

first localizes states at the band edges, and that the extended states and localized tail

states are separated by an energy called the mobility edge. With increasing disorder,

the mobility edges move further into the bands, as in Fig. 2.18. Eventually, the

whole band becomes localized. These results were worked out for s states, which

are spherically symmetric.

The first amorphous semiconductors to be studied in depth experimentally were

the amorphous chalcogenides, such as amorphous Se (a-Se). The chalcogenides are

in fact p bonded [78], and their simplified band diagram is shown in Fig. 2.19a.

Disorder introduces localized band tail states.

The next and most important amorphous semiconductors are a-Si and hydro-

genated amorphous silicon (a-Si:H). Its bonds are sp3 states, but the states around its

band gap are p states [78]. Figure 2.19b shows a schematic of its density of states.

The valence band maximum consists of pure p states, whereas the conduction band

minimum consists of mixed s,p states. The effect of disorder has been considered in
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more detail in a-Si than in most other amorphous semiconductors [78–83]. The

Si-Si bond length is relatively fixed in a-Si:H. On the other hand, the bond angle y
varies by 10� and the dihedral angle f varies by 180�. The nearest neighbour V

(ppp) interaction equals 0.7 eV and it varies directly with f, Fig. 2.19b, and
therefore this is a strong source of disorder in the valence band edge [79]. This

causes a strong tailing of the valence band edge, giving a characteristic tail width of

at least 60 meV. The conduction band is less affected by dihedral angle disorder, but

is affected by bond angle disorder. This also gives quite strong tailing, but less than

for the valence band edge [80–82]. This gives rise to density of states in the gap, as

shown schematically in Fig. 2.20.

The overall result of this strong effect of angular disorder is that the electron

mobility of a-Si:H is quite low, �1 cm2/V s. The hole mobility is very low,

10�3 cm2/V s.

A second limitation of a-Si:H is that its substitutional doping is very inefficient.

Whereas every substitutional atom in c-Si produces a carrier, in a-Si:H there is an

unusual self-compensation mechanism which limits the doping efficiency [78, 83].

The net effect of this is that the Fermi level can never move up to the donor level, or

above the mobility edge. Thus, EF is stuck in localised states. Conduction is in

extended states, but only after thermal excitation of the carriers.

2.7 Disorder in Oxide Semiconductors

The amorphous n-type TCOs are in fact the first practical examples of disorder in

an s band. The effect of disorder on s states is rather weak, compared to p states.

As the conduction band minimum state is 90–95% localized on metal s states, then

its energy depends mainly on the V(ss) interaction between second neighbour

metal sites, and not much on the V(sp) interaction between metal s and oxygen

p states, Fig. 2.21. A two-centre Slater-Koster interaction V(l,m) between orbitals

mobility edge
VB

CB mobility edge
Energy

Density of states

a-Si:H

Ef

extended states
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localized
states

Fig. 2.20 Schematic density

of states and mobility edges

of a-Si:H
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on atoms l and m [84] would normally depend on their distance (r), the angles y
between the orbitals and the separation vector r, and their dihedral angle (f),

Vðl;mÞ ¼ V(r; y;fÞ

However, for an interaction between two s states, this reduces to

VðssÞ ¼ VðrÞ (2.6)

because of their spherical symmetry. Thus, the only source of disorder is the

variation of the metal-metal distance, and any angular disorder has no effect on

s states.

The first known effect of this was on the conduction band edge on amorphous SiO2

(silica) [85]. SiO2 has a wide band gap, 9 eV, and low screening. The conduction

band minimum of SiO2 has an effective mass of 0.5 m and is formed from Si s states

and O 3s states [86]. The effect of disorder theoretically is small because the O-O

distance is relatively fixed due to the small disorder of the O-Si-O bond angle. Holes

form polarons and have a very low mobility. In contrast, unexpectedly, free electrons

have a high mobility, indicating an absence of disorder effects and localized states.

(Of course, there are not many free electrons, due to the band gap).

The same effect occurs in SnO2 and related TCOs [87]. The large metal ion

radius means that ion packing keeps the metal-metal distance rather constant,

s states mean that the angular disorder has no effect, so the effects of disorder on

the s-like conduction band minimum is very small. This is the case for the pure

oxide. The density of states is summarised in Fig. 2.22. There is no mobility edge.

Experimentally, these s-like TCOs differ very strongly from a-Si:H. The electron

mobility is large, of order 10–40 cm2/V s. The Fermi level can be moved far into the

conduction band without any problem, creating large free carrier concentrations

[71]. Thin film transistors of n-type oxides show high field effect mobilities,

10–40 cm2/V s [87–95], much higher than a-Si:H.

It is interesting that the recent oxide-based TFTs use mixed oxides of Ga, In and

Zn [87–89] to control the off-current and vacancy concentration. The carrier

Sn s

O p

Fig. 2.21 s-Like atomic

orbitals of CB states

disordered SnO2
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mobility is still high. Clearly the conduction band edge is still very delocalized and it

is not even affected by compositional disorder. The reason for this is that Al, Ga or

In form shallow donor states in ZnO [96], while ZnO forms resonant states in Ga or

In oxide. Ga forms a shallow bound state below the ZnO CB edge, but at high

concentrations, this forms a continuous band with the ZnO states in the alloy.

Similarly, in SnO2, substitutional Sb gives a shallow state [97]. The absence of

deep states due to aliovalent impurities means that there are no localized states at the

conduction band edge, and no effects that break the delocalisation of the CB states.

The absence of localized states due to aliovalent dopants also means that

disorder does not introduce localized tail states below Ec. Thus, in a TFT, the

field effect mobility is given essentially by the free carrier mobility or Hall

mobility. The free carrier mobility in s states is much higher than in p states,

which partly accounts for the higher FE mobility. A second factor is that the

Fermi wavevector is large. This contrast with a-Si where the Hall coefficient has

the opposite sign to the carrier.

A very narrow conduction band tail of order 0.1 eV was found in a calculation of

the alloy InGaZnOx [98]. Note that the Urbach energy of these disordered oxides is

�0.2 eV [99], because of valence band tailing. Extended X-ray Fine Structure

shows the local bonding [100].

2.8 Summary

The band structures of the various transparent conducting oxides are given, and

discussed in terms of their band edge properties. The reasons for the ability to dope

them n- or p-type given. Finally, the oxides are shown to be able to support a higher

electron mobility than amorphous silicon due to their s-like conduction band

minima.

Acknowledgements We thank Dr. S. J. Clark for many band calculations.
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