Parametric Jobs — Facilitation of Instrument
Elements Usage In Grid Applications

K. Bylec, S. Mueller, M. Pabis, M. Wojtysiak, and P. Wolniewicz

Abstract The chapter discusses how to simplify integration of Grid applications in
the Remote Instrumentation Infrastructure with usage of parametric extensions for
JSDL. Capabilities of Parametric Sweep are presented spotlighting features most
valuable in the frame of applying to Instrument Element enabled applications. Then
a brief analysis of JSDL support in most common middlewares is followed by a real
case study for one of the DORII project’s applications. Starting from this applica-
tion’s use case two solutions in the field of parametric jobs are presented — g-Eclipse
JSDL-Param library and Workflow Management System in DORII.

1 Introduction

Grid technologies are in constant development. Not only new tools emerge, but also
the infrastructure elements are changing and new standards appearing. In the area of
integrating new ideas into existing solutions the awareness of tools in the research
field is significant. Combining together implementations from different levels can
result in daily work improvements. This is a case for two relatively new Grid-
related releases — Instrument Elements [1, 2], at the level of Grid infrastructure,
and the Parameter Sweep [3] standard proposal, in the area of resources description
languages.

With Instrument Elements the classical Grid infrastructure of computer and stor-
age elements was enriched by the abstraction of real scientific devices. Providing
Grid users with interfaces to instruments known from their daily work introduced
new possibilities, but also the challenges. One of those challenges is to seam-
lessly integrate the Instrument Element into existing and newly created services in
e-Infrastructures.

At the same time JSDL’s [4] extension of Parameter Sweep was proposed to
meet users’ expectations for simplifying the description of Grid jobs that tend to
become more complicated. Frequently their complexity emerges from a variety of

K. Bylec (=)
Poznan Supercomputing and Networking Center, Poznan, Poland
e-mail: katarzyna.bylec@man.poznan.pl

F. Davoli et al. (eds.), Remote Instrumentation Services on the e-Infrastructure, 15
DOI 10.1007/978-1-4419-5574-6_2, © Springer Science+Business Media, LLC 2011

16 K. Bylec et al.

possible input data sets as well as program execution options. Though the main
logic of the application stays the same — the description of Grid jobs may vary
significantly depending on different execution switches. Parameter Sweep allows
to seize the abstract description of application’s work in one part of the document,
while spreading its execution to differently parameterized job instances with special
extension, e.g. varying with input data.

In fact this is the data where Instrument Elements and Parameter Sweep meet.
Instrument Elements seen as a virtualization of application’s data sources may
produce a vast amount of information to be processed by applications. Existing
applications may not be prepared to handle different sets of data at the same time,
especially when each set requires special processing. To make Instrument Elements
of use without re-developing existing software or providing complex user inter-
face solutions, we propose the adaptation of the Parameter Sweep in the field of
Grid tools.

An introduction to the Instrument Element is briefly covered in Section 2. Then,
starting from the above problem, the JSDL Parameter Sweep extension’s possibil-
ities are described in Section 3. Moving from user perspective to technical issues
this work discusses the status of support for JSDL and its extensions in some Grid
environments. The current state of middlewares’ capability of handling the JSDL
influenced the above problem’s solution implementations — presented in Sections
4 and 5, while describing the g-Eclipse [5] platform and DORII’s [6] Workflow
Management System. The description of problems encountered by developers when
introducing parametric jobs into their applications is followed by a presentation of
the Java library for JSDL Parameter Sweep and a real case study for one of the
DORII project applications.

2 Instrument Elements

Instrument Elements extend the classical Grid infrastructure of Computing and
Storage Elements with the concept of virtualized and distributed scientific devices.
They were introduced to the Grid with GRIDCC [7] and RINGrid [8] projects and
since then — as the unified interface to program devices was provided — the tendency
in Grid tools development started to change. The focus is moving from providing
access to distributed computing and storage resources to enabling Grid applications
with full access to scientific instruments — including the acquisition of experimental
data, monitoring, managing, maintenance and troubleshooting.

Providing scientific communities with remote instrumentation results in improve-
ment of collaborative work in distributed teams and increase in devices usage
efficiency, as with remote access they are made available to a wider audience, which
decreases the idle time of the experimental tools.

Nowadays an increasing interest in Remote Instrumentation Infrastructure is
noticed worldwide — to mention only CIMA [9] in the USA (The Common
Instrument Middleware Architecture, applying SOA to integrate sensors, seen as
real time data sources, into the Grid), SpectoGrid [10] in Canada (exposing Nuclear
Magnetic Resonance for remote access) and DORII [6] in Europe. DORII is

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 17

described in more detail in Section 5. of this work; here, we will mention only
the devices this projects aims to enable for the e-Infrastructure:

e Sensors of earthquake early warning system — constantly register seismic
movements to warn in case of increased activity (European Centre for Training
and Research in Earthquake Engineering, Italy);

e Floats and programmable Gliders — oceanographic and coastal observation
instruments to measure drifts with the currents at specific depths, tempera-
ture, salinity, oxygen, chlorophyll and turbidity profiles (Istituto Nazionale di
Oceanografia e di Geofisica Sperimentale, Italy);

o Digital cameras, pressure and temperature sensors — registering images and
conditions of coastal line and beaches for measuring users density and calculate
the weather line (IH Cantabria — Universidad de Cantabria, Spain);

e X-Ray Diffraction detector — data acquisition detectors for Diffraction
Beamline supporting scientists in controlling if the data acquisition process is
meeting quality requirements and for on-line data analysis (Sincrotrone Trieste
ScpA, Italy);

e Optical sensors for monitoring inland waters — provide information in near
real time about the water quality status (Ecohydros SL, Spain).

The above small subset from the category of Instrument Elements illustrates
the main problem in the field of creating a homogenous interface of Remote
Instrumentation Infrastructure — this is the heterogeneity of the domain. Instrument
Elements range from all-time-up sensors to devices run on demand, which may
require advanced reservation and accounting algorithms. Aside of the access scenar-
i0s, devices vary with network traffic they rise — from constant and low to irregular
and bulk data transfers. This variety creates one of the reasons for bringing to life
the OGF Remote Instrumentation Services in Grid Environment Research Group
[11] (RISGE-RG), which gathers representatives from different fields and projects
to collect existing solutions in accessing remote devices and aims at seizing the
abstract approach for Remote Instrumentation. Its work will result in defining the
foundation of an OGF Working Group, which will manage standardization in the
field of Instrument Elements.

Though being relatively new in the Grid science, Instrument Elements acquire
increasing interest. The scientific community seems to notice the fact that with
Remote Instrumentation Infrastructure they may enable their work with devices for
high performance and gain access to remote and distributed tools. Having this in
mind we should focus on tools and technologies that would facilitate the usage of
Instrument Elements in users’ daily work. Such tools would be especially those with
standards behind them —e.g. JDSL.

3 JSDL

Grid accessibility can be expressed with the power and capability of basic tools to
accomplish standard Grid operations including job submission and data operations.
Among them a well designed job description language is one of the most important

18 K. Bylec et al.

Grid features. In this section an OGF standard within this domain will be presented:
the Job Submission Description Language (JSDL). A brief description of the gen-
eral JSDL capabilities (3.1) is followed by an attempt to characterize its popularity
within Grid middleware and middleware access tools (3.2). The parameter sweep
feature is presented in more detail — discussing its power to express different para-
metric use cases (3.3). The section is completed with a description of the middleware
capacity to handle parameter sweep (3.4).

3.1 JSDL Non-Functional Features

The Job Submission Description Language (JSDL) [4] is an XML-based compu-
tational! resource description language developed by OGF JSDL-WG [12]. The
project was launched in Sept. 2003, and now it is publicly available in version 1.0
of the specification.

It is worth noticing that in JSDL-WG’s goal, which is to specify an abstract
standard of job description language independent of underlying middleware, JSSDL
is thought as a superset of other popular job description languages such as JDL or
RSL, but also those e.g. based on Web Services invocations.

Because of this concept its structure is composed of the general purpose descrip-
tion part and domain or technology specific extensions.> Among those extensions
are [13]:

e POSIX Application — defines which executable host destinations are POSIX
standard compatible machines;

o HPC Profile Application — describes executables to be run as operating system
processes;

e SPMD Application — Single Program Multiple Data extension for describing
parallel applications with single executable;

e Parameter Sweep [3] — abstract description of jobs collection varying with some
parameters as a single job, the Proposed Recommendation by OGE.?

3.2 JSDL Popularity

Because of its general and abstract way of describing jobs, JSDL is a very pow-
erful language. Even if some of the available extensions are lacking desired
functionalities JSDL’s users may provide their own extensions — not only at the level

IThough it is named computational on the ISDL-WG web page it can be also used for data transfer
operations alone.

2The extensible architecture is becoming a popular solution in resource description; it is also intro-
duced in the Job Description (JD) Document by Globus Toolkit version 4.2.1. The difference is that
Globus” GRAM4 was designed to support a single extension point (for Local Resource Manager)
which is one of the reasons this middleware is lacking support for JSDL. See Table 1. for details.

3 Announced 12.05.2009

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 19

Table 1 Support for JSDL in Grid middlewares

Default JOB
Description JSDL
Middleware Language Support Details of JSDL support
glite 3.2 Job Description Yes As a patch to WMS UI 3.3, simple
Language (JDL) jobs only, plan to add bulk
submission [14]. In older
version it is possible to convert
JSDL to JDL [15] with XSLT
provided by OMII-Europe [16].
Globus Toolkit 2 Resource Specification No N/A
Language (RSL)
Globus Toolkit 4 Job Description Yes Since version 4.0.5 GT is provided
Document (JDD aka with GridWay Metascheduler
RSL 4) that takes care of JSDL
submission [17]. It also has
support for JSDL HPC profile.
UNICORE 6 JSDL in server Job descriptions in JSON format
services (JSON in are handled by the server side
the UCC) flexible execution backend

(XNIJS).

of job type but also in every existing XML element and attribute. Another impor-
tant fact about JSDL is it has OGF support and right now should be considered a
standard. Knowing all this one would expect JSDL being popular in Grid applica-
tion domains, which is not the case. The only reasonable explanation for this state
are historical reasons. Many of the Grid middlewares and tools developed for them
have started before JSDL has confirmed its position. Some examples of introducing
JSDL to Grid projects are presented in Table 1.

It is remarkable that none the most popular Grid middlewares made JSDL their
default job description language. Support for it is provided in form of patches or
additional tools. This solution is justified in cases when backward compatibility is
a priority, but some of the projects (e.g. Globus Toolkit 4) introduced completely
changed job descriptions instead of making a standard one their main format for
describing Grid jobs. Therefore it is understandable that scientists tend to use old
tools, even if usage of them means that the efficiency of work will not increase. It
is not in the scope of this chapter to analyse the popularity of the JSDL language
and reasons for it, nevertheless a quick conclusion here would be that even within
the Grid domain (not so popular itself among other scientific fields) ideas and their
releases lack good dissemination. This leads to sticking to old implementations and
inhibition of spreading of new technologies. We are facing a vicious circle in case
of JSDL and that is the reason why all efforts to support new ideas should be even
more promoted, mainly by pointing fields in which their application may result in
increase of efficiency. This is the case for introducing a Parametric Sweep extension
to Remote Instrumentation Infrastructure.

20 K. Bylec et al.
3.3 Parameter Sweep Extension

The intuitive understanding of parameterizing a job is correct when it comes to
Parameter Sweep [3]. It would be defined as describing as a single job a set of many
Jjobs varying among them with some detail. This detail may be, e.g., the option of an
executable or the name of an input file.

The above idea is not new in the Grid environment. gLite’s JDL also supports
parameters [18] (to be more precise — one parameter), but the difference here is
significant; that is why we will provide a short description of Parameter Sweep
capabilities, which are not limited to number of parameters, functions describing the
values to be substituted or the ordering of parameters sweeping. All those aspects
are covered in the following subsections.

3.3.1 Target of Substitution

The parameter element specifies which JSDL element should be substituted when
resolving JSDL with parameters. The user can decide to sweep:

e Any XML element or attribute of JSDL — a value of XML element or attribute
can be referenced using the XPath language [19]. Moreover XPath’s substring
function can be used to point only to part of the referenced string value. This
functionality is covered with DocumentNode element.

e A token inside a file external to JSDL — in the same way as values inside a
JSDL element are substituted, external text files can be modified. This is achieved
through the FileSweep element.

The difference in behavior of FileSweep and DocumentNode is that the lat-
ter accesses values of XML entities pointed by name whereas FileSweep’s input
is a token, which will be substituted. In other words — after applying sweep to
DocumentNode the user will still have the names of referenced XML entities with
changed values and in case of FileSweep the token will no longer be present in the
file, as it was replaced with the value given.

3.3.2 Values to be Substituted

Values to be sweeped for parameters are defined with the Function element. This is
an abstract element and therefore can be seen as an extension point of the Parameter
Sweep specification — the user can define a structure to meet his substitution require-
ments. By default Parameter Sweep provides three kinds of Functions (which don’t
have to be “function” in mathematical sense). Those are:

e Array of values — ordered set of unrelated data of the same type;

e Loop — loops are defined with starting, terminating and step values; it is also
possible to exclude some of the values from the loop’s range. The specification
provides two default loop functions: Looplnteger and LoopDouble for integer
and double values, respectively.

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 21

3.3.3 Order of Substitution

In case of many parameters definitions it is possible to steer the order of values
substitution. This functionality is captured by the Assignment element, which cou-
ples the parameter with values to be sweeped for it. Because it is possible to nest
Assignment elements as a side effect the user gains the ability of defining the
dependencies between different sweeps as follows:

e Sweep at the same time — at each sweep of values one value is substituted for
each parameter defined within JSDL. Parameters may be assigned to different
functions and therefore may take different values at the same time. It is also pos-
sible to assign one function to more than one parameter. The number of resulting
jobs is equal to the values set cardinality.

e Independent sweep — whole substitution for one parameter is done at one time
while the rest of parameters take their default value. The number of resulting jobs
is equal to the sum of all values sets cardinalities.

e Nested sweep — for one sweep of value of external parameter the whole substi-
tution (of all values) is done for the internal one. The number of resulting jobs is
equal to the multiplicity of values sets cardinalities for the nested elements.

3.4 Parametric Jobs at Middleware Level

We must stress the difference between job description and submission of job. The
fact that the user is able to specify a set of jobs with one description is not equal
to submitting only one job. It is up to the middleware implementation if after sub-
mission the parametric job will be seen as a single collection of jobs or as many
independent Grid jobs. The difference concerns e.g. the execution environment set-
tings or sharing of input/output files. The concept of a collection of jobs [18] and
shared sandbox is known from gLite and JDL language. In this case JDL provides
the ability to decide on a shared sandbox and glite middleaware is able to fulfill this
requirement. In case of Parameter Sweep for now there’s no support for submission
of a parametric job as a collection of jobs. At the level of JSDL it would be possible
with a simple attribute extension, but we are still missing support from middlewares.

At the time of writing this chapter none of the existing Grid middlewares could
handle the Parameter Sweep extension. Nevertheless in the following sections we
will try to show that regardless of this fact using parametric jobs is reasonable.
Introducing Parameter Sweep even only at the level of Grid clients results in simpli-
fication of user interfaces. It leads to abstraction of the job to be done and therefore
allows to encapsulate the whole work delegated to the Grid as a workflow.

4 G-Eclipse Implementation
g-Eclipse [5] is project founded by the European Commission under the 6th

Framework Programme (it lasted from July 2006 to December 2008) as well as
the Eclipse Foundation [20] project. It builds on top of the Eclipse platform and

22 K. Bylec et al.

Table 2 g-Eclipse’s middlewares support

Middleware Available functionalities

GLite Authentication and authorization — VOMS proxy extension; job management —
editing, submission, monitoring (JDL/JSDL); data management (gsiFTP,
LFC, RSM); GLUE information system; remote application debugging and
deployment; workflow submission.

GRIA Job management — editing, submission, monitoring (JSDL); data management
(GRIA file store).
Globus Authentication and authorization — Globus proxy; job management — editing,
Toolkit 2 submission, monitoring (RSL); data management (gsiFTP); gl.ogin.
Globus Support for GT 4.2 (not compatible with GT 4.0)
Toolkit 4 Job management — editing, submission, monitoring (JDD aka RSL 4);

information system (MDS)

provides a middleware independent architecture of workbench tools for accessing
Grid resources. It is targeted at three users groups: Grid Users, Grid Application
Developers and Grid Operators. g-Eclipse’s exemplary middleware target was gLite,
but support for other e-Infrastructure was also implemented — details are provided
in Table 2.

Though designed and implemented as a graphical user tool, g-Eclipse can be also
utilised as a Grid access library, especially taking into account work done within
the DORII project (see Section 5.1 WfMS and Common Library). This approach
is discussed in the following section, but first the original g-Eclipse solution is
presented.

4.1 g-Eclipse JSDL Plug-Ins

g-Eclipse extends the Eclipse Platform’s plug-ins architecture. It is composed out of
layered plug-ins: at the bottom there are Eclipse’s standard UI and resources man-
agement as well as extensions mechanism, on top of them the abstraction layer for
Grid functionalities is build which is then extended — if needed — with middleware
specific [21].

JSDL is introduced at the middle level — as the standard job description language
for middleware abstraction. Still it is possible to submit the job description in mid-
dleware specific language but the recommended and — to some point — forced by
architecture solution is to operate on the JSDL file and then transform it to specific
language just before submission to the middleware.

g-Eclipse simplifies this recommended job management flow. It provides the
JSDL Java model for developers and multipage graphical editor which hides the
JSDL XML'’s complexity from the user. Supported JSDL extensions are POSIX and
Parameter Sweep.

Because none of the supported middlewares handles JSDL Parameter Sweep,
the parameterized JSDL files (compare Section 3) have to be preprocessed before
submission. Preprocessing involves:

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 23

1. resolving of parameters — sweeping all values and generating resulting JSDL
files without Parameter Sweep extension’s elements;

2. submission of each JSDL file generated in the first step as an independent
Grid job.

In the GUI — in Project view as well as in Jobs monitoring view — the parametric
is represented as a single job with resulting sweeped files as children. Before the
submission user is given the possibility to preview the values’ array that will be used
for sweeped job descriptions. This can be done in JSDL editor and won’t affect the
parametric JSDL file.

4.2 Java Library for Parameter Sweep

g-Eclipse is build on top of the Eclipse Platform and therefore depends on its archi-
tecture as well as on some low level model code e.g. for resources management. This
is the reason why, though g-Eclipse’s JSDL functionality is encapsulated within 3
plug-ins, it cannot be used outside of the Eclipse Platform. It would be a shame if
this code — providing wide coverage of POSIX extension and one of the few existing
implementations of Parameter Sweep — could not be reused by other projects. JSDL
plug-ins can be easily integrated into RPC applications [22], but it is not always the
case that an external project can be converted into Eclipse application. That is why
we extracted parts responsible for Parameter Sweep handling. They are available
in form of Eclipse independent Java library called Param-JSDL [23] under Eclipse
Public Licence [24].

This library is independent of the g-Eclipse JSDL model — it operates on string
elements. The entry point to param-jsdl.jar is the [ParametricJsdlGenerator interface
and its single method generator, which in turn takes IParametricJsdlHandler instance
as an argument. [ParametricJsdlHandler is a listener implementation for events that
occur during processing of parametrized JSDL. Those are: start of generation, gen-
eration of new JSDL, cancel and finish, which developers can customize to suit their
requirements.

The implementation in the background, to which instances of
[ParametricJsdlHandler register for generation events information, uses DOM
XML representation and XPath language for traversing and modifying the JSDL
structure. XML processing is done in memory — no I/O operations are involved —
which results in efficiency increase (Fig. 1).

The speed of generation depends on the structure of JSDL and parameters num-
ber. It doesn’t depend on parameters values. Results of tests performed on a middle
class developer’s PC computer (Intel ® Core ™ 2 CPU, T5500 @ 1.6 GHz, 2 GB
RAM, Windows Vista ™ Home Basic 32-bits, Java ™ SE Runtime Environment,
build 1.6.0_13-b03)) are visible in Figs. 2, 3, and 4. As a basic reference data set a
JSDL with executable definition and one data staging was used, starting from one
parameter with 3 values, whose number was increasing up to 15. For each JSDL
1500 substitutions were performed.

24

20
18
16
14
12
10

o N ~ O O®

[=s]

3 4 56 7 8 9101112131415

K. Bylec et al.

—4&— 1 parameter

——1 parameter and 2
additional DataSatging

elements

—i— 2 parameters
(sweeped at the same
level)

By 0‘ ;] 1,

Fig. 1 Performance test results of JSDL-Param (own elaboration)

VCR

WF Editor & A@ WF Editor launching
Monitor .
WobStart
[
Monitoring Sgeqarfo
info submission

® &

WF Management

Computational,

visualization &
experimental task

Experimental

task

Common Library

|

CE

\

SE 1s

Fig. 2 Scheme of WfMS in DORII

IE —

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 25

Legenda:
. IE - instrument element
Wi-Editor CE - computing element
SE - storage element
WMS - workload management system

o VCR Tunnel
\Wf-Monitor| Client | Non-Grid
{browser] Interactive (CE broker)
Script " LFC - location file catalog (SE broker)
Man Native App DB - database element
Launcher

IS - information system

User

Application VOMS - VO management system
Developer OtherS - other services (e.g. OGC)
VCR - virtual control room
Wf-Man | VCR G-Eclipse G-Eclipse - developer workbenck
System Server Wi-Editor - workflow editor

Wf-Monitor - workflow monitor

<‘> <‘> <—> Wf-Man System - workflow
management system

Script Man - script manager

Apps Man - application manager

jcommon java lib| common java lib common java lib

IE CE SE DB IS vOMS wMS LFC OtherS

Grid / eInfrastructure

Fig. 3 DORII architecture

HORUS bench

IE output
0. make photos
0.1 send photos to application

0.2 sto{e photoson SE

4. store results

1. modelinput data

i 2. processing|model

Archived images

Predefined binary models

Fig. 4 HORUS_bench workflow

5 DORII Implementation

Deployment Of Remote Instrumentation Infrastructure (DORII) [6, 25] aims to
introduce the Grid extended by Instrument Elements to scientific communities such
as Earthquake community (with various sensor networks), Environmental science
community, Experimental science community (with synchrotron and free electron
lasers). The project goal is to integrate existing Instrument Elements with the Grid

26 K. Bylec et al.

infrastructure and develop applications handling them as well as provide high-end
tools with a GUI to simplify maintenance and access to the deployed structure.

When first versions of Instrument Elements had been successfully installed users
were able to start using high-level tools, among them — the VCR developed ini-
tially in GridCC [7] and the Workflow Management System, first introduced by
the VLab project [26], whose idea was deployed with success e.g. in the EXPReS
project [27, 28].

5.1 WfMS and Common Library

The Workflow Management System (WfMS) was designed to support users in run-
ning, managing and monitoring Grid applications instances, defined as a sequence
of Grid jobs, i.e. workflows. In the DORII project workflows involve Instrument
Elements, that may take place in the every part of the chain — being source of data
for other workflows component as well as the data destination.

WIMS is composed out of two parts — GUI Workflow Editor and server side
Workflow Manager. The Editor may be launched independently (as a Java Web Start
application) or from within a VCR instance. It servers a workbench with predefined
workflow instances that the user customizes before its submission to the Grid — spec-
ifying data and steering the flow between components, describing the experiment
parameters and conditions. The workflow’s definition may contain components rep-
resenting operations on Instrument Elements, Grid job execution, storage access or
prompting for user input if required. Grid components behind each of the workflow’s
block are restricted by the Virtual Organization (VO) of the user.

The workflow is started by the user from the Editor and then the steering is
passed to the server side component. This is the Workflow Manager that is respon-
sible for determining the order of the workflow’s parts to be executed as well as
for transforming them to concrete Grid operations (e.g. generating JSDLs, execut-
ing transitions or operations on Instrument Elements), for monitoring execution and
managing data transfers. The server component of WfMS acts as a central man-
agement point of workflow execution and as a Grid access interface. For the latter
it uses the Common Library component also developed within the DORII project.
Details of the design are covered by Fig. 2.

The Common Library is a Java library designed to be a common access and
functionality layer between integrated e-Infrastructure components. The idea that
resulted in the Common Library creation was the observation that libraries for
accessing the Grid infrastructure are distributed over many different projects with
different goals and objectives, which means they may vary with technology (e.g.
client or server side, web services based, etc.), programming language (Java or C)
or may not be complete. The Common Library component exposes Grid access
interfaces for services such as MyProxy and Instrument Element taken from EGEE
and DORII projects, respectively, as well as Information System (BDII), WMS, and
data management (gsiFTP, LFC, SRM) — extracted from g-Eclipse.

The relation between components described above is captured in Fig. 3 repre-
senting the DORII architecture.

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 27
5.2 HORUS _bench Application

HORUS_bench is one of the applications defined by the DORII project to be
integrated into the Remote Instrumentation Infrastructure. It is developed by
Instituto de Hidrdulica Ambiental, Universidad de Cantabria, Spain and concerns
the environmental data analysis.

HORUS_bench involves digital cameras, temperature and pressure sensors as
Instrument Elements. Data gathered by them is used to monitor and simulate con-
ditions of the beaches and coastal line of sea and rivers — especially calculating the
water line, user density on the beaches, etc. Because of the distributed geographical
nature of those devices as well as amounts of data they produce, scientists are lively
interested into introducing HORUS_bench into the e-Infrastructure.

The use case is (see also Fig. 4):

e The gather input data from Instrument Elements — e.g. cameras taking pictures of
beaches — they will come as an input stream to the application or be stored on SE
and read from it;

e From the list of available image processing algorithms the user chooses the set
that will be applied to input data. The chosen set of algorithms will constitute a
binary file of the application;

e Application’s input data and algorithms (in form of binary file) are taken by the
HORUS_bench script run on the CE — the set of algorithms is applied to each of
the images from input data gathered by Instrument Elements;

e Each file produced as a result of HORUS_bench processing is transferred as an
output to a remote SE location.

5.3 Applying Parametric Jobs for HORUS_bench

Assuming that the HORUS_bench script takes one input file at once and this file has
to be available on the script’s path at the execution time, we propose the approach
of submitting many HORUS_bench jobs, one for each file from the input set. Those
jobs will be run in parallel, writing result files into the same remote location. This
means that each job will have the same set of processing algorithms and the same
executable. The only changing parameter will be the input file name (as the location
stays the same).

Starting from the point where the user launches the HORUS_bench workflow
from the Editor — the Workflow Manager transforms the information provided
(input images location and processing algorithms) into a Parametric JSDL file. The
simplified job description is presented in Fig. 5.

The solution described at the beginning of this subsection is reflected in
JSDL design — parameterization is applied to job’s data stagings (described in
XPath language as /x//jsdl:DataStaging[3]/jsdl:Source/jsdl:URI), but only to the
file name part of JSDL’s element (using XPath substring(/+//jsdl:DataStaging
[3]/jsdl:Source/jsdl:URI, 54, 1) function).

28 K. Bylec et al.

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:JobDefinition>
<jsdl:JobDescription>
<l== .. ==>
<jsdl:Application>
<jsdl :ApplicationName>HORUS_bench</j sdl:ApplicationName>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>horus.sh</jsdl-posix:Executable>
</jsdl-posix:POSIXApplication>
</jsdl:Application>
<jsdl:DataStaging>
<jsdl:FileName>horus.sh</jsdl:FileName>
<l== ... ==>
</jsdl:DataStaging>
<jsdl:DataStaging>
<jsdl:FileName>algorithm model bin</jsdl:FileName>
<l== i ==>
</jsdl:DataStaging>
<jsdl:DataStaging>
<jsdl:FileName>filel.png</jsdl:FileName>
<jsdl:Source>
<jsdl:URI>gsiftp://path/on/SE/to/Instrunent/Element/output/filel.png</jsdl:URI>
</3jsdl:Source>
</jsdl:DataStaging>
</3jsdl:JobDescription>
<sweep:Sweep>
<sweep:Assignment>
<sweep:Match>substring(/*//jsdl:DataStaging[3]/jsdl:Source/jsdl:URI, 54, 1)</sweep:Match>
<sweep:Mathc>substring(/*//jsdl:DataStaging[3]/jsdl:FileName, 5, 1)</sweep:Mathc>
<sweepfunc:LoopInteger sweepfunc:end="99" sweepfunc:start="0" sweepfunc:step="1"/>
</sweep:Assignment>
</sweep:Sweep>
</jsdl:JobDefinition>

Fig. 5 Simplified parametric JSDL for HORUS_bench

It is worth noticing that in case of applying parameterization to data stagings ele-
ments two sweeps have to be defined. One for the resource path (as stated in the
previous paragraph) and another for the name of the staged file. This may be seen as
a disadvantage for users of Parameter Sweep, nevertheless before turning this into
an entry point for discussion on user friendliness of the specification, we should be
aware that Parameter Sweep is a low level language. It should be the users’ tools
responsibility to handle and hide such a situation from the user. Moreover coupling
between data staging’s path and its name is not always the case. The JSDL speci-
fication states that the FileName element defines a name used for file in sandbox,
while the path points to a resource. In other words — during transfer of data staging
to a sandbox its name may be changed.

The latter use case would be of use if we proposed a different approach to
HORUS_bench parameterization. In the solution described above (sweep of input
file’s path and name) the application’s script just looks for an image file on its exe-
cution path. We may imagine that this script was developed to read always a file
of the same name (the input file name is hardcoded in the script). In that case two
solutions are possible:

e To parameterize only the input file path in JSDL (not the FileName element which
will take the hardcoded value from the script);

e To parameterize the input file path and name in JSDL and to apply the FileToken
sweep to the HORUS_bench script).

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 29

The former is not much different from the solution chosen in WfMS, so we will
skip its description. The latter would be only possible if the script is a local file, as it
should be available at the moment of Parameter Sweep processing of JSDL. Having
the script as a Grid storage location means that it is accessible only at the moment
of execution of the job in the Grid sandbox, where neither the Parameter Sweep
reference within JSDL nor the token definition inside the script would be properly
interpreted.

When the WfMS has finished generation of JSDL from Fig. 4 the job description
is submitted to the Grid using the Common Library’s WMS interfaces. The way of
handling JSDL by Common Library is based on g-Eclipse’s model implying that the
JSDL with Parameter Sweep is validated and then parsed by JSDL-Param library,
which results in many non-parameterized JSDL descriptions, separately maintained
by Common-Library in the process of Grid submission and monitoring.

5.4 Applying Parameterization at Different Levels

Details of the solution described above are distributed into two levels — implemen-
tation involves functionalities of the WfMS and Common Library components. In
fact the lowest level is missing for the solution to be considered complete — the
middleware support.

In gLite middleware while submitting a single job before the to a WMS the job
is given its own sandbox. Data staging files are transferred to sandbox before the
application is launched and outputs transferred to target destination after it has fin-
ished. Running HORUS_bench for a single input file out of GB of input results
in heavy traffic load, not to mention the overload of WMS and job queues. That
is why the presented solution is only a partial one for the described problem. It
reduces the complexity of workflow at the level of user interface — it allows to
hide details of the undelaying implementation and present the user only the main
application’s idea which, in this case, is bulk, not individual file processing. The
server side workflow maintenance is also simplified — in the Computing Element
block the steering float does not have to fork for many single jobs, as this is han-
dled by the underlying Common Library’s JSDL model and Param-JSDL library
described in previous sections. Unfortunately, the lack middleware capability for
handling Parameter Sweep does not allow for completing the process of facilitation
of to the Instrument Element adaptation into HORUS_bench. Nevertheless —in com-
parison to the non-parametric description of HORUS_bench the gain is significant,
measured mainly with the possibility of Grid enabling of the application.

6 Conclusions
Enabling existing and newly created services for a Remote Instrumentation Interface

gains increasing interest among scientific fields. The expectation of efficiency
improvement can be met by combining Instrument Elements usage with JSDL’s

30

K. Bylec et al.

extension for parametric jobs — Parameter Sweep. First attempts to achieve this goal
were made within the DORII project and its Workflow Management System solu-
tion for a sequence of Grid operations (including remote devices access as well as
jobs submission). This was possible with the outcome of another project — g-Eclipse,
whose early experience in Parameter Sweep could be ported to DORII.

Though the Parameter Sweep is of much help for enabling applications for

Instrument Elements still the solution is not complete, as the middlewares lack the
capability of JSDL and Sweep Parameter handling.

References

1.

®

10.
11.

13.

14.

15.

16.
17.

18.

19.

E. Frizzierol, M. Gulminil, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato,
and S. Traldil. Instrument Element: a new Grid component that enables the control of remote
instrumentation. Workshop on Scientific Instruments and Sensors on the Grid, Trieste-Italy,
23-28 April, 2007

M. Ptéciennik. RISGE-RG Collection of use cases, OGF Document Series web
site, document GFD.168. http://ogf.org/documents/GFD.168.pdf, last accessed September
2010

. JSDL Parameter Sweep Job Extension; http://www.ogf.org/documents/GFD.149.pdf, last

accessed August 2009

Job Submission Description Language (JSDL) Specification, Version 1.0; http://www.ogf.org/
documents/GDF.136/pdf, last accessed August 2009

g-Eclipse, project website, http://www.geclipse.eu, last accessed August 2009

Deployment of Remote Instrumentation Infrastructure (DORII), project website,
http://www.dorii.eu, last accessed August 2009

GRIDCC, project website, http://www.gridcc.org, last accessed August 2009

RINGrid, project website, http://www.ringrid.eu, last accessed August 2009

T. Devadithya, K. Chiu, K. Huffman, D.F. McMullen. The common instrument middle-
ware architecture: Overview of goals and implementation, http://cs.indiana.edu/~tdevadit/
pubs/cima_isog05.pdf, last accessed August 2009

SpectroGrid, project webpage https://spectrogrid2.nrc.ca, last accessed August 2009

Remote Instrumentation Services In Grid Environment — RG (RISGE-RG), OGF Research
Group webpage, https://forge.gridforum.org/sf/projects/risge-rg, last accessed August 2009
Job Submission Description Language WG, OGF Working Group webpage,
https://forge.gridforum.org/sf/sfmain/do/viewProject/projects.jsdl-wg, last accessed August
2009

JSDL-WG Published Documents: JSDL HPC Profile Application Extension Version
1.0 and JSDL SPMD Application Extension Version 1.0, https://forge.gridforum.org/
st/docman/do/listDocuments/projects.jsdl-wg/docman.root.published_docs, last accessed
August 2009

Gruppo GRID Datamat EGEE Wiki Pages, Patch #3040, http://trinity.datamat.it/
projects/EGEE/wiki/wiki.php, last accessed August 2009

OMII-EU JRA1/Job Submission Task Wiki Pages, JSDL to JDL converter http:/grid.pd.
infn.it/omii/jsd12jdl, last accessed August 2009

OMII-Europe, project webpage, http://www.omii-europe.org/, last accessed August 2009
Globus Aliance Community Webpage, GT 4.0.5 Incremental Release Notes, http://www.
globus.org/toolkit/releasenotes/4.0.5/, last accessed August 2009

Gruppo GRID Datamat EGEE Wiki Pages, JDL Types, http:/trinity.datamat.it/
projects/EGEE/wiki/wiki.php?n=JDL.JDLTypes, last accessed August 2009

XML Path Language (XPath), Version 1.0, W3C Recommendation, http://www.w3.org/
TR/xpath, last accessed August 2009

Parametric Jobs — Facilitation of Instrument Elements Usage In Grid Applications 31

20.

21.

22.

23.

24.

25.

26.

27.
28.

g-Eclipse: Tools for Grid and Cloud Computing, project webpage on Eclipse Foundation
portal, http://eclipse.org/geclipse/, last accessed August 2009

g-Eclipse Consortium, g-Eclipse Final Architecture, http://www.geclipse.org/fileadmin/
Documents/Deliverables/D1.8.pdf, last accessed August 2009

FZK’s Savannah CVS source code repository, g-Eclipse example RPC applications —
Gaussian, http://savannah.fzk.de/cgi-bin/viewcvs.cgi/fzk/geclipse/geclipse/demo_apps/eu.
geclipse.gaussian.jmol/, last accessed August 2009

FZK’s Savannah CVS source code repository, JSDL-Para library, http://savannah.fzk.de/cgi-
bin/viewcvs.cgi/fzk/geclipse/geclipse/demo_apps/JSDL_Param/, last accessed August 2009
Eclipse Foundation, Eclipse Public License, version 1.0, http://www.eclipse.org/legal/epl-
v10.html, last accessed August 2009

A. Chepstov, R. Keller, R. Pugliese, M. Prica, A. Del Linz, M. Plociennik, M. Lawenda, and
N. Meyer. Towards deployment of remote instrumentation e-infrastructure (in the Frame of
the DORII Project). Computational Methods in Science and Technology, 15(1), 65-74, 2009
Virtual Laboratory (VLAB) project webpage, http://vlab.psnc.pl/

EXPReS project website, http://www.expres-eu.org/

M. Okon, D. Stoklosa, R. Oerlemans, H. J. van Langevelde, D. Kaliszan, M. Lawenda,
T. Rajtar, N. Meyer, and M. Stroinski. Grid integration of future arrays of broadband radio-
telescopes moving towards e-VLBI. Grid enabled remote instrumentation. Springer, p. 571,
2008

2 Springer
http://www.springer.com/978-1-4419-5573-9

Remote Instrumentation Services on the
e-Infrastructure

Applications and Tools

Davoli, F.; Meyer, N.; Pugliese, R.; Zappatore, 5. (Eds.)
2011, XV, 325 p., Hardcover

ISEMN: 278-1-4419-5573-9

