
Chapter 2

Returns to Scale in DEA*

Rajiv D. Banker, William W. Cooper, Lawrence M. Seiford, and Joe Zhu

Abstract This chapter discusses returns to scale (RTS) in data envelopment

analysis (DEA). The BCC and CCR models described in Chap. 1 of this handbook

are treated in input-oriented forms, while the multiplicative model is treated in

output-oriented form. (This distinction is not pertinent for the additive model,

which simultaneously maximizes outputs and minimizes inputs in the sense of

a vector optimization.) Quantitative estimates in the form of scale elasticities are

treated in the context of multiplicative models, but the bulk of the discussion

is confined to qualitative characterizations such as whether RTS is identified as

increasing, decreasing, or constant. This is discussed for each type of model,

and relations between the results for the different models are established.

The opening section describes and delimits approaches to be examined.

The concluding section outlines further opportunities for research and an Appendix

discusses other approaches in DEA treatment of RTS.

Keywords Data envelopment analysis • Efficiency • Returns to scale

2.1 Introduction

It has long been recognized that Data Envelopment Analysis (DEA) by its use of

mathematical programming is particularly adept at estimating inefficiencies in

multiple input and multiple output production correspondences. Following

Charnes, Cooper, and Rhodes (CCR 1978), a number of different DEA models
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have now appeared in the literature (see Cooper et al. 2000). During this period

of model development, the economic concept of returns to scale (RTS) has also

been widely studied within the different frameworks provided by these methods,

and this is the topic to which this chapter is devoted.

In the literature of classical economics, RTS have typically been defined only for

single-output situations. RTS are considered to be increasing if a proportional

increase in all the inputs results in a more than proportional increase in the single

output. Let a represent the proportional input increase and b represent the resulting

proportional increase of the single output. Increasing returns to scale(IRS) prevail

if b> a, and decreasing returns to scale (DRS) prevail if b< a. Banker (1984),
Banker et al. (1984), and Banker and Thrall (1992) extend the RTS concept from

the single-output case to multiple-output cases using DEA.

Two paths may be followed in treating RTS in DEA. The first path, developed

by F€are, Grosskopf, and Lovell (FGL 1985, 1994), determines RTS by a use of

ratios of radial measures. These ratios are developed from model pairs which

differ only in whether conditions of convexity and subconvexity are satisfied.

The second path stems from work by Banker (1984), Banker et al. (1984) and

Banker and Thrall (1992). This path, which is the one we follow, includes, but

is not restricted to, radial measure models. It extends to additive and multipli-

cative models as well, and does so in ways that provide opportunities for

added insight into the nature of RTS and its treatment by the methods and

concepts of DEA.

The FGL approach has now achieved a considerable degree of uniformity that

has long been available – as in FGL (1985), for instance. See also FGL (1994).

We therefore treat their approach in the Appendix to this chapter. This allows us to

center this chapter on treating RTS with different models. These treatments have

long been available but only in widely scattered literatures. We also delineate

relations that have been established between these different treatments and extend

this to relations that have also been established with the FGL approach. See Banker

et al. (1996b), Zhu and Shen (1995), and F€are and Grosskopf (1994). In particular,

Seiford and Zhu (1999) established the relations among these alternative

approaches and provided a simple approach to RTS estimation without the need

for checking multiple optimal solutions.

The plan of development in this chapter starts with a recapitulation of results

from the very important paper by Banker and Thrall (1992). Although developed

in the context of radial measure models, we also use the Banker and Thrall (1992)

results to unify the treatment of all of the models we cover. This is done after we

first cover the radial measure models that are treated by Banker and Thrall (1992).

Proofs of their theorems are not supplied because these are already available in

Banker and Thrall (1992). Instead refinements from Banker et al. (1996a) and from

Banker et al. (1996b) are introduced, which are directed to (a) providing simpler

forms for implementing the Banker–Thrall theorems and (b) eliminating some

of the assumptions underlying these theorems.

We then turn to concepts such as the MPSS (Most Productive Scale Size)

introduced by Banker (1984) to treat multiple output–multiple input cases
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in DEA and extend RTS concepts built around the single-output case in classical

economics. Additive and multiplicative models are then examined, and the latter

are used to introduce (and prove) new theorems for determining scale elasticities.

The former (i.e., the additive case) is joined with a “goal vector” approach

introduced by Thrall (1996a) to make contact with “invariance” and “balance”

ideas that play prominent roles in the “dimensional analysis” used to guide the

measurements used in the natural sciences (such as physics). We next turn to

the class of multiplicative models where, as shown by Charnes et al. (1982, 1983)

and Banker and Maindiratta (1986), the piecewise linear frontiers usually employed

in DEA are replaced by a frontier that is piecewise Cobb–Douglas (¼ log linear).

Scale elasticity estimates are then obtained from the exponents of these

“Cobb–Douglas like” functions for the different segments that form a frontier,

which need not be concave. A concluding section points up issues for

further research.

The Appendix of this chapter presents the FGL approach. We then present

a simple RTS approach developed by Zhu and Shen (1995) and Seiford and Zhu

(1999) to avoid the need for checking the multiple optimal solutions. This approach

will substantially reduce the computational burden because it relies on the standard

CCR and BCC computational codes.

2.2 RTS Approaches with BCC Models

For ease of reference, we present here the BCC models. Suppose that we have

n DMUs (decision-making units) where every DMUj, j¼ 1, 2, . . ., n, produces the
same s outputs in (possibly) different amounts, yrj (r¼ 1, 2, . . ., s), using the same m

inputs, xij (i¼ 1, 2, . . .,m), also in (possibly) different amounts. The efficiency of a

specific DMUo can be evaluated by the “BCC model” of DEA in “envelopment

form” as follows,

min yo � e
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
;

subject to

yoxio ¼
Xn
j¼1

xijlj þ s�i i ¼ 1; 2; . . . ;m;

yro ¼
Xn
j¼1

yrjlj � sþr r ¼ 1; 2; . . . ; s;

1 ¼
Xn
j¼1

lj;

0 � lj; s�i ; s
þ
r 8 i; r; j; ð2:1Þ
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where, as discussed for the expression (1.6) in Chap. 1, e> 0 is a non-Archimedean

element defined to be smaller than any positive real number.

As noted in the abstract, we confine attention to input-oriented versions of these

radial measure models and delay discussion of changes in mix, as distinct from

changes in scale, until we come to the class of additive models where input and

output orientations are treated simultaneously. Finally, we do use output

orientations in the case of multiplicative models because, as will be seen,

the formulations in that case do not create problems in distinguishing between

scale and mix changes.

Remark. We should, however, note that input- and output-oriented models may

give different results in their RTS findings. See Fig. 2.1 and related discussion

below. Thus the result secured may depend on the orientation used. IRS may

result from an input-oriented model, for example, while an application of an

output-oriented model may produce a DRS characterization from the same data.

See Golany and Yu (1994) for treatments of this problem.

The dual (multiplier) form of the BCC model represented in (2.1) is obtained

from the same data that are then used in the following form:

max z ¼
Xs
r¼1

uryro � uo;

subject to

Xs
r¼1

uryrj �
Xm
i¼1

vixij � uo � 0; j ¼ 1; . . . ; n;

Xm
i¼1

vixio ¼ 1;

vi � e; ur � e; uo free in sign: ð2:2Þ
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Fig. 2.1 Returns to scale
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The above formulations assume that xij; yrj � 0 8 i; r; j. All variables in (2.2)

are also constrained to be nonnegative – except for uo, which may be positive,

negative, or zero with consequences that make it possible to use optimal values of

this variable to identify RTS.

When a DMUo is efficient in accordance with the Definition 1.3 in Chap. 1,

the optimal value of uo, i.e., u
�
o, in (2.2), can be used to characterize the situation

for RTS.

RTS generally has an unambiguous meaning only if DMUo is on the efficiency

frontier – since it is only in this state that a tradeoff between inputs and outputs is

required to improve one or the other of these elements. However, there is no need

to be concerned about the efficiency status in our analyses because efficiency can

always be achieved as follows. If a DMUo is not BCC efficient, we can use

optimal values from (2.1) to project this DMU onto the BCC efficiency frontier

via the following formulas,

x̂io ¼ y�oxio � s��
i ¼

Xn
j¼1

xijl
�
j ; i ¼ 1; . . . ;m;

ŷro ¼ yro þ sþ�
r ¼

Xn
j¼1

yrjl
�
j ; r ¼ 1; . . . ; s;

8>>>><
>>>>:

(2.3)

where the symbol “*” denotes an optimal value. These are sometimes referred

to as the “CCR Projection Formulas” because Charnes et al. (1978) showed that

the resulting x̂io � xio and ŷro � yro correspond to the coordinates of a point on

the efficiency frontier. They are, in fact, coordinates of the point used to evaluate

DMUo when (2.1) is employed.

Suppose that we have five DMUs, A, B, C, D, and H as shown in Fig. 2.1 from

Zhu (2009). Ray OBC is the constant returns to scale (CRS) frontier. AB, BC, and

CD constitute the BCC frontier, and exhibit increasing, constant, and decreasing

returns to scale, respectively. B and C exhibit CRS. On the line segment AB, IRS

prevail to the left of B for the BCC model and on the line segment CD, DRS prevail

to the right of C. By applying (2.3) to point H, we have a frontier point H0 on the line
segment ABwhere IRS prevail. However, if we use the output-oriented BCCmodel,

the projection is onto H00 where DRS prevail. This is due to the fact that the input-

oriented and the output-oriented BCCmodels yield different projection points on the

BCC frontier and it is on the frontier that RTS is determined. See Zhu (2009)

for discussion on “returns to scale regions.”

We now present our theorem for RTS as obtained from Banker and Thrall (1992,

p. 79) who identify RTS with the sign of u�o in (2.2) as follows:

Theorem 2.1. The following conditions identify the situation for RTS for the BCC

model given in (2.2),
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(i) IRS prevail at ðx̂o; ŷoÞ if and only if u�o < 0 for all optimal solutions.

(ii) DRS prevail at ðx̂o; ŷoÞ if and only if u�o > 0 for all optimal solutions.

(iii) Constant RTS prevail at ðx̂o; ŷoÞ if and only if u�o ¼ 0 for at least one optimal

solution.

Here, it may be noted, ðx̂o; ŷoÞ are the coordinates of the point on the efficiency

frontier which is obtained from (2.3) in the evaluation of DMUo via the solution

to (2.1). Note, therefore, that a use of the projection makes it unnecessary to assume
that the points to be analyzed are all on the BCC efficient frontier – as was assumed

in Banker and Thrall (1992).

An examination of all optimal solutions can be onerous. Therefore, Banker and

Thrall (1992) provide one way of avoiding a need for examining all optimal

solutions. However, Banker et al. (1996a) approach is used here because it avoids

the possibility of infinite solutions that are present in the Banker–Thrall approach.

In addition, the Banker et al. (1996a) approach insures that the RTS analyses are

conducted on the efficiency frontier. This is accomplished as follows.

Suppose that an optimum has been achieved with u�o < 0. As suggested by

Banker et al. (1996a), the following model may then be employed to avoid having

to explore all alternate optima,

maximize ûo;

subject to

Xs
r¼1

uryrj �
Xm
i¼1

vixij � ûo � 0; j ¼ 1; . . . ; n; j 6¼ 0;

Xs
r¼1

urŷro�
Xm
i¼1

vix̂io � ûo � 0; j ¼ 0;

Xm
i¼1

vix̂io ¼ 1;

Xs
r¼1

urŷro � ûo ¼ 1;

vi; ur � 0 and ûo � 0; ð2:4Þ

where the x̂io and ŷro are obtained from (2.3).

With these changes of data, the constraints for (2.4) are in the same form as (2.2)

except for the added conditions
Ps

r¼1 urŷro � ûo ¼ 1 and ûo � 0. The first of these

conditions helps to ensure that we will be confined to the efficiency frontier.

The second condition allows us to determine whether an optimal value can

be achieved with max ûo ¼ 0. If û�o ¼ 0 can be obtained, then condition (iii) of

Theorem 2.1 is satisfied and RTS are constant. If, however, max ûo ¼ û�o < 0, then,

as set forth in (i) of Theorem 2.1, RTS are increasing. In either case, the problem is

resolved, and the need for examining all alternate optima is avoided in this way of

implementing Theorem 2.1.

46 R.D. Banker et al.



We can deal in a similar manner with the case when u�o>0 by (a) reorienting

the objective in (2.4) to “minimize” ûo and (b) replacing the constraint ûo � 0

with ûo � 0. All other elements of (2.4) remain the same and if min ûo ¼ û�o > 0

then condition (ii) of Theorem 2.1 is applicable while if min ûo ¼ û�o ¼ 0 then

condition (iii) is applicable.

Reference to Fig. 2.2 can help us to interpret these results. This figure portrays

the case of one input, x, and one output, y. The coordinates of each point are listed
in the order (x, y). Now, consider the data for A that has the coordinates (x¼ 1,

y¼ 1), as shown at the bottom of Fig. 2.2. The “supports” at A form a family that

starts at the vertical line (indicated by the dotted line) and continues through

rotations about A until coincidence is achieved with the line connecting A to B. All
of these supports will have negative intercepts so u�o < 0 and the situation for A is

one of IRS as stated in (i) of Theorem 2.1.

The reverse situation applies at D. Starting with the horizontal line indicated

by the dots, supports can be rotated around D until coincidence is achieved with

the line connecting D and C. In all cases, the intercept is positive so u�o > 0 and

RTS are decreasing as stated in (ii) of Theorem 2.1.

Rotations at C or B involve a family of supports in which at least one member

will achieve coincidence with the broken line going through the origin so that,

in at least this single case, we will have u�o ¼ 0, in conformance with the condition

for constant RTS in (iii) of Theorem 2.1.

Finally, we turn to E, the only point that is BCC inefficient in Fig. 2.2.

Application of (2.3), however, projects E into E0 – a point on the line between

C and D – and, therefore, gives the case of DRS with a unique solution of û�o > 0.

MPSS

C

B

D

E

A

E'

E"

Input, x

Output, y

Efficient Production Frontier

0

A = (1, 1), B = (3/2, 2), C = (3, 4), D = (4,5), E = (4, 9/2)

Fig. 2.2 Most productive scale size
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Hence, all possibilities are comprehended by Theorem 2.1 for the qualitative RTS

characterizations that are of concern here. Thus, for these characterizations only

the signs of the nonzero values of û�o suffice.

2.3 RTS Approaches with CCR Models

We now turn to the CCR models that, as discussed in Chap. 1 of this handbook,

take the following form,

minimize y� e
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
;

subject to

yxio ¼
Xn
j¼1

xijlj þ s�i ;

yro ¼
Xn
j¼1

yrjlj � sþr ;

0 � lj; s�i ; s
þ
r 8 i; j; r: ð2:5Þ

As can be seen, this model is the same as the “envelopment form” of the BCC

model in (2.1) except for the fact that the condition
Pn

j¼1 lj ¼ 1 is omitted.

In consequence, the variable uo, which appears in the “multiplier form” for the

BCC model in (2.2), is omitted from the dual (multiplier) form of this CCR model.

The projection formulas expressed in (2.3) are the same for both models. We can,

therefore, use these same projections to move all points onto the efficient frontier

for (2.5) and proceed directly to RTS characterizations for (2.5), which are

supplied by the following theorem from Banker and Thrall (1992).

Theorem 2.2. The following conditions identify the situation for RTS for the CCR

model given in (2.5):

(i) CRS prevail at ðx̂o; ŷoÞ if
P

l�j ¼ 1 in any alternate optimum.

(ii) DRS prevail at ðx̂o; ŷoÞ if
P

l�j>1 for all alternate optima.

(iii) IRS prevail at ðx̂o; ŷoÞ if
P

l�j < 1 for all alternate optima.

Following Banker et al. (1996b), we can avoid the need for examining all

alternate optima. This is done as follows. Suppose that an optimum has been

obtained for (2.5) with
P

l�j < 1. We then replace (2.5) with
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maximize
Xn
j¼1

l̂j þ e
Xm
i¼1

ŝ�i þ
Xs
r¼1

ŝþr

 !
;

subject to

y�xio ¼
Xn
j¼1

xijl̂j þ ŝ�i for i ¼ 1; . . . ;m;

yro ¼
Xn
j¼1

yril̂j � ŝþr for r ¼ 1; . . . ; s;

1 �
Xn
j¼1

l̂j;

with 0 � l̂j; ŝ�i ; ŝ
þ
r 8 i; j; r; ð2:6Þ

where y� is the optimal value of y secured from (2.5).

Remark. This model can also be used for setting scale-efficient targets when

multiple optimal solutions in model (2.5) are present. See Zhu (2000, 2002).

We note for (2.5) that we may omit the two-stage process described for the CCR

model in Chap. 1 – i.e., the process in which the sum of the slacks are maximized

in stage 2 after y� has been determined. This is replaced with a similar two-stage

process for (2.6) because only the optimal value of y is needed from (2.5)

to implement the analysis now being described. The optimal solution to (2.6)

then yields values of l̂�j , j¼ 1, . . ., n, for which the following theorem is immediate,

Theorem 2.3. Given the existence of an optimal solution with
P

l�j < 1 in (2.5),

the RTS at ðx̂o; ŷoÞ are constant if and only if
P

l̂�j ¼ 1 and RTS are increasing

if and only if
P

l̂�j < 1 in (2.6).

Consider A¼ (1, 1) as shown at the bottom of Fig. 2.2. Because we are only

interested in y* , we apply (1.4) in Chap. 1 to obtain

minimize y;

subject to

1y � 1lA þ 3

2
lB þ 3lC þ 4lD þ 4lE;

1 � 1lA þ 2lB þ 4lC þ 5lD þ 9

2
lE;

0 � lA; lB; lC; lD; lE: ð2:7Þ

This problem has y� ¼ 3=4 and hence A is found to be inefficient. Next,

we observe that this problem has alternate optima because this same y� ¼ 3=4
can be obtained from either l�B ¼ 1=2 or from l�C ¼ 1=4 with all other l� ¼ 0.

For each of these optima, we have
P

l�j < 1, so we utilize (2.6) and write
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maximize l̂A þ l̂B þ l̂C þ l̂D þ l̂E þ eðŝ� þ sþÞ;
subject to

3

4
¼ 1l̂A þ 3

2
l̂B þ 3l̂C þ 4l̂D þ 4l̂E þ ŝ�;

1 ¼ 1l̂A þ 2l̂B þ 4l̂C þ 5l̂D þ 9

2
l̂E � ŝþ;

1 � l̂A þ l̂B þ l̂C þ l̂D þ l̂E;

0 � l̂A; l̂B; l̂C; l̂D; l̂E: ð2:8Þ

so that
P

l̂�j � l̂�A þ l̂�B þ l̂�C þ l̂�D þ l̂�E with all l̂ nonnegative. An optimal

solution is l̂�B ¼ 1=2 and all other l̂� ¼ 0. Hence,
P

l̂�j < 1, so from Theorem

2.3, IRS prevail at A.
We are here restricting attention to solutions of (2.6) with

Pn
j¼1 l̂j � 1, as in the

constraint of (2.6), but the examples we provide below show how to treat situations

in which y* is associated with solutions of (2.5) that have values
P

l�j>1.

Consider E¼ (4, 9/2) for (2.6), as a point that is not on either (i) the BCC

efficiency frontier represented by the solid lines in Fig. 2.2 or (ii) the CCR

efficiency frontier represented by the broken line from the origin. Hence, both the

BCC and CCR models find E to be inefficient. Proceeding via the CCR envelop-

ment model in (2.5) with the slacks omitted from the objective, we get

minimize y;

subject to

4y � 1lA þ 3

2
lB þ 3lC þ 4lD þ 4lE;

9

2
� 1lA þ 2lB þ 4lC þ 5lD þ 9

2
lE;

0 � lA; lB; lC; lD; lE: ð2:9Þ

Again we have alternate optima with, now, y� ¼ 27=32 for either l�B ¼ 9=4 or

l�C ¼ 9=8 and all other l� ¼ 0. Hence, in both cases, we have
P

l̂�j>1. Continuing

in an obvious way, we next reorient the last constraint and the objective in (2.6) to

obtain

minimize l̂A þ l̂B þ l̂C þ l̂D þ l̂E
� �

� e ŝ� þ sþð Þ;
subject to

27

8
¼ 1l̂A þ 3

2
l̂B þ 3l̂C þ 4l̂D þ 4l̂E þ ŝ�;

9

2
¼ 1l̂A þ 2l̂B þ 4l̂C þ 5l̂D þ 9

2
l̂E � ŝþ;

1 � l̂A þ l̂B þ l̂C þ l̂D þ l̂E;

0 � l̂A; l̂B; l̂C; l̂D; l̂E: ð2:10Þ
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This has its optimum at l̂�C ¼ 9=8 with all other l̂� ¼ 0. So, in conformance

with Theorem 2.3, as given for (2.6), we associate E with DRS.

There is confusion in the literature on the RTS characterizations obtained from

Theorems 2.1 and 2.2 and the BCC and the CCR models with which they are

associated. Hence, we proceed further as follows.

As noted earlier, RTS generally has an unambiguous meaning only for points

on the efficiency frontier. When the BCC model as given in (2.1) is used on

the data in Fig. 2.2, the primal model projects E into E0 with coordinates (7/2, 9/2)
on the segment of the line y¼ 1 + x, which connects C to D on the BCC efficiency

frontier. Comparing this with E¼ (4, 9/2) identifies E as having an inefficiency in

the amount of 1/2 unit in its input. This is a technical inefficiency, in the

terminology of DEA. Turning to the dual for E formed from the BCC model, as

given in (2.2), we obtain u�o ¼ 1=4. Via Theorem 2.1 this positive value of u�o
suggests that RTS are either decreasing or constant at E0 ¼ (28/8, 9/2) – the point

to which E is projected to obtain access to model (2.4). Substitution in the latter

model yields a value of û�o _¼ 2=7, which is also positive, thereby identifying E0

with the DRS that prevail for the BCC model on this portion of the efficiency

frontier in Fig. 2.2.

Next, we turn to the conditions specified in Theorem 2.2, which are identified

with the CCR envelopment model (2.5). Here, we find that the projection is to a new

point E00 ¼ (27/8, 9/2), which is on the line y¼ 4/3x corresponding to the broken line
from the origin that coincides with the segment from B to C in Fig. 2.2. This ray

from the origin constitutes the efficiency frontier for the CCR model, which,

when used in the manner we have previously indicated, simultaneously evaluates

the technical and RTS performances of E. In fact, as can be seen from the solution

to (2.9), this evaluation is effected by either l̂�B ¼ 9=4 or l̂�C ¼ 9=8 – which

are variables associated with vectors in a “CRS region” that we will shortly

associate with “most productive scale size” (MPSS) for the BCC model.

The additional 1/8 unit input reduction effected in going from E00 to E00 is needed
to adjust to the efficient mix that prevails in this MPSS region which the CCR

model is using to evaluate E.
Thus, the CCRmodel as given in (2.5) simultaneously evaluates scale and purely

technical inefficiencies, while the BCC model, as given in (2.1), separates out the

scale inefficiencies for evaluation in its associated dual (¼multiplier) form as given

in (2.2). Finally, as is well known, a simplex method solution to (2.1) automatically

supplies the solution to its dual in (2.2). Thus, no additional computations

are required to separate the purely technical inefficiency characterizations obtained

form (2.1) and the RTS characterizations obtained from (2.2). Both sets of values

are obtainable from a solution to (2.1).

We now introduce the following theorem that allows us to consider the relations

between Theorems 2.1 and 2.2 in the RTS characterization.

Theorem 2.4. Suppose that DMUo is designated as efficient by the CCR model,

DMUo then it is also designated as efficient by the BCC model.
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Proof. The CCR and BCC models differ only because the latter has the additional

constraint
Pn

j¼1 lj ¼ 1. The following relation must therefore hold

y�CCR � e
Xm
i¼1

s��
i þ

Xs
r¼1

sþ�
r

 !
� y�BCC � e

Xm
i¼1

s��
i þ

Xs
r¼1

sþ�
r

 !
;

where the expressions on the left and right of the inequality respectively designate

optimal values for objective of the CCR and BCC models.

Now, suppose DMUo is found to be efficient with the CCR model. This implies

y�CCR ¼ 1 and all slacks are zero for the expression on the left. Hence, we will have

1 � y�BCC � e
Xm
i¼1

s��
i þ

Xs
r¼1

sþ�
r

 !
:

However, the xio and yro values appear on both the left and right sides of the

corresponding constraints in the DEA models. Hence, choosing l�o ¼ l�j ¼ 1, we

can always achieve equality with y�BCC which is the lower bound in this exact

expression with all slacks zero. Thus, this DMUo will also be characterized as

efficient by the BCC model whenever it is designated as efficient by the CCR

model. ■

We now note that the reverse of this theorem is not true. That is, a DMUo

may be designated as efficient by the BCC model but not by the CCR model.

Even when both models designate a DMUo as inefficient, moreover, the measures

of inefficiency may differ. Application of the BCC model to point E in Fig. 2.2, for

example, will designate E00 on the line connecting C andD to evaluate its efficiency.

However, utilization of the CCR model will designate E0 with y�CCR < y�BCC so that

1� y�CCR>1� y�BCC, which shows a greater inefficiency value for DMUo when the

CCR model is used.

Because DEA evaluates relative efficiency, it will always be the case that at least

one DMU will be characterized as efficient by either model. However, there will

always be at least one point of intersection between these two frontiers. Moreover,

the region of the intersection will generally expand a DMU set to be efficient

with the CCR model. The greatest spread between the envelopments will then

constitute extreme points that define the boundaries of the intersection between the

CCR and BCC models.

The way Theorem 2.2 effects its efficiency characterization is by models of

linear programming algorithms that use “extreme point” methods. That is, the

solutions are expressed in terms of “basis sets” consisting of extreme points.

The extreme points B and C in Fig. 2.2 can constitute active members of such an

“optimal basis” where, by “active member,” we refer to members of a basis that

have nonzero coefficients in an optimal solution.

Now, as shown in Cooper et al. (2000), active members of an optimal basis are

necessarily efficient. For instance, l�B ¼ 1=2 in the solution to (2.8) designates B as
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an active member of an optimal basis and the same is true for l�C ¼ 1=4, and both

B and C are therefore efficient. In both cases, we have
P

l�j < 1 and we have IRS

at point (3/4, 1) on the CRS ray, which is used to evaluate A. In other words,P
l�j < 1 shows that B and C both lie below the region of intersection because its

coordinates are smaller in value than the corresponding values of the active

members in the optimal basis.

Turning to the evaluation of E, we have y� ¼ 27=32 < 1 showing that E is

inefficient in (2.10). Either l�B ¼ 9=4 or l�C ¼ 9=8 can serve as active member in the

basis. Thus, to express E00 in terms of these bases, we have

27

8
;
9

2

� �
¼ 9

4

3

2
; 2

� �
¼ 9

8
(3,4)

E00 B C

because E00 lies above the region of intersection, as shown by
P

l�j>1 for either

of the optimal solutions.

As shown in the next section of this chapter, Banker (1984) refers to the region

between B and C as the region of most productive scale size (MPSS).

For justification, we might note that the slope of the ray from the origin through

B and C is steeper than the slope of any other ray from the origin that intersects the

production possibility set (PPS). This measure with the output per unit input is

maximal relative to any other ray that intersects PPS.

Hence, Theorem 2.2 is using the values of
P

l�j to determine whether RTS

efficiency has achieved MPSS and what needs to be done to express this relative

to the region of MPSS. We can, therefore, conclude with a corollary to Theorem

2.4: DMUo will be at MPSS if and only if
P

l�j ¼ 1 in an optimal solution when

it is evaluated by a CCR model.

To see how this all comes about mathematically and how it relates to the

RTS characterization, we note that the optimal solution for the CCR model

consists of all points on the ray from the origin that intersect the MPSS region.

If the point being evaluated is in MPSS, it can be expressed as a convex combi-

nation of the extreme points of MPSS so that
P

l�j ¼ 1. If the point is above the

region, its coordinate values will all be larger than their corresponding

coordinates in MPSS so that we will have
P

l�j>1. If the point is below the

region, we will have
P

l�j < 1. Because the efficient frontier, as defined by the

BCC model, is strictly concave, the solution will designate this point as being in

the region of constant, decreasing, or increasing RTS, respectively.

Thus, the CCR model simultaneously evaluates RTS and technical inefficiency

while the BCC model separately evaluates technical efficiency with y�BCC from the

envelopment model and RTS with u�o obtained from the multiplier model.

As Fig. 2.2 illustrates, at point E, the evaluation for the CCR model is global

with RTS always evaluated relative to MPSS. The evaluation for the BCC model

is local with u�o being determined by the facet of the efficient frontier in which the
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point used to evaluate DMUo is located. As a consequence, it always be the

case that y�CCR < y�BCC unless the point used to evaluate DMUo is in the region

of MPSS, in which case y�CCR ¼ y�BCC will obtain.

2.4 Most Productive Scale Size

There is some ambiguity in dealing with points like B and C in Fig. 2.2 because

the condition that prevails depends on the direction in which movement

is to be effected. As noted by Førsund (1996) this situation was dealt with by

Ragnar Frisch – who pioneered empirical studies of production and suggested that

the orientation should be toward maximizing the output per unit input when dealing

with technical conditions of efficiency. See Frisch (1964). However, Frisch (1964)

dealt only with the case of single outputs. Extensions to multiple output–multiple

input situations can be dealt with by the concept of Most Productive Scale Size

(MPSS) as introduced into the DEA literature by Banker (1984). To see what this

means consider

ðXoa; YobÞ; (2.11)

with b; a � 0 representing scalars and Xo and Yo representing input and output

vectors, respectively, for DMUo. We can continue to move toward a possibly better

(i.e., more productive) RTS situation as long as b/a 6¼ 1. In other words, we are not

at a point which is MPSS when either (a) all outputs can be increased in proportions

that are at least as great as the corresponding proportional increases in all inputs

needed to bring them about, or (b) all inputs can be decreased in proportions that

are at least as great as the accompanying proportional reduction in all outputs.

Only when b/a¼ 1, or a¼ b, will RTS be constant, as occurs at MPSS.

One way to resolve problems involving returns to scale for multiple

output–multiple input situations would use a recourse to prices, costs (or similar

weights) to determine a “best” or “most economical” scale size. Here, however,

we are using the concept of MPSS in a way that avoids the need for additional

information on unit prices, costs, etc., by allowing all inputs and outputs to vary

simultaneously in the proportions prescribed by a and b in (2.11). Hence,

MPSS allows us to continue to confine attention to purely technical inefficiencies,

as before, while allowing for other possible choices after scale changes and size

possibilities have been identified and evaluated in our DEA analyses.

The interpretation we have just provided for (2.11) refers to RTS locally, as is

customary – e.g., in economics. However, this does not exhaust the uses that can be

made of Banker’s (1984) MPSS. For instance, we can now replace our preceding

local interpretation of (2.11) by one which is oriented globally. That is, we seek to

characterize the returns to scale conditions for DMUo with respect to MPSS instead

of restricting this evaluation to the neighborhood of the point ðXo; YoÞ where, say,
a derivative is to be evaluated. See Varian (1984, p. 20) for economic

interpretations of restrictions needed to justify uses of derivatives. We also do
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this in a way that enables us to relate Theorems 2.1 and 2.2 to each other and

thereby provide further insight into how the BCC and CCR models relate to each

other in scale size (and other) evaluations.

For these purposes, we introduce the following formulation,

maximize
b
a
;

subject to

bYo �
Xn
j¼1

Yjlj;

aXo �
Xn
j¼1

Xjlj;

1 ¼
Xn
j¼1

lj;

0 � b; a; lj; j ¼ 1; . . . ; n: ð2:12Þ

Now note that the condition
P

lj ¼ 1 appears just as it does in (2.1). However,

in contrast to (2.1), we are now moving to a global interpretation by jointly

maximizing the proportional increase in outputs and minimizing the proportional

decrease in inputs. We are also altering the characterizations so that these a and b
values now yield new vectors X̂o ¼ aXo and Ŷo ¼ bYo, which we can associate

with points which are MPSS, as in the following

Theorem 2.5. A necessary condition for DMUo, with output and input vectors

Yo and Xo, to be MPSS is max b/a¼ 1 in (2.12), in which case RTS will be constant.

Theorem 2.5 follows from the fact that b¼ a¼ 1 with lj¼ 0, lo¼ 1 for j 6¼ o is

a solution of (2.12), so that, always, max b/a¼ b*/a*� 1. See the appendix

in Cooper et al. (1996) for a proof and a reduction of (2.12) to a linear program-

ming equivalent.

We illustrate with D¼ (4,5) in Fig. 2.2 for which we utilize (2.12) to obtain

Maximize
b
a
;

subject to

5b � 1lA þ 2lB þ 4lC þ 5lD þ 9

2
lE;

4a � 1lA þ 3

2
lB þ 3lC þ 4lD þ 4lE;

1 ¼ lA þ lB þ lC þ lD þ lE;

0 � lA; lB; lC; lD; lE: ð2:13Þ
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This has anoptimumatl�B ¼ 1witha*¼ 3/8 andb*¼ 2/5 to giveb*/a*¼ 16/15> 1.

Thus,MPSS is not achieved. Substituting in (2.13)withl�B ¼ 1,we canuse this solution

to obtain 4a*¼ 3/2 and 5b*¼ 2 which are the coordinates of B in Fig. 2.2. Thus,

D¼ (4,5) is evaluated globally by reference to B¼ (3/2,2), which is in the region of

CRS and hence is MPSS.

There is also an alternate optimum to (2.13) with l�C ¼ 1 and a*¼ 3/4, b*¼ 4/5

so, again, b*/a*¼ 16/15, and D is not at MPSS. Moreover, 4a*¼ 5, 5b*¼ 4 gives

the coordinates of C¼ (3, 4). Thus, D is again evaluated globally by a point in the

region of MPSS. Indeed, any point in this region of MPSS would give the same

value of b*/a*¼ 16/15, since all such points are representable as convex

combinations of B and C.

Theorem 2.6. Sign conditions for BCC and CCR models:

(i) The case of IRS. u�o < 0 for all optimal solutions to (2.2) if and only ifP
l�j � 1

� �
< 0 for all optimal solutions to (2.5).

(ii) The case of DRS. u�o > 0 for all optimal solutions to (2.2) if and only

if
P

l�j � 1
� �

>0 for all optimal solutions to (2.5).

(iii) The case of CRS. u�o ¼ 0 for some optimal solutions to (2.2) if and only ifP
l�j � 1

� �
¼ 0 for some optimal solution to (2.5).

This theorem removes the possibility that uses of the CCR and BCC models

might lead to different RTS characterizations. It is also remarkable because

differences might be expected from the fact that (2.2) effects its evaluations locally

with respect to a neighboring facet while (2.5) effects its evaluations globally with

respect to a facet (or point) representing MPSS.

To see what this means we focus on active members of an optimal solution set as

follows.

Turning to E in Fig. 2.2 we see that it is evaluated by E0 when (2.1) is used.

This point, in turn, can be represented as a convex combination of C and D with

both of the latter vectors constituting active members of the optimal basis.

The associated support coincides with the line segment connecting C and D
with a (unique) value u�o>0 so RTS are decreasing, as determined from (2.2).

This is a local evaluation. When (2.5) is used, the projection is to E00,
with alternate optima at B or C respectively serving as the only active

member of the optimal basis. Hence the evaluation by the CCR model is

effected globally. Nevertheless, the same DRS characterization is secured.

We now note that E00 may be projected into the MPSS region by means of

the following formulas,
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y�xio � s��
iPn

j¼1

l̂�j

;

yro þ sþ�
iPn

j¼1

l̂�j

; ð2:14Þ

where the denominators are secured from (2.6). This convexification of (2.3),

which is due to Banker and Morey (1986), provides a different projection than

(2.3). We illustrate for E00 by using the solutions for (2.9) to obtain

4y� � s��
i

9=4
¼ 27=8

9=4
¼ 3=2;

yro þ sþ�
i

9=4
¼ 9=2

9=4
¼ 2:

This gives the coordinates of B from one optimal solution. The other optimal

solution yields the coordinates of C via

4y� � s��
i

9=8
¼ 27=8

9=8
¼ 3;

yro þ sþ�
i

9=8
¼ 9=2

9=8
¼ 4:

This additional step brings us into coincidence with the results already

described for the MPSS model given in (2.13). Consistency is again achieved

even though the two models proceed by different routes. The MPSS model in

(2.12) bypasses the issue of increasing vs. decreasing RTS and focuses on the

issue of MPSS, but this same result can be achieved for (2.5) by using

the additional step provided by the projection formula (2.14).

2.5 Additive Models

The model (2.12), which we used for MPSS, avoids the problem of choosing

between input and output orientations, but this is not the only type of model for

which this is true. The additive models to be examined in this section also have

this property. That is, these models simultaneously maximize outputs and mini-

mize inputs, in the sense of vector optimizations.
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The additive model we select is

max
Xm
i¼1

g�i s
�
i þ

Xs
r¼1

gþr s
þ
r ;

subject to

Xn
j¼1

xijlj þ s�i ¼ xio; i ¼ 1; 2; . . . ;m;

Xn
j¼1

yrjlj � sþr ¼ yro; r ¼ 1; 2; . . . ; s;

Xn
j¼1

lj ¼ 1;

lj; s�i ; s
þ
r � 0: ð2:15Þ

This model utilizes the “goal vector” approach of Thrall (1996a) in which

the slacks in the objective are accorded “goal weights” which may be subjective

or objective in character. Here we want to use these “goal weights” to ensure that

the units of measure associated with the slack variables do not affect the optimal

solution choices.

Employing the language of “dimensional analysis,” as in Thrall (1996a),

we want these weights to be “contragredient” to insure that the resulting objective

will be “dimensionless.” That is, we want the solutions to be free of the dimensions

in which the inputs and outputs are stated. An example is the use of the input and

output ranges in Cooper et al. (1999) to obtain gi ¼ 1=R�
i , gr ¼ 1=Rþ

r where R�
i

is the range for the ith input and Rþ
r is the range for the rth output. This gives each

term in the objective of (2.15) a contragredient weight. The resulting value of the

objective is dimensionless, as follows from the fact that the s�i and sþr in

the numerators are measured in the same units as the R�
i and Rþ

r in the

denominators. Hence the units of measure cancel.

The condition for efficiency given in Definition 1.3 in Chap. 1 for the CCR

model is now replaced by the following simpler condition,

Definition 2.1. A DMUo evaluated by (2.15) is efficient if and only if all slacks

are zero.

Thus, in the case of additive models it suffices to consider only condition (ii)

in Definition 1.3. Moreover this condition emerges from the second stage solution

procedure associated with the non-Archimedean e> 0 in (1.1). Hence we might

expect that RTS characterizations will be related, as we see now.

To start our RTS analyses for these additive models we first replace the CCR

projections of (2.3) with

x̂io ¼ xio � s��
i ; i ¼ 1; . . . ;m;

ŷro ¼ yro þ sþ�
r ; r ¼ 1; . . . ; s; ð2:16Þ

where s��
i and sþ�

r are optimal slacks obtained from (2.15). Then we turn to the dual

(multiplier) model associated with (2.15) which we write as follows,
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min
Xm
i¼1

nixio �
Xs
r¼1

mriyro þ uo;

subject to

Xm
i¼1

nixij �
Xs
r¼1

mriyrj þ uo � 0; j ¼ 1; . . . ;m;

ni � g�i ; mr � gþr ; uo free: ð2:17Þ

We are thus in position to use Theorem 2.1 for “additive” as well as

“radial measures” as reflected in the BCC and CCR models discussed in earlier

parts of this chapter. Hence we again have recourse to this theorem where, however,

we note the difference in objectives between (2.2) and (2.17), including the change

from� uo to + uo. As a consequence of these differences we also modify (2.4) to the

following,

Maximize ûo;

subject to

Xs
r¼1

mryrj �
Xm
i¼1

nixij � ûo � 0; j ¼ 1; . . . ;m; j 6¼ 0;

Xs
r¼1

mrŷro �
Xm
i¼1

nix̂io � ûo ¼ 0;

mr � gþr ; ni � g�i ; ûo � 0: ð2:18Þ

Here we have assumed that u�o < 0 was achieved in a first-stage use of (2.17).

Hence, if û�o < 0 is maximal in (2.18) then RTS are increasing at ðx̂o; ŷoÞ in

accordance with (i) in Theorem 2.1 whereas if û�o ¼ 0 then (iii) applies and RTS

are constant at this point ðx̂o; ŷoÞ on the efficiency frontier.

For u�o>0 in stage one, the objective and the constraint on ûo are simply

reoriented in the manner we now illustrate by using (2.15) to evaluate E in

Fig. 2.2 via

max s� þ sþ;
subject to

lA þ 3

2
lB þ 3lC þ 4lD þ 4lE þ s� ¼ 4;

lA þ 2lB þ 4lC þ 5lD þ 9

2
lE � sþ ¼ 9

2
;

lA þ lB þ lC þ lD þ lE ¼ 1;

s�; sþ; lA; lB; lC; lD; lE � 0;

where we have used unit weights for the g�i , g
þ
r , to obtain the usual additive model

formulation. (See Thrall (1996b) for a discussion of the applicable condition
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for a choice of such “unity” weights.) This has an optimal solution with l�C ¼
l�D ¼ s�� ¼ 1=2 and all other variables zero. To check that this is optimal we turn

to the corresponding dual (multiplier) form for the above envelopment model,

which is

min 4n� 9

2
mþ uo;

subject to

n� m þ uo � 0;

3

2
n� 2m þ uo � 0;

3n� 4m þ uo � 0;

4n� 5m þ uo � 0;

4n� 9

2
m þ uo � 0;

n; m � 1; uo free:

The solution n� ¼ m� ¼ u�o ¼ 1 satisfies all constraints and gives

4n� � ð9=2Þm� þ u�o ¼ 1=2. This is the same value as in the preceding problem

so that, by the dual theorem of linear programming, both solutions are optimal.

To determine the conditions for RTS, we use (2.16) to project E into E0

with coordinates ðx̂; ŷÞ ¼ ð7=2; 9=2Þ in Fig. 2.2. Then we utilize the following

reorientation of (2.18),

min ûo;

subject to

n� m þ ûo � 0;

3

2
n� 2mþ ûo � 0;

3n� 4m þ ûo � 0;

4n� 5m þ ûo � 0;

7

2
n� 9

2
mþ ûo ¼ 0;

n; m � 1; ûo � 0:

This also gives v� ¼ u� ¼ û�o ¼ 1 so the applicable condition is (ii) in Theorem2.1.

Thus, RTS are decreasing at E0, the point on the BCC efficiency frontier which is

shown in Fig. 2.2.
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2.6 Multiplicative Models

The treatments to this point have been confined to “qualitative” characterizations in

the form of identifying whether RTS are “increasing,” “decreasing,” or “constant.”

There is a literature – albeit a relatively small one – which is directed to “quantita-

tive” estimates of RTS in DEA. Examples are the treatment of scale elasticities in

Banker et al. (1984), Førsund (1996) and Banker and Thrall (1992). However, there

are problems in using the standard DEAmodels, as is done in these studies, to obtain

scale elasticity estimates. Førsund (1996), for instance, lists a number of such

problems. Also the elasticity values in Banker and Thrall (1992) are determined

only within upper and lower bounds. This is an inherent limitation that arises from

the piecewise linear character of the frontiers for these models. Finally, attempts to

extend the F€are, Grosskopf and Lovell (1985, 1994) approaches to the determination

of scale elasticities have not been successful. See the criticisms in Førsund (1996,

p. 296) and Fukuyama (2000, p. 105). (Multiple output–multiple input production

and cost functions, which meet the sub- and superadditivity requirements in eco-

nomics, are dealt with in Panzar and Willig (1977). See also Baumol et al. (1982).)

This does not, however, exhaust the possibilities. There is yet another class

of models referred to as “multiplicative models,” which were introduced by this

name into the DEA literature in Charnes et al. (1982) – see also Banker et al. (1981) –

and extended in Charnes et al. (1983) to accord these models nondimensional

(¼units invariance) properties such as those we have just discussed. Although not

used very much in applications these multiplicative models can provide advantages

for extending the range of potential uses for DEA. For instance, they are not confined

to efficiency frontiers that are concave. They can be formulated to allow the

efficiency frontiers to be concave in some regions and nonconcave elsewhere. See

Banker andMaindiratta (1986). They can also be used to obtain “exact” estimates of

elasticities in manners that we now describe.

The models we use for this discussion are due to Banker andMaindiratta (1986) –

where analytical characterizations are supplied along with confirmation in con-

trolled-experimentally designed simulation studies.

We depart from the preceding development and now use an output-oriented

model, which has the advantage of placing this development in consonance with

the one in Banker and Maindiratta (1986) – viz.,

max go;

subject to

Yn
j¼1

x
lj
ij � xio; i ¼ 1; . . . ;m;

Yn
j¼1

y
lj
rj � goyro; r ¼ 1; . . . ; s;

Xn
j¼1

lj ¼ 1;

go; lj � 0: ð2:19Þ
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To convert these inequalities to equations we use

es
�
i

Yn
j¼1

x
lj
ij ¼ xio; i ¼ 1; . . . ;m

and

e�sþr
Yn
j¼1

y
lj
rj ¼ goyro; r ¼ 1; . . . ; s ð2:20Þ

and replace the objective in (2.19) with gee
Ps

r¼1
sþr þ
Pm

i¼1
s�ið Þ, where s�i ; s

þ
r � 0

represent slacks. Employing (2.20) and taking logarithms we replace (2.19) with

min� ~go � e
Xs
r¼1

sþr þ
Xm
i¼1

s�i

 !
;

subject to

~xio ¼
Xn
j¼1

~xijlj þ s�i ; i ¼ 1; . . . ;m;

~go þ ~yro ¼
Xn
j¼1

~yrjlj � sþr ; r ¼ 1; . . . ; s;

1 ¼
Xn
j¼1

lj;

lj; sþr ; s
�
i � 0; 8 j; r; i; ð2:21Þ

where “~” denotes “logarithm” so the ~xij, ~yrj and the ~go, ~xio, ~yro are in logarithmic

units.

The dual to (2.21) is

max
Xs
r¼1

br~yro �
Xm
i¼1

ai~xio � ao;

subject to

Xs
r¼1

br~yrj �
Xm
i¼1

ai~xij � ao � 0; j ¼ 1; . . . ; n;

Xs
r¼1

br ¼ 1;

ai � e; br � e; ao free in sign: ð2:22Þ

Using a�i , b
�
r and a

�
o for optimal values,

Ps
r¼1

b�r ~yro �
Pm
i¼1

a�i ~xio � a�o ¼ 0 represents

a supporting hyperplane (in logarithmic coordinates) for DMUo, where efficiency
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is achieved. We may rewrite this log-linear supporting hyperplane in terms of the

original input/output values:

Ys
r¼1

yb
�
r

ro ¼ ea
�
o

Ym
i¼1

x
a�i
io : (2.23)

Then, in the spirit of Banker and Thrall (1992), we introduce

Theorem 2.7. Multiplicative Model RTS,

(i) RTS are increasing if and only if
P

a�i>1 for all optimal solutions to (2.23).

(ii) RTS are decreasing if and only if
P

a�i < 1 for all optimal solutions to (2.23).

(iii) RTS are constant if and only if
P

a�i ¼ 1 for some optimal solutions to (2.23).

To see what this means we revert to the discussion of (2.11) and introduce

scalars a, b in (aXo; bYo). In conformance with (2.23) this means

ea
�
o

Ym
i¼1

ðaxioÞa
�
i ¼

Ys
r¼1

ðbyroÞb
�
r ; (2.24)

so that the thus altered inputs and outputs satisfy this extension of the usual

Cobb–Douglas types of relations.

The problem now becomes: given an expansion a> 1, contraction a< 1,

or neither, i.e., a¼ 1, for application to all inputs, what is the value of b
that positions the solution in the supporting hyperplane at this point? The answer

is given by the following

Theorem 2.8. If (aXo; bYo) lies in the supporting hyperplane then b ¼ a
Pm

i¼1
a�i .

Proof. This proof is adopted from Banker et al. (2004). Starting with the expres-

sion on the left in (2.25) we can write

ea
�
o

Ym
i¼1

ðaxioÞa
�
i ¼ a

Pm

i¼1
a�i ea

�
o

Ym
i¼1

x
a�i
io ¼ a

Pm

i¼1
a�i

b

Ys
r¼1

ðbyroÞb
�
r ; (2.25)

by using the fact that
Ps

r¼1 b
�
r ¼ 1 in (2.22) and ea

�
o
Qm

i¼1 x
a�i
io ¼Qs

r¼1 y
b�r
ro in (2.23).

Thus, to satisfy the relation (2.24) we must have b ¼ a
Pm

i¼1
a�i as the theorem

asserts. ■

Via this Theorem, we have the promised insight into reasons why more than

proportionate output increases are associated with
Pm

i¼1 a
�
i>1, less than propor-

tionate increases are associated with
Pm

i¼1 a
�
i < 1 and CRS is the applicable

condition when
Pm

i¼1 a
�
i ¼ 1.

There may be alternative optimal solutions for (2.22) so the values for

the a�i components need not be unique. For dealing with alternate optima, we

return to (2.19) and note that a necessary condition for efficiency is g�o ¼ 1.
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For full efficiency we must also have all slacks at zero in (2.20). An adaptation of

(2.3) to the present problem, therefore, gives the following:

Yn
j¼1

x
l�j
ij ¼ e�s��

i xio ¼ x0io; i ¼ 1; . . . ;m;

Yn
j¼1

y
l�j
rj ¼ es

þ�
ri g�oyro ¼ y0ro; r ¼ 1; . . . ; s ð2:26Þ

and x0io, y
0
ro are the coordinates of the point on the efficiency frontier used to

evaluate DMUo.

Thus, we can extend the preceding models in a manner that is now familiar.

Suppose that we have obtained an optimal solution for (2.22) with
Pm

i¼1 a
�
i < 1.

We then utilize (2.26) to form the following problem

max
Xm
i¼1

ai;

subject to

Xs
r¼1

br~yrj �
Xm
i¼1

ai~xij � ao � 0; j ¼ 1; . . . ; n; j 6¼ 0;

Xs
r¼1

br~y
0
ro �

Xm
i¼1

ai~x0io � ao ¼ 0;

Xs
r¼1

br ¼ 1;

Xm
i¼1

ai � 1;

ai � e; br � e; ao free in sign: ð2:27Þ

If
Pm

i¼1 a
�
i ¼ 1 in (2.27), then RTS are constant by (iii) of Theorem 2.8.

If the maximum is achieved with
Pm

i¼1 a
�
i < 1, however, condition (ii) of Theo-

rem 2.7 is applicable and RTS are decreasing at the point x0io, y
0
ro; i¼ 1, . . ., m; r¼ 1,

. . ., s.
If we initially have

Pm
i¼1 a

�
i>1 in (2.22), we replace

Pm
i¼1 a

�
i � 1 withPm

i¼1 a
�
i � 1 in (2.27) and also change the objective to minimize

Pm
i¼1 a

�
i .

If the optimal value is greater than one, then (i) of Theorem 2.7 is applicable and

the RTS are increasing. On the contrary, if we attain
Pm

i¼1 a
�
i ¼ 1 then condition

(iii) applies and RTS are constant.

Theorem 2.8 also allows us to derive pertinent scale elasticities in a straightfor-

ward manner. Thus, using the standard logarithmic derivative formulas for

elasticities, we obtain the following:

d ln b

d ln a
¼ a

b

db

da
¼
Xm
i¼1

a�i : (2.28)
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Consisting of a sum of component elasticities, one for each input, this overall

measure of elasticity is applicable to the value of the multiplicative expression with

which DMUo is associated.

The derivation in (2.28) holds only for points where this derivative exists.

However, we can bypass this possible source of difficulty by noting that Theorem

2.8 allows us to obtain this elasticity estimate via

ln b

ln a
¼
Xm
i¼1

a�i : (2.29)

Further, as discussed in Cooper et al. (1996), it is possible to extend these

concepts to the case in which all of the components of Yo are allowed to increase

by at least the factor b. However, we cannot similarly treat the constant, a,

as providing an upper bound for the inputs since mix alterations are not permitted

in the treatment of RTS in economics. See Varian (1984, p. 20) for requirements

of RTS characterizations in economics.

In conclusion, we turn to properties of units invariance for these multiplicative

models. Thus, we note that
Pm

i¼1 a
�
i is units invariant by virtue of the relation

expressed in (2.28). The property of units invariance is also exhibited in (2.29)

since a and b are both dimension free. Finally, we also have the following.

Theorem 2.9. The model given in (2.19) and (2.20) is dimension free. That is,

changes in the units used to express the input quantities xij or the output quantities
yrj in (2.19) will not affect the solution set or alter the value of max go ¼ g�o.

Proof. Let

x0ij ¼ cixij; x0io ¼ cixio; i ¼ 1; . . . ;m;

y0rj ¼ kryrj; y
0
ro¼ kryro; r ¼ 1; . . . ; s; ð2:30Þ

where the ci and kr are any collection of positive constants. By substitution in the

constraints for (2.20), we then have

es
�
i

Yn
j¼1

x0ijlj ¼ x0io; i ¼ 1; . . . ;m;

es
þ
r

Yn
j¼1

y0rjlj ¼ goy
0
ro; r ¼ 1; . . . ; s;

Xn
j¼1

lj ¼ 1; lj � 0; j ¼ 1; . . . ; n: ð2:31Þ
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Utilization of (2.30), therefore, gives

es
�
i c

Pn

j¼1
lj

i

Yn
j¼1

x
lj
ij ¼ cixio; i ¼ 1; . . . ;m;

e�sþr k

Pn
j¼1

lj

r

Yn
j¼1

y
lj
rj ¼ gokryro; r ¼ 1; . . . ; s;

Xn
j¼1

lj ¼ 1; lj � 0; j ¼ 1; . . . ; n: ð2:32Þ

However,
Pn

j¼1 lj ¼ 1, so c

Pn

j¼1
lj

i ¼ ci and k

Pn

j¼1
lj

r ¼ kr 8i; r. Therefore,

these constants, which appear on the right and left of (2.32), all cancel.

Thus, all solutions to (2.31) are also solutions to (2.20) and vice versa. It follows

that the optimal value of one program is also optimal for the other. ■

We now conclude our discussion of these multiplicative models with the

following:

Corollary to Theorem 2.9. The restatement of (2.20) in logarithmic form yields

a model that is translation invariant.

Proof. Restating (2.31) in logarithmic form gives

s�i þ
Xn
j¼1

~xij þ ~ci
� �

lj ¼ ~xio þ ~ci; i ¼ 1; . . . ;m;

� sþr þ
Xn
j¼1

~yrj þ ~kr

� �
lj ¼ ~yro þ ~kr þ ~go; r ¼ 1; . . . ; s;

Xn
j¼1

lj ¼ 1; lj � 0; j ¼ 1; . . . ; n: ð2:33Þ

Once more utilizing
P

lj ¼ 1 we eliminate the ~ci and ~kr on both sides of these

expressions and obtain the same constraints as in (2.21). Thus, as before,

the solution sets are the same and an optimum solution for one program is also

optimal for the other – including the slacks. ■

2.7 Summary and Conclusion

Although we have now covered all of the presently available models, we have not

covered all of the orientations in each case. Except for the multiplicative models,

we have not covered output-oriented objectives for a variety of reasons. There are

no real problems with the mathematical development, but further attention must be
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devoted to how changes in input scale and input mix should be treated when all

outputs are to be scaled up in the same proportions. See the discussion in Cooper

et al. (1996).

As also noted in Cooper et al. (1996), the case of IRS can be clarified by using

Banker’s most productive scale size to write (Xoa, Yob). The case 1< b/a
means that all outputs are increased by at least the factor b and RTS are increasing

as long as this condition holds. The case 1> b/a has the opposite meaning – viz., no

output is increasing at a rate that exceeds the rate at which all inputs are increased.

Only for CRS do we have 1¼ b/a, in which case all outputs and all inputs are

required to be increasing (or decreasing) at the same rate so no mix change is

involved for the inputs.

The results in this chapter (as in the literature to date) are restricted to this class

of cases. This leaves unattended a wide class of cases. One example involves the

case where management interest is centered on only subsets of the outputs and

inputs. A direct way to deal with this situation is to partition the inputs and outputs

of interest and designate the conditions to be considered by ðXI
oa;X

N
o ; Y

I
ob; Y

N
o Þ

where I designates the inputs and outputs that are of interest to management and N
designates those which are not of interest (for such scale returns studies).

Proceeding as described in the present chapter and treating XN
o and YN

o

as “exogenously fixed,” in the spirit of Banker and Morey (1986), would make

it possible to determine the situation for RTS with respect to the thus designated

subsets. Other cases involve treatments with unit costs and prices as in FGL (1994)

and Sueyoshi (1999).

The developments covered in this chapter have been confined to technical aspects

of production. Our discussions follow a long-standing tradition in economics that

distinguishes scale from mix changes by not allowing the latter to vary when scale

changes are being considered. This permits the latter (i.e., scale changes) to be

represented by a single scalar – hence the name. However, this can be far from actual

practice, where scale and mix are likely to be varied simultaneously when determin-

ing the size and scope of an operation. See the comments by a steel industry

consultant that are quoted in Cooper, Seiford, and Tone (2000, p. 130) on the need

for reformulating this separation between mix and scale changes to achieve results

that more closely conform to needs and opportunities for use in actual practice.

There are, of course, many other aspects to be considered in treating RTS besides

those attended to in the present chapter. Management efforts to maximize profits,

even under conditions of certainty, require simultaneous determination of scale,

scope, and mix magnitudes with prices and costs known, as well as the achievement

of the technical efficiency, which is always to be achieved with any set of positive
prices and costs. The topics treated in this chapter do not deal with such price–cost

information. Moreover, the focus is on ex post facto analysis of already effected

decisions. This can have many uses, especially in the control aspects of management

where evaluations of performance are required. Left unattended in this chapter,

and in much of the DEA literature, is the ex ante (planning) problem of how to use

this knowledge to determine how to blend scale and scope with mix and other

efficiency considerations when effecting future-oriented decisions.
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Appendix

In this Appendix, we first present the FGL approach. We then present a simple RTS

approach without the need for checking the multiple optimal solutions as in Zhu and

Shen (1995) and Seiford and Zhu (1999) where only the BCC and CCR models are

involved. This approach will substantially reduce the computational burden

because it relies on the standard CCR and BCC computational codes

(see Zhu (2009) for a detailed discussion).

To start, we add to the BCC and CCR models by the following DEA

model whose frontier exhibits nonincreasing returns to scale (NIRS), as in F€are,
Grosskopf and Lovell (FGL 1985, 1994)

y�NIRS ¼ min yNIRS;

subject to

yNIRSxio ¼
Xn
j¼1

xijlj þ s�i ; i ¼ 1; 2; . . . ;m;

yro ¼
Xn
j¼1

yrjlj � sþr ; r ¼ 1; 2; . . . ; s;

1 �
Xn
j¼1

lj;

0 � lj; s�i ; s
þ
r 8 i; r; j: ð2:34Þ

The development used by FGL (1985, 1994) rests on the following relation

y�CCR � y�NIRS � y�BCC;

where “*” refers to an optimal value and y�NIRS is defined in (2.34), while y�BCC
and y�CCR refer to the BCC and CCR models as developed in Theorems 2.3 and 2.4.

FGL utilize this relation to form ratios that provide measures of RTS.

However, we turn to the following tabulation that relates their RTS

characterization to Theorems 2.3 and 2.4 (and accompanying discussion).

See also F€are and Grosskopf (1994), Banker et al. (1996b), and Seiford and Zhu

(1999)

FGL Model RTS CCR Model

Case 1 If y�CCR ¼ y�BCC Constant
P

l�j ¼1

Case 2 If y�CCR < y�BCC then

Case 2a If y�CCR ¼ y�NIRS Increasing
P

l�j<1

Case 2b If y�CCR < y�NIRS Decreasing
P

l�j>1
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It should be noted that the problem of nonuniqueness of results in the presence

of alternative optima is not encountered in the FGL approach (unless output-

oriented as well as input-oriented models are used), whereas they do need to

be coincided, as in Theorem 2.3. However, Zhu and Shen (1995) and Seiford and

Zhu (1999) develop an alternative approach that is not troubled by the possibility of

such alternative optima.

We here present their results with respect to Theorems 2.3 and 2.4

(and accompanying discussion). See also Zhu (2009).

Seiford and Zhu (1999) RTS CCR Model

Case 1 If y�CCR ¼ y�BCC Constant
P

l�j ¼1

Case 2 y�CCR 6¼ y�BCC

Case 2a If
P

l�j < 1 in any CCR outcome Increasing
P

l�j<1

Case 2b If
P

l�j > 1 in any CCR outcome Decreasing
P

l�j>1

The significance of Seiford and Zhu’s (1999) approach lies in the fact that

the possible alternate optimal l�j obtained from the CCR model only affect the

estimation of RTS for those DMUs that truly exhibit CRS and have nothing to do

with the RTS estimation on those DMUs that truly exhibit IRS or DRS. That is,

if a DMU exhibits IRS (or DRS), then
Pn

j l
�
j must be less (or greater) than one,

no matter whether there exist alternate optima of lj, because these DMUs do not lie

in the MPSS region. This finding is also true for the u�o obtained from the BCC

multiplier models.

Thus, in empirical applications, we can explore RTS in two steps. First, select

all the DMUs that have the same CCR and BCC efficiency scores regardless of the

value of
Pn

j l
�
j obtained from model (2.5). These DMUs are CRS. Next,

use the value of
Pn

j l
�
j (in any CCR model outcome) to determine the RTS for

the remaining DMUs. We observe that in this process we can safely ignore

possible multiple optimal solutions of lj.
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