Chapter 2
Returns to Scale in DEA®*

Rajiv D. Banker, William W. Cooper, Lawrence M. Seiford, and Joe Zhu

Abstract This chapter discusses returns to scale (RTS) in data envelopment
analysis (DEA). The BCC and CCR models described in Chap. 1 of this handbook
are treated in input-oriented forms, while the multiplicative model is treated in
output-oriented form. (This distinction is not pertinent for the additive model,
which simultaneously maximizes outputs and minimizes inputs in the sense of
a vector optimization.) Quantitative estimates in the form of scale elasticities are
treated in the context of multiplicative models, but the bulk of the discussion
is confined to qualitative characterizations such as whether RTS is identified as
increasing, decreasing, or constant. This is discussed for each type of model,
and relations between the results for the different models are established.
The opening section describes and delimits approaches to be examined.
The concluding section outlines further opportunities for research and an Appendix
discusses other approaches in DEA treatment of RTS.
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2.1 Introduction

It has long been recognized that Data Envelopment Analysis (DEA) by its use of
mathematical programming is particularly adept at estimating inefficiencies in
multiple input and multiple output production correspondences. Following
Charnes, Cooper, and Rhodes (CCR 1978), a number of different DEA models
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have now appeared in the literature (see Cooper et al. 2000). During this period
of model development, the economic concept of returns to scale (RTS) has also
been widely studied within the different frameworks provided by these methods,
and this is the topic to which this chapter is devoted.

In the literature of classical economics, RTS have typically been defined only for
single-output situations. RTS are considered to be increasing if a proportional
increase in all the inputs results in a more than proportional increase in the single
output. Let o represent the proportional input increase and f represent the resulting
proportional increase of the single output. Increasing returns to scale(IRS) prevail
if >, and decreasing returns to scale (DRS) prevail if < o. Banker (1984),
Banker et al. (1984), and Banker and Thrall (1992) extend the RTS concept from
the single-output case to multiple-output cases using DEA.

Two paths may be followed in treating RTS in DEA. The first path, developed
by Fare, Grosskopf, and Lovell (FGL 1985, 1994), determines RTS by a use of
ratios of radial measures. These ratios are developed from model pairs which
differ only in whether conditions of convexity and subconvexity are satisfied.
The second path stems from work by Banker (1984), Banker et al. (1984) and
Banker and Thrall (1992). This path, which is the one we follow, includes, but
is not restricted to, radial measure models. It extends to additive and multipli-
cative models as well, and does so in ways that provide opportunities for
added insight into the nature of RTS and its treatment by the methods and
concepts of DEA.

The FGL approach has now achieved a considerable degree of uniformity that
has long been available — as in FGL (1985), for instance. See also FGL (1994).
We therefore treat their approach in the Appendix to this chapter. This allows us to
center this chapter on treating RTS with different models. These treatments have
long been available but only in widely scattered literatures. We also delineate
relations that have been established between these different treatments and extend
this to relations that have also been established with the FGL approach. See Banker
et al. (1996b), Zhu and Shen (1995), and Fare and Grosskopf (1994). In particular,
Seiford and Zhu (1999) established the relations among these alternative
approaches and provided a simple approach to RTS estimation without the need
for checking multiple optimal solutions.

The plan of development in this chapter starts with a recapitulation of results
from the very important paper by Banker and Thrall (1992). Although developed
in the context of radial measure models, we also use the Banker and Thrall (1992)
results to unify the treatment of all of the models we cover. This is done after we
first cover the radial measure models that are treated by Banker and Thrall (1992).
Proofs of their theorems are not supplied because these are already available in
Banker and Thrall (1992). Instead refinements from Banker et al. (1996a) and from
Banker et al. (1996b) are introduced, which are directed to (a) providing simpler
forms for implementing the Banker—Thrall theorems and (b) eliminating some
of the assumptions underlying these theorems.

We then turn to concepts such as the MPSS (Most Productive Scale Size)
introduced by Banker (1984) to treat multiple output—multiple input cases
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in DEA and extend RTS concepts built around the single-output case in classical
economics. Additive and multiplicative models are then examined, and the latter
are used to introduce (and prove) new theorems for determining scale elasticities.

The former (i.e., the additive case) is joined with a “goal vector” approach
introduced by Thrall (1996a) to make contact with “invariance” and “balance”
ideas that play prominent roles in the “dimensional analysis” used to guide the
measurements used in the natural sciences (such as physics). We next turn to
the class of multiplicative models where, as shown by Charnes et al. (1982, 1983)
and Banker and Maindiratta (1986), the piecewise linear frontiers usually employed
in DEA are replaced by a frontier that is piecewise Cobb—Douglas (= log linear).
Scale elasticity estimates are then obtained from the exponents of these
“Cobb-Douglas like” functions for the different segments that form a frontier,
which need not be concave. A concluding section points up issues for
further research.

The Appendix of this chapter presents the FGL approach. We then present
a simple RTS approach developed by Zhu and Shen (1995) and Seiford and Zhu
(1999) to avoid the need for checking the multiple optimal solutions. This approach
will substantially reduce the computational burden because it relies on the standard
CCR and BCC computational codes.

2.2 RTS Approaches with BCC Models

For ease of reference, we present here the BCC models. Suppose that we have
n DMUs (decision-making units) where every DMU,, j=1, 2, ..., n, produces the
same s outputs in (possibly) different amounts, y,; (r=1, 2, .. ., 5), using the same m
inputs, x;; (i =1, 2,...,m), also in (possibly) different amounts. The efficiency of a
specific DMU, can be evaluated by the “BCC model” of DEA in “envelopment
form” as follows,

m N
min 6, — ¢ Zsi’ + z:sr+ :
i=1 r=1
subject to

n
Goxi(,: E xij;‘j+si7 i:1,2,...,m,
j=1
n
— E + —
Yo = y,;jlj—s], r = 1,2,...,5‘,
J=1

j=1

Ogij,si_,ﬁ

r

vj)"?j? (2'1)
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where, as discussed for the expression (1.6) in Chap. 1, ¢ > 0 is a non-Archimedean
element defined to be smaller than any positive real number.

As noted in the abstract, we confine attention to input-oriented versions of these
radial measure models and delay discussion of changes in mix, as distinct from
changes in scale, until we come to the class of additive models where input and
output orientations are treated simultaneously. Finally, we do use output
orientations in the case of multiplicative models because, as will be seen,
the formulations in that case do not create problems in distinguishing between
scale and mix changes.

Remark. We should, however, note that input- and output-oriented models may
give different results in their RTS findings. See Fig. 2.1 and related discussion
below. Thus the result secured may depend on the orientation used. IRS may
result from an input-oriented model, for example, while an application of an
output-oriented model may produce a DRS characterization from the same data.
See Golany and Yu (1994) for treatments of this problem.

The dual (multiplier) form of the BCC model represented in (2.1) is obtained
from the same data that are then used in the following form:

s
max z = § UrYro — Uo,

r=1

subject to

N m
E Uy yyj — E vixg —u, <0, j=1,...,n,
=1 i=1
m
§ ViXio =1,
i=1

Vi > &, u > ¢, u,freeinsign. (2.2)
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The above formulations assume that x;;,y; > 0 Vi,r,j. All variables in (2.2)
are also constrained to be nonnegative — except for u,, which may be positive,
negative, or zero with consequences that make it possible to use optimal values of
this variable to identify RTS.

When a DMU, is efficient in accordance with the Definition 1.3 in Chap. 1,
the optimal value of u,, i.e., u}, in (2.2), can be used to characterize the situation
for RTS.

RTS generally has an unambiguous meaning only if DMU, is on the efficiency
frontier — since it is only in this state that a tradeoff between inputs and outputs is
required to improve one or the other of these elements. However, there is no need
to be concerned about the efficiency status in our analyses because efficiency can
always be achieved as follows. If a DMU, is not BCC efficient, we can use
optimal values from (2.1) to project this DMU onto the BCC efficiency frontier
via the following formulas,

n

~ * —x * .
Xio =0 x;p —5; " = E x,;,-/lj, i=1,...,m,

=1

, (2.3)
~ _ +x * _
Yro =Yrot 8, = E :ylff)‘j7 r=1...s

J=1

where the symbol “*” denotes an optimal value. These are sometimes referred
to as the “CCR Projection Formulas” because Charnes et al. (1978) showed that
the resulting x;, < x;, and y,, > y,, correspond to the coordinates of a point on
the efficiency frontier. They are, in fact, coordinates of the point used to evaluate
DMU, when (2.1) is employed.

Suppose that we have five DMUs, A, B, C, D, and H as shown in Fig. 2.1 from
Zhu (2009). Ray OBC is the constant returns to scale (CRS) frontier. AB, BC, and
CD constitute the BCC frontier, and exhibit increasing, constant, and decreasing
returns to scale, respectively. B and C exhibit CRS. On the line segment AB, IRS
prevail to the left of B for the BCC model and on the line segment CD, DRS prevail
to the right of C. By applying (2.3) to point H, we have a frontier point H' on the line
segment AB where IRS prevail. However, if we use the output-oriented BCC model,
the projection is onto H” where DRS prevail. This is due to the fact that the input-
oriented and the output-oriented BCC models yield different projection points on the
BCC frontier and it is on the frontier that RTS is determined. See Zhu (2009)
for discussion on “returns to scale regions.”

We now present our theorem for RTS as obtained from Banker and Thrall (1992,
p. 79) who identify RTS with the sign of u; in (2.2) as follows:

Theorem 2.1. The following conditions identify the situation for RTS for the BCC
model given in (2.2),
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(i) IRS prevail at (%,,,) if and only if u’ < O for all optimal solutions.
(ii) DRS prevail at (%,,,) if and only if «’ > 0 for all optimal solutions.
(iii) Constant RTS prevail at (%,,Y,) if and only if u} = 0 for at least one optimal
solution.

Here, it may be noted, (X,,Y,) are the coordinates of the point on the efficiency
frontier which is obtained from (2.3) in the evaluation of DMU, via the solution
to (2.1). Note, therefore, that a use of the projection makes it unnecessary to assume
that the points to be analyzed are all on the BCC efficient frontier — as was assumed
in Banker and Thrall (1992).

An examination of all optimal solutions can be onerous. Therefore, Banker and
Thrall (1992) provide one way of avoiding a need for examining al/l optimal
solutions. However, Banker et al. (1996a) approach is used here because it avoids
the possibility of infinite solutions that are present in the Banker—Thrall approach.
In addition, the Banker et al. (1996a) approach insures that the RTS analyses are
conducted on the efficiency frontier. This is accomplished as follows.

Suppose that an optimum has been achieved with u), < 0. As suggested by
Banker et al. (1996a), the following model may then be employed to avoid having
to explore all alternate optima,

maximize i,,

subject to

s m
Zur‘yrj/'_zvixij_ﬁo Sov _]:1,,7’17_]750,
=1 i—1

s

m
g UrYro — g ViXip — Uy < Oa J: 07
r=1 i=1
m
E vikip =1,
i=1
s
§ UrYro — Uy = la

r=1
vi,ur >0 and 1, <0, (2.4)

where the %;, and y,, are obtained from (2.3).

With these changes of data, the constraints for (2.4) are in the same form as (2.2)
except for the added conditions Zi:l uy,, — i, = 1 and éi, < 0. The first of these
conditions helps to ensure that we will be confined to the efficiency frontier.
The second condition allows us to determine whether an optimal value can
be achieved with max 7, = 0. If &7 = 0 can be obtained, then condition (iii) of
Theorem 2.1 is satisfied and RTS are constant. If, however, max i, = @i, < 0, then,
as set forth in (i) of Theorem 2.1, RTS are increasing. In either case, the problem is
resolved, and the need for examining all alternate optima is avoided in this way of
implementing Theorem 2.1.
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Fig. 2.2 Most productive scale size

We can deal in a similar manner with the case when u;>0 by (a) reorienting
the objective in (2.4) to “minimize” #, and (b) replacing the constraint i, < 0
with @, > 0. All other elements of (2.4) remain the same and if min i, = &, > 0
then condition (ii) of Theorem 2.1 is applicable while if min i, = i, = O then
condition (iii) is applicable.

Reference to Fig. 2.2 can help us to interpret these results. This figure portrays
the case of one input, x, and one output, y. The coordinates of each point are listed
in the order (x,y). Now, consider the data for A that has the coordinates (x =1,
y=1), as shown at the bottom of Fig. 2.2. The “supports” at A form a family that
starts at the vertical line (indicated by the dotted line) and continues through
rotations about A until coincidence is achieved with the line connecting A to B. All
of these supports will have negative intercepts so u); < 0 and the situation for A is
one of IRS as stated in (i) of Theorem 2.1.

The reverse situation applies at D. Starting with the horizontal line indicated
by the dots, supports can be rotated around D until coincidence is achieved with
the line connecting D and C. In all cases, the intercept is positive so u; > 0 and
RTS are decreasing as stated in (ii) of Theorem 2.1.

Rotations at C or B involve a family of supports in which at least one member
will achieve coincidence with the broken line going through the origin so that,
in at least this single case, we will have u) = 0, in conformance with the condition
for constant RTS in (iii) of Theorem 2.1.

Finally, we turn to E, the only point that is BCC inefficient in Fig. 2.2.
Application of (2.3), however, projects E into E’ — a point on the line between
C and D — and, therefore, gives the case of DRS with a unique solution of &, > 0.
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Hence, all possibilities are comprehended by Theorem 2.1 for the qualitative RTS
characterizations that are of concern here. Thus, for these characterizations only
the signs of the nonzero values of it suffice.

2.3 RTS Approaches with CCR Models

We now turn to the CCR models that, as discussed in Chap. 1 of this handbook,
take the following form,

m N
minimize 0 — ¢ Z s; + Z st

i=1 r=1
subject to

n
Oxio = Y _Xifhi + 57,
-

J

n
R
_ E +
Yro = Yrjtj — 8.
J=1

0<4,s;,s" Vij,r. (2.5)

As can be seen, this model is the same as the “envelopment form” of the BCC
model in (2.1) except for the fact that the condition Z};l Zj =1 is omitted.
In consequence, the variable u,, which appears in the “multiplier form” for the
BCC model in (2.2), is omitted from the dual (multiplier) form of this CCR model.
The projection formulas expressed in (2.3) are the same for both models. We can,
therefore, use these same projections to move all points onto the efficient frontier
for (2.5) and proceed directly to RTS characterizations for (2.5), which are
supplied by the following theorem from Banker and Thrall (1992).

Theorem 2.2. The following conditions identify the situation for RTS for the CCR
model given in (2.5):

(i) CRS prevail at (£,,9,) if >_4; = 1 in any alternate optimum.
(ii) DRS prevail at (%,,5,) if > /1;-‘>1 for all alternate optima.
(i) IRS prevail at (%,,,) if > A7 <1 for all alternate optima.

Following Banker et al. (1996b), we can avoid the need for examining all
alternate optima. This is done as follows. Suppose that an optimum has been
obtained for (2.5) with >_ )L/’f < 1. We then replace (2.5) with
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n m A
maximize Z i+ Z 57+ Z 5,
=1 i=1 r=1
subject to

n
* a3 A .
0xig = Y xyjrj+8 fori=1,....m,
n
2 ot
Yro = E yridj — 85 forr=1,...,s,

1zzn:f1,,

with 0 < 7., 87,87 Vi j,r, (2.6)

JrPi 0 Pr

where 0" is the optimal value of 0 secured from (2.5).

Remark. This model can also be used for setting scale-efficient targets when
multiple optimal solutions in model (2.5) are present. See Zhu (2000, 2002).

We note for (2.5) that we may omit the two-stage process described for the CCR
model in Chap. 1 —i.e., the process in which the sum of the slacks are maximized
in stage 2 after 0" has been determined. This is replaced with a similar two-stage
process for (2.6) because only the optimal value of 6 is needed from (2.5)
to implement the analysis now being described. The optimal solution to (2.6)
then yields values of i’-‘, j=1,..., n, for which the following theorem is immediate,

Theorem 2.3. Given the existence of an optimal solution with > /1* < 1in (2.5),
the RTS at (%,,9,) are constant if and only if )* — 1 and RTS are increasing
if and only if ) /1* < 1in (2.6).

Consider A :(1, 1) as shown at the bottom of Fig. 2.2. Because we are only
interested in 0", we apply (1.4) in Chap. 1 to obtain

minimize 0,

subject to

3
10 > 174 +§}B +3ic +4ip + 42,

9
1 <14 + 24 +4Ac + 5p +51E7

0 < Ja, A, ACs s o (2.7)

This problem has 6" =3/4 and hence A is found to be inefficient. Next,
we observe that this problem has alternate optima because this same 0° = 3/4
can be obtained from either A; = 1/2 or from A7 = 1/4 with all other 1" = 0.
For each of these optima, we have »_ )L;k < 1, so we utilize (2.6) and write
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maximize s + Ap 4+ Ac + Ap + 4p + &(§ +57),
subject to
3 5 35 5 5 5 A_
Z: liA +§ig+3ic+4/1D+4/LE+S s
. . . . 9.
1 =14 +2ip +4Jc +5p +§;LE — §+,
1> Ju+ g+ ic+ Ip + g,
0 < i, A, Ay Aps A (2.8)

so that )/ A =04+ A+ AD + /% with all 1 nonnegative. An optimal
solution is }B = 1/2 and all other J* = 0. Hence, Z)L < 1, so from Theorem
2.3, IRS prevail at A.

We are here restricting attention to solutions of (2.6) with Z 1 l < 1,asin the
constraint of (2.6), but the examples we provide below show how to treat situations
in which 0" is associated with solutions of (2.5) that have values > /1*>1

Consider E = (4, 9/2) for (2.6), as a point that is not on either (1) the BCC
efficiency frontier represented by the solid lines in Fig. 2.2 or (ii) the CCR
efficiency frontier represented by the broken line from the origin. Hence, both the
BCC and CCR models find E to be inefficient. Proceeding via the CCR envelop-
ment model in (2.5) with the slacks omitted from the objective, we get

minimize 0,

subject to

3
40 > Via + 5 2 + 3ic + 4ip + 42,

9 9

3 < 1As+2/p +4Ac+5p +§)vE,

0 < Au, g, 2, 2p, AE. (2.9)
Again we have alternate optima with, now, 6% = 27/32 for either 1z = 9/4 or

A¢ =9/8 and all other 2* = 0. Hence, in both cases, we have ) ;L]*> 1. Continuing
in an obvious way, we next reorient the last constraint and the objective in (2.6) to

obtain
minimize (EA + g+ A+ Ap + ;LE) —e(§” +s1),
subject to

27
= 1/LA+ /13+3luc+4lD+4/1E+S y

= 1/1A +2;LB —|—4lc +5;LD -‘rEiE —§+,

—_ w|\o°°

j AB+2c+;LD+j»E7
<y Agy Acy Apy A (2.10)
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This has its optimum at lé = 9/8 with all other 7* = 0. So, in conformance
with Theorem 2.3, as given for (2.6), we associate E with DRS.

There is confusion in the literature on the RTS characterizations obtained from
Theorems 2.1 and 2.2 and the BCC and the CCR models with which they are
associated. Hence, we proceed further as follows.

As noted earlier, RTS generally has an unambiguous meaning only for points
on the efficiency frontier. When the BCC model as given in (2.1) is used on
the data in Fig. 2.2, the primal model projects E into E’ with coordinates (7/2, 9/2)
on the segment of the line y =1 +x, which connects C to D on the BCC efficiency
frontier. Comparing this with £ = (4, 9/2) identifies E as having an inefficiency in
the amount of 1/2 unit in its input. This is a technical inefficiency, in the
terminology of DEA. Turning to the dual for £ formed from the BCC model, as
given in (2.2), we obtain u = 1/4. Via Theorem 2.1 this positive value of u}
suggests that RTS are either decreasing or constant at £’ = (28/8, 9/2) — the point
to which FE is projected to obtain access to model (2.4). Substitution in the latter
model yields a value of &} = 2/7, which is also positive, thereby identifying E’
with the DRS that prevail for the BCC model on this portion of the efficiency
frontier in Fig. 2.2.

Next, we turn to the conditions specified in Theorem 2.2, which are identified
with the CCR envelopment model (2.5). Here, we find that the projection is to a new
point E” = (27/8, 9/2), which is on the line y = 4/3x corresponding to the broken line
from the origin that coincides with the segment from B to C in Fig. 2.2. This ray
from the origin constitutes the efficiency frontier for the CCR model, which,
when used in the manner we have previously indicated, simultaneously evaluates
the technical and RTS performances of E. In fact, as can be seen from the solution
to (2.9), this evaluation is effected by either 1 = 9/4 or i =9/8 — which
are variables associated with vectors in a “CRS region” that we will shortly
associate with “most productive scale size” (MPSS) for the BCC model.
The additional 1/8 unit input reduction effected in going from E” to E” is needed
to adjust to the efficient mix that prevails in this MPSS region which the CCR
model is using to evaluate E.

Thus, the CCR model as given in (2.5) simultaneously evaluates scale and purely
technical inefficiencies, while the BCC model, as given in (2.1), separates out the
scale inefficiencies for evaluation in its associated dual (=multiplier) form as given
in (2.2). Finally, as is well known, a simplex method solution to (2.1) automatically
supplies the solution to its dual in (2.2). Thus, no additional computations
are required to separate the purely technical inefficiency characterizations obtained
form (2.1) and the RTS characterizations obtained from (2.2). Both sets of values
are obtainable from a solution to (2.1).

We now introduce the following theorem that allows us to consider the relations
between Theorems 2.1 and 2.2 in the RTS characterization.

Theorem 2.4. Suppose that DMU, is designated as efficient by the CCR model,
DMU, then it is also designated as efficient by the BCC model.
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Proof. The CCR and BCC models differ only because the latter has the additional
constraint Z;l:l A;j = 1. The following relation must therefore hold

m N m N
— + —
OéCR_8<§:si*+§ sr*>§0ECC_8<§ Si*+§:5:*>v
P pam pa pa

where the expressions on the left and right of the inequality respectively designate
optimal values for objective of the CCR and BCC models.

Now, suppose DMU,, is found to be efficient with the CCR model. This implies
GéCR = 1 and all slacks are zero for the expression on the left. Hence, we will have

< (ZS‘* +ZS“>

However, the x;, and y,, values appear on both the left and right sides of the
corresponding constraints in the DEA models. Hence, choosing 4, = i; =1, we
can always achieve equality with 0y~ which is the lower bound in this exact
expression with all slacks zero. Thus, this DMU, will also be characterized as
efficient by the BCC model whenever it is designated as efficient by the CCR
model. [ ]

We now note that the reverse of this theorem is not true. That is, a DMU,
may be designated as efficient by the BCC model but not by the CCR model.
Even when both models designate a DMU, as inefficient, moreover, the measures
of inefficiency may differ. Application of the BCC model to point E in Fig. 2.2, for
example, will designate E” on the line connecting C and D to evaluate its efficiency.
However, utilization of the CCR model will designate E" with 0¢-g < Opcc so that
1 — 0icg>1 — Opcc, which shows a greater inefficiency value for DMU, when the
CCR model is used.

Because DEA evaluates relative efficiency, it will always be the case that at least
one DMU will be characterized as efficient by either model. However, there will
always be at least one point of intersection between these two frontiers. Moreover,
the region of the intersection will generally expand a DMU set to be efficient
with the CCR model. The greatest spread between the envelopments will then
constitute extreme points that define the boundaries of the intersection between the
CCR and BCC models.

The way Theorem 2.2 effects its efficiency characterization is by models of
linear programming algorithms that use “extreme point” methods. That is, the
solutions are expressed in terms of “basis sets” consisting of extreme points.
The extreme points B and C in Fig. 2.2 can constitute active members of such an
“optimal basis” where, by “active member,” we refer to members of a basis that
have nonzero coefficients in an optimal solution.

Now, as shown in Cooper et al. (2000), active members of an optimal basis are
necessarily efficient. For instance, Az = 1/2 in the solution to (2.8) designates B as
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an active member of an optimal basis and the same is true for }v*c = 1/4, and both
B and C are therefore efficient. In both cases, we have ) lj’-‘ < 1 and we have IRS
at point (3/4, 1) on the CRS ray, which is used to evaluate A. In other words,
> X; < 1 shows that B and C both lie below the region of intersection because its

coordinates are smaller in value than the corresponding values of the active
members in the optimal basis.

Turning to the evaluation of E, we have 0" = 27/32 < 1 showing that E is
inefficient in (2.10). Either 1;; = 9/4 or A/ = 9/8 can serve as active member in the
basis. Thus, to express E” in terms of these bases, we have

27 9 9/3 9
(§’§>— z<572> -0
E" B C

because E” lies above the region of intersection, as shown by > 47>1 for either
of the optimal solutions.

As shown in the next section of this chapter, Banker (1984) refers to the region
between B and C as the region of most productive scale size (MPSS).
For justification, we might note that the slope of the ray from the origin through
B and C is steeper than the slope of any other ray from the origin that intersects the
production possibility set (PPS). This measure with the output per unit input is
maximal relative to any other ray that intersects PPS.

Hence, Theorem 2.2 is using the values of Z)j* to determine whether RTS
efficiency has achieved MPSS and what needs to be done to express this relative
to the region of MPSS. We can, therefore, conclude with a corollary to Theorem
2.4: DMU, will be at MPSS if and only if > = 1 in an optimal solution when
it is evaluated by a CCR model.

To see how this all comes about mathematically and how it relates to the
RTS characterization, we note that the optimal solution for the CCR model
consists of all points on the ray from the origin that intersect the MPSS region.
If the point being evaluated is in MPSS, it can be expressed as a convex combi-
nation of the extreme points of MPSS so that 3 47 = 1. If the point is above the
region, its coordinate values will all be larger than their corresponding
coordinates in MPSS so that we will have }/;>1. If the point is below the
region, we will have > A < 1. Because the efﬁ01ent frontier, as defined by the
BCC model, is strictly concave the solution will designate this point as being in
the region of constant, decreasing, or increasing RTS, respectively.

Thus, the CCR model simultaneously evaluates RTS and technical inefficiency
while the BCC model separately evaluates technical efficiency with 05 from the
envelopment model and RTS with ) obtained from the multiplier model.
As Fig. 2.2 illustrates, at point E, the evaluation for the CCR model is global
with RTS always evaluated relative to MPSS. The evaluation for the BCC model
is local with i, being determined by the facet of the efficient frontier in which the
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point used to evaluate DMU, is located. As a consequence, it always be the
case that O g < O5cc unless the point used to evaluate DMU, is in the region
of MPSS, in which case ;g = O Will obtain.

2.4 Most Productive Scale Size

There is some ambiguity in dealing with points like B and C in Fig. 2.2 because
the condition that prevails depends on the direction in which movement
is to be effected. As noted by Fgrsund (1996) this situation was dealt with by
Ragnar Frisch — who pioneered empirical studies of production and suggested that
the orientation should be toward maximizing the output per unit input when dealing
with technical conditions of efficiency. See Frisch (1964). However, Frisch (1964)
dealt only with the case of single outputs. Extensions to multiple output-multiple
input situations can be dealt with by the concept of Most Productive Scale Size
(MPSS) as introduced into the DEA literature by Banker (1984). To see what this
means consider

(Xoo, Yo ), 2.11)

with f§, ¢ > 0 representing scalars and X, and Y, representing input and output
vectors, respectively, for DMU,. We can continue to move toward a possibly better
(i.e., more productive) RTS situation as long as /o # 1. In other words, we are not
at a point which is MPSS when either (a) all outputs can be increased in proportions
that are at least as great as the corresponding proportional increases in all inputs
needed to bring them about, or (b) all inputs can be decreased in proportions that
are at least as great as the accompanying proportional reduction in all outputs.
Only when fi/a =1, or o = f3, will RTS be constant, as occurs at MPSS.

One way to resolve problems involving returns to scale for multiple
output—multiple input situations would use a recourse to prices, costs (or similar
weights) to determine a “best” or “most economical” scale size. Here, however,
we are using the concept of MPSS in a way that avoids the need for additional
information on unit prices, costs, etc., by allowing all inputs and outputs to vary
simultaneously in the proportions prescribed by o and f in (2.11). Hence,
MPSS allows us to continue to confine attention to purely technical inefficiencies,
as before, while allowing for other possible choices after scale changes and size
possibilities have been identified and evaluated in our DEA analyses.

The interpretation we have just provided for (2.11) refers to RTS locally, as is
customary — e.g., in economics. However, this does not exhaust the uses that can be
made of Banker’s (1984) MPSS. For instance, we can now replace our preceding
local interpretation of (2.11) by one which is oriented globally. That is, we seek to
characterize the returns to scale conditions for DMU,, with respect to MPSS instead
of restricting this evaluation to the neighborhood of the point (X,,Y,) where, say,
a derivative is to be evaluated. See Varian (1984, p. 20) for economic
interpretations of restrictions needed to justify uses of derivatives. We also do
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this in a way that enables us to relate Theorems 2.1 and 2.2 to each other and
thereby provide further insight into how the BCC and CCR models relate to each
other in scale size (and other) evaluations.

For these purposes, we introduce the following formulation,

maximize —,
o

subject to

n

BY, <> Yk,
=1

X, 2 Y Xidy,
=1

=>4
Jj=1
0<Body, j=1,....n (2.12)

Now note that the condition > 4; = 1 appears just as it does in (2.1). However,
in contrast to (2.1), we are now moving to a global interpretation by jointly
maximizing the proportional increase in outputs and minimizing the proportional
decrease in inputs. We are also altering the characterizations so that these o and f8
values now yield new vectors )fo = aX, and Yo = fBY,, which we can associate
with points which are MPSS, as in the following

Theorem 2.5. A necessary condition for DMU,, with output and input vectors
Y, and X, to be MPSS is max /o =1 in (2.12), in which case RTS will be constant.
Theorem 2.5 follows from the fact that f =0 =1 with 4;=0, 4,=1forj#o is
a solution of (2.12), so that, always, max f/a=pf"/« >1. See the appendix
in Cooper et al. (1996) for a proof and a reduction of (2.12) to a linear program-
ming equivalent.
We illustrate with D = (4,5) in Fig. 2.2 for which we utilize (2.12) to obtain

Maximize —,
o
subject to

9
50 < 14a + 24 +44c + 5p +§)»E7

3
4o > 174 —&-zig + 3¢ +4ip + 42,

1 =24+ g+ Ac+ ip + A,
0 < Jn. 2. desp. A (2.13)
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This has an optimum at /, = 1 witha" = 3/8and " = 2/5to give /o = 16/15 > 1.
Thus, MPSS is not achieved. Substituting in (2.13) with 1z = 1, we can use this solution
to obtain 4o =3/2 and 58" =2 which are the coordinates of B in Fig. 2.2. Thus,
D =(4.5) is evaluated globally by reference to B = (3/2,2), which is in the region of
CRS and hence is MPSS.

There is also an alternate optimum to (2.13) with 4. = 1 and o =3/4, 8 =4/5
s0, again, /o = 16/15, and D is not at MPSS. Moreover, 40° =5, 5 =4 gives
the coordinates of C = (3, 4). Thus, D is again evaluated globally by a point in the
region of MPSS. Indeed, any point in this region of MPSS would give the same
value of B'/o"=16/15, since all such points are representable as convex
combinations of B and C.

Theorem 2.6. Sign conditions for BCC and CCR models:

(i) The case of IRS. u} < O for all optimal solutions to (2.2) if and only if
(Z )V;.‘ - 1> < 0 for all optimal solutions to (2.5).
(i) The case of DRS. u; > 0 for all optimal solutions to (2.2) if and only
if (3277 = 1)>0 for all optimal solutions to (2.5).
(iii) The case of CRS. u} = 0 for some optimal solutions to (2.2) if and only if
(Z ).;7 — 1) = 0 for some optimal solution to (2.5).

This theorem removes the possibility that uses of the CCR and BCC models
might lead to different RTS characterizations. It is also remarkable because
differences might be expected from the fact that (2.2) effects its evaluations locally
with respect to a neighboring facet while (2.5) effects its evaluations globally with
respect to a facet (or point) representing MPSS.

To see what this means we focus on active members of an optimal solution set as
follows.

Turning to E in Fig. 2.2 we see that it is evaluated by E’ when (2.1) is used.
This point, in turn, can be represented as a convex combination of C and D with
both of the latter vectors constituting active members of the optimal basis.
The associated support coincides with the line segment connecting C and D
with a (unique) value u;>0 so RTS are decreasing, as determined from (2.2).
This is a local evaluation. When (2.5) is used, the projection is to E”,
with alternate optima at B or C respectively serving as the only active
member of the optimal basis. Hence the evaluation by the CCR model is
effected globally. Nevertheless, the same DRS characterization is secured.

We now note that E” may be projected into the MPSS region by means of
the following formulas,
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o, (2.14)

where the denominators are secured from (2.6). This convexification of (2.3),
which is due to Banker and Morey (1986), provides a different projection than
(2.3). We illustrate for E” by using the solutions for (2.9) to obtain

40° —s 27/8

= =3/2

9/4 9/4 /2
_Ym‘i’sj_* _%_
9/4  9/4

This gives the coordinates of B from one optimal solution. The other optimal
solution yields the coordinates of C via

40" — st 27/8

= =3

9/8 9/8 7’
)’m+81~+*_9_/2_
9/8  9/8

This additional step brings us into coincidence with the results already
described for the MPSS model given in (2.13). Consistency is again achieved
even though the two models proceed by different routes. The MPSS model in
(2.12) bypasses the issue of increasing vs. decreasing RTS and focuses on the
issue of MPSS, but this same result can be achieved for (2.5) by using
the additional step provided by the projection formula (2.14).

2.5 Additive Models

The model (2.12), which we used for MPSS, avoids the problem of choosing
between input and output orientations, but this is not the only type of model for
which this is true. The additive models to be examined in this section also have
this property. That is, these models simultaneously maximize outputs and mini-
mize inputs, in the sense of vector optimizations.
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The additive model we select is

m N
- +
max E g s + E grs;
i=1 r=1
subject to

n
E Xjjhi + 87 =Xjp, I=1,2,...,m,
Jj=1
n
2 : +_ _

yr'jij_sr = Yro, r = 1,2,...,.&‘,
J=1

J=1

Ajysi s > 0. (2.15)

This model utilizes the “goal vector” approach of Thrall (1996a) in which
the slacks in the objective are accorded “goal weights” which may be subjective
or objective in character. Here we want to use these “goal weights” to ensure that
the units of measure associated with the slack variables do not affect the optimal
solution choices.

Employing the language of “dimensional analysis,” as in Thrall (1996a),
we want these weights to be “contragredient” to insure that the resulting objective
will be “dimensionless.” That is, we want the solutions to be free of the dimensions
in which the inputs and outputs are stated. An example is the use of the input and
output ranges in Cooper et al. (1999) to obtain g; = 1/R;, g, = 1/R} where R;
is the range for the ith input and R is the range for the rth output. This gives each
term in the objective of (2.15) a contragredient weight. The resulting value of the
objective is dimensionless, as follows from the fact that the s; and s/ in
the numerators are measured in the same units as the R; and R, in the
denominators. Hence the units of measure cancel.

The condition for efficiency given in Definition 1.3 in Chap. 1 for the CCR
model is now replaced by the following simpler condition,

Definition 2.1. A DMU, evaluated by (2.15) is efficient if and only if all slacks
are zero.

Thus, in the case of additive models it suffices to consider only condition (ii)
in Definition 1.3. Moreover this condition emerges from the second stage solution
procedure associated with the non-Archimedean ¢ >0 in (1.1). Hence we might
expect that RTS characterizations will be related, as we see now.

To start our RTS analyses for these additive models we first replace the CCR
projections of (2.3) with

Xip =Xip —s8; 7, i=1,...,m,

}A)ra:yr‘o'i_sj*, r = l,...,s, (216)

where s;* and s;* are optimal slacks obtained from (2.15). Then we turn to the dual
(multiplier) model associated with (2.15) which we write as follows,
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m N
min § ViXio — § WiYro 1 Uo,
i=1 r=1

subject to
m K
i=1 r=1
v > g:7 Hy 2 gf’ Uo free. (217)

We are thus in position to use Theorem 2.1 for “additive” as well as
“radial measures” as reflected in the BCC and CCR models discussed in earlier
parts of this chapter. Hence we again have recourse to this theorem where, however,
we note the difference in objectives between (2.2) and (2.17), including the change
from — u, to+u,. As a consequence of these differences we also modify (2.4) to the
following,

Maximize i,,

subject to

s m
Z,u'rylj_zvixij_ﬁogoa ]:lavmv]#oa
r=1 i=1

s m

Z,urj)m - ZV,‘)E,‘D — Uy = 07

r=1 i=1

My Z g;Jra Vi 2 g:v ’20 S 0. (218)

Here we have assumed that 1), < 0 was achieved in a first-stage use of (2.17).
Hence, if i} < 0 is maximal in (2.18) then RTS are increasing at (%,,¥,) in
accordance with (i) in Theorem 2.1 whereas if & = O then (iii) applies and RTS
are constant at this point (%,,¥,) on the efficiency frontier.

For u;,>0 in stage one, the objective and the constraint on i, are simply
reoriented in the manner we now illustrate by using (2.15) to evaluate E in
Fig. 2.2 via

maxs -+ s*,
subject to

3, ,
Aa +§/LB +3Ac +44p + 4 +

4

9
Aa+ 2 +4ic +5ip += iE—S E
AA +/IB+)Lc+/1D+/lE = 1,
Si,SJr,)vA,iB,;uc,/lD,lE 2 O,

where we have used unit weights for the g, g,,*, to obtain the usual additive model
formulation. (See Thrall (1996b) for a discussion of the applicable condition
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for a choice of such “unity” weights.) This has an optimal solution with A7 =
A =" = 1/2 and all other variables zero. To check that this is optimal we turn
to the corresponding dual (multiplier) form for the above envelopment model,
which is

. 9
min 4v _§H+u0’
subject to
V— U + Up Z Oa

3
5\)—2;1 +u, > 0,

3v—4u +u, >0,
4v —5u +u, >0,

9
4vf§,u +u, >0,

v,u>1, u,free.

The solution Vv*=pu*=u, =1 satisfies all constraints and gives
4v* —(9/2)u* +u’, = 1/2. This is the same value as in the preceding problem
so that, by the dual theorem of linear programming, both solutions are optimal.

To determine the conditions for RTS, we use (2.16) to project E into E’
with coordinates (£,5) = (7/2, 9/2) in Fig. 2.2. Then we utilize the following
reorientation of (2.18),

min i,
subject to
V— U + 120 Z 07

3
5v—2,u+12020,

3v—4u +ia, >0,
4v —5u+u, > 0,
7 9 .

EV*E,U‘FM()—O,
v, u>1, i, > 0.

This also gives v* = u* = ii; = 1 so the applicable condition is (ii) in Theorem 2.1.
Thus, RTS are decreasing at E', the point on the BCC efficiency frontier which is
shown in Fig. 2.2.
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2.6 Multiplicative Models

The treatments to this point have been confined to “qualitative” characterizations in
the form of identifying whether RTS are “increasing,” “decreasing,” or “constant.”
There is a literature — albeit a relatively small one — which is directed to “quantita-
tive” estimates of RTS in DEA. Examples are the treatment of scale elasticities in
Banker et al. (1984), Fgrsund (1996) and Banker and Thrall (1992). However, there
are problems in using the standard DEA models, as is done in these studies, to obtain
scale elasticity estimates. Fgrsund (1996), for instance, lists a number of such
problems. Also the elasticity values in Banker and Thrall (1992) are determined
only within upper and lower bounds. This is an inherent limitation that arises from
the piecewise linear character of the frontiers for these models. Finally, attempts to
extend the Fare, Grosskopf and Lovell (1985, 1994) approaches to the determination
of scale elasticities have not been successful. See the criticisms in Fgrsund (1996,
p. 296) and Fukuyama (2000, p. 105). (Multiple output—multiple input production
and cost functions, which meet the sub- and superadditivity requirements in eco-
nomics, are dealt with in Panzar and Willig (1977). See also Baumol et al. (1982).)

This does not, however, exhaust the possibilities. There is yet another class
of models referred to as “multiplicative models,” which were introduced by this
name into the DEA literature in Charnes et al. (1982) —see also Banker et al. (1981) —
and extended in Charnes et al. (1983) to accord these models nondimensional
(=units invariance) properties such as those we have just discussed. Although not
used very much in applications these multiplicative models can provide advantages
for extending the range of potential uses for DEA. For instance, they are not confined
to efficiency frontiers that are concave. They can be formulated to allow the
efficiency frontiers to be concave in some regions and nonconcave elsewhere. See
Banker and Maindiratta (1986). They can also be used to obtain “exact” estimates of
elasticities in manners that we now describe.

The models we use for this discussion are due to Banker and Maindiratta (1986) —
where analytical characterizations are supplied along with confirmation in con-
trolled-experimentally designed simulation studies.

We depart from the preceding development and now use an output-oriented
model, which has the advantage of placing this development in consonance with
the one in Banker and Maindiratta (1986) — viz.,

maxy,,

subject to

n

4j .
Hxl-j < Xio, i=1,...,m,
J=1
n

4 .
HyU Zyz)yl‘m r= 1)"'7S7
=1

S =1,
j=1

Vor 4 2 0. (2.19)
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To convert these inequalities to equations we use

n
e’ foj Xios i=1,....m
=1
and
n "
e Tl = =1, (220)
=1

and replace the objective in (2.19) with yea(z}y ST ), where 57,57 >0

i°r

represent slacks. Employing (2.20) and taking logarithms we replace (2.19) with

s m
. ~ JF —
min—7y,—¢& E S, +§ S s
r=1 i=1

subject to
n

)Z,‘OZZ)Z,‘]‘)»]‘-FSI-_, i=1,....m,
=1

n
Bt T = D S8 =1,

n
1=> "4,
J=1
Ajystyse >0, Vi, (2.21)
where “~” denotes “logarithm” so the x;;, y,; and the y,, Xj,, Y, are in logarithmic

units.
The dual to (2.21) is

s m
max E ﬁryro - E GiXip — %o,
r=1 i=1

subject to

S m
Z[f,&,j—foifc,j—ocUSO, j=1,...,l’l,
r=1 i=1

s
> B =1,

r=1
o; > ¢ f.>¢ o, freeinsign. (2.22)
Using «, fi; and o, for optimal values, Z B3, — Z o X;p — oy = 0 represents

r=1

a supporting hyperplane (in logarithmic coordinates) for DMU,, where efficiency
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is achieved. We may rewrite this log-linear supporting hyperplane in terms of the
original input/output values:

Hy r =% me (2.23)

Then, in the spirit of Banker and Thrall (1992), we introduce
Theorem 2.7. Multiplicative Model RTS,

(i) RTS are increasing if and only if > o} >1 for all optimal solutions to (2.23).
(ii) RTS are decreasing if and only if > o < 1 for all optimal solutions to (2.23).
(iii) RTS are constant if and only if > o = 1 for some optimal solutions to (2.23).

To see what this means we revert to the discussion of (2.11) and introduce
scalars a, b in (aX,, bY,). In conformance with (2.23) this means

m N

e” H (axio)a? = H (b)’ro)ﬁiv (2.24)

i=1 r=1

so that the thus altered inputs and outputs satisfy this extension of the usual
Cobb-Douglas types of relations.

The problem now becomes: given an expansion a > 1, contraction a <1,
or neither, i.e., a=1, for application to all inputs, what is the value of b
that positions the solution in the supporting hyperplane at this point? The answer
is given by the following

m N

Theorem 2.8. If (aX,,bY,) lies in the supporting hyperplane then b = aZ::I %,
Proof. This proof is adopted from Banker et al. (2004). Starting with the expres-

sion on the left in (2.25) we can write

m

m N
. N m . * , 1 o
e I [ (axi0) = a2t % [« = , (2.25)

i=1 i=1 r=1

by using the fact that Y >_, 7 = 1 in (2.22) and e [} X = I, y;ﬁo in (2.23).

i=1"io

Thus, to satisfy the relation (2.24) we must have b = azizl “ as the theorem
asserts. |

Via this Theorem, we have the promised insight into reasons why more than
proportionate output increases are associated with Y -, o>1, less than propor-
tionate increases are associated with > " of < 1 and CRS is the applicable
condition when > 7" of = 1.

There may be alternative optimal solutions for (2.22) so the values for
the o] components need not be unique. For dealing with alternate optima, we
return to (2.19) and note that a necessary condition for efficiency is 7 = 1.
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For full efficiency we must also have all slacks at zero in (2.20). An adaptation of
(2.3) to the present problem, therefore, gives the following:

n *
A/‘_fs,.’*._/ =1
X =e 'l Xip = X, i1=1,...,m,
=1
n i*
: +x
Joo_ A8 * I .
1 =" vy =00 r=1,....s (2.26)
j=1

and Xx],, y, are the coordinates of the point on the efficiency frontier used to
evaluate DMU.,,.

Thus, we can extend the preceding models in a manner that is now familiar.
Suppose that we have obtained an optimal solution for (2.22) with » ", o < 1.
We then utilize (2.26) to form the following problem

m
max E 78
i=1

subject to

s m
Zﬁ,.yN,j— > oy -, <0, j=1,...,mj#0,
i=1
m
Zﬁzy ro foij/io —a, =0,
i=1
Zﬁ,. =1,
r=1
m
Zai S 17
i=1

o; > ¢ f.>¢ o,freeinsign. (2.27)

If ", af =1 in (2.27), then RTS are constant by (iii) of Theorem 2.8.
If the maximum is achieved with > " o < 1, however, condition (ii) of Theo-
rem 2.7 is applicable and RTS are decreasmg atthe pointx},, y. s i=1,....,myr=1,

co S

If we initially have ", af>1 in (2.22), we replace » ., of <1 With
S%,af >1 in (2.27) and also change the objective to minimize Y ., o.
If the optimal value is greater than one, then (i) of Theorem 2.7 is applicable and
the RTS are increasing. On the contrary, if we attain ., o = 1 then condition
(iii) applies and RTS are constant.

Theorem 2.8 also allows us to derive pertinent scale elasticities in a straightfor-
ward manner. Thus, using the standard logarithmic derivative formulas for
elasticities, we obtain the following:

1 m
dinb _adb S 22%)

dlna b da —
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Consisting of a sum of component elasticities, one for each input, this overall
measure of elasticity is applicable to the value of the multiplicative expression with
which DMU,, is associated.

The derivation in (2.28) holds only for points where this derivative exists.
However, we can bypass this possible source of difficulty by noting that Theorem
2.8 allows us to obtain this elasticity estimate via

Inb &
7 * 2.29
Ina ; % ( )

Further, as discussed in Cooper et al. (1996), it is possible to extend these
concepts to the case in which all of the components of Y, are allowed to increase
by at least the factor b. However, we cannot similarly treat the constant, a,
as providing an upper bound for the inputs since mix alterations are not permitted
in the treatment of RTS in economics. See Varian (1984, p. 20) for requirements
of RTS characterizations in economics.

In conclusion, we turn to properties of units invariance for these multiplicative
models. Thus, we note that Z:”:l of is units invariant by virtue of the relation
expressed in (2.28). The property of units invariance is also exhibited in (2.29)
since a and b are both dimension free. Finally, we also have the following.

Theorem 2.9. The model given in (2.19) and (2.20) is dimension free. That is,
changes in the units used to express the input quantities x;; or the output quantities
¥ in (2.19) will not affect the solution set or alter the value of max y, = y;.

Proof. Let

/ . ! . .
X = CiXij, Xip = CiXig, L=1,...,m,

yl)j = kl‘yljhy/ru: k?‘yl‘w r= 17 s S (23O>

where the ¢; and k, are any collection of positive constants. By substitution in the
constraints for (2.20), we then have

I
3

n
e’ Hx;jij = x4, i
J=1
n
st / o ’ o
e Hyrjj}"ji‘yoyrm r—l,...7S7
Jj=1

hi=1,45>0, j=1,...n (2.31)
=1
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Utilization of (2.30), therefore, gives

n n
esifczfzl ;V/Hxﬁf = Cix; i=1 m
i ij = Ciio, =L...,m,
Jj=1

n

Z;'f n

e S k! Hy:jf =,k Yo, r=1,...,s,
j=1
n
2,1,:1, >0, j=1,...,n (2.32)
j=1

s "
However, 7' J; =1, so ciZ’:' "= ¢; and krz =" — k, Vi, r. Therefore,
these constants, which appear on the right and left of (2.32), all cancel.
Thus, all solutions to (2.31) are also solutions to (2.20) and vice versa. It follows

that the optimal value of one program is also optimal for the other. ]

We now conclude our discussion of these multiplicative models with the
following:

Corollary to Theorem 2.9. The restatement of (2.20) in logarithmic form yields
a model that is translation invariant.

Proof. Restating (2.31) in logarithmic form gives

n
ST Y (% + @) A =i + G, i=1,...,m,
Jj=1

_S;r+z(}717+/g">)“j:y~l‘o+lgi'+’)jov ’.:17"'75'7
J=1
> hi=1,4>0, i=1,....n (2.33)
j=1

Once more utilizing 3" 4; = 1 we eliminate the ¢ and %, on both sides of these
expressions and obtain the same constraints as in (2.21). Thus, as before,
the solution sets are the same and an optimum solution for one program is also
optimal for the other — including the slacks. [ ]

2.7 Summary and Conclusion

Although we have now covered all of the presently available models, we have not
covered all of the orientations in each case. Except for the multiplicative models,
we have not covered output-oriented objectives for a variety of reasons. There are
no real problems with the mathematical development, but further attention must be
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devoted to how changes in input scale and input mix should be treated when all
outputs are to be scaled up in the same proportions. See the discussion in Cooper
et al. (1996).

As also noted in Cooper et al. (1996), the case of IRS can be clarified by using
Banker’s most productive scale size to write (X,a, Y,f). The case 1< f/a
means that all outputs are increased by at least the factor § and RTS are increasing
as long as this condition holds. The case 1 > f/o has the opposite meaning — viz., no
output is increasing at a rate that exceeds the rate at which all inputs are increased.
Only for CRS do we have 1= fj/x, in which case all outputs and all inputs are
required to be increasing (or decreasing) at the same rate so no mix change is
involved for the inputs.

The results in this chapter (as in the literature to date) are restricted to this class
of cases. This leaves unattended a wide class of cases. One example involves the
case where management interest is centered on only subsets of the outputs and
inputs. A direct way to deal with this situation is to partition the inputs and outputs
of interest and designate the conditions to be considered by (X/o, XY, Y/B, YY)
where [ designates the inputs and outputs that are of interest to management and N
designates those which are not of interest (for such scale returns studies).
Proceeding as described in the present chapter and treating XY and Y%
as “exogenously fixed,” in the spirit of Banker and Morey (1986), would make
it possible to determine the situation for RTS with respect to the thus designated
subsets. Other cases involve treatments with unit costs and prices as in FGL (1994)
and Sueyoshi (1999).

The developments covered in this chapter have been confined to technical aspects
of production. Our discussions follow a long-standing tradition in economics that
distinguishes scale from mix changes by not allowing the latter to vary when scale
changes are being considered. This permits the latter (i.e., scale changes) to be
represented by a single scalar — hence the name. However, this can be far from actual
practice, where scale and mix are likely to be varied simultaneously when determin-
ing the size and scope of an operation. See the comments by a steel industry
consultant that are quoted in Cooper, Seiford, and Tone (2000, p. 130) on the need
for reformulating this separation between mix and scale changes to achieve results
that more closely conform to needs and opportunities for use in actual practice.

There are, of course, many other aspects to be considered in treating RTS besides
those attended to in the present chapter. Management efforts to maximize profits,
even under conditions of certainty, require simultaneous determination of scale,
scope, and mix magnitudes with prices and costs known, as well as the achievement
of the technical efficiency, which is always to be achieved with any set of positive
prices and costs. The topics treated in this chapter do not deal with such price—cost
information. Moreover, the focus is on ex post facto analysis of already effected
decisions. This can have many uses, especially in the control aspects of management
where evaluations of performance are required. Left unattended in this chapter,
and in much of the DEA literature, is the ex ante (planning) problem of how to use
this knowledge to determine how to blend scale and scope with mix and other
efficiency considerations when effecting future-oriented decisions.
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Appendix

In this Appendix, we first present the FGL approach. We then present a simple RTS
approach without the need for checking the multiple optimal solutions as in Zhu and
Shen (1995) and Seiford and Zhu (1999) where only the BCC and CCR models are
involved. This approach will substantially reduce the computational burden
because it relies on the standard CCR and BCC computational codes
(see Zhu (2009) for a detailed discussion).

To start, we add to the BCC and CCR models by the following DEA
model whose frontier exhibits nonincreasing returns to scale (NIRS), as in Fare,
Grosskopf and Lovell (FGL 1985, 1994)

* .
HNIRS = min Onrs,
subject to

n
ONrsXio = E Xjphi s, i=1,2,...,m,
Jj=1
n

Yro :Zy’ff)”.f_s;"—’ r=12,...,s,
J=1
n
1>%2,
=
0<4,s;,s" VYir,j (2.34)

The development used by FGL (1985, 1994) rests on the following relation

Occr < Onirs < Occs

where “*” refers to an optimal value and 63 is defined in (2.34), while 05
and 0y refer to the BCC and CCR models as developed in Theorems 2.3 and 2.4.

FGL utilize this relation to form ratios that provide measures of RTS.
However, we turn to the following tabulation that relates their RTS
characterization to Theorems 2.3 and 2.4 (and accompanying discussion).
See also Fare and Grosskopf (1994), Banker et al. (1996b), and Seiford and Zhu
(1999)

FGL Model RTS CCR Model
Case 1 If O¢cr = Opcc Constant > A=1
Case 2 If Ogcg < Opec then
Case 2a If 0¢cr = OXrs Increasing A<l

Case 2b If Ofcr < OXrs Decreasing 2 A>1
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It should be noted that the problem of nonuniqueness of results in the presence
of alternative optima is not encountered in the FGL approach (unless output-
oriented as well as input-oriented models are used), whereas they do need to
be coincided, as in Theorem 2.3. However, Zhu and Shen (1995) and Seiford and
Zhu (1999) develop an alternative approach that is not troubled by the possibility of
such alternative optima.

We here present their results with respect to Theorems 2.3 and 2.4
(and accompanying discussion). See also Zhu (2009).

Seiford and Zhu (1999) RTS CCR Model
Case 1 If O¢cr = Opec Constant > A=1
Case 2 Occr # Opcc

Case 2a If 3747 < 1inany CCR outcome Increasing > A<l
Case 2b If 3747 > 1in any CCR outcome Decreasing > Ai>1

The significance of Seiford and Zhu’s (1999) approach lies in the fact that
the possible alternate optimal )L;‘ obtained from the CCR model only affect the
estimation of RTS for those DMUs that truly exhibit CRS and have nothing to do
with the RTS estimation on those DMUs that truly exhibit IRS or DRS. That is,
if a DMU exhibits IRS (or DRS), then 27 )L; must be less (or greater) than one,
no matter whether there exist alternate optima of /;, because these DMUs do not lie
in the MPSS region. This finding is also true for the ) obtained from the BCC
multiplier models.

Thus, in empirical applications, we can explore RTS in two steps. First, select
all the DMUs that have the same CCR and BCC efficiency scores regardless of the
value of Zj" )vj obtained from model (2.5). These DMUs are CRS. Next,
use the value of ZJ" ij’-‘ (in any CCR model outcome) to determine the RTS for
the remaining DMUs. We observe that in this process we can safely ignore
possible multiple optimal solutions of 4;.
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