Chapter 2

Composability and Predictability

for Independent Application Development,
Verification, and Execution

Benny Akesson, Anca Molnos, Andreas Hansson,
Jude Ambrose Angelo, and Kees Goossens

Abstract System-on-chip (soc) design gets increasingly complex, as a growing
number of applications are integrated in modern systems. Some of these applica-
tions have real-time requirements, such as a minimum throughput or a maximum
latency. To reduce cost, system resources are shared between applications, making
their timing behavior inter-dependent. Real-time requirements must hence be
verified for all possible combinations of concurrently executing applications,
which is not feasible with commonly used simulation-based techniques. This
chapter addresses this problem using two complexity-reducing concepts: compo-
sability and predictability. Applications in a composable system are completely
isolated and cannot affect each other’s behaviors, enabling them to be indepen-
dently verified. Predictable systems, on the other hand, provide lower bounds on
performance, allowing applications to be verified using formal performance analy-
sis. Five techniques to achieve composability and/or predictability in soc resources
are presented and we explain their implementation for processors, interconnect, and
memories in our platform.

Keywords Composability - Predictability - Real-Time - Arbitration - Resource
Management - Multi-Processor System

2.1 Introduction

The complexity of contemporary Systems-on-Chip (soc) is increasing, as a growing
number of independent applications are integrated and executed on a single chip.
These applications consist of communicating tasks mapped on heterogeneous
multi-processor platforms with distributed memory hierarchies that strike a good

B. Akesson (D<)
Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
e-mail: k.b.akesson@tue.nl

M. Hiibner and J. Becker (eds.), Multiprocessor System-on-Chip: Hardware Design 25
and Tool Integration, DOI 10.1007/978-1-4419-6460-1_2,
© Springer Science+Business Media, LLC 2011

26 B. Akesson et al.

balance between performance, cost, power consumption and flexibility [14, 22, 38].
The platforms exploit an increasing amount of application-level parallelism by
enabling concurrent execution of more and more applications. This results in
a large number of use-cases, which are different combinations of concurrently
running applications [15]. Some applications have real-time requirements, such
as a minimum throughput of video frames per second, or a maximum latency for
processing those video frames. Applications with real-time requirements are referred
to as real-time applications, while the rest are non-real-time applications. A use-case
can contain an arbitrary mix of real-time and non-real-time applications.

To reduce cost, platform resources, such as processors, hardware accelerators,
interconnect, and memories, are shared between applications. However, resource
sharing causes interference between applications, making their temporal behaviors
inter-dependent. Verification of real-time requirements is often performed by
system-level simulation. This results in three problems with respect to verification,
since inter-dependent timing behavior requires that all applications in a use-case are
verified together. The first problem is that the number of use-cases increases rapidly
with the number of applications. It hence becomes infeasible to verify the exploding
number of use-cases by simulation. This forces industry to reduce coverage and
verify only a subset of use-cases that have the toughest requirements [14, 37]. The
second problem is that verification of a use-case cannot begin until all applications
it comprises are available. Timely completion of the verification process hence
depends on the availability of all applications, which may be developed by different
teams inside the company, or by independent software vendors. The last problem is
that use-case verification becomes a circular process that must be repeated if an
application is added, removed, or modified [23]. Together these three problems
contribute to making the integration and verification process a dominant part of soc
development, both in terms of time and money [22, 23, 34].

In this chapter, we address the real-time verification problem using two
complexity-reducing concepts: composability and predictability. Applications in
a composable system are completely isolated and cannot affect each other’s
functional or temporal behaviors. Composable systems address the verification
problem in the following four ways [17]: 1) Applications can be verified in isolation,
resulting in a linear and non-circular verification process. 2) Simulating only a
single application and its required resources reduces simulation time compared to
complete system simulations. 3) The verification process can be incremental and
start as soon as the first application is available. 4) Intellectual property (ip)
protection is improved, since the verification process no longer requires the 1p of
independent software vendors to be shared. These benefits reduce the complexity of
simulation-based verification, making it a feasible option with a larger number of
applications. An additional benefit is that composability does not inherently make
any assumptions on the applications, making it applicable to existing applications
without any modifications.

Predictable systems, on the other hand, bound the interference from the platform
and between applications. This enables bounds on performance, such as upper
bounds on latency or lower bounds on throughput, to be provided. Applications

2 Composability and Predictability 27

in predictable systems can hence be verified using formal performance analysis
frameworks, such as network calculus [9] or data-flow analysis [36]. The benefit of
formal performance verification is that conservative performance guarantees can be
provided for all possible combinations of initial states of resources and arbiters,
all input stimuli, and all concurrently executing applications. The drawback is
that formal approaches require performance models of the software, the hardware,
and the mapping [8, 25], which are not always available. Composability and
predictability both solve important parts of the verification problem and provide a
complete solution when combined.

The two main contributions of this chapter are: 1) An overview of five techniques
to achieve composability and/or predictability in multi-processor systems with
shared resources. 2) We show how to design a composable and predictable system
by applying the proposed techniques to three typical resource types: processor tiles,
interconnect (a network on chip), and memory tiles (with either on-chip sram or
off-chip sDrRAM).

The rest of this chapter is organized as follows. Section 2.2 describes a number
of techniques to achieve composability and/or predictability for shared resources.
We then proceed in Sections 2.3, 2.4, and 2.5 by explaining which of these
techniques are suitable for our processor tiles, network-on-chip, and memory
tiles, respectively. Section 2.6 then demonstrates the composability of our soc
platform by showing that the behavior of an application is unaffected at the
cycle-level, as other applications are added or removed. Lastly, we end the chapter
with conclusions in Section 2.7.

2.2 Composability and Predictability

The introduction motivates how composability and predictability address the
increasingly difficult problem of verifying real-time requirements in socs. The
next step is to provide more details on how to implement these concepts. Firstly,
we establish some essential terminology related to resource sharing, which allows
us to define composability and predictability formally. We then discuss five tech-
niques to achieve these properties and highlight their respective strengths and
weaknesses. This illustrates the design space for composable and predictable
systems, and allows us to explain how different techniques are suitable for different
resources depending on their properties, such as whether execution times are
constant or variable, and whether the resource is abundant or scarce.

2.2.1 Terminology

Our context is a tiled platform architecture following the template shown in
Fig. 2.1. At the high level, this platform comprises a number of processor tiles

28 B. Akesson et al.

|
timer VFCU imem | i [timer VFCU imem
. I I } I I
T;’ MicroBlaze dmem l MicroBlaze dmem
'*E 1 1 1
o] [y
@ DMA ‘ DMA
=] | —|
o | | |
o |
bus | bus
— —— : —_— _—
f f : f f
shell shell shell shell 1+ shell shell shell shell
| | | | o | | |
[[[(R R [[[
- - - - , - - - - O
w 0w e e e e e | T wm 8
| a | * | a | a | * | a | ; | ;
NI NI NI NI
— | | | |
8 [[[[
c - - -
S R LI B s ol o
© - - 0 — —
2 - - -
£ [[[
| | |
NI NI NI
| | | | | | |
[[[[[[[
- - - - - - - O
-7 777-7 _:_--- ___-” ___-- ___-> T 77777 -7 77777 8
| a | * o a | a | * [a i | *
shell shell ' shell shell shell shell shell
f f T f f f f i
atomizer atomizer : atomizer atomizer atomizer atomizer :
| | | [| | | ‘
@ delay delay 1 delay delay delay delay 1
-; [[| [[[[|
2 bus ! bus }
[0] | ! [| |
£ N | N 1
SRAM | SDRAM | Jideo
back-end I back-end :
| |

Fig. 2.1 The architecture of the considered MPSoC platform

and memory tiles interconnected by a network-on-chip. We return to discuss the
details of this architecture in Sections 2.3, 2.4, and 2.5, respectively. An applica-
tion consists of a set of fasks that may be split across several processor tiles to
enable parallel processing. We assume a static task-to-processor mapping, which
implies that task migration is not supported. Non-real-time tasks can communicate
in any way they like using distributed shared memory, obeying only the restrictions

2 Composability and Predictability 29

on processors, discussed later in Section 2.3.1. However, tasks of real-time applica-
tions operate in a more restrictive fashion to ensure that their temporal behavior can
be bounded. Each real-time task continuously iterates, which means that it reads its
inputs, executes its function, and writes its outputs. Inter-task communication is
implemented using FIFOs, according to the c-HEAP protocol [31], with blocking
read and write operations. Inside a FIFO token, data can be accessed in any
order. We choose this programming model because it perfectly fits the domain of
streaming applications and enables overlapping computation with communication.
It furthermore allows modeling an application as a data-flow graph, which enables
efficient timing analysis. Communication between processor tiles and memory tiles
takes place via the interconnect.

Requests are defined as uses of a resource, such as a processor, interconnect,
or a memory. The originators of requests, and hence the users of the resources,
are referred to as requestors. Requests for a processor resource correspond to
application tasks that are ready for execution. In case of a memory or an inter-
connect, requests are transactions originating from ports on 1 components. These
transactions are communicated using standardized protocols, such as axi [6],
DTL [33], or ocp [32]. Common examples of transactions are reads and writes of
either single data words or bursts of data to a memory location.

The execution time (1) of a request determines the amount of time a request uses
a resource before finishing. However, a requestor may not have exclusive access to
the resource, due to interference from other requestors. Interference may prevent a
request from accessing the resource straight-away and its execution may be pre-
empted several times before finishing. This is considered in the response time (RT)
of a request, which accounts for both the execution time and the interference. The
response time is hence the total time it takes from when the request is eligible for
scheduling at the resource until it has been served. The point in time at which a
request is scheduled to use the resource for the first time is referred to as its starting
time. It is important to note that the execution time, response time, and starting time
of a request from a requestor often depend on other requestors. The execution time
may depend on others if a request from one requestor alters the state of a resource in
a way that affects the execution time of a following request. A common example of
this is when a memory request from a requestor evicts a cache line from another
requestor, turning a future cache hit into a cache miss. The response time and starting
time both typically vary with the presence or absence of requests from other requestors
in systems with run-time arbitration, such as round robin or static-priority scheduling.
This results in a varying interference that causes both the starting time and response
time to change. We now proceed by defining composability and predictability in terms
of the established terminology.

The functional behavior of a request is defined as composable when its output
is independent of the behavior of requestors belonging to other applications.
The temporal behavior of a request from a requestor using a resource is defined
as composable if its starting time and response time are independent of requestors
from other applications, since this implies that the request starts and finishes using
the resource independently of others. We refer to a resource as a composable

30 B. Akesson et al.

resource if both functional and temporal composability holds for any set of
requestors and their associated requests. A composable system contains only com-
posable resources. Such a system enables independent verification of applications,
as their constituent requestors and requests are completely isolated from each other
in the time and value (functional) domains. The verification complexity hence
becomes linear with respect to the number of applications. It also makes the resulting
system more robust at run time, because there is no interference from unknown,
failing, or misbehaving applications. In this chapter, we focus on verification of real-
time requirements. We hence limit the discussion to temporal composability and
do not further discuss how to achieve functional composability. For simplicity, we let
composability refer to temporal composability in the rest of this chapter.

For predictability, every request on a resource must have both a useful worst-
case execution time (WCET) and worst-case response time (wcrT). Unlike com-
posability, which inherently considers multiple requestors and applications on a
shared resource, predictability can be considered for a non-shared resource with
only a single requestor. For shared resources, the wcrT can be determined if there
is a bound on the interference from other requestors. A resource is a predictable
resource if all requests from all the requestors mapped on it are predictable.
Similarly, a predictable system is a system only comprising predictable resources.
Predictable systems enable formal verification of real-time requirements, since
applications are sets of requestors for different resources that all provide bounded
wcrT. For a complete end-to-end analysis, these wcrTs have to be used in a perfor-
mance analysis framework. We use data-flow [36] analysis to compute bounds on
throughput and latency for real-time applications, although time-triggered [23] or
network calculus [9] methods can also be used.

It is important to realize that predictability and composability are two different
properties and that one does not imply the other. Predictability means that a useful
bound is known on temporal behavior and is hence a property of a single applica-
tion mapped on a set of resources. Composability, on the other hand, implies
complete functional and temporal isolation between applications and is a property
of multiple applications sharing resources, where each application may be predict-
able or not. We illustrate the difference by discussing four example systems, shown
in Fig. 2.2, that cover all combinations of composability and predictability. The first
system, depicted in Fig. 2.2a, consists of two processors (P), each executing a single
application (Al and A2, respectively). We assume that both applications are
predictable and hence that worst-case execution times are known for all tasks
when running on predictable hardware. Data is stored in a shared remote zero-
bus-turnaround sraM that is reached via a bus. This type of srRam has an execution
time of one clock cycle per read or written word that is independent of other
requestors. The sram is shared using time-division multiplexing (Tpbm) arbitration,
which is a composable and predictable arbitration scheme, since the wcrt of a
requestor is both bounded and independent of other requestors. This makes this
system as a whole both composable and predictable. For our second system in
Fig. 2.2b, we replace the TpM arbiter with a round robin arbiter (RR). This system is
not composable, since response times of requests vary depending on the presence or

2 Composability and Predictability 31

(Y
o

T
T

(RR)

Composable and Predictable system
predictable system

B
B

Composable system Neither composable nor
predictable system

Fig. 2.2 Four systems demonstrating all combinations of the composability and predictability
properties.

absence of requests from other requestors. However, it is still predictable, since this
interference is easily bounded. We create our last two systems by adding private L1
caches ($) with random replacement policies to the processors in both previous
systems. A private cache is composable, since it is not shared between applications.
However, the random replacement policy makes the systems unpredictable, since a
useful bound cannot be derived on the time to serve a sequence of requests. The
third system, in Fig 2.2c¢, is hence composable, but not predictable. The last system,
shown in Fig 2.2d, is neither composable, nor predictable.

2.2.2 Composable Resources

This section discusses designing composable resources that may or may not be
predictable. As previously explained in Section 2.2.1, composability implies that
the starting time and response time of a request from a requestor must be
completely independent of requests from requestors belonging to other applica-
tions. Composability is trivially achieved by mapping applications to different
resources, an approach used by federated architectures in the automotive and
aerospace industries [24]. However, this method is prohibitively expensive for

32 B. Akesson et al.

Resource
et and si may both be infinite

Predictable resource

Shared resource
Vet < weet et and si may both be infinite

no preemption
(si=et)

@ preemption

or

Reschedulable resource
predictable artiter | (3) el < et i ke Do Skt
delay all si to wesi
independent et

and composable arbiter

Shared predictable resource Composable resource
Vrt < wert Vsi = wesi, et may be infinite

delay all rt to wert

Ci C

. [l P predi
Vrt = wert A Vsi < wesi] Vrt < wert A Vsi = wesi]

Technique: Path:
Composable scheduling of preemptive resources [2,5,7]
Composable scheduling of non—-preemptive predictable resources [1, 4, 7]

Predictable resource scheduling [1,3]and ([2, 5, 6] or [1, 4, 6])
Worst-case predictable resource scheduling [1,3,9]and ([2, 5, 6] or [1, 4, 6]) and [7, 10]
Predictable resource scheduling with worst-case delay [1,8,8]and ([2,5,6]or[1,4,6])

Fig. 2.3 Overview of techniques to achieve composability and predictability

systems that are not safety-critical. We proceed by looking at two alternatives to
composable sharing of resources. These correspond to the two paths @ — & — @
and ® — @ — @ in Fig. 2.3, which provides an overview of the five techniques
presented in this chapter.

The first technique is called composable scheduling of preemptive resources and
corresponds to following the edges @, ®, and @. This approach considers that
the execution times of requests may be variable and unknown a priori. An example
of this is the time required by a video decoding task executing on a processor to
decode a frame, which is highly dependent on the image contents. This results in non-
composable behavior, as the starting time of a request becomes dependent on the
execution time of the previous request, which may have been issued by a requestor
belonging to a different application. A solution to this problem is to preempt an
executing request after a given time, referred to as the scheduling interval (s1) of the
resource arbiter. This is shown in Fig. 2.4a, where the request of requestor 2 is

2 Composability and Predictability 33

requestor 1 ——=— - requestor 1 —— - - -~
requestor 2 ~ - - requestor 2
requestor 3 requestor 3 ————
T T
- . - .
. . time . time
si=wcsi wcsi=wcet
Resource preempts after WCSI Non-preemptive resource with WCSI=WCET

(o

— execution time

- - == delay scheduling until wcsi

Legend

Fig. 2.4 Composable scheduling for preemptive and non-preemptive resources, respectively

preempted before finishing its execution. We refer to a resource with a worst-case
scheduling interval (wcsi) as a reschedulable resource, as shown in Fig. 2.3, since it
is guaranteed to take new scheduling decisions within a bounded time. Such a
resource ensures progress of all requestors if it is paired with a starvation-free
arbiter, which is a class of arbiters that guarantee that all requestors are scheduled in
a finite time. Both round robin and Tpm are examples of arbiters in this class. A static-
priority scheduler, on the other hand, is not free of starvation, since a low-priority
requestor starves if high-priority requestors are constantly requesting.

The next step with this technique is to make all scheduling intervals equal to the
wcsl by delaying the arbiter in case the request finishes early, as shown in Fig. 2.4a.
This step decouples the starting time of a request from the execution time of the
preceding request, which is one of the two requirements to achieve composability.
The second requirement is that the response time must be independent from reques-
tors of other applications. We achieve this by using a composable arbiter, such as
TpM, where the presence or absence of other requestors does not affect the interfer-
ence. This results in independent response times for resources where the execution
time is independent of previous requests, such as a zero-bus-turnaround SRAM.
We have now fulfilled both requirements for a resource to be considered composable.
Note that this type of composable resource is not necessarily predictable. It may, for
example, include a cache that is private or shared between requestors belonging to the
same application, which results in non-useful bounds on execution time for memory
requests, although they are independent of other applications.

Next, we explore a second method of designing composable resources called
composable scheduling of non-preemptive predictable resources, which follows the
edges @, @, and @ in Fig. 2.3. This method is motivated by the main limitation of the
first approach, which is restricted to preemptive resources. Some important resources,
such as SDRAM memories cannot be preempted during a burst, as they require all the data
associated with a request to be transferred on consecutive clock cycles to function

34 B. Akesson et al.

correctly. Achieving composability with non-preemptive resources is still possible,
assuming that the resource is predictable and hence has a known wcet. For these
resources, we make the scheduling interval equal to the longest WcET of any request
executing on the resource. This is illustrated in Fig. 2.4b, where the request from
requestor 2 is assumed to have the longest wceT. This technique makes starting times
independent of requests from other applications, which is required for composability.
Supporting non-preemptive resources with bounded execution times is the major
benefit of this technique. However, this method arrives at a reschedulable resource by
characterizing the requests and the resource rather than by enforcement, which has three
drawbacks. Firstly, it cannot be applied to mixed time-criticality systems where real-
time applications share resources with non-real-time applications that do not have
bounded wceT. Secondly, the system is less robust, as it becomes non-composable if
the characterization is incorrect or if a requestor misbehaves. Finally, making the
scheduling interval equal to the longest WCET results in low resource utilization if
there is a large difference between the average and worst-case execution time. This is
not acceptable for scarce resources, such as SDRAM memories.

Since composable scheduling of non-preemptive predictable resources implies
that the wceT of requests have to be bounded, it may result in a system that is
also predictable. This depends on whether or not the composable arbiter is also
predictable. Although this is typically the case, such as for Tpm, it is not inherent
to composability. For example, an arbiter that randomly schedules requestors
every wcsl is composable, as it is independent of applications, but it is unpredict-
able, since the wWcRT can be infinite. We will return to discuss techniques to share
resources in ways that are both composable and predictable in Section 2.2.4.

The proposed techniques for composable resource sharing make the temporal
behaviors of the requestors independent of each other, thus implementing compo-
sability at the level of requestors. This is a sufficient condition to be composable at
the level of applications, which is the actual requirement from Section 2.2.1.
However, composability at the level of requestors is stricter in the sense that
requestors belonging to the same application are allowed to interfere with each
other in a composable system. It is hence possible to let requestors benefit from
unused resource capacity (slack) reserved by requestors belonging to the same
application to increase performance or reduce power [27]. This can be accom-
plished by using a two-level arbiter, as proposed in [17], where the first level is a
composable inter-application arbiter, and the second an intra-application arbiter
that does not have to be composable. This type of arbitration enables requestors
from the same application to use slack created in the intra-application arbiter to
boost performance without violating composability at the application level.

2.2.3 Predictable resources

Having discussed two ways of building resources that are composable, but not neces-
sarily predictable, we proceed by discussing how to build resources that are

2 Composability and Predictability 35

predictable, but not necessarily composable. As previously mentioned in Section 2.2.1,
this requires useful bounds on both the wceT and the WCRT.

Our approach to predictable resource sharing is based on combining resources
and arbiters, each with predictable behaviors. In Fig. 2.3, this intuitively corre-
sponds to following the edges (D and 3 from a general resource to a predictable
shared resource. More specifically, we require bounds on the wcET for each request
executing on the resource, since these characterize the worst-case behavior of the
unshared resource. Some resources, such as zero-bus-turnaround srawms, are predict-
able and have constant execution times that are easy to determine. However, other
resources, such as spram, have variable execution times that depend on earlier
requests and cannot be usefully bounded at design time in the general case [1].
In this case, the resource controller must be implemented in a way that makes the
resource behave in a predictable manner. We discuss how to accomplish this for an
SDRAM resource in Section 2.5.

If the resource is shared, we require predictable arbitration that bounds the time
within which a request finishes receiving service. Note that by this definition,
all predictable arbiters are starvation free. Predictable arbiters enable the WCRT
to be computed if the resource is reschedulable and hence makes new scheduling
decisions within a bounded time, determined either by a chosen scheduling interval
(preemptive resource) or by the longest wcer of any request executing on the
resource (non-preemptive resource). This is illustrated in Fig. 2.3, where a predict-
able shared resource has to be both predictable and reschedulable and there are two
possible paths to achieve the latter. Computing the wcrT takes the effects of sharing
the resource into account.

An important property of our approach is that it is based on combining indepen-
dent analyses of the resource and the arbitration. The arbiter analysis bounds the
number of scheduling decisions that are made by the arbiter from a request is
eligible for scheduling until it finishes receiving service. The WcRT is then con-
servatively computed by multiplying the number of decisions with the wcst and
adding the number of pipeline stages between the request buffer and the response
buffer in the architecture. Note that this conservatively accounts for both the
execution time of the request and any preemptions from other requestors during
the execution. The strength of this approach is the generality, as any combination
of predictable resource and predictable arbiter results in a predictable shared
resource. This makes it easy to change the arbiter to fit with the response time
requirements of the requestors in the system, which is exploited by the processor
tile in Section 2.3 and the memory tile presented in Section 2.5.

2.2.4 Composable and predictable resources

Section 2.2.1 explained that composability and predictability are different proper-
ties and that one does not imply the other. We then showed in Sections 2.2.2 and
2.2.3 how to make resources that are either composable or predictable. In this

36 B. Akesson et al.

section, we discuss two ways of making resources that are both composable and
predictable.

The first and most straight-forward technique to get composable and predictable
resources is to simply combine the approaches in Sections 2.2.2 and 2.2.3. We call
this technique worst-case predictable resource scheduling and it corresponds to
moving from a predictable shared resource via edge @ and from a composable
resource via edge (0 to a composable and predictable resource. This implies that the
resource is predictable and that each request has a useful bound on wcer that is
independent of other requestors. It also means that the resource is shared using an
arbiter that is both composable and predictable, such as TpMm. Such an arbiter provides
bounded interference from other requestors that is independent of their actual
behaviors, making the resource composable and bounding the wcrt. Since the
original approaches to composable and predictable resources apply to both preemp-
tive and non-preemptive resources, the same property holds for this combination. It
furthermore inherits the possibilities for slack management, previously explained in
Section 2.2.2.

A benefit of this approach to make resources composable and predictable is that
it is easy to conceptually understand and implement. A drawback is that it only
applies to resources where the execution time of a request is independent of
requests from requestors belonging to applications other, as previously described
in Section 2.2.2. If this is not naturally the case, it can be achieved by delaying all
executions to be equal to the wcer. However, this may be costly if the variation in
execution time due to other applications is large, preventing it from being effi-
ciently applied to scarce resources, such as spram. Instead, this technique is used in
the processor tile presented in Section 2.3 and for composable and predictable sRam
sharing using o™ in [17].

The second technique is called predictable resource scheduling with worst-case
delay and addresses the problem of efficiently dealing with variable execution times
and extends composability to support any predictable arbiter. The problem with
most predictable arbiters is that they typically cause the times at which the resource
accepts requests and sends responses to a requestor to change due to variable
interference from other requestors, making it non-composable. The key idea behind
this technique is to make the system composable by removing the variation in
interference, both from other applications and the resource itself. We accomplish
this by starting from a predictable shared resource and then delay all signals sent to
a requestor to emulate maximum interference from other requestors. A requestor
hence always receives the same worst-case service no matter what other requestors
are doing. This technique corresponds to achieving composability for a predictable
shared resource using edge ® in Fig. 2.3. The implication of this approach is that the
interface presented towards the requestor is temporally independent of other reques-
tors. Variation in starting times and response times may be visible on the resource
side of the interface, but not on the requestor side. This is similar to the composable
component interfaces proposed in [23].

The technique implies delaying responses in a response buffer until their wcrT
to prevent the requestor from receiving it prematurely if there is little interference,

2 Composability and Predictability 37

or if the variable execution time is short. However, making the wcrT independent of
other applications is only one of the two requirements for a composable resource.
The second requirement states that the starting time must also be independent. This
is not the case if a request is scheduled earlier than its worst-case starting time.
In this case, another request may be admitted into the resource prematurely,
resulting in a different starting time. This problem is addressed by basing request
accept signals on worst-case starting times of previous requests, as opposed to
actual starting times. Requests are hence admitted into the resource in a composable
manner, regardless of the interference experienced by others.

Figure 2.5 compares ‘predictable resource scheduling with worst-case delay’ to
‘composable scheduling of preemptive resources’, previously discussed in
Section 2.2.2. Figure 2.5a illustrates that requests are scheduled immediately after
a finished execution using ‘predictable resource scheduling with worst-case delay’,
but that responses are delayed until the wcrT. In contrast, Fig. 2.5b (identical to
Fig. 2.4a) shows that ‘composable scheduling of preemptive resources’ delays
scheduling until the wcrT, but releases responses immediately after a finished
execution.

‘Predictable resource scheduling with worst-case delay, has two major benefits
compared to ‘composable scheduling of preemptive resources’: 1) It extends the
use of composability beyond resources and arbiters that are inherently composable.
It is hence not limited to resources where the execution times of requestors are
independent, but can efficiently capture the behavior of any predictable resource.
2) It supports any predictable arbiter, enabling service differentiation that increases
the possibility of satisfying a given set of requestor requirements [2]. For example,
using an arbiter that is more sophisticated than Tpm can lead to reduced over-
allocation, and allow lower latencies or higher throughput on a resource. These

a b

requestor 1 requestor 1
requestor 2 requestor 2 E
requestor 3 requestor 3
T T T
i i time time
si,=et, si,=et, si=wcsi
Rescheduling after SI=ET and delaying Rescheduling every WCSI and releasing
responses until WCRT responses immediately after execution

Cc

— execution time
- - -» delay scheduling until wcsi

------ # delay responses until wert

Legend

Fig. 2.5 Delaying scheduling until wcsr vs. delaying responses until wcrT

38 B. Akesson et al.

characteristics make the approach suitable for memory tiles with sbraMm, as we will
further explain in Section 2.5.

The main drawback of this technique is related to slack management. This
approach makes the temporal behaviors of the requestors independent of each
other, thus implementing composability at the level of requestors instead of at the
level of applications. It is hence not possible to benefit from unused resource
capacity reserved by requestors belonging to the same application, which may
negatively impact performance.

2.3 Processor tile

Having reviewed the different approaches to achieving composability and
predictability, we proceed by looking at how it is actually implemented in a
multi-processor system, starting with the processor tile. We consider a mixed
time-criticality system, where the processor executes a mix between real-time and
non-real-time applications. In this section, we first present the strategy to achieve
composability of applications on a processor tile, followed by our approach to
implementing predictability. The architecture of the processor tile is shown in
Fig. 2.1. The components of this tile are discussed in the following sections.

2.3.1 Composability

Processors execute requests, corresponding to task iterations. The execution time
of a request is hence the time it takes to execute a task iteration on the processor.
Real-time tasks must have a wceT, which means that they complete an iteration in
bounded time. This is not necessarily the case for non-real-time tasks. In mixed
time-criticality systems, where these types of tasks share resources, the wcrRT of
real-time tasks can only be bounded if resources are preemptive. Composability in
the processor is hence implemented using the technique ‘composable scheduling of
preemptive resources’. The key ingredients to achieve composability in this
resource are thus found on the path @, ®, and @ in Fig. 2.3 and constitute:
1) preemption, 2) enforcing a constant scheduling interval equal to wcsi, and
3) using a composable arbitration scheme.

For a processor, the wcst defines a task slot with bounded duration when a
task can utilize the processor. After a task slot finishes, an operating system (0s)
decides which task to execute next during an os slot. To ensure independent
starting times and response times of tasks, required for composability, not only
the task slots, but also the os slot, must have a constant duration and fixed starting
times.

The execution time of the os may depend on the number of applications and tasks
it has to schedule. If the os slot is not forced to a constant duration at least equal to its

2 Composability and Predictability 39

WCET, it is impossible to ensure that task starting times and response times are
independent of the presence or absence of other applications in the system. Further-
more, common oses check if tasks are ready to execute, which depends on the
availability of their input data and output space. For composability, the time at
which this check is performed must be independent of other applications. ‘Compo-
sable scheduling of preemptive resources’ requires the execution times of tasks to
be independent. The functional state of the processor tile at a task switch must hence
be unable to affect the execution time of the scheduled task. This may imply that the
processor instruction pipeline should be empty, and that potential caches should
be cleared of all data to avoid cache pollution. In the following sections, we present
the mechanisms to enforce constant-duration task and os slots. Following this, we
describe the scheduling of applications and tasks, which relies on this property.

2.3.1.1 Constant task slots

To enforce a task slot with constant duration and fixed starting times, we use a timer
that interrupts the processor after a programmable fixed duration. When receiving
an interrupt, the first instruction of the interrupt service routine jumps to os code,
giving control to the os. This can be implemented with a dedicated timer per tile
that is accessed via a memory-mapped peripheral bus or an instruction-mapped
port. By using a timer outside the processor, in an always-on clock domain, the
processor can enter a low-power state during idle periods without stopping the
timer [13].

To get a constant-duration task slot, the processor should be interruptible in
(preferably short) bounded time. However, processors are typically not interruptible
while instructions are still in the pipeline. The time to start the interrupt service
routine, referred to as the interrupt latency, thus depends on the execution time of
the currently executing instructions. The time it takes to finish executing an
instruction depends exclusively on the processor, except for instructions that
involve other resources. For example, a load from non-local memory also uses
the interconnect and a remote memory. Depending on the predictability and sharing
of those resources, such a load may take thousands of cycles to complete (e.g. when
it has a low priority in the Noc and memory tile).

By restricting the number of outstanding remote-read transactions, the wCgT of a
task and its worst-case interrupt latency can be computed, but will be prohibitively
high (thousands of cycles). We hence use an alternative approach by restricting the
processor to only using local (instruction and data) memories and use Remote Direct
Memory Access (RDMA) engines to communicate outside the processor tile. Remote
accesses may stall the RbmA, while the processor only polls locally, resulting in a
short interrupt latency. Note that even with only local reads, the execution time of the
interrupt service time is bounded, but not constant. For example, division and
multiplication instructions take more cycles than NOP or jump instructions.

40 B. Akesson et al.

The processor programs the RDMA to read or write data on remote memories
residing inside another processor tile, or in a memory tile. Programming the RpmMAs
is done using only local load and store instructions. An additional advantage of
using RDMAS is that they decouple computation and communication, enabling them
to be overlapped in time. In this chapter, we assume that the local memories of
processor tiles are large enough to store the following state for all tasks mapped on
the tile: 1) instructions, 2) (private) data, and 3) all the buffers (for input and output
tokens) needed for an iteration. RoMAs are hence only used for inter-task communi-
cation between tasks mapped on different processors. This communication is
implemented using uni-directional FIFO buffers with finite size. These FIFO
buffers are located either in the local memory of the consumer (if the memory
space in the processor tile is sufficiently large), or in a remote memory tile. The
producer always posts the data in the buffer via a Roma write. In Fig. 2.1, the data
travels from the data memory in the producer tile, through the rRDMA to the
interconnect. The interconnect then delivers it to the local memory in the consumer
tile. Alternatively, the producer RbmA places the data in a remote memory tile, from
where it is copied by the consumer RDMA to the data memory in its tile. In all cases,
the FIFO administration [31], consisting of read and write pointers, is located in
the producer and consumer tiles.

To achieve composability, a RoMA has to be composable if shared between
applications. Since RDMAs are simple finite state machines, we do not share them
between applications. Instead, each application has its own RDMA, but for maximum
performance, each FIFO of each task can be given its own RpDMA. For simplicity,
Fig. 2.1 shows only one RDMA per tile. Note that the local memory should also be
made composable using the techniques detailed in Section 2.5.

2.3.1.2 Constant OS slot

As previously explained, the os slot should have a constant starting time and
duration. Given a constant task slot duration, the only requirement to achieve a
constant os starting time is that the task-to-os switching time should be constant.
The task-to-os switching time is equal to the interrupt latency of the timer, which
depends on the instructions in-flight on the processor. We force the interrupt latency
to be constant and equal to its WCET via a mechanism to delay actions (execution)
until a fixed future moment in time, as described below.

Our approach to enforce a constant os slot is to inhibit execution on the processor
until its WCET is reached, thus making the os execution composable. This corre-
sponds to the technique ‘composable scheduling of non-preemptive resources’,
which uses edges @, @, and @ in Fig. 2.3. This can be implemented in several
ways. Polling on a timer [10] is the simplest, but prevents clock-gating of the
processor. If the processor has a halt instruction, the processor can be halted after
the os finishes its execution. The tile timer, programmed before the halt instruction,
wakes up the processor at the wcer. When a halt instruction is not available, the

2 Composability and Predictability 41

oS
constant

I
I 0os
. . | constant
constant service unit | execution time
I
|

I I ! ! I
I I | l I
I I | | I
| constant service unit | execution time 1 | constant service unit |
! I interrupt 5 interrupt 5 A
l | serviced l erviced l l
I ~~ L \’§ L .

Task2 | | [Os] | Task3 | | [0OS]| | Taski |
i T i 1 i Tt 1 i T
— —m > [[[S

interrupt clk clk clk clk interrupt clk clk clk clk interrupt
gateungate gate ungate gateungate gate ungate

Fig. 2.6 Processor slots and task switching time line

processor clock can be disabled by a voltage-frequency control unit (VFCU in
Fig. 2.1) until the WCET.

Figure 2.6 presents the time line with the seven main events when performing
a task switch: 1) the interrupt is raised, 2) the interrupt is served, 3) the processor
ungate moment in time is programmed, 4) the clock is gated up to the wcEeT of the
interrupt latency, 5) the os is executed, 6) the processor ungate moment in time
is programmed, and finally 7) the clock is gated up to the WceT of the os.

2.3.1.3 Two-level application and task scheduling

The constant-duration task and os slots ensure that task slots start at fixed points
in time, and that there is a bounded wcsi. A task iteration that has a WCET on a
non-shared processor tile hence has bounded wcer and wcrRT on a shared tile.
As mentioned before, the functional state of the processor tile at the start of a
task slot must be independent of other applications to avoid possible interference.

By using a composable scheduler, interference between all tasks is removed.
However, this is unnecessarily strict, since it also prevents slack from being used by
tasks belonging to the same application. Moreover, different applications benefit
from using different schedulers, such as static-order, Tom, or Credit-Controlled
Static-Priority arbitration [5] (ccsp, further described in Section 2.5). The processor
addresses this problem by using a two-level arbitration scheme: a composable inter-
application arbiter (tpm) that schedules applications, and an intra-application arbi-
ter that schedules tasks within an application. The composable inter-application
arbiter ensures the isolation between applications, while the intra-application arbi-
ters are chosen to fit the requirements of the application tasks. The intra-application
arbiters are free to distribute slack to improve performance of the tasks.

2.3.2 Predictability

As already mentioned, we target mixed time-criticality systems that concurrently
execute a set of real-time and non-real-time applications. For real-time appli-
cations, we require the wWCeT of each task iteration to be known. The execution
time of a task on a processor is hence required to be predictable, which excludes the

42 B. Akesson et al.

use of out-of-order execution, speculation, and caches with random replacement
policies [40].

To derive the end-to-end application performance (e.g. throughput, latency,
etc.), applications are modeled as data-flow graphs [25, 36]. The nodes in the
data-flow graphs are referred to as actors that are connected via directional edges.
Each actor fires whenever its firing rule is satisfied. A firing rule specifies for each
incoming and outgoing edge, the number of input tokens required and the number
of output tokens produced, respectively. The data-flow model naturally describes a
streaming application: a task is an actor, and a task iteration is an actor firing. FIFO
communication between two tasks is represented as a pair of opposing edges, one
modeling the communicated data, and the other modeling the available inter-task
buffer space.

If several tasks share the same processor, predictable inter-task arbitration is
required. Examples of such arbitration are Tpm, ccsp, and round robin. Moreover,
the sharing and arbitration effects should be taken into account when calculating the
end-to-end application performance. Modeling of different arbitration policies as
data-flow graphs is presented in [19, 28].

2.4 Interconnect

The processor and memory tiles in the system communicate via a global
on-chip interconnect, as shown in Fig. 2.1. Typically, processors act as memory-
mapped initiators and memory tiles as memory-mapped fargets. This is seen in
the figure, where initiator and target ports are colored black and white, respec-
tively. When tasks execute on a processor, they give rise to read and write
requests that are delivered to the appropriate memory tile based on the address,
and a response is potentially delivered back to the processor. The requestors of
the interconnect, according to Section 2.2.1, are thus the ports of the processor and
memory tiles.

To deliver the aforementioned functionality, the interconnect is subdivided into
a number of architectural components [16]. We first present a brief overview of
the components and then continue to discuss how they provide composability
and predictability. When a request is presented to the interconnect by an initiator,
it is serialized by a protocol shell into a sequence of words. These words are then
passed through a clock domain crossing (CDC) to transition from the clock domain
of the initiator to that of the network, making the platform globally-asynchronous
locally-synchronous (GALS) [30]. The data is then sent through the network,
comprising Network Interfaces (N1) and routers (R), through a logical connection.
The N1 packetizes the data and determines the route through the network. The
routers merely forward the data to its destination N1 where it is depacketized, before
transitioning to the clock frequency of the target in another clock domain crossing.
The shell then deserializes the request and presents it to the actual target port.
A response, if present, follows the same logical connection back through the

2 Composability and Predictability 43

network until it reaches the initiator. The interconnect resource hence comprises
protocol shells, clock domain crossings, Nis, routers and links.

2.4.1 Composability

The protocol shells are not shared by connections and thus require no special
attention to deliver composability. They are furthermore simple state machines
that can be considered predictable. Moreover, the shells serialize the memory-
mapped transactions of the tiles independently of their protocol, burst size, type
of transaction etc. Thus, when presented to the Nis as a stream of words, the level of
flow control and preemption is a single word (using a FIFO protocol).

Once the serialized transactions are delivered to the nis, each logical connection
has dedicated input and output buffers in the nis. At this level, the network can thus
be seen as a set of composable distributed FIFOs, interconnecting pairs of protocol
shells. The nis packetize the individual words of data in units of flits and send them
through the network links and routers. Each packet starts with a header (flit) with
the path to the destination output buffer. In contrast to many on-chip networks, our
interconnect does not perform any arbitration inside the network. The routers
simply obey the path encoded in the packet headers, and push the responsibility
of scheduling and buffering to the nis. Thus, all arbitration takes place in the N1, and
the routers merely forward the flits until they reach the destination N1, making the
network appear as a single (pipelined) shared resource.

To make the network as a whole composable (and predictable), we use the
technique ‘worst-case predictable resource scheduling’. We describe the imple-
mentation of this technique in three steps, corresponding to edges G, @, and @ in
Fig. 2.3. Firstly, the network resources are preemptive at the level of flits (edge ©). A
scheduling decision is thus taken for every flit, independent of the length of the
packets. Furthermore, as we have already seen, the data in the N1 FIFOs has no notion
of memory-mapped transactions, and there is consequently no correspondence
between transactions and packets. As there is no buffering inside the router network,
the Nis use end-to-end flow control to ensure the availability of buffer space.
Consequently, flits are only injected if they are guaranteed not to stall anywhere
inside the network.

Secondly, the flit size is fixed at three words, resulting in a constant scheduling
interval of three cycles. If a connection’s input buffer is empty or if it runs out of
flow control credits, it uses only one or two words of the three-word flit. The
constant flit length corresponds to making all scheduling intervals equal to the
wcst, indicated by edge @ in Fig. 2.3. It is worth noting that there is no need to
determine how long it takes for other requestors flits to reach their destination, only
how long it takes until a new flit can be scheduled, i.e. the execution time and
response time of other requestors is irrelevant.

Thirdly, the fixed flit length is combined with a global schedule of the logical
connections, where each NI regulates the injection of flits using a Tpm arbiter [11],
such that contention never occurs on the network links. The schedule relies on a

44 B. Akesson et al.

(logical) global synchronicity of the network components, but the concept has been
demonstrated on both mesochronous and asynchronous implementations of the
network [18]. The Tpm schedule is programmed at run time according to the running
use-case, but is typically determined at design time.

The last part of the interconnect composability is enforced insertion of packet
headers for non-consecutive flits. That is, if another connection could have used the
link, assume it did (even if it did not), and insert a new packet header. The header
insertion ensures that the arbiter is stateless in terms of influence from other
requestors.

2.4.2 Predictability

With the aforementioned mechanisms in place, the interconnect offers composability
at the level of connections, between pairs of protocol shells. Predictability additionally
requires worst-case response times for the shared resources. As discussed in detail
in [19], the temporal behavior of a connection depends on the Tom scheduler settings,
the path length, and the size of the input and output buffers. The scheduler determines
how long words have to wait in the input buffer until injected into the network, once
eligible. The path, in turn, determines the time required to traverse the network
(without stalling). The input and output buffers affect the time at which words are
accepted and become eligible for scheduling. All these contributions can be bounded
and captured in a data-flow graph, thus offering predictability.

2.5 Memory tile

This section presents our memory tile and discusses the techniques employed to
implement composability and predictability. The architecture of the memory tile,
shown in Fig. 2.1, is divided into a front-end and a back-end. The front-end is
independent of memory technology and contains buffering, arbitration, and com-
ponents to make the memory tile composable. The back-end interfaces with the
actual memory device and makes it behave like a predictable resource. The back-
end is hence different for different types of memories, such as sRaM and SDRAM, as
indicated by the figure. The components in the architecture are discussed further in
the following sections.

Although our memory tile is general and supports both sRaM and DDR2/DDR3 SDRAM,
we will focus the discussion on sDRAM, since these memories have three important
characteristics that make the implementation of composability and predictability
challenging. 1) The execution time of a request and the bandwidth offered by the
memory is variable and depends on other requestors. 2) Some memory requestors
are latency critical and require low response time to reduce the number of stall cycles
on the processor. 3) For cost reasons, sbRaM bandwidth is a scarce resource that must

2 Composability and Predictability 45

be efficiently utilized. This section is organized as follows. Firstly, Section 2.5.1
explains how to make an spram behave like a predictable shared resource. Sec-
tion 2.5.2 then discusses how to make the predictable shared memory composable.

2.5.1 Predictability

Section 2.2.1 states that a predictable resource must provide a useful bound on wceT
to all requests. In addition, a memory tile must bound the bandwidth offered to a
requestor to ensure that bandwidth requirements are satisfied. This section elabo-
rates on how our memory tile delivers on these requirements. The memory tile
follows our general approach to predictable shared resources and combines a
predictable resource with predictable arbitration. First, the concepts behind an
sbraM back-end that makes the memory behave like a predictable resource,
corresponding to edge @ in Fig. 2.3, are explained. We then discuss how to share
the predictable memory between multiple requestors, covering edge (3.

2.5.1.1 Predictable SDRAM back-end

SDRAM memories are challenging to use in systems with real-time requirements
because of their internal architecture. An SDRAM memory comprises a number of
banks, each containing a memory array with a matrix-like structure, consisting of
rows and columns. A simple illustration of this architecture is shown in Fig. 2.7.
Each bank has a row buffer that can hold one open row at a time, and read and write
operations are only allowed to the open row. Before opening a new row in a bank,
the contents of the currently open row are copied back into the memory array. The
elements in the memory arrays are implemented with a single capacitor and a
resistor, where a charged capacitor represents a logical one and an empty capacitor
a logical zero. The capacitor loses its charge over time due to leakage and must be
refreshed regularly to retain the stored data.

The spram architecture makes the execution time of requests highly variable for
three reasons. 1) A request targeting an open row can be served immediately, while

bank
activate precharge
(open) (close)
Fig. 2.7 The architecture of N (T~
an SDRAM memory and L row buffer A |
behaviors of some important Y i

SDRAM commands read write

46 B. Akesson et al.

it otherwise needs the current row to be closed and the required row to be opened.
2) The data bus is bi-directional and requires a number of cycles to switch from read
to write and vice versa. 3) The memory must occasionally be refreshed before
executing the next request. The impact of these factors may cause the execution
time of an sDRAM burst to vary by an order of magnitude from a few clock cycles to a
few tens of cycles.

The behavior of an spbrRaM memory is determined by the sequence of SDRAM
commands that are communicated from the back-end of the memory tile to the
memory device. These commands tell the memory to activate (open) a particular
row in the memory array, to read from or write to an open row, or to precharge
(close) an open row and store its contents back into the memory array. There is also
a refresh command that charges the capacitors of the memory elements to ensure
that the contents of the memory array are retained. The behaviors of some of these
commands are illustrated in Figure 2.7. Scheduling SbRAM commands is not a trivial
task, since there are a considerable number of timing constraints that must be
satisfied before a command can be issued. These timing constraints are typically
minimum delays between issuing particular sbRAM commands, such as two
activates, or an activate and a read or a write.

Existing sbraM controllers can be divided into two categories, depending on
how they schedule sbpraM commands. Statically scheduled controllers [7] execute
precomputed command schedules that are guaranteed at design time to satisfy all
timing constraints of the memory. Executing precomputed schedules makes these
controllers predictable and easy to analyze. However, they are also unable to adapt
to the dynamic behavior of applications in contemporary socs, such as bandwidth
requirements or read/write ratios that vary over time. The second category of
controllers uses dynamic scheduling of commands, which requires the timing
constraints to be enforced at run time. These controllers [20, 21, 26, 29, 35] have
sophisticated command schedulers that attempt to maximize the average offered
bandwidth and to reduce the average latency at the expense of making the resource
extremely difficult to analyze. As a result, the offered bandwidth can only be
estimated by simulation, making bandwidth allocation a difficult task that must
be re-evaluated every time a requestor is added, removed or is modified.

We use a hybrid approach to spram command scheduling that combines ele-
ments of statically and dynamically scheduled sbram controllers in an attempt to
get the best of both worlds. Our approach is based on predictable memory pat-
terns [1], which are precomputed sequences (sub-schedules) of sbRam commands
that are known to satisfy the timing constraints of the memory. These patterns are
dynamically combined at run-time, depending on the incoming request streams.
The memory patterns exist in five flavors: 1) read pattern, 2) write pattern, 3) read/
write switching pattern, 4) write/read switching pattern, and 5) refresh pattern.
The patterns are created such that multiple read or write patterns can be scheduled
in sequence. However, a read pattern cannot be scheduled immediately after a
write pattern. In this case, the read pattern must be preceded by a write/read switch-
ing pattern. This works analogously in the other direction. The refresh pattern can be
scheduled immediately after either a read pattern or a write pattern. Both read and

2 Composability and Predictability 47

write patterns can be scheduled immediately after a refresh without any preceding
switching patterns.

The read and write patterns consist of a fixed number of spraMm bursts, all
targeting the same row in a bank. The bursts are issued to the different banks in
sequence, since the data bus is shared between all banks to reduce the number of
pins on the spraMm interface. The fixed number of bursts is hence first sent to the first
bank, then to the second, and so forth in an interleaving fashion until all banks have
been accessed. This way of accessing the sbram results in a short period with
frequent accesses, followed by a longer period without any accesses. The patterns
exploit bank-level parallelism by issuing activate and precharge commands to the
banks during the long intervals in which they do not transfer any data. The read and
write patterns are hence very efficient in terms of bandwidth, since it is possible to
hide a significant part of the latency incurred by activating and precharging rows.
This limits the overhead cycles incurred by always precharging a bank immediately
after it has been accessed, which is known as a closed page policy. We implement
this policy, as it effectively removes the dependency on rows opened by earlier
requests by returning the memory to a neutral state after every access. Removing
this dependency between requests is a key element in our approach, since it reduces
the variation in the offered bandwidth and latency, enabling tighter bounds on
bandwidth and wcrT to be derived.

Although interleaving memory patterns allow us to bound the offered band-
width, they come with two drawbacks. The first drawback is that continuously
activating and precharging the banks increases power consumption compared to if a
single bank is used at a time. The second drawback is that the memory is accessed
with large granularity and hence requires large requests to be efficient. An efficient
access requires at least one sDraM burst to every bank. A typical burst size for sDrRam
is eight words and the number of banks is either four or eight. The minimum
efficient request size for a 32-bit memory interface is hence between 128-256 B,
depending on the size and generation of the pDR sDRaM [3]. Working with large
requests in a non-preemptive manner also means that urgent requests can be
blocked longer, resulting in longer wWCRT.

Requests are dynamically mapped to patterns in a non-preemptive manner by the
command generator in the SDRAM back-end. A scheduled read request maps to a read
pattern, possibly preceded by a write/read switching pattern. Similarly, a write
request is mapped to a write pattern and potentially a preceding read/write switch-
ing pattern. Refresh patterns are scheduled automatically by the sbram back-end
on a regular basis between requests. The mapping from requests to patterns and
from patterns to SbrRAM bursts is shown for an spram with four banks in Fig. 2.8.
The figure illustrates that the execution time of a request of four bursts varies
depending on whether or not a switching pattern is required and if a refresh is
scheduled before the request.

The benefit of memory patterns is that they raise sboRaM command scheduling to a
higher level. Instead of dynamically issuing individual sbRaM commands, like a
dynamically scheduled spram controller, our back-end issues memory patterns that
are sequences of commands. This implies a reduction of state and constraints that have

48 B. Akesson et al.

Requests | Read | Write | Read | Read | Write n
: - : : -
I | I I |
I | I I |
1 | 1 1 |
I | I I |
) I

I
Memory [Read I Refresh I Write Read I Read Write
patterns
| v v v
I I I I I I
I I I I I
1 U 1 U

Bursts/ ! : : : :
SI0060) 600000660000 JW00a6)
Time

Fig. 2.8 Mapping from requests to patterns to SDRAM bursts

to be considered, making our approach easier to analyze than completely dynamic
solutions. Memory patterns allow a lower bound on the offered bandwidth and wcrr to
be determined, since we know the execution time of each pattern, how much data they
transfer, and what the worst-case sequence of patterns is. This analysis is presented
and experimentally evaluated in [3]. The use of memory patterns gives our approach
the predictability of statically scheduled memory controllers. In addition, our
approach has some properties of dynamically scheduled controllers, such as the ability
to dynamically choose between read and write requests, and the use of run-time
arbitration. The latter is discussed in the following section.

2.5.1.2 Predictable arbitration

After the previous section, we assume that we have a predictable memory, such as
a zero-bus-turnaround sRAM or our SDRAM back-end based on predictable memory
patterns, where useful bounds on both the offered bandwidth and the wcer of
requests are known. In this section, we consider the effects of sharing the predictable
memory between multiple requestors. As mentioned in Section 2.5.1, we require a
predictable arbiter, where the number of interfering requests before a particular
request is served is bounded. This enables the wcrT to be determined. There are a
large number of predictable arbiters described in literature, such as Tom and round
robin. However, most of these arbiters are unable to provide low response time to
critical requestors, making them unsuitable for memory tiles. This problem is
addressed by priority-based arbitration, but as previously mentioned in Section 2.2.2,
conventional static-priority scheduling is not starvation-free and cannot be used to
build predictable or composable systems. To address this issue, we have developed a
Credit-Controlled Static-Priority (ccsp) arbiter [5]. The ccsp arbiter consists of a rate
regulator and a static-priority scheduler. The rate regulator isolates requestors by
enforcing an upper bound on the provided service, according to an allocated budget.
It furthermore decouples allocation granularity and latency, which enables band-
width to be allocated with an arbitrary precision without affecting latency [4].
A clean trade-off is hence provided between over allocation and area, allowing

2 Composability and Predictability 49

over allocation to become negligible. This is essential for scarce soc resources with
very high loads, such as sprams. The static-priority scheduler schedules the highest
priority requestor that is within its budget. The use of priorities decouples latency
and rate, thus enabling low latency to be provided to requestors with low bandwidth
requirements without wasting bandwidth. The combination of rate regulator and
static-priority scheduler makes the arbiter predictable, while still being able to
satisfy the requirements of latency-critical requestors.

A rate regulator creates a separation of concerns and makes it possible to bound
the wcrT of a requestor in a static-priority scheduler without relying on the coopera-
tion of higher priority requestors. Instead, the bounds on wcrr are based on the
allocated bandwidths and burstinesses, which are determined at design time. How-
ever, to be completely robust, we also need to be independent of the sizes
of scheduled requests to prevent a malfunctioning requestor from preventing access
from others by issuing very large requests. We solve this problem using preemptive
service, which is enabled by the atomizer [17] block, shown in Fig. 2.1. The atomizer
splits requests into smaller atomic service units, which are served by the memory in a
known bounded time. This effectively makes the memory preemptive on the granu-
larity of an atomic service unit. The size of the atomic requests are fixed and
determined at design time. It is chosen to be the minimum request size that can be
efficiently served by the resource. For an sram, the natural service unit is a single
word, but it is much larger for an spram with predictable memory patterns. For these
memories, the appropriate size might be between 16 and 256 words, depending on
the memory device and the desired trade-off between efficiency and latency.

2.5.2 Composability

Composability in the memory tile is achieved using the technique called ‘predict-
able resource scheduling with worst-case delay’. This is for two reasons related to
the characteristics of sDrAM, presented earlier. Firstly, because sbrams have highly
variable execution times that depend on other requestors. This prevents the use of
‘worst-case predictable resource scheduling’ unless the execution time is made
independent of other requestors. This is possible by delaying all executions until the
WCET by setting wcsiI=wcET. For most patterns, this involves assuming a read/write
switch for every memory request. Although possible to implement, this may
increase the response time and decrease the offered bandwidth by up to 20% [3].
This is not a feasible option, considering that sprRam bandwidth is a scarce and
expensive resource. The second reason is that the first technique is limited to
composable arbiters, such as Tpm or static scheduling, which cannot distinguish
requestors with low response time requirements. However, the second technique
works with any predictable arbiter, such as our priority-based ccsp arbiter.
The technique is implemented by the delay block, shown in Fig. 2.1. This compo-
nent emulates worst-case interference from other requestors to provide a

50 B. Akesson et al.

composable interface towards the atomizer. This makes the interface of the entire
front-end composable, since the atomizer is not shared.

It is worth noting that the delay block could have been placed in the processor
tile, as opposed to in the memory tile. The advantage of this is that it offers
composability to platforms with predictable, but not composable, interconnect
by eliminating interference from both the interconnect and the memory tile at
once. However, our interconnect is composable in itself using another technique,
defeating the purpose of moving the delay block. Delaying in the processor tile
furthermore comes with the drawback of making debugging of the platform more
difficult, since the states of both the interconnect and memory tile change if
applications are added, removed, or modified.

2.6 Experiments

The proposed composability inducing mechanisms are implemented for each
resource of an soc prototyped on FpGa having four processor tiles with one Micro-
Blaze core each, one memory tile and an Athereal NoC [12]. On this platform, we
execute several use-cases constructed using the following applications: a simple
synthetic application (A7), an H.264 video decoder [39] (A2), and a iPEG decoder
(A3), each consisting of a set of communicating tasks. Figure 2.9 presents the task
graphs and the task-to-processor mapping of these applications.

If the soc is composable, the behavior of an application should remain the same
regardless of the presence or absence of other applications. We investigate compo-
sability in two ways: first by checking the cycle-level differences between some
signals of the MicroBlaze interface in multiple simulations, and second by verifying
whether the response time and starting time of an application remains constant
when other applications are added in the system.

l

Fig. 2.9 The applications and mappings used in the experiments

2 Composability and Predictability 51

51,000,000n 52,000, 0000 (53,000,000

& 5 Compare: int_out, int_out

i 29z Compare: instr_addd0:31], instr_addi{0:31]
m 29z Compare: inst{0:31], instf0:31)

w22 Compare: data_write{0:31], data_write{0:31]
m-2e: Compare: data_read0:31], data_read[0:31]
@ 19: Compare: data_addif0:31), data_addd0:31]

J000+]]
[E85+]

=
| [ESY
0004} [T000°]
=
&=
A2

aoov]] “Do0e]
:DUU-“ ;agg.l
Al A2 A1 A2 A1 AZ A1 AZ A1

Fig. 2.10 MicroBlaze signal differences when A/ varies its behavior

To investigate composability at the cycle level, we run two simulations and
compare a number of signals in the first MicroBlaze core. For our simulations, we
utilize the synthetic application, A/, and the H.264 application, A2. The int_out signal
(the timer interrupt) indicates the border between the end of a task slot and the
beginning of an os slot. This signal is kept high until the processor acknowledges
that the interrupt is being served. In the first simulation, A/ transfers data tokens of
4 KBytes and in the second it transfers data tokens of 16 Bytes. Figure. 2.10 presents
the signal differences between the two simulations. The application TDM slot assign-
ment is shown at the bottom of the diagram. We observe that signals in the task slots of
A2 are identical, whereas, the signals in A/’s slots change, as expected. The striped
zone represents cycles that differ between the two runs. As seen in Fig. 2.10, the timer
interrupt signals are not always identical in the two simulations. The reason for this is
that different instructions are interrupted in different simulations, thus the int out
signal has different timing. The comparison between the two traces clearly shows that
the only signal differences occur in the time slots of the changed applications and in
the os slot, indicating that cycle-level composability is achieved.

To investigate the potential variations in the starting time and response time
of applications, we run the H.264 and jPEG applications alone (H.264-single and
JPEG-single, respectively), and in combination with the synthetic application
(H.264-multi and jPEG-multi, respectively) on the FPGA. In these cases, we compare
the response times and starting times of each iteration of each H.264 and JpEG task.
If the system is composable, these times should be identical in different runs,
regardless of the presence or absence of the synthetic application. Figures 2.11
and 2.12 present the response time differences for a jPEG and a H.264 task in two
cases: 1) when all applications share a single RDMA engine (one RDMA per tile), and
2) when each application has its own RDMA engine (one RDMA per application).

As shown in the figures, the response times differ when using a single Rbma per tile,
thus revealing interference. On the other hand, the response time difference is zero
when using a single RDMA per application, showing no interference. Due to lack of
space, we do not present the response times and starting times of all tasks. The observed
behavior is the same, which means that the system is composable when using one RbMA
per application. However, sharing a RbMA engine results in interference between
applications, and variations in application timing behavior, just as expected.

In conclusion, we experimentally show that the processor behavior remains the
same at both the cycle level and at the task-iteration level, indicating that our soc is
temporally composable. The inspected signal traces in this section only cover the
processor. However, the experiments strongly suggest that the interconnect and the

52 B. Akesson et al.

20 T T T T T T T T T
--- 1 RDMA per tile
15 : — 1 RDMA per appl.

e ——

Irrrrreca-

10t i o

Resp. Time Diff. (clock cycles)

_5 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Task iterations

Fig. 2.11 1pEG, vid task response time difference between RDMA per tile or per application

-
o

--
.................

--- 1 RDMA per tile
6 — 1 RDMA per appl.]

Resp. Time Diff. (clock cycles)

5 10 15 20 25
Task iterations

Fig. 2.12 H.264, deblock task response time difference between RDMA per tile or per application

memory tile are also composable. Otherwise, the timing variations in these
resources would have resulted in variations in the response time of the tasks, or at
the cycle-level timing of the processor signals.

2.7 Conclusions

This chapter addresses the verification and integration problem in embedded
multi-processor platforms that have resources shared by a mix of real-time and
non-real-time applications. We discuss two complexity-reducing concepts:

2 Composability and Predictability 53

composability and predictability. Applications in a composable system are
completely isolated and cannot affect each other’s functional or temporal beha-
viors. Applications in a use-case can hence be verified individually instead of
together, resulting in smaller state spaces. This enables a faster verification process,
e.g. using simulation-based techniques, that can start as soon as the first application
in a use-case is available. Predictable systems, on the other hand, provide lower
bounds on application performance, such as latency and throughput. This enables
applications to be verified at design time using formal performance analysis frame-
works. The benefit of formal performance verification is that conservative perfor-
mance guarantees can be provided for all possible combinations of initial states of
resources and arbiters, all input stimuli, and all concurrently executing applications.
However, formal approaches require performance models of the software, the
hardware, and the mapping, which are not yet widely adopted by industry. Compo-
sability and predictability hence both solve important parts of the verification
problem and provide a complete solution when combined.

Composability and predictability are different properties in the sense that
predictability implies the existence of useful bounds on temporal behavior and is
hence a property of a single application mapped on a set of resources. Compo-
sability implies complete isolation between applications and is a property of
multiple applications sharing a resource, each of which may be predictable
or not. We formally consider temporal composability achieved if the starting
times and response times of an application, i.e. when it is scheduled for reso-
urce access and when it finishes receiving service, are independent of other
applications.

The contributions of this chapter are twofold. Firstly, we present a thorough
overview of five techniques for achieving composability and/or predictability and
highlight their respective strengths and weaknesses. Secondly, we show how to
build a composable and predictable system by applying the proposed techniques to
three common resource types: processor tiles, interconnects (networks-on-chip),
and memories (both on-chip srRam and off-chip sbram).

On an unshared resource, predictability means that a request with finite size has a
bounded worst-case execution time (WCET). On a shared resource, we achieve
predictability by combining resources and arbiters, each with predictable behaviors.
This enables the worst-case response time (WCRT) of requests to be determined for
any combination of predictable arbiter and resource.

Composability can be achieved in four ways, described in the following para-
graphs. The first way is useful if the execution times of all requests cannot be
bounded. However, this requires that they can be preempted after a chosen worst-
case scheduling interval (wcsi), which is the maximum time between two arbitra-
tion decisions. To create the premises of independent starting times, all scheduling
intervals must have constant length equal to the wcsi. This decouples the starting
time of a request from the execution times of previous ones. To enforce independent
starting and response times, requests must be scheduled by a composable arbiter,
such as time division multiplexing (tTpm). The main limitation of this way to
implement composability is that it only applies to preemptive resources in which

54 B. Akesson et al.

the execution time of a request is independent of requests from other requestors.
This is the case for zero-bus-turnaround SRAM memories, but not for SDRAM.

The second way to implement composability applies particularly to
non-preemptive resources. This technique requires that the resource is predictable
and has a known wceT. The idea is to set the scheduling interval equal to the largest
WCET of a request on the resource to make starting times independent of previous
requests. Combining this with composable arbitration ensures that the worst-case
response times are also independent. The two drawbacks of this technique are:
1) that execution times of requests have to be independent of requests from other
requestors, just like for the previous method, and 2) making the scheduling interval
equal to the longest wCer results in low resource utilization if there is a large
difference between the average and worst-case execution time, which is the case
for SDRAM memories.

The third and fourth ways to implement composability are based on predictabil-
ity, resulting in resources with both properties. The third method is an extension of
the first with an additional requirement that the composable arbiter is also predict-
able, such as Tpm. This enables the wcrT to be computed for predictable applications
with known wcET that is independent of other requestors.

The last way to implement composability (and predictability) applies to both
preemptive and non-preemptive resources and supports variable execution times
that depend on other requestors. It can furthermore be used with any combination of
predictable resource and predictable arbiter. The key idea behind this approach is to
make the system composable by enforcing maximum interference from other
requestors to remove variation caused by other applications. This is accomplished
by starting from a predictable shared resource and delay responses to emulate
maximum interference from other requestors.

We experimentally demonstrate some of the proposed techniques on a tiled
multi-processor system with MicroBlaze cores connected to an sRaM memory tile
via a network-on-chip. Netlist simulations of this platform show that the cycle-level
behavior of an application is unaffected, as the behavior of other applications
changes, indicating composable execution.

References

1. B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory
controller. In CODES+ISSS ’07: Proceedings of the Sth IEEE/ACM international conference
on Hardwarelsoftware codesign and system synthesis, pages 251-256, 2007.

2. B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based on latency-
rate servers. In /2th Euromicro Conference on Digital System Design (DSD), 2009.

3. B. Akesson, W. Hayes, and K. Goossens. Classification and Analysis of Predictable Memory
Patterns. In Int’l Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Composability and Predictability 55

. B. Akesson, L. Steffens, and K. Goossens. Efficient Service Allocation in Hardware Using

Credit-Controlled Static-Priority Arbitration. In Int’l Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2009.

. B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-Time Scheduling Using Credit-

Controlled Static-Priority Arbitration. In Int’l Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2008.

. ARM Limited. AMBA AXI Protocol Specification, 2003.
. S. Bayliss and G. Constantinides. Methodology for designing statically scheduled application-

specific sdram controllers using constrained local search. In Field-Programmable Technology,
2009. International Conference on, pages 304 =307, Dec. 2009.

. M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Composable Multiprocessor

System Design: A Constructive Approach. In Bits&Chips Symposium on Embedded Systems
and Software, 2007.

. R. Cruz. A calculus for network delay. I. Network elements in isolation. I[EEE Transactions on

Information Theory, 37(1):114-131, 1991.

M. Ekerhult. Compose: Design and implementation of a composable and slack-aware
operating system targeting a multi-processor system-on-chip in the signal processing domain.
Master’s thesis, Lund University, July 2008.

K. Goossens, J. Dielissen, and A. Radulescu. The Athereal network on chip: Concepts,
architectures, and implementations. /[EEE Design and Test of Computers, 22(5):414-421,
2005.

K. Goossens and A. Hansson. The aethereal network on chip after ten years: goals, evolution,
lessons, and future. In DAC ’10: Proceedings of the 47th Design Automation Conference,
pages 306-311, 2010.

K. Goossens, D. She, A. Milutinovic, and A. Molnos. Composable dynamic voltage and
frequency scaling and power management for dataflow applications. In /3th Euromicro
Conference on Digital System Design (DSD), Sept. 2010.

P. Gumming. The TI OMAP Platform Approach to SoC. Winning the SoC revolution:
experiences in real design, page 97, 2003.

A. Hansson, M. Coenen, and K. Goossens. Undisrupted quality-of-service during reconfigu-
ration of multiple applications in networks on chip. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 954-959, 2007.

A. Hansson and K. Goossens. An on-chip interconnect and protocol stack for multiple
communication paradigms and programming models. In CODES+ISSS "09: Proceedings of
the 7th IEEE/IACM international conference on Hardwarelsoftware codesign and system
synthesis, pages 99—108, 2009.

A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template for composable
and predictable multi-processor system on chips. ACM Transactions on Design Automation of
Electronic Systems, 14(1):1-24, 2009.

A. Hansson, M. Subbaraman, and K. Goossens. aelite: A flit-synchronous network on chip
with composable and predictable services. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), Apr. 2009.

A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling application-
level performance guarantees in network-based systems on chip by applying dataflow analy-
sis. IET Computers & Digital Techniques, 2009.

S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM controller with
complex QoS requirements. In DAC ’05: Proceedings of the 42nd annual conference on
Design automation, pages 575-578, 2005.

E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing memory controllers: A rein-
forcement learning approach. In Computer Architecture. ISCA '08. 35th International
Symposium on, pages 39-50, 2008.

International Technology Roadmap for Semiconductors (ITRS), 2009.

56

23

24.

25.

26.

217.

28.

29.

30.

31

32.
33.

34.

35.

36.

37.

38.

39.

40.

B. Akesson et al.

. H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112-126, 2003.

H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits. Composability in the
time-triggered system-on-chip architecture. In SOC Conference, IEEE International, pages
87-90, 2008.

E. A. Lee. Absolutely positively on time: what would it take? /IEEE Transactions on Compu-
ters, 38(7):85-87, 2005.

K. Lee, T. Lin, and C. Jen. An efficient quality-aware memory controller for multimedia
platform SoC. [EEE Transactions on Circuits and Systems for Video Technology,
15(5):620-633, 2005.

A. Molnos and K. Goossens. Conservative dynamic energy management for real-time data-
flow applications mapped on multiple processors. In /2th Euromicro Conference on Digital
System Design (DSD), 2009.

O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor. In EMSOFT ’07: Proceedings of the 7th ACM & IEEE
international conference on Embedded software, pages 57-66, 2007.

O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enabling High-
Performance and Fair Shared Memory Controllers. I[EEE Micro, 29(1):22-32, 2009.

J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-asynchronous
locally-synchronous systems. In Proceedings of the Sixth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 5259, 2000.

A. Nieuwland, J. Kang, O. Gangwal, R. Sethuraman, N. Busa, K. Goossens, R. Peset Llopis,
and P. Lippens. C-HEAP: A heterogeneous multi-processor architecture template and scalable
and flexible protocol for the design of embedded signal processing systems. Design Auto-
mation for Embedded Systems, 7(3):233-270, 2002.

OCP International Partnership. Open Core Protocol Specification, 2001.

Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification. Version 2.2,
2002.

R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande, C. Grecu,
and A. Ivanov. System-on-chip: Reuse and integration. Proceedings of the IEEE,
94(6):1050-1069, 2006.

J. Shao and B. Davis. A burst scheduling access reordering mechanism. In Proceedings of the
13th International Symposium on High-Performance Computer Architecture, pages 285-294,
2007.

S. Sriram and S. Bhattacharyya. Embedded multiprocessors: Scheduling and synchronization.
CRC, 2000.

L. Steffens, M. Agarwal, and P. van der Wolf. Real-Time Analysis for Memory Access in
Media Processing SoCs: A Practical Approach. ECRTS '08: Proceedings of the Euromicro
Conference on Real-Time Systems, pages 255-265, 2008.

C. van Berkel. Multi-core for Mobile Phones. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2009.

S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a tool for improved derivation of process
networks. EURASIP J. Embedded Syst., 2007, 2007.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(7):966-978, 2009.

2 Springer
http://www.springer.com/978-1-4419-6459-5

Multiprocessor System-on-Chip
Hardware Design and Tool Integration
Hiubner, M.; Becker, |. (Eds.)

2011, VN, 270 p., Hardcover

ISEMN: 978-1-4419-6459-5

	Chapter 2: Composability and Predictability for Independent Application Development,Verification, and Execution
	2.1 Introduction
	2.2 Composability and Predictability
	2.2.1 Terminology
	2.2.2 Composable Resources
	2.2.3 Predictable resources
	2.2.4 Composable and predictable resources

	2.3 Processor tile
	2.3.1 Composability
	2.3.1.1 Constant task slots
	2.3.1.2 Constant OS slot
	2.3.1.3 Two-level application and task scheduling

	2.3.2 Predictability

	2.4 Interconnect
	2.4.1 Composability
	2.4.2 Predictability

	2.5 Memory tile
	2.5.1 Predictability
	2.5.1.1 Predictable SDRAM back-end
	2.5.1.2 Predictable arbitration

	2.5.2 Composability

	2.6 Experiments
	2.7 Conclusions
	References

