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Nonlinear Elliptic Equations

Introduction

Methods of the calculus of variations applied to problems in geometry and
classical continuum mechanics often lead to elliptic PDE that are not linear. We
discuss a number of examples and some of the developments that have arisen to
treat such problems.

The simplest nonlinear elliptic problems are the semilinear ones, of the form
Lu D f .x;Dm�1u/, where L is a linear elliptic operator of order m and the
nonlinear term f .x;Dm�1u/ involves derivatives of u of order � m�1. In � 1 we
look at semilinear equations of the form

(0.1) �u D f .x; u/;

on a compact, Riemannian manifoldM , with or without boundary. The Dirichlet
problem for (0.1) is solvable provided @uf .x; u/ � 0 if each connected com-
ponent of M has a nonempty boundary. If M has no boundary, this condition
does not always imply the solvability of (0.1), but one can solve this equation if
one requires f .x; u/ to be positive for u > a1 and negative for u < a0. We use
three approaches to (0.1): a variational approach, minimizing a function defined
on a certain function space, the “method of continuity,” solving a one-parameter
family of equations of the type (0.1), and a variant of the method of continuity
that involves a Leray–Schauder fixed-point theorem. This fixed-point theorem is
established in Appendix B, at the end of this chapter.

A particular example of (0.1) is

(0.2) �u D k.x/ �K.x/e2u;

which arises when one has a 2-manifold with Gauss curvature k.x/ and wants
to multiply the metric tensor by the conformal factor e2u and obtain K.x/ as the
Gauss curvature. The condition @uf .x; u/ � 0 implies that K.x/ � 0 in (0.2).

In � 2 we study (0.2) on a compact, Riemannian 2-fold without boundary, given
K.x/ < 0. The Gauss–Bonnet formula implies that �.M/ < 0 is a necessary
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106 14. Nonlinear Elliptic Equations

condition for solvability in this case; the main result of � 2 is that this is also a
sufficient condition. When you take K � �1, this establishes the uniformization
theorem for compact Riemann surfaces of negative Euler characteristic. When
�.M/ D 0, one takes K D 0 and (0.2) is linear. The remaining case of this
uniformization theorem, �.M/ D 2, is treated in Chap. 10, � 9.

The next topic is local solvability of nonlinear elliptic PDE. We establish this
via the inverse function theorem for C 1-maps on a Banach space. We treat un-
derdetermined as well as determined elliptic equations. We obtain solutions in � 3
with a high but finite degree of regularity. In some cases such solutions are actu-
ally C1. In � 4 we establish higher regularity for solutions to elliptic PDE that are
already known to have a reasonably high degree of smoothness. This result suf-
fices for applications made in � 3, though PDE encountered further on will require
much more powerful regularity results.

In � 5 we establish the theorem of J. Nash, on isometric imbeddings of com-
pact Riemannian manifolds in Euclidean space, largely following the ingenious
simplification of M. Günther [Gu1], allowing one to apply the inverse function
theorem for C 1-maps on a Banach space. Again, the regularity result of � 4 ap-
plies, allowing one to obtain a C1-isometric imbedding.

In � 6 we introduce the venerable problem of describing minimal surfaces. We
establish a number of classical results, in particular the solution to the Plateau
problem, producing a (generalized) minimal surface, as the image of the unit disc
under a harmonic and essentially conformal map, taking the boundary of the disc
homeomorphically onto a given simple closed curve.

In � 7 we begin to study the quasi-linear elliptic PDE satisfied by a function
whose graph is a minimal surface. We use results of � 6 to establish some re-
sults on the Dirichlet problem for the minimal surface equation, and we note
several questions about this Dirichlet problem whose solutions are not simple
consequences of the results of � 6, such as boundary regularity. These questions
serve as guides to the results of boundary problems for quasi-linear elliptic PDE
derived in the next three sections.

In � 8 we apply the paradifferential operator calculus developed in Chap. 13,
� 10, to obtain regularity results for nonlinear elliptic boundary problems. We
concentrate on second-order PDE (possibly systems) on a compact manifold with
boundaryM and obtain higher regularity for a solution u, assumed a priori to be-
long to C 2Cr.M/, for some r > 0, for a completely nonlinear elliptic PDE, or to
C 1Cr.M/, in the quasi-linear case. To check how much these results accomplish,
we recall the minimal surface equation and note a gap between the regularity of
a solution needed to apply the main result (Theorem 8.4) and the regularity a
solution is known to possess as a consequence of results in � 7.

Section 9 is devoted to filling that gap, in the scalar case, by the famous
DeGiorgi–Nash–Moser theory. We follow mainly J. Moser [Mo2], together with
complementary results of C. B. Morrey on nonhomogeneous equations. Morrey’s
results use spaces now known as Morrey spaces, which are discussed in Appendix
A at the end of this chapter.
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With the regularity results of �� 8 and 9 under our belt, we resume the study of
the Dirichlet problem for quasi-linear elliptic PDE in the scalar case, in � 10, with
particular attention to the minimal surface equation. We note that the Dirichlet
problem for general boundary data is not solvable unless there is a restriction on
the domain on which a solution u is sought. This has to do with the fact that the
minimal surface equation is not “uniformly elliptic.” We give examples of some
uniformly elliptic PDE, modeling stretched membranes, for which the Dirichlet
problem has a solution for general smooth data, on a general, smooth, bounded
domain. We do not treat the most general scalar, second-order, quasi-linear elliptic
PDE, though our treatment does include cases of major importance. More material
can be found in [GT] and [LU].

In � 11 we return to the variational method, introduced in � 1, and prove that a
variety of functionals

(0.3) I.u/ D
Z

�

F.x; u;ru/ dV.x/

possess minima in sets

(0.4) V D fu 2 H 1.�/ W u D g on @�g:

The analysis includes cases both of real-valued u and of u taking values in RN .
The latter case gives rise to N � N elliptic systems, and some regularity results
for quasi-linear elliptic systems are established in � 12. Sometimes solutions are
not smooth everywhere, but we can show that they are smooth on the complement
of a closed set † � � of Hausdorff dimension < n � 2 (n D dim�). Results of
this nature are called “partial regularity” results.

In � 13 we establish results on linear elliptic equations in nondivergence form,
due to N. Krylov and M. Safonov, which take the place of DeGiorgi–Nash–Moser
estimates in the study of certain fully nonlinear equations, done in � 14. In � 15
we apply this to equations of the Monge–Ampere type.

In � 16 we obtain some results for nonlinear elliptic equations for functions of
two variables that are stronger than results available for functions of more vari-
ables.

One attack on second-order, scalar, nonlinear elliptic PDE that has been very
active recently is the “viscosity method.” We do not discuss this method here; one
can consult the review article [CIL] for material on this.

1. A class of semilinear equations

In this section we look at equations of the form

(1.1) �u D f .x; u/ on M;
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where M is a Riemannian manifold, either compact or the interior of a compact
manifold M with smooth boundary. We first consider the Dirichlet boundary
condition

(1.2) u
ˇ̌
@M

D g;

whereM is connected and has nonempty boundary. We suppose f 2C1.M�R/.
We will treat (1.1)–(1.2) under the hypothesis that

(1.3)
@f

@u
� 0:

Other cases will be considered later in this section. Suppose F.x; u/ DR u
0
f .x; s/ ds, so

(1.4) f .x; u/ D @uF.x; u/:

Then (1.3) is the hypothesis that F.x; u/ is a convex function of u. Let

(1.5) I.u/ D 1

2
kduk2

L2.M/
C
Z

M

F
�
x; u.x/

�
dV.x/:

We will see that a solution to (1.1)–(1.2) is a critical point of I on the space of
functions u on M , equal to g on @M .

We will make the following temporary restriction on F :

(1.6) For juj � K; @uf .x; u/ D 0;

so F.x; u/ is linear in u for u � K and for u � �K . Thus, for some constant L,

(1.7) j@u F.x; u/j � L on M � R:

Let

(1.8) V D fu 2 H 1.M/ W u D g on @M g:

Lemma 1.1. Under the hypotheses (1.3)–(1.7), we have the following results
about the functional I W V ! R:

I is strictly convexI(1.9)

I is Lipschitz continuous;(1.10)

with the norm topology on V ;

(1.11) I is bounded below;
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and

(1.12) I.v/ ! C1; as kvkH 1 ! 1:

Proof. (1.9) is trivial. (1.10) follows from

(1.13) jF.x; u/ � F.x; v/j � Lju � vj;

which follows from (1.7). The convexity of F.x; u/ in u implies

(1.14) F.x; u/ � �C0juj � C1:

Hence

(1.15)
I.u/ � 1

2
kduk2 � C0kukL1 � C 0

1

� 1

4
kduk2

L2 C 1

2
Bkuk2

L2 � CkukL2 � C 0;

since

(1.16)
1

2
kduk2

L2 � Bkuk2
L2 � C 00; for u 2 V:

The last line in (1.15) clearly implies (1.11) and (1.12).

Proposition 1.2. Under the hypotheses (1.3)–(1.7), I.u/ has a unique minimum
on V .

Proof. Let ˛0 D infV I.u/. By (1.11), ˛0 is finite. Pick R such that K D V \
BR.0/ ¤ ;, where BR.0/ is the ball of radius R centered at 0 in H 1.M/, and
such that kukH 1 � R ) I.u/ � ˛0 C 1, which is possible by (1.12). Note that
K is a closed, convex, bounded subset of H 1.M/. Let

(1.17) K" D fu 2 K W ˛0 � I.u/ � ˛0 C "g:

For each " > 0; K" is a closed, convex subset of K . It follows that K" is weakly
closed in K , which is weakly compact. Hence

(1.18)
\
">0

K" D K0 ¤ ;:

Now inf I.u/ is assumed on K0. By the strict convexity of I.u/; K0 consists of a
single point.

If u is the unique point inK0 and v 2 C1
0 .M/, then uCsv 2 V , for all s 2 R,

and I.u C sv/ is a smooth function of s which is minimal at s D 0, so
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(1.19) 0 D d

ds
I.u C sv/

ˇ̌
sD0

D .��u; v/C
Z

M

f
�
x; u.x/

�
v.x/ dV.x/:

Hence (1.1) holds. We have the following regularity result:

Proposition 1.3. For k D 1; 2; 3; : : : , if g 2 H kC1=2.@M/, then any solution
u 2 V to (1.1)–(1.2) belongs to H kC1.M/. Hence, if g 2 C1.@M/, then u 2
C1.M/.

Proof. We start with u 2 H 1.M/. Then the right side of (1.1) belongs toH 1.M/

if f .x; u/ satisfies (1.6). This gives u 2 H 2.M/, provided g 2 H 3=2.@M/.
Additional regularity follows inductively.

We have uniqueness of the element u 2 V minimizing I.u/, under the hy-
potheses (1.3)–(1.7). In fact, under the hypothesis (1.3), there is uniqueness of
solutions to (1.1)–(1.2) which are sufficiently smooth, as a consequence of the
following application of the maximum principle.

Proposition 1.4. Let u and v 2 C 2.M/ \ C.M/ satisfy (1.1), with u D g and
v D h on @M . If (1.3) holds, then

(1.20) sup
M

.u � v/ � sup
@M

.g � h/ _ 0;

where a _ b D max.a; b/ and

(1.21) sup
M

ju � vj � sup
@M

jg � hj:

Proof. Let w D u � v. Then, by (1.3),

(1.22) �w D �.x/w; w
ˇ̌
@M

D g � h;

where

�.x/ D f .x; u/ � f .x; v/

u � v
� 0:

If O D fx 2 M W w.x/ � 0g, then �w � 0 on O, so the maximum principle
applies on O, yielding (1.20). Replacing w by �w gives (1.20) with the roles of
u and v, and of g and h, reversed, and (1.21) follows.

One application will be the following first step toward relaxing the hypothesis
(1.6).

Corollary 1.5. Let f .x; 0/ D '.x/ 2 C1.M/. Take g 2 C1.@M/, and let
ˆ 2 C1.M/ be the solution to

(1.23) �ˆ D ' on M; ˆ D g on @M:



1. A class of semilinear equations 111

Then, under the hypothesis (1.3), a solution u to (1.1)–(1.2) satisfies

(1.24) sup
M

u � sup
M

ˆC �
sup
M

.�ˆ/ _ 0�

and

(1.25) sup
M

juj � sup
M

2jˆj:

Proof. We have

(1.26) �.u �ˆ/ D f .x; u/ � f .x; 0/ D �.x/u;

with �.x/ D Œf .x; u/ � f .x; 0/�=u � 0. Thus �.u � ˆ/ � 0 on O D fx 2 M W
u.x/ > 0g, so

sup
O
.u �ˆ/ D sup

@O
.u �ˆ/ � sup

M

.�ˆ/ _ 0:

This gives (1.24). Also �.ˆ� u/ � 0 on O� D fx 2 M W u.x/ < 0g, so

sup
O�

.ˆ � u/ D sup
@O�

.ˆ� u/ � sup
M

ˆ _ 0;

which together with (1.24) gives (1.25).

We can now prove the following result on the solvability of (1.1)–(1.2).

Theorem 1.6. Suppose f .x; u/ satisfies (1.3). Given g 2 C1.@M/, there is a
unique solution u 2 C1.M/ to (1.1)–(1.2).

Proof. Let fj .x; u/ be smooth, satisfying

(1.27) fj .x; u/ D f .x; u/; for juj � j;

and be such that (1.3)–(1.7) hold for each fj , with K D Kj . We have solutions
uj 2 C1.M/ to

(1.28) �uj D fj .x; uj /; uj

ˇ̌
@M

D g:

Now fj .x; 0/ D f .x; 0/ D '.x/, independent of j , and the estimate (1.25) holds
for all uj , so

(1.29) sup
M

juj j � sup
M

2jˆj;

where ˆ is defined by (1.23). Thus the sequence .uj / stabilizes for large j , and
the proof is complete.
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We next discuss a geometrical problem that can be solved using the results
developed above. A more substantial variant of this problem will be tackled in
the next section. The problem we consider here is the following. Let M be a
connected, compact, two-dimensional manifold, with nonempty boundary. We
suppose that we are given a Riemannian metric g onM , and we desire to construct
a conformally related metric whose Gauss curvature K.x/ is a given function on
M . As shown in (3.46) of Appendix C, if k.x/ is the Gauss curvature of g and if
g0 D e2ug, then the Gauss curvature of g0 is given by

(1.30) K.x/ D ���u C k.x/
�
e�2u;

where� is the Laplace operator for the metric g. Thus we want to solve the PDE

(1.31) �u D k.x/ �K.x/e2u D f .x; u/;

for u. This is of the form (1.1). The hypothesis (1.3) is satisfied provided
K.x/ � 0. Thus Theorem 1.6 yields the following.

Proposition 1.7. IfM is a connected, compact 2-manifold with nonempty bound-
ary @M; g a Riemannian metric on M , and K 2 C1.M/ a given function
satisfying

(1.32) K.x/ � 0 on M;

then there exists u 2 C1.M/ such that the metric g0 D e2ug conformal to g has
Gauss curvature K . Given any v 2 C1.@M/, there is a unique such u satisfying
u D v on @M .

Results of this section do not apply if K.x/ is allowed to be positive some-
where; we refer to [KaW] and [Kaz] for results that do apply in that case.

If one desires to make .M; g/ conformally equivalent to a flat metric, that is,
one with K.x/ D 0, then (1.31) becomes the linear equation

(1.33) �u D k.x/:

This can be solved whenever M is connected with nonempty boundary, with
u prescribed on @M . As shown in Proposition 3.1 of Appendix C, when the
curvature vanishes, one can choose local coordinates so that the metric tensor
becomes ıjk . This could provide an alternative proof of the existence of local
isothermal coordinates, which is established by a different argument in Chap. 5,
� 10. However, the following logical wrinkle should be pointed out. The deriva-
tion of the formula (1.30) in � 3 of Appendix C made use of a reduction to the
case gjk D e2vıjk and therefore relied on the existence of local isothermal co-
ordinates. Now, one could grind out a direct proof of (1.30) without using this
reduction, thus smoothing out this wrinkle.
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We next tackle the equation (1.1) when M is compact, without boundary. For
now, we retain the hypothesis (1.3), @f=@u � 0. Without a boundary for M ,
we have a hard time bounding u, since (1.16) fails for constant functions on M .
In fact, the equation (1.31) cannot be solved when K.x/ D �1; k.x/ D 1, and
M D S2, so some further hypotheses are necessary. We will make the following
hypothesis: For some aj 2 R,

(1.34) u < a0 ) f .x; u/ < 0; u > a1 ) f .x; u/ > 0:

If @f=@u > 0, this is equivalent to the existence of a function u D '.x/ such that
f
�
x; '.x/

� D 0. We see how this hypothesis controls the size of a solution.

Proposition 1.8. If u solves (1.1) andM is compact, then

(1.35) a0 � u.x/ � a1;

provided (1.34) holds.

Proof. If u is maximal at x0, then �u.x0/ � 0, so f
�
x0; u.x0/

� � 0, and so
(1.34) implies u � a1. The other inequality in (1.35) follows similarly.

To get an existence result out of this estimate, we use a technique known as
the method of continuity. We show that, for each � 2 Œ0; 1�, there is a smooth
solution to

(1.36) �u D .1 � �/.u � b/C �f .x; u/ D f� .x; u/;

where we pick b D .a0 C a1/=2. Clearly, this equation is solvable when � D 0.
Let J be the largest interval in Œ0; 1�, containing 0, with the property that (1.36) is
solvable for all � 2 J . We wish to show that J D Œ0; 1�. First note that, for any
� 2 Œ0; 1�,

(1.37) u < a0 ) f� .x; u/ < 0; u > a1 ) f� .x; u/ > 0;

so any solution u D u� to (1.36) must satisfy

(1.38) a0 � u� .x/ � a1:

Using this, we can show that J is closed in Œ0; 1�. In fact, let uj D u�j
solve

(1.36) for �j 2 J; �j % 	 . We have kuj kL1 � a < 1 by (1.38), so
gj .x/ D f�j

�
x; uj .x/

�
is bounded in C.M/. Thus elliptic regularity for the

Laplace operator yields

(1.39) kuj kC r .M/ � br < 1;
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for any r < 2. This yields a C r -bound for gj , and hence (1.39) holds for any
r < 4. Iterating, we get uj bounded in C1.M/. Any limit point u 2 C1.M/

solves (1.36) with � D 	 , so J is closed.
We next show that J is open in Œ0; 1�. That is, if �0 2 J; �0 < 1, then, for some

" > 0; Œ�0; �0 C "/ � J . To do this, fix k large and define

(1.40) ‰ W Œ0; 1� �H k.M/ �! H k�2.M/; ‰.�; u/ D �u � f� .x; u/:

This map is C 1, and its derivative with respect to the second argument is

(1.41) D2‰.�0; u/v D Lv;

where
L W H k.M/ �! H k�2.M/

is given by

(1.42) Lv D �v � A.x/v; A.x/ D 1 � �0 C �0 @uf .x; u/:

Now, if f satisfies (1.3), then A.x/ � 1 � �0, which is > 0 if �0 < 1. Thus L is
an invertible operator. The inverse function theorem implies that ‰.�; u/ D 0 is
solvable for j� � �0j < ". We thus have the following:

Proposition 1.9. If M is a compact manifold without boundary and if f .x; u/
satisfies the conditions (1.3) and (1.34), then the PDE (1.1) has a smooth solution.
If (1.3) is strengthened to @uf .x; u/ > 0, then the solution is unique.

The only point left to establish is uniqueness. If u and v are two solutions, then,
as in (1.22), we have for w D u � v the equation

�w D �.x/w; �.x/ D �
f .x; u/ � f .x; v/

�
=.u � v/ � 0:

Thus

�krwk2
L2 D

Z
�.x/jw.x/j2 dV;

which implies w D 0 if �.x/ > 0 on M .
Note that if we only have �.x/ � 0, then w must be constant (if M is

connected), and that constant must be 0 if �.x/ > 0 on an open subset
of M , so cases of nonuniqueness are rather restricted, under the hypotheses
of Proposition 1.9. The reader can formulate further uniqueness results.

It is possible to obtain solutions to (1.1) without the hypothesis (1.3) if we
retain the hypothesis (1.34). To do this, first alter f .x; u/ on u � a0 and on
u � a1 to a smooth g.x; u/ satisfying g.x; u/ D �
0 < 0 for u � a0 � ı and
g.x; u/ D 
1 > 0 for u � a1 C ı, where ı is some positive number. We want to
show that, for each � 2 Œ0; 1�, the equation
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(1.43) �u D .1 � �/.u � b/C �g.x; u/ D g� .x; u/

is solvable, with solution satisfying (1.38). Convert (1.43) to

(1.44) u D .� � 1/�1
�
g� .x; u/� u

� D ˆ� .u/:

Now each ˆ� is a continuous and compact map on the Banach space C.M/:

(1.45) ˆ� W C.M/ �! C.M/;

with continuous dependence on � . For solvability we can use the Leray-Schauder
fixed-point theorem, proved in Appendix B at the end of this chapter. Note that
any solution to (1.44) is also a solution to (1.43) and hence satisfies (1.38). In
particular,

(1.46) u D ˆ� .u/ H) kukC.M/ � A D max
�ja0j; ja1j�:

Since ˆ0.u/ D �.� � 1/�1b D b, which is independent of u, it follows from
Theorem B.5 that (1.44) is solvable for all � 2 Œ0; 1�. We have the following
improvement of Proposition 1.9.

Theorem 1.10. If M is a compact manifold without boundary and if the func-
tion f .x; u/ satisfies the condition (1.34), then the equation (1.1) has a smooth
solution, satisfying a0 � u.x/ � a1.

The equation (1.31) for the conformal factor needed to adjust the curvature of a
2-manifold to a desiredK.x/ satisfies the hypotheses of Theorem 1.10 (even those
of Proposition 1.9) in the special case when k.x/ < 0 and K.x/ < 0, yielding a
special case of a result to be proved in � 2, where the assumption that k.x/ < 0

is replaced by �.M/ < 0. In some cases, Theorem 1.10 also applies to equations
for such conformal factors in higher dimensions. When dimM D n � 3, we alter
the metric by

(1.47) g0 D u4=.n�2/g:

The scalar curvatures 	 and S of the metrics g and g0 are then related by

(1.48) S D u�˛.	u � ��u/; � D 4
n� 1

n� 2
; ˛ D nC 2

n� 2
;

where � is the Laplacian for the metric g. Hence, obtaining the scalar curvature
S for g0 is equivalent to solving

(1.49) ��u D 	.x/u � S.x/u˛;

for a smooth positive function u. Note that ˛ > 1 and � > 1. For n D 3, we have
� D 8 and ˛ D 5.
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Note that (1.34) holds, for some aj satisfying 0 < a0 < a1 < 1, provided
both 	.x/ and S.x/ are negative on M . Thus we have the next result:

Proposition 1.11. Let M be a compact manifold of dimension n � 2. Let g be a
Riemannian metric on M with scalar curvature 	 . If both 	 and S are negative
functions in C1.M/, then there exists a conformally equivalent metric g0 on M
with scalar curvature S .

An important special case of Proposition 1.11 is that if M has a metric with
negative scalar curvature, then that metric can be conformally altered to one with
constant negative scalar curvature. There is a very significant generalization of
this result, first stated by H. Yamabe. Namely, for any compact manifold with
a Riemannian metric g, there is a conformally equivalent metric with constant
scalar curvature. This result, known as the solution to the Yamabe problem, was
established by R. Schoen [Sch], following progress by N. Trudinger and T. Aubin.

Note that (1.3) also holds in the setting of Proposition 1.11; thus to prove this
latter result, we could appeal as well to Proposition 1.9 as to Theorem 1.10. Here
is a generalization of (1.49) to which Theorem 1.10 applies in some cases where
Proposition 1.9 does not:

(1.50) ��u D B.x/uˇ C 	.x/u � A.x/u˛; ˇ < 1 < ˛:

It is possible that ˇ < 0. Then we have (1.34), for some aj > 0, and hence the
solvability of (1.50), for some positive u 2 C1.M/, providedA.x/ and B.x/ are
both negative on M , for any 	 2 C1.M/. If we assume A < 0 on M but only
B � 0 on M , we still have (1.34), and hence the solvability of (1.50), provided
	.x/ < 0 on fx 2 M W B.x/ D 0g.

An equation of the form (1.50) arises in Chap. 18, in a discussion of results of
J. York and N. O’Murchadha, describing permissible first and second fundamental
forms for a compact, spacelike hypersurface of a Ricci-flat spacetime, in the case
when the mean curvature is a given constant. See (9.28) of Chap. 18.

Exercises
1. Assume f .x;u/ is smooth and satisfies (1.6). Define F.x; u/ and I.u/ as in (1.4) and

(1.5). Show that I has the strict convexity property (1.9) on the space V given by (1.8),
as long as

(1.51)
@

@u
f .x;u/ � ��0;

where �0 is the smallest eigenvalue of �� on M , with Dirichlet conditions on @M .
Extend Proposition 1.2 to cover this case, and deduce that the Dirichlet problem (1.1)–
(1.2) has a unique solution u 2 C1.M/, for any g 2 C1.@M/, when f .x; u/ satisfies
these conditions.

2. Extend Theorem 1.6 to the case where f .x;u/ satisfies (1.51) instead of (1.3).
(Hint: To obtain sup norm estimates, use the variants of the maximum principle indi-
cated in Exercises 5–7 of � 2, Chap. 5.)
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3. Let spec.��/ D f�j g, where 0 < �0 < �1 < � � � . Suppose there is a pair �j < �j C1

and " > 0 such that

��j C1 C " � @

@u
f .x;u/ � ��j � ";

for all x; u. Show that, for g 2 C1.@M/, the boundary problem (1.1)–(1.2) has a
unique solution u 2 C1.M/.
(Hint: With � D .�j C �j C1/=2; u D v C g; g 2 C1.M/, rewrite (1.1)–(1.2) as

.�C �/v D f .x; v C g/C �v �G; v
ˇ̌
@M

D 0;

where G D .�C �/g, or

(1.52) v D .�C �/�1
�
f .x; v C g/C �v

�� g D ˆ.v/:

Apply the contraction mapping principle.)
4. In the context of Exercise 3, this time assume

��j C1 C " � @

@u
f .x;u/ � ��j �1 � ";

so @f=@u might assume the value ��j . Take � D .�j �1 C �j C1/=2, let P0 be the
orthogonal projection of L2.M/ on the �j eigenspace of ��, and let P1 D I � P0.
Writing

u � g D v D P0v C P1v D v0 C v1;

convert (1.1)–(1.2) to a system

(1.53)
v1 D .�C �/�1P1

h
f .x; v0 C v1 C g/C �v1

i
� P1g;

v0 D .� � �j /
�1P0

h
f .x; v0 C v1 C g/C �v0

i
� P0g:

Given v0, the first equation in (1.53) has a unique solution, v1 D „.v0/, by the argu-
ment in Exercise 3. Thus the solvability of (1.1)–(1.2) is converted to the solvability of

(1.54) v0 D .� � �j /
�1P0

h
f
�
x; v0 C„.v0/C g

�C �v0

i
� P0g D ‰.v0/:

Here, ‰ is a nonlinear operator on a finite-dimensional space. (Essentially, on the real
line if �j is a simple eigenvalue of ��.) Examine various cases, where there will or
will not be solutions, perhaps more than one in number.

5. Given a Riemanian manifold M of dimension n � 3, with metric g and Laplace
operator �, define the “conformal Laplacian” on functions:

(1.55) Lf D �f � ��1
n 	.x/f; ��1

n D n� 2

4.n � 1/ ;

where 	.x/ is the scalar curvature of .M; g/. If g0 D u4=.n�2/g as in (1.47), and
.M; g0/ has scalar curvature S.x/, set

(1.56) eLf D e�f � ��1
n S.x/f;
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wheree� is the Laplace operator for the metric g0. Show that

(1.57) L.uf / D u4=.n�2/ueLf:
(Hint: First show that�.uf /� uu4=.n�2/e�f D .�u/f . Then use the identity (1.49).)

6. Assume M is compact and connected. Let �0 be the smallest eigenvalue of �L D
��C ��1

n 	.x/. A �0-eigenfunction v of L is nowhere vanishing (by Proposition 2.9
of Chap. 8). Assume v.x/ > 0 on M . Form the new metriceg D v4=.n�2/g. Show that
the scalar curvatureeS of .M;eg/ is given by

(1.58) eS.x/ D �0v
�4=.n�2/;

which is positive everywhere if �0 > 0, negative everywhere if �0 < 0, and zero if
�0 D 0.

7. Establish existence for an ` � ` system

�u D f .x;u/;

where M is a compact Riemannian manifold and f W M � R` ! R` satisfies the
condition that, for some A < 1,

juj � A H) f .x;u/ � u > 0:

(Hint: Replace f by �f , and let 0 � � � 1. Show that any solution to such a system
satisfies ju.x/j < A:)

8. Let � be a compact, connected Riemannian manifold with nonempty boundary.
Consider

(1.59) �u C f .x;u/ D 0; u
ˇ̌
@�

D g;

for some real-valued u; assume f 2 C1.� � R/; g 2 C1.@�/. Assume there is an
upper solution u and a lower solution u, in C 2.�/ \ C.�/, satisfying

�u C f .x;u/ � 0; u
ˇ̌
@�

� g;

�u C f .x; u/ � 0; u
ˇ̌
@�

� g:

Also assume u � u on �.
Under these hypotheses, show that there exists a solution u 2 C1.�/ to (1.59), such
that u � u � u.
One approach. Let K D fv 2 C.�/ W u � v � ug, which is a closed, bounded,
convex set in C.�/. Pick � > 0 so that j@uf .x;u/j � �, for min u � u � max u. Let
ˆ.v/ D w be the solution to

�w � �w D ��v � f .x; v/; w
ˇ̌
@�

D g:

Show thatˆ W K ! K continuously and that ˆ.K/ is relatively compact in K. Deduce
that ˆ has a fixed point u 2 K.
Second approach. If u0 D u and uj C1 D ˆ.uj /, show that

u D u0 � u1 � � � � � uj � � � � � u

and that uj % u, solving (1.59).
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2. Surfaces with negative curvature

In this section we examine the possibility of imposing a given Gauss curvature
K.x/ < 0 on a compact surface M without boundary, by conformally altering a
given metric g, whose Gauss curvature is k.x/. As noted in � 1, if g and g0 are
conformally related,

(2.1) g0 D e2ug;

then K and k are related by

(2.2) K.x/ D e�2u.��u C k.x//;

where� is the Laplace operator for the original metric g, so we want to solve the
PDE

(2.3) �u D k.x/ �K.x/e2u:

This is not possible if M is diffeomorphic to the sphere S2 or the torus T 2, by
virtue of the Gauss–Bonnet formula (proved in � 5 of Appendix C):

(2.4)
Z

M

k dV D
Z

M

Ke2u dV D 2
�.M/;

where dV is the area element on M , for the original metric g, and �.M/ is the
Euler characteristic of M . We have

(2.5) �.S2/ D 2; �.T 2/ D 0:

For us to be able to arrange that K < 0 be the curvature of M , it is necessary
for �.M/ to be negative. This is the only obstruction; following [Bgr], we will
establish the following.

Theorem 2.1. If M is a compact surface satisfying �.M/ < 0, with given
Riemannian metric g, then for any negative K 2 C1.M/, the equation (2.3)
has a solution, so M has a metric, conformal to g, with Gauss curvature K.x/.

We will produce the solution to (2.3) as an element where the function

(2.6) F.u/ D
Z

M

�1
2

jduj2 C k.x/u
�
dV

on the set

(2.7) S D ˚
u 2 H 1.M/ W

Z

M

K.x/e2u dV D 2
�.M/
�
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achieves a minimum. Note that the Gauss–Bonnet formula is built into (2.7), since
a metric g0 D e2ug has volume element e2udV . While providing an obstruction
to specifying K.x/, the Gauss–Bonnet formula also provides an aid in making a
prescription of K.x/ < 0 when it is possible to do so, as we will see below.

Lemma 2.2. The set S is a nonempty C 1-submanifold of H 1.M/ if K < 0 and
�.M/ < 0.

Proof. Set

(2.8) ˆ.u/ D e2u:

By Trudinger’s inequality,

(2.9) ˆ W H 1.M/ �! Lp.M/;

for all p < 1. Take p D 1. We see that ˆ is differentiable at each u 2 H 1.M/

and

(2.10) Dˆ.u/v D 2e2uv; Dˆ.u/ W H 1.M/ ! L1.M/:

Furthermore,

(2.11)

		�Dˆ.u/ �Dˆ.w/�v		
L1.M/

� 2

Z

M

jvj � je2u � e2w j dV

� 2


Z
jvj4 dV

�1=4 
Z
ju � wj4 dV

�1=4 
Z
e4jujC4jw j dV

�1=2

� CkvkH 1 � ku � wkH 1 � exp
�
C
�kukH 1 C kwkH 1

��
;

so the map ˆ W H 1.M/ ! L1.M/ is a C 1-map. Consequently,

(2.12) J.u/ D
Z

M

Ke2u dV H) J W H 1.M/ ! R is a C 1-map.

Furthermore, DJ.u/ D 2K e2u, as an element of H�1.M/ 	 L.H 1.M/;R/,
so DJ.u/ ¤ 0 on S . The implicit function theorem then implies that S is a
C 1-submanifold of H 1.M/. If K < 0 and �.M/ < 0, it is clear that there is a
constant function in S , so S ¤ ;.

Lemma 2.3. Suppose F W S ! R, defined by (2.6), assumes a minimum at
u 2 S . Then u solves the PDE (2.3), provided the hypotheses of Theorem 2.1
hold.
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Proof. Clearly, F W S ! R is a C 1-map. If �.s/ is any C 1-curve in S with
�.0/ D u; � 0.0/ D v, we have

(2.13)

0 D d

ds
F.u C sv/

ˇ̌
sD0

D
Z

M

�
.du; dv/C k.x/v

�
dV

D
Z

M

���u C k.x/
�
v dV:

The condition that v is tangent to S at u is

(2.14)
Z

M

Ke2.uCsv/ dV D 2
�.M/CO.s2/;

which is equivalent to

(2.15)
Z

M

vKe2u dV D 0:

Thus, if u 2 S is a minimum for F , we have

v 2 H 1.M/;

Z

M

vKe2u dV D 0 H)
Z

M

���u C k.x/
�
v dV D 0;

and hence ��u C k.x/ is parallel to Ke2u in H 1.M/; that is,

(2.16) ��u C k.x/ D ˇKe2u;

for some constant ˇ. Integrating and using the Gauss-Bonnet theorem yield ˇ D 1

if �.M/ ¤ 0.
By Trudinger’s estimate, the right side of (2.16) belongs to L2.M/, so u 2

H 2.M/. This implies e2u 2 H 2.M/, and an easy inductive argument gives u 2
C1.M/.

Our task is now to show that F has a minimum on S , given K <0 and
�.M/<0. Let us write, for any u 2 H 1.M/,

(2.17) u D u0 C ˛;

where ˛ D .Area M/�1
R

M
u dV is the mean value of u, and

(2.18) u0 2 H.M/ D ˚
v 2 H 1.M/ W

Z

M

v dV D 0
�
:
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Then u belongs to S if and only if

e2˛

Z

M

Ke2u0 dV D 2
�.M/;

or equivalently,

(2.19) ˛ D 1

2
log

h
2
�.M/

.Z
Ke2u0 dV

i
:

Thus, for u 2 S ,

(2.20)

F.u/ D
Z

M

�1
2

jdu0j2 C ku0

�
dV

C 
�.M/

8<
: log 2
j�.M/j � log

ˇ̌
ˇ
Z

M

Ke2u0 dV
ˇ̌
ˇ
9=
; :

Lemma 2.4. If �.M/ < 0 andK < 0, then infS F.u/ D a > �1.

Proof. By (2.20), we need to estimate

��.M/ log
ˇ̌
ˇ
Z

M

Ke2u0 dV
ˇ̌
ˇ

from below. Indeed, granted that K.x/ � �ı < 0,
Z
Ke2u0 dV � �ı

Z
e2u0 dV:

Since ex � 1C x, we have
R
e2u0 dV � R

dV C R
2u0 dV D area M , so

Z

M

Ke2u0 dV � �ıA .A D Area M/;

and hence

(2.21) ��.M/ log
ˇ̌
ˇ
Z

M

Ke2u0 dV
ˇ̌
ˇ � j�.M/j log jıAj � b > �1:

Thus, for u 2 S ,

(2.22) F.u/ �
Z

M



1

2
jdu0j2 C ku0

�
dV � C2;
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with C2 independent of u0 2 H 1.M/. Now, since ku0kL2 � Ckdu0kL2 ,

(2.23)
ˇ̌
ˇ
Z

M

ku0 dV
ˇ̌
ˇ � C3"kdu0k2

L2 C C4

"
;

withC3 andC4 independent of ". Taking " D 1=2C3, we getF.u/ � �C3C4�C2,
which proves the lemma.

We are now in a position to prove the main existence result.

Proposition 2.5. IfM andK are as in Theorem 2.1, then F achieves a minimum
at a point u 2 S , which consequently solves (2.3).

Proof. Pick un 2 S so that aC1 � F.un/ & a. If we use (2.22) and (2.23), with
" D 1=4C3, we have

(2.24) aC 1 � 1

4
kdun0k2

L2 � C5;

where un0 D un� mean value. But the mean value of un is

1

2
log

h
2
�.M/

.Z

M

Ke2un0 dV
i
;

which is bounded from above by the proof of Lemma 2.4. Hence

(2.25) un is bounded in H 1.M/:

Passing to a subsequence, we have an element u 2 H 1.M/ such that

(2.26) un �! u weakly in H 1.M/:

By Proposition 4.3 of Chap. 12, e2un ! e2u in L1.M/, in norm, so u 2 S . Now
(2.26) implies that

R
M
k.x/un dV ! R

M
k.x/u dV and that

(2.27)
Z

M

jduj2 dV � lim inf
n!1

Z

M

jdunj2 dV;

so F.u/ � a D R
S
F.v/, and the existence proof is completed.

The most important special case of Theorem 2.1 is the case K D �1. For any
compact surface with �.M/ < 0, given a Riemannian metric g, it is conformally
equivalent to a metric for whichK D �1. The universal covering surface

(2.28) fM �! M;
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endowed with the lifted metric, also has curvature �1. A basic theorem of
differential geometry is that any two complete, simply connected Riemannian
manifolds, with the same constant curvature (and the same dimension), are iso-
metric. See the exercises for dimension 2. For a proof in general, see [ChE]. One
model surface of curvature �1 is the Poincaré disk,

(2.29) D D f.x; y/ 2 R2 W x2 C y2 < 1g D fz 2 C W jzj < 1g;

with metric

(2.30) ds2 D 4.1� x2 � y2/�2
�
dx2 C dy2

�
:

This was discussed in � 5 of Chap. 8. Any compact surfaceM with negative Euler
characteristic is conformally equivalent to the quotient of D by a discrete group
� of isometries. If M is orientable, all the elements of � preserve orientation.

A group of orientation-preserving isometries of D is provided by the group G
of linear fractional transformations, where

(2.31) Tgz D az C b

cz C d
; g D



a b

c d

�
;

for

(2.32) g 2 G D SU.1; 1/ D
�


u v
v u

�
W u; v 2 C; juj2 � jvj2 D 1



:

It is easy to see that G acts transitively on D; that is, for any z1; z2 2 D, there
exists g 2 G such that Tgz1 D z2. We claim fTg W G 2 Gg exhausts the group
of orientation-preserving isometries of D. In fact, let T be such an isometry of D;
say T .0/ D z0. Pick g 2 G such that Tgz0 D 0. Then Tg ı T is an orientation-
preserving isometry of D, fixing 0, and it is easy to deduce that Tg ı T must be a
rotation, which is given by an element of G.

Since each element of G defines a holomorphic map of D to itself, we have
the following result, a major chunk of the uniformization theorem for compact
Riemann surfaces:

Proposition 2.6. If M is a compact Riemann surface, �.M/ < 0, then there is a
holomorphic covering map of M by the unit disk D.

Let us take a brief look at the case �.M/ D 0. We claim that any metric g on
suchM is conformally equivalent to a flat metric g0, that is, one for whichK D 0.
Note that the PDE (2.3) is linear in this case; we have

(2.33) �u D k.x/:
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This equation can be solved on M if and only if

(2.34)
Z

M

k.x/ dV D 0;

which, by the Gauss–Bonnet formula (2.4) holds precisely when �.M/ D 0. In
this case, the universal covering surfacefM ofM inherits a flat metric, and it must
be isometric to Euclidean space. Consequently, in analogy with Proposition 2.6,
we have the following:

Proposition 2.7. IfM is a compact Riemann surface,�.M/ D 0, thenM is holo-
morphically equivalent to the quotient of C by a discrete group of translations.

By the characterization

�.M/ D dim H 0.M/� dim H 1.M/C dim H 2.M/ D 2 � dim H 1.M/;

if M is a compact, connected Riemann surface, we must have �.M/ � 2. If
�.M/ D 2, it follows from the Riemann–Roch theorem that M is conformally
equivalent to the standard sphere S2 (see � 10 of Chap. 10). This implies the fol-
lowing.

Proposition 2.8. If M is a compact Riemannian manifold homeomorphic to S2,
with Riemannian metric tensor g, then M has a metric tensor, conformal to g,
with Gauss curvature � 1.

In other words, we can solve for u 2 C1.M/ the equation

(2.35) �u D k.x/ � e2u;

where k.x/ is the Gauss curvature of g. This result does not follow from Theorem
2.1. A PDE proof, involving a nonlinear parabolic equation, is given by [Chow],
following work of [Ham]. An elliptic PDE proof, under the hypothesis thatM has
a metric with Gauss curvature k.x/ > 0, has been given in Chap. 2 of [CK].

We end this section with a direct linear PDE proof of the following, which as
noted above implies Proposition 2.8. This argument appeared in [MT].

Proposition 2.9. If M is a compact Riemannian manifold homeomorphic to S2,
there is a conformal diffeomorphism F W M ! S2 onto the standard Riemann
sphere.

Proof. Pick a Riemannian metric onM , compatible with its conformal structure.
Then pick p 2 M , and pick h 2 D0.M/, supported at p, given in local coordinates
as a first-order derivative of ıp (plus perhaps a multiple of ıp), such that h1; hi D
0. Hence there exists a solution u 2 D0.M/ to
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(2.36) �u D h:

Then u 2 C1.M np/, and u is harmonic onM np and has a dist.x; p/�1 type of
singularity. Now, if M is homeomorphic to S2, then M n p is simply connected,
so u has a single-valued harmonic conjugate onM np, given by v.x/ D R x

q 
du,

where we pick q 2 M n p. We see that v also has a dist.x; p/�1 type singularity.
Then f D u C iv is holomorphic onM np and has a simple pole at p. From here
it is straightforward that f provides a conformal diffeomorphism of M onto the
standard Riemann sphere.

Actually, the bulk of [MT] dealt with an attack on the curvature equation (2.3),
with M a planar domain and K � �1, so the equation is

(2.37) �u D e2u on � � C:

Here is one of the main results of [MT].

Proposition 2.10. Assume� D C nS , where S is a closed subset of C with more
than one point. Then there exists a solution to (2.37) on � such that e2u.dx2 C
dy2/ is a complete metric on � with curvature � �1.

As with Proposition 2.6, this has as a corollary the following special case of
the general uniformization theorem.

Corollary 2.11. If � � C is as in Proposition 2.10, there exists a holomorphic
covering of � by the unit disk D.

Techniques employed in the proof of Proposition 2.10 include maximal princi-
ple arguments and barrier constructions. We refer to [MT] for further details.

Exercises
1. Let M be a complete, simply connected 2-manifold, with Gauss curvature K D �1.

Fix p 2 M , and consider

Expp W R2 	 TpM �! M:

Show that this is a diffeomorphism.
(Hint: The map is onto by completeness. Negative curvature implies no Jacobi fields
vanishing at 0 and another point, so D Expp is everywhere nonsingular. Use simple
connectivity of M to show that Expp must be one-to-one.)

2. For M as in Exercise 1, take geodesic polar coordinates, so the metric is

ds2 D dr2 CG.r; �/ d�2:

Use formula (3.37) of Appendix C, for the Gauss curvature, to deduce that

@2
r

p
G D p

G
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if K D �1. Show that
p
G.0; �/ D 0; @r

p
G.0; �/ D 1;

and deduce that
p
G.r; �/ D '.r/ is the unique solution to

'00.r/� '.r/ D 0; '.0/ D 0; '0.0/ D 1:

Deduce that
G.r; �/ D sinh2 r:

3. Using Exercise 2, deduce that any two complete, simply connected 2-manifolds with
Gauss curvature K D �1 are isometric. Use (3.37) or (3.41) of Appendix C to show
that the Poincaré disk (2.30) has this property.

3. Local solvability of nonlinear elliptic equations

We take a look at nonlinear PDE, of the form

(3.1) f .x;Dmu/ D g.x/;

where, in the latter argument of f ,

(3.2) Dmu D fD˛u W j˛j � mg:

We suppose f .x; �/ is smooth in its arguments, x 2 � � Rn, and � D f�˛ W
j˛j � mg. The function u might take values in some vector space Rk . Set

(3.3) F.u/ D f .x;Dmu/;

so F W C1.�/ ! C1.�/I F is the nonlinear differential operator. Let u0 2
Cm.�/. We say that the linearization of F at u0 isDF.u0/, which is a linear map
from Cm.�/ to C.�/. (Sometimes less smooth u0 can be considered.) We have

(3.4) DF.u0/v D @

@s
F.u0 C sv/

ˇ̌
sD0

D
X

jˇ j�m

@f

@�ˇ

.x;Dmu0/ D
ˇv;

so DF.u0/ is itself a linear differential operator of order m. We say the operator
F is elliptic at u0 if its linearization DF.uo/ is an elliptic, linear differential
operator.

An operator of the form (3.3) with

(3.5) f .x;Dmu/ D
X

j˛jDm

a˛.x;D
m�1u/D˛u C f1.x;D

m�1u/
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is said to be quasi-linear. In that case, the linearization at u0 is

(3.6) DF.u0/ D
X

j˛jDm

a˛.x;D
m�1u0/D

˛v C Lv;

whereL is a linear differential operator of orderm�1, with coefficients depending
on Dm�1u0. A nonlinear operator that is not quasi-linear is called completely
nonlinear. The distinction is made because some aspects of the theory of quasi-
linear operators are simpler than the general case.

An example of a completely nonlinear operator is the Monge–Ampere operator

(3.7) F.u/ D det



uxx uxy

uxy uyy

�
D uxxuyy � u2

xy;

with .x; y/ 2 � � R2. In this case,

(3.8)
DF.u/v D Tr

"

vxx vxy

vxy vyy

�

uyy �uxy

�uxy uxx

�#

D uyyvxx � 2uxyvxy C uxxvyy :

Thus the linear operatorDF.u/ acting on v is elliptic provided the matrix

(3.9)



uyy �uxy

�uxy uxx

�

is either positive-definite or negative-definite. Since, for u real-valued, this is a
real symmetric matrix, we see that this condition holds precisely when F.u/ > 0.

More generally, for � � Rn, we consider the Monge–Ampere operator

(3.7a) F.u/ D det H.u/;

where H.u/ D .@j @ku/ is the Hessian matrix of second-order derivatives. In this
case, we have

(3.8a) DF.u/v D Tr
�C.u/H.v/�;

where H.v/ is the Hessian matrix for v and C.u/ is the cofactor matrix of H.u/,
satisfying

H.u/C.u/ D �
det H.u/

�
I:

In this setting we see thatDF.u/ is a linear, second-order differential operator that
is elliptic provided the matrix C.u/ is either positive-definite or negative-definite,
and this holds provided the Hessian matrix H.u/ is either positive-definite or
negative-definite.
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Having introduced the concepts above, we aim to establish the following local
solvability result:

Theorem 3.1. Let g 2 C1.�/, and let u1 2 C1.�/ satisfy

(3.10) F.u1/ D g.x/; at x D x0;

where F.u/ is of the form (3.3). Suppose that F is elliptic at u1. Then, for any `,
there exists u 2 C `.�/ such that

(3.11) F.u/ D g

on a neighborhood of x0.

We begin with a formal power-series construction to arrange that (3.11) hold
to infinite order at x0.

Lemma 3.2. Under the hypotheses of Theorem 3.1, there exists u0 2 C1.�/
such that

(3.12) F.u0/� g.x/ D O.jx � x0j1/

and

(3.13) .u0 � u1/.x/ D O.jx � x0jmC1/:

Proof. Making a change of variable, we can suppose x0 D 0. Denote coordinates
near 0 in � by .x; y/ D .x1; : : : ; xn�1; y/. We write u0.x; y/ as a formal power
series in y:

(3.14) u0.x; y/ D v0.x/C v1.x/y C � � � C 1

kŠ
vk.x/y

k C � � � :

Set

(3.15) v0.x/ D u1.x; 0/; v1.x/ D @yu1.x; 0/; : : : ; vm�1.x/ D @m�1
y u1.x; 0/:

Now the PDE F.u/ D g can be rewritten in the form

(3.16)
@mu

@ym
D F #.x; y;Dm

x u;Dm�1
x Dyu; : : : ;D1

xD
m�1
y u/:

Then the equation for vm.x/ becomes

(3.17) vm.x/ D f #.x; 0;Dm
x v0.x/; : : : ;D

1
xvm�1.x//:
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Now, by (3.10), we have vm.0/ D @m
y u1.0; 0/, so (3.13) is satisfied. Taking

y-derivatives of (3.16) yields inductively the other coefficients vj .x/; j � mC1,
and the lemma follows from this construction.

Note that if F is elliptic at u1, then F continues to be elliptic at u0, at least on
a neighborhood of x0; shrink� appropriately.

To continue the proof of Theorem 3.1, for k > mC 1C n=2, we have that

(3.18) F W H k.�/ �! H k�m.�/

is a C 1-map. We have

(3.19) L D DF.u0/ W H k.�/ �! H k�m.�/:

Now, L is an elliptic operator of orderm. We know from Chap. 5 that the Dirichlet
problem is a regular boundary problem for the strongly elliptic operator LL�.
Furthermore, if � is a sufficiently small neighborhood of x0, the map

(3.20) LL� W H kCm.�/ \Hm
0 .�/ �! H k�m.�/

is invertible. Hence the map (3.19) is surjetive, so we can apply the implicit func-
tion theorem. For any neighborhood Bk of u0 in H k.�/, the image of Bk under
the map F contains a neighborhood Ck of F.u0/ in H k�m.�/. Now if (3.12)
holds, then any neighborhood of r.x/ D F.u0/ � g in H k�m.�/ contains func-
tions that vanish on a neighborhood of x0, so any neighborhood Ck of F.u0/

contains functions equal to g.x/ on a neighborhood of x0. This establishes the
local solvability asserted in Theorem 3.1.

One would rather obtain a local solution u 2 C1 than just an `-fold differen-
tiable solution. This can be achieved by using elliptic regularity results that will
be established in the next section.

We now discuss a refinement of Theorem 3.1.

Proposition 3.3. If u1; g 2 C1.�/ satisfy the hypotheses of Theorem 3.1 at
x D x0, with F elliptic at u1, then, for any `, there exists u 2 C `.�/ such that,
on a neighborhood of x0,

(3.21) F.u/ D g

and, furthermore,

(3.22) .u � u1/.x/ D O.jx � x0jmC1/:

In the literature, one frequently sees a result weaker than (3.22). The desir-
ability of having this refinement was pointed out to the author by R. Bryant. As
before, results of the next section will give u 2 C1.�/.
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To begin the proof, we invoke Lemma 3.2, as before, obtaining u0. Now, for
k > mC 1C n=2, set

(3.23)
Vk D ˚

u 2 H k.�/ W .u � u0/.x/ D O.jx � x0jmC1/
�
;

Gk�m D ˚
h 2 H k�m.�/ W h.x0/ D g.x0/

�
:

Then

(3.24) F W Vk �! Gk�m

is a C 1-map, and we want to show that F maps a neighborhood of u0 in Vk onto
a neighborhood of g0 D F.u0/ in Gk�m. We will again use the implicit function
theorem. We want to show that the linear map

(3.25) L D DF.u0/ W Vb
k �! Gb

k�m

is surjective, where

(3.26)
Vb

k D fv 2 H k.�/ W Dˇv.x0/ D 0 for jˇj � mg;
Gb

k�m D fh 2 H k�m.�/ W h.x0/ D 0g

are the tangent spaces to Vj and Gk�m, at u0 and g0, respectively.
By the previous argument involving (3.19) and (3.20), we know that, for any

given h 2 Gb
k�m

, we can find v1 2 H k.�/ such that Lv1 D h, perhaps after
shrinking�. To prove the surjectivity in (3.25), we need to find v 2 H k.�/ such
that Lv D 0 and such that v � v1 D O.jx � x0jmC1/, so that v1 � v 2 Vb

k
and

L.v1 � v/ D h. We will actually produce v 2 C1.�/. To work on this problem,
we will find it convenient to use the notion of the m-jet Jm

0 .v/ of a function v 2
C1.�/, at x0, being the Taylor polynomial of orderm for v about x0. Note that

(3.27) Jm
0 .v/ D Jm

0 .v
#/ ” .v � v#/.x/ D O.jx � x0jmC1/;

given that v; v# 2 C1.�/. The existence of the function v we seek here is
guaranteed by the following assertion.

Lemma 3.4. Given an elliptic operator L of order m, as above, let

(3.28) J D fJm
0 .v/ W Lv.x0/ D 0g

and

(3.29) S D fJm
0 .v/ W v 2 C1.�/; Lv D 0 on �g:

Clearly, S � J . If � is a sufficiently small neighborhood of x0, then S D J .
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Proof. This result is a simple special case of our goal, Proposition 3.3; the
beginning of the proof here just retraces arguments from the beginning of that
proof. Namely, let v1 2 C1.�/ have m-jet in J , hence satisfying Lv1.x0/ D 0.
Then Lemma 3.2 applies, so there exists v0 such that

(3.30) Jm
0 .v0/ D Jm

0 .v1/ and Lv0 D O.jx � x0j1/:

Set h0 D Lv0. Suppose� is shrunk so far that LL� in (3.20) is an isomorphism.
Now, for any " > 0, there exists h1 2 C1.�/ such that

(3.31) h1 D h0 near x0; kh1kH `.�/ < ":

Then the Dirichlet problem

LL� Qw D h1 on �; Qw 2 Hm
0 .�/

has a unique solution Qw satisfying estimates

(3.32) k QwkH `C2m.�/ � C`kh1kH `.�/:

Fix ` > n=2. By Sobolev’s imbedding theorem, w D L� Qw satisfies

(3.33) kwkC m.�/ � C #kwkH `Cm.�/:

In light of this, we have

(3.34) kwkC m.�/ � C #
` "; Lw D h1 on �;

so v D v1 � w defines an element in S, provided � is shrunk to �1, on which
h1 D h0 in (3.31). Furthermore, Jm

0 .v/ differs from Jm
0 .v1/ by Jm

0 .w/, which is
small (i.e., proportional to "). Since S is a linear subspace of the finite-dimensional
space J , this approximability yields the identity S D J and proves the lemma.

From the lemma, as we have seen, it follows that the map (3.25) is a surjective
linear map between two Hilbert spaces, so the implicit function theorem therefore
applies to the map F in (3.24). In other words,F maps a neighborhood of u0 in Vk

onto a neighborhood of g0 D F.u0/ in Gk�m. As in the proof of Theorem 3.1, we
see that any neighborhood of r.x/ D F.u0/ � g in Gb

k�m
contains functions that

vanish on a neighborhood of x0, so any neighborhood of F.u0/ in Gk�m contains
functions equal to g.x/ on a neighborhood of x0. This completes the proof of
Proposition 3.3.

In some geometrical problems, it is useful to extend the notion of ellipticity.
A differential operator of the form (3.3) is said to be underdetermined elliptic at
u0 providedDF.u0/ has surjective symbol.
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Proposition 3.5. If F.u1/ satisfies F.u1/ D g at x D x0, and if F is underdeter-
mined elliptic at u1, then, for any `, there exists u 2 C `.�/ such that F.u/ D g

on a neighborhood of x0 and such that .u � u1/.x/ D O.jx � x0jmC1/.

Proof. We produce u in the form u D u1 C u2, where we want

(3.35) F.u1 C u2/ D g near x0; u2.x/ D O.jx � x0jmC1/:

We will find u2 in the form u2 D L�w, where L D DF.u1/. Thus we want to
find w 2 C `Cm.�/ satisfying

(3.36) ˆ.w/ D F.u1 C L�w/ D g near x0; w.x/ D O.jx � x0j2mC1/:

Nowˆ.w/ is strongly elliptic of order 2m at w1 and ˆ.w1/ D 0 at x0 if w1 D 0.
Thus the existence of w satisfying (3.36) follows from Proposition 3.3, and the
proof is finished.

We will apply the local existence theory to establish the following classical
local isometric imbedding result.

Proposition 3.6. LetM be a 2-dimensonal Riemannian manifold. If p0 2 M and
the Gauss curvatureK.p0/ > 0, then there is a neighborhood O of p0 in M that
can be smoothly isometrically imbedded in R3.

The proof involves constructing a smooth, real-valued function u on O such
that du.p0/ D 0 and such that g1 D g � du2 is a flat metric on O, where g is
the given metric tensor on M . Assuming this can be accomplished, then by the
fundamental property of curvature (Proposition 3.1 of Appendix C), we can take
coordinates .x; y/ on O (after possibly shrinking O) such that g1 D dx2 C dy2.
Thus g D dx2 Cdy2 Cdu2, which implies that .x; y; u/ W O ! R3 provides the
desired local isometric imbedding.

Thus our task is to find such a function u. We need a formula for the Gauss
curvature K1 of O, with metric tensor g1 D g � du2. A lengthy but finite
computation from the fundamental formulas given in � 3 of Appendix C yields

(3.37)
�
1 � jruj2�2K1 D �

1 � jruj2�K � det Hg.u/:

Here, jruj2 D gjkuIj uIk , andHg.u/ is the Hessian of u relative to the Levi-Civita
connection of g:

(3.38) Hg.u/ D �
uIj Ik

�
:

This is the tensor field of type (1,1) associated to the tensor field r2u of type (0,2),
such as defined by (2.3)–(2.4) of Appendix C, or equivalently by (3.27) of Chap. 2.
In normal coordinates centered at p 2 M , we haveHg.u/ D .@j @ku/, at p.
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Therefore, g1 is a flat metric if and only if u satisfies the PDE

(3.39) det Hg.u/ D �
1 � jruj2�K:

By the sort of analysis done in (3.7)–(3.9), we see that this equation is elliptic,
provided K > 0 and jruj < 1. Thus Proposition 3.3 applies, to yield a local
solution u 2 C `.O/, for arbitrarily large `, provided the metric tensor g is smooth.
As mentioned above, results of � 4 will imply that u 2 C1.O/.

If K.p0/ < 0, then (3.39) will be hyperbolic near p0, and results of Chap. 16
will apply, to produce an analogue of Proposition 3.6 in that case. No matter
what the value of K.p0/, if the metric tensor g is real analytic, then the nonlinear
Cauchy–Kowalewsky theorem, proved in � 4 of Chap. 16, will apply, yielding in
that case a real analytic, local isometric imbedding of M into R3.

If M is compact (diffeomorphic to S2) and has a metric with K > 0 every-
where, then in fact M can be globally isometrically imbedded in R3. This result
is established in [Ni2] and [Po]. Of course, it is not true that a given compact
Riemannian 2-manifold M can be globally isometrically imbedded in R3 (for
example, if K < 0), but it can always be isometrically imbedded in RN for suf-
ficiently large N . In fact, this is true no matter what the dimension of M . This
important result of J. Nash will be proved in � 5 of this chapter.

Exercises
1. Given the formula (3.8a) for the linearization of F.u/ D detH.u/, show that the symbol

of DF.u/ is given by

(3.40) 	DF .u/.x; �/ D �C.u/� � �:

2. Let a surface M � R3 be given by x3 D u.x1; x2/. Given K.x1; x2/, to construct u
such that the Gauss curvature of M at .x1; x2; u.x1; x2// is equal to K.x1; x2/ is to
solve

(3.41) det H.u/ D �
1C jruj2�2K:

See (4.29) of Appendix C. If one is given a smooth K.x1; x2/ > 0, then this PDE is
elliptic. Applying Proposition 3.3, what geometrical properties of M can you prescribe
at a given point and guarantee a local solution?

3. Verify (3.37). Compare with formula (**) on p. 210 of [Spi], Vol. 5.
4. Show that, in local coordinates on a 2-dimensional Riemannian manifold, the left side

of (3.39) is given by

det
�
uIj Ik

� D g�1 det.@j @ku/C Ajk.x;ru/ @j @ku CQ.ru;ru/;

where g D det.gjk/,

Ajk.x;ru/ D ˙gjk	j 0`
k0@`u;
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with “C” if j D k, “�” if j ¤ k, j 0 and k0 the indices complementary to j and k, and

	j`
k D @kg

j` C �j
mkg

m`;

and
Q.ru;ru/ D det.�j

k/; �j
k D 	j`

k@`u:

4. Elliptic regularity I (interior estimates)

Here we will discuss two methods of establishing regularity of solutions to nonlin-
ear elliptic PDE. The first is to consider regularity for a linear elliptic differential
operator of orderm

(4.1) A.x;D/ D
X

j˛j�m

a˛.x/ D
˛ ;

whose coefficients have limited regularity. The second method will involve use
of paradifferential operators. For both methods, we will make use of the Hölder
spaces C s.Rn/ and Zygmund spaces C s�.Rn/, discussed in � 8 of Chap. 13. Ma-
terial in this section largely follows the exposition in [T].

Let us suppose a˛.x/ 2 C s.Rn/; s 2 .0;1/ n Z. Then A.x; �/ belongs to the
symbol space C s�Sm

1;0, as defined in � 9 of Chap. 13. Recall that p.x; �/ 2 C s�Sm
1;ı

,
provided

(4.2) jD˛
� p.x; �/j � C˛h�im�j˛j

and

(4.3) kD˛
� p.�; �/kC s

�

.Rn/ � C ˛h�im�j˛jCıs :

We would like to establish regularity results for elliptic A.x; �/ 2 C s�Sm
1;0, by

pseudodifferential operator techniques. It is not so convenient to work with an
operator with symbol A.x; �/�1. Rather, we will decompose A.x; �/ into a sum

(4.4) A.x; �/ D A#.x; �/CAb.x; �/;

in such a way that a good parametrix can be constructed for A#.x;D/, while
Ab.x;D/ is regarded as a remainder term to be estimated. Pick ı 2 .0; 1/. As
shown in Proposition 9.9 of Chap. 13, any A.x; �/ 2 C s�Sm

1;0 can be written in the
form (4.4), with

(4.5) A#.x; �/ 2 Sm
1;ı ; Ab.x; �/ 2 C s�Sm�ıs

1;ı :
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To Ab.x;D/ we apply Proposition 9.10 of Chap. 13, which, we recall, states that

(4.6) p.x; �/ 2 C s�S
�

1;ı
H) p.x;D/ W C�Cr� �! C r� ; �.1 � ı/s < r < s:

Consequently,

(4.7) Ab.x;D/ W CmCr�ıs� �! C r� ; �.1 � ı/s < r < s:

Now let p.x;D/ 2 OPS�m
1;ı

be a parametrix for A#.x;D/, which is elliptic.
Hence, mod C1,

(4.8) p.x;D/A.x;D/u D u C p.x;D/Ab.x;D/u;

so if

(4.9) A.x;D/u D f;

then, mod C1,

(4.10) u D p.x;D/f � p.x;D/Ab.x;D/u:

In view of (4.7), we see that when (4.10) is satisfied,

(4.11) u 2 CmCr�ıs� ; f 2 C r� H) u 2 CmCr� :

We then have the following.

Proposition 4.1. Let A.x; �/ 2 C s�Sm
1;0 be elliptic, and suppose u solves (4.9).

Assuming

(4.12) s > 0; 0 < ı < 1 and � .1 � ı/s < r < s;

we have

(4.13) u 2 CmCr�ıs ; f 2 C r� H) u 2 CmCr� :

Note that, for j˛j D m; D˛u 2 C r�ıs� , and r�ıs could be negative. However,
a˛.x/D

˛u will still be well defined for a˛ 2 C s. Indeed, if (4.6) is applied to the
special case of a multiplication operator, we have

(4.14) a 2 C s ; u 2 C �� H) au 2 C �� ; for � s < 	 < s:

Note that the range of r in (4.12) can be rewritten as �s < r � ıs < .1 � ı/s. If
we set r � ıs D �sC ", this means 0 < " < .2� ı/s, so we can rewrite (4.13) as
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(4.15) u 2 Cm�sC"; f 2 C r� H) u 2 CmCr� ; provided " > 0; r < s;

as long as the relation r D �.1�ı/sC" holds. Letting ı range over .0; 1/, we see
that this will hold for any r 2 .�sC"; "/. However, if r 2 Œ"; s/, we can first obtain
from the hypothesis (4.15) that u 2 C

mC�� , for any � < ". This improves the a
priori regularity of u by almost s units. This argument can be iterated repeatedly,
to yield:

Theorem 4.2. If A.x; �/ 2 C sSm
1;0 is elliptic and u solves (4.9), then (assuming

s > 0)

(4.16)
u 2 Cm�sC"; f 2 C r� H) u 2 CmCr� ;

provided " > 0 and � s < r < s:

We can sharpen this up to obtain the following Schauder regularity result:

Theorem 4.3. Under the hypotheses above,

(4.17) u 2 Cm�sC"; f 2 C s� H) u 2 CmCs� :

Proof. Applying (4.16), we can assume u 2 CmCr� with s � r > 0 arbitrarily
small. Now if we invoke Proposition 9.7 of Chap. 13, which says

(4.18) p.x; �/ 2 C rSm
1;1 H) p.x;D/ W CmCrC"� �! C r� ;

for all " > 0, we can supplement 4.7 with

(4.19) Ab.x;D/ W CmCs�ısC"� �! C s� ; " > 0:

If ı > 0, and if " > 0 is picked small enough, we can writemCs�ısC" D mCr
with r < s, so, under the hypotheses of (4.17), the right side of (4.8) belongs to
CmCs� , proving the theorem. We note that a similar argument also produces the
regularity result:

(4.20) u 2 Hm�sC";p; f 2 C s� H) u 2 CmCs� :

We now apply these results to solutions to the quasi-linear elliptic PDE

(4.21)
X

j˛j�m

a˛.x;D
m�1u/ D˛u D f:

As long as u 2 Cm�1Cs ; a˛.x;D
m�1u/ 2 C s . If also u 2 Cm�sC", we ob-

tain (4.16) and (4.17). If r > s, using the conclusion u 2 CmCs� , we obtain
a˛.x;D

m�1u/ 2 C sC1, so we can reapply (4.16) and (4.17) for further regular-
ity, obtaining the following:
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Theorem 4.4. If u solves the quasi-linear elliptic PDE (4.21), then

(4.22) u 2 Cm�1Cs \ Cm�sC"; f 2 C r� H) u 2 CmCr� ;

provided s > 0; " > 0, and �s < r . Thus

(4.23) u 2 Cm�1Cs ; f 2 C r� H) u 2 CmCr� ;

provided

(4.24) s >
1

2
; r > s � 1:

We can sharpen Theorem 4.4 a bit as follows. Replace the hypothesis in
(4.22) by

(4.25) u 2 Cm�1Cs \Hm�1C�;p ;

with p 2 .1;1/. Recall that Proposition 9.10 of Chap. 13 gives both (4.6) and,
for p 2 .1;1/,

(4.26)
p.x; �/ 2 C s�Sm

1;ı H) p.x;D/ W H rCm;p �! H r;p;

�.1 � ı/s < r < s:

Parallel to (4.14), we have

(4.27) a 2 C s; u 2 H �;p H) au 2 H �;p ; for � s < 	 < s;

as a consequence of (4.26), so we see that the left side of (4.21) is well defined
provided s C 	 > 1. We have (4.8) and, by (4.26),

(4.28) Ab.x;D/ W HmCr�ıs;p �! H r;p; for � .1 � ı/s < r < s;

parallel to (4.7). Thus, if (4.25) holds, we obtain

(4.29) p.x;D/Ab.x;D/u 2 Hm�1C�Cıs;p;

provided �.1 � ı/s < ıs � 1C 	 < s, i.e., provided

(4.30) s C 	 > 1 and � 1C 	 C ıs < s:

Thus, if f 2 H �;p with � > 	 � 1, we manage to improve the regularity of u
over the hypothesized (4.25). One way to record this gain is to use the Sobolev
imbedding theorem:

(4.31) Hm�1C�Cıs;p � Hm�1C�;p1 ; p1 D pn

n � ıs
> p

�
1C ısp

n

�
:
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If we assume f 2 C r� with r > 	 � 1, we can iterate this argument sufficiently
often to obtain u 2 Cm�1C��", for arbitrary " > 0. Now we can arrange s C 	 >

1C", so we are now in a position to apply Theorem 4.4. This proves the following:

Theorem 4.5. If u solves the quasi-linear elliptic PDE (4.21), then

(4.32) u 2 Cm�1Cs \Hm�1C�;p ; f 2 C r� H) u 2 CmCr� ;

provided 1 < p < 1 and

(4.33) s > 0; s C 	 > 1; r > 	 � 1:

Note that if u 2 Hm;p for some p > n, then u 2 Cm�1Cs for s D 1�n=p > 0,
and then (4.32) applies, with 	 D 1, or even with 	 D n=p C ".

We next obtain a result regarding the regularity of solutions to a completely
nonlinear elliptic system

(4.34) F.x;Dmu/ D f:

We could apply Theorems 4.2 and 4.3 to the equation for uj D @u=@xj :

(4.35)
X

j˛j�m

@F

@�˛

.x;Dmu/D˛uj D �Fxj
.x;Dmu/C @f

@xj

D fj :

Suppose u 2 CmCs; s > 0, so the coefficients a˛.x/ D .@F=@�˛/.x;D
mu/ 2

C s. If f 2 C r� , then fj 2 C s CC r�1� . We can apply Theorems 4.2 and 4.3 to uj

provided u 2 CmC1�sC", to conclude that u 2 CmCsC1� [CmCr� . This implication
can be iterated as long as s C 1 < r , until we obtain u 2 CmCr� .

This argument has the drawback of requiring too much regularity of u, namely
that u 2 CmC1�sC" as well as u 2 CmCs. We can fix this up by considering
difference quotients rather than derivatives @j u. Thus, for y 2 Rn; jyj small, set

vy.x/ D jyj�1
�
u.x C y/ � u.x/

�I
vy satisfies the PDE

(4.36)
X

j˛j�m

ˆ˛y.x/D
˛vy.x/ D Gy.x;D

mu/;

where

(4.37) ˆ˛y.x/ D
Z 1

0

.@F=@�˛/
�
x; tDmu.x/C .1 � t/Dmu.x C y/

�
dt
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and Gy is an appropriate analogue of the right side of (4.35). Thus ˆ˛y is in C s,
uniformly as jyj ! 0, if u 2 CmCs, while this hypothesis also gives a uniform
bound on the Cm�1Cs-norm of vy . Now, for each y, Theorems 4.2 and 4.3 apply
to vy , and one can get an estimate on kvykC mC� ; � D min.s; r � 1/, uniform as
jyj ! 0. Therefore, we have the following.

Theorem 4.6. If u solves the elliptic PDE (4.34), then

(4.38) u 2 CmCs; f 2 C r� H) u 2 CmCr� ;

provided

(4.39) 0 < s < r:

We shall now give a second approach to regularity results for nonlinear elliptic
PDE, making use of the paradifferential operator calculus developed in � 10 of
Chap. 13. In addition to giving another perspective on interior estimates, this will
also serve as a warm-up for the work on boundary estimates in � 8.

If F is smooth in its arguments, then, as shown in (10.53)–(10.55) of Chap. 13,

(4.40) F.x;Dmu/ D
X

j˛j�m

M˛.x;D/D
˛u C F.x;Dm‰0.D/u/;

where F
�
x;Dm‰0.D/u

� 2 C1 and

(4.41) M˛.x; �/ D
X

k

m˛
k.x/ kC1.�/;

with

(4.42) m˛
k.x/ D

Z 1

0

@F

@�˛

�
‰k.D/D

mu C t kC1.D/D
mu
�
dt:

As shown in Proposition 10.7 of Chap. 13, we have, for r � 0,

(4.43) u 2 CmCr H) M˛.x; �/ 2 Ar
0S

0
1;1 � S0

1;1 \ C rS0
1;0:

We recall from (10.31) of Chap. 13 that

(4.44) p.x; �/ 2 Ar
0S

m
1;ı ” kD˛

� p.�; �/kC rCs � C˛s h�im�j˛jCıs ; s � 0:

Consequently, if we set

(4.45) M.uI x;D/ D
X

j˛j�m

M˛.x;D/D
˛ ;

we obtain
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Proposition 4.7. If u 2 CmCr ; r � 0, then

(4.46) F.x;Dmu/ D M.uI x;D/u CR;

with R 2 C1 and

(4.47) M.uI x; �/ 2 Ar
0S

m
1;1 � Sm

1;1 \ C rSm
1;0:

Decomposing each M˛.x; �/, we have, by (10.60)–(10.61) of Chap. 13,

(4.48) M.uI x; �/ D M #.x; �/CM b.x; �/;

with

(4.49) M #.x; �/ 2 Ar
0S

m
1;ı � Sm

1;ı

and

(4.50) M b.x; �/ 2 C rSm�ır
1;ı \ Ar

0S
m
1;1 � Sm�rı

1;1 :

Let us explicitly recall that (4.49) implies

(4.51)
Dˇ

xM
#.x; �/ 2 Sm

1;ı ; jˇj � r;

S
mCı.jˇ j�r/

1;ı
; jˇj � r:

Note that the linearization of F.x;Dmu/ at u is given by

(4.52) Lv D
X

j˛j�m

QM˛.x/D
˛v;

where

(4.53) QM˛.x/ D @F

@�˛

.x;Dmu/:

Comparison with (4.40)–(4.42) gives (for u 2 CmCr )

(4.54) M.uI x; �/� L.x; �/ 2 C rSm�r
1;1 ;

by the same analysis as in the proof of the ı D 1 case of (9.35) of Chap. 13. More
generally, the difference in (4.54) belongs to C rSm�rı

1;ı
; 0 � ı � 1. Thus L.x; �/

and M.uI x; �/ have many qualitative properties in common.
Consequently, given u 2 CmCr , the operator M #.x;D/ 2 OPSm

1;ı
is

microlocally elliptic in any direction .x0; �0/ 2 T �Rn n0 that is noncharacteristic
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for F.x;Dmu/, which by definition means noncharacteristic for L. In particular,
M #.x;D/ is elliptic if F.x;Dmu/ is. Now if

(4.55) F.x;Dmu/ D f

is elliptic and Q 2 OPS�m
1;ı

is a parametrix forM #.x;D/, we have

(4.56) u D Q.f �M b.x;D/u/; mod C1:

By (4.50) we have

(4.57) QM b.x;D/ W Hm�rıCs;p �! HmCs;p; s > 0:

(In fact s > �.1 � ı/r suffices.) We deduce that

(4.58) u 2 Hm�ırCs;p; f 2 H s;p H) u 2 HmCs;p;

granted r > 0; s > 0, and p 2 .1;1/. There is a similar implication, with
Sobolev spaces replaced by Hölder (or Zygmund) spaces. This sort of implication
can be iterated, leading to a second proof of Theorem 4.6. We restate the result,
including Sobolev estimates, which could also have been obtained by the first
method used to prove Theorem 4.6.

Theorem 4.8. Suppose, given r > 0, that u 2 CmCr satisfies (4.55) and this
PDE is elliptic. Then, for each s > 0; p 2 .1;1/,

(4.59) f 2 H s;p H) u 2 HmCs;p and f 2 C s� H) u 2 CmCs� :

By way of further comparison with the methods used earlier in this section,
we now rederive Theorem 4.5, on regularity for solutions to a quasi-linear elliptic
PDE. Note that, in the quasi-linear case,

(4.60) F.x;Dmu/ D
X

j˛j�m

a˛.x;D
m�1u/D˛u D f;

the construction above gives F.x;Dmu/ D M.uI x;D/u C R0.u/ with the
property that, for r � 0,

(4.61) u 2 CmCr H) M.uI x; �/ 2 C rC1Sm
1;0 \ Sm

1;1 C C rSm�1
1;0 \ Sm�1

1;1 :

Of more interest to us now is that, for 0 < r < 1,

(4.62) u 2 Cm�1Cr H) M.uI x; �/ 2 C rSm
1;0 \ Sm

1;1 C Sm�r
1;1 ;
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which follows from (10.23) of Chap. 13. Thus we can decompose the term in
C rSm

1;0\Sm
1;1 via symbol smoothing, as in (10.60)–(10.61)of Chap. 13, and throw

the term in Sm�r
1;1 into the remainder, to get

(4.63) M.uI x; �/ D M #.x; �/CM b.x; �/;

with

(4.64) M #.x; �/ 2 Sm
1;ı ; M b.x; �/ 2 Sm�rı

1;1 :

If P.x;D/ 2 OPS�m
1;ı

is a parametrix for the elliptic operator M #.x;D/, then

whenever u 2 Cm�1Cr \Hm�1C�;p is a solution to (4.60), we have, mod C1,

(4.65) u D P.x;D/f � P.x;D/M b.x;D/u:

Now

(4.66) P.x;D/M b.x;D/ W Hm�1C�;p �! Hm�1C�Crı;p if r C � > 1;

by the last part of (4.64). As long as this holds, we can iterate this argument and
obtain Theorem 4.5, with a shorter proof than the one given before.

Next we look at one example of a quasi-linear elliptic system in divergence
form, with a couple of special features. One is that we will be able to assume less
regularity a priori on u than in results above. The other is that the lower-order
terms have a more significant impact on the analysis than above. After analyzing
the following system, we will show how it arises in the study of the Ricci tensor.

We consider second-order elliptic systems of the form

(4.67)
X

@j ajk.x; u/@ku C B.x; u;ru/ D f:

We assume that ajk.x; u/ and B.x; u; p/ are smooth in their arguments and that

(4.68) jB.x; u; p/j � C hpi2:

Proposition 4.9. Assume that a solution u to (4.67) satisfies

(4.69) ru 2 Lq ; for some q > n; hence u 2 C r ;

for some r 2 .0; 1/. Then, if p 2 .q;1/ and s � �1, we have

(4.70) f 2 H s;p H) u 2 H sC2;p:

To begin the proof of Proposition 4.9, we write

(4.71)
X

k

ajk.x; u/ @ku D Aj .uI x;D/u



144 14. Nonlinear Elliptic Equations

mod C1, with

(4.72) u 2 C r H) Aj .uI x; �/ 2 C rS1
1;0 \ S1

1;1 C S1�r
1;1 ;

as established in Chap. 13. Hence, given ı 2 .0; 1/,

(4.73)
Aj .uI x; �/ D A#

j .x; �/C Ab
j .x; �/;

A#
j .x; �/ 2 S1

1;ı ; Ab
j .x; �/ 2 S1�rı

1;1 :

It follows that we can write

(4.74)
X

@j ajk.x; u/ @ku D P #u C P bu;

with

(4.75) P # D
X

@jA
#
j .x;D/ 2 OPS2

1;ı ; elliptic;

and

(4.76) P b D
X

@jA
b
j .x;D/:

By Theorem 9.1 of Chap. 13, we have

(4.77) Ab
j .x;D/ W H 1�rıC�;p0 �! H�;p0

; for � > 0; 1 < p0 < 1:

In particular (taking � D rı; p0 D q),

(4.78) ru 2 Lq H) P bu 2 H�1Crı;q :

Now, if

(4.79) E# 2 OPS�2
1;ı

denotes a parametrix of P #, we have, mod C1,

(4.80) u D E#f �E#B.x; u;ru/ �E#P bu;

and we see that under the hypothesis (4.69), we have some control over the last
term:

(4.81) E#P bu 2 H 1Crı;q � H 1;Qq;
1

Qq D 1

q
� rı

n
:
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Note also that under our hypothesis on B.x; u; p/,

(4.82) ru 2 Lq H) B.x; u;ru/ 2 Lq=2:

Now, by Sobolev’s imbedding theorem,

(4.83) E#B.x; u;ru/ 2 H 1; Qp;

with Qp D q=.2 � q=n/ if q < 2n and for all Qp < 1 if q � 2n. Note that
Qp > q.1 C a=n/ if q D n C a. This treats the middle term on the right side of

(4.80). Of course, the hypothesis on f yields

(4.84) E#f 2 H sC2;p; s C 2 � 1;

which is just where we want to place u.
Having thus analyzed the three terms on the right side of (4.80), we have

(4.85) u 2 H 1;q#
; q# D min. Qp; p; Qq/:

Iterating this argument a finite number of times, we get

(4.86) u 2 H 1;p :

If s D �1 in (4.70), our work is done.
If s > �1 in (4.70), we proceed as follows. We already have u 2 H 1;p, so

ru 2 Lp . Thus, on the next pass through estimates of the form (4.78)–(4.83), we
obtain

(4.87)
E#P bu 2 H 1Crı;p;

E#B.x; u;ru/ 2 H 2;p=2 � H 2�n=p;p;

and hence

(4.88) u 2 H 1C�;p; 	 D min



rı; 1 � n

p
; 1C s

�
:

We can iterate this sort of argument a finite number of times until the conclusion
in (4.70) is reached.

Further results on elliptic systems of the form (4.67) will be given in � 12B.
We now apply Proposition 4.9 to estimates involving the Ricci tensor. Consider a
Riemannian metric gjk defined on the unit ball B1 � Rn. We will work under the
following hypotheses:

(i) For some constants aj 2 .0;1/, there are estimates

(4.89) 0 < a0I � �
gjk.x/

� � a1I:



146 14. Nonlinear Elliptic Equations

(ii) The coordinates x1; : : : ; xn are harmonic, namely

(4.90) �x` D 0:

Here, � is the Laplace operator determined by the metric gjk . In general,

(4.91) �v D gjk@j @kv � �`@`v; �` D gjk�`
jk :

Note that �x` D ��`, so the coordinates are harmonic if and only if �` D 0.
Thus, in harmonic coordinates,

(4.92) �v D gjk @j @kv:

We will also assume some bounds on the Ricci tensor, and we desire to see
how this influences the regularity of gjk in these coordinates. Generally, as can
be derived from formulas in � 3 of Appendix C, the Ricci tensor is given by

(4.93)

Ricjk D 1

2
g`m

��@`@mgjk � @j @kg`m

C @k@mg j̀ C @`@jgkm

�CMjk.g;rg/
D �1

2
g`m@`@mgjk C 1

2
gj`@k�

` C 1

2
gk`@j�

` CHjk.g;rg/;

with �` as in (4.91). In harmonic coordinates, we obtain

(4.94) �1
2

X
@jg

jk.x/ @kg`m CQ`m.g;rg/ D Ric`m;

and Q`m.g;rg/ is a quadratic form in rg, with coefficients that are smooth
functions of g, as long as (4.89) holds. Also, when (4.89) holds, the equation
(4.94) is elliptic, of the form (4.67). Thus Proposition 4.9 implies the following.

Proposition 4.10. Assume the metric tensor satisfies hypotheses (i) and (ii). Also
assume that, on B1,

(4.95) rgjk 2 Lq ; for some q > n;

and

(4.96) Ric`m 2 H s;p;

for some p 2 .q;1/; s � �1. Then, on the ball B9=10,

(4.97) gjk 2 H sC2;p:

In [DK] it was shown that if gjk 2 C 2, in harmonic coordinates, then, for
k 2 ZC; ˛ 2 .0; 1/, Ric`m 2 C kC˛ ) gjk 2 C kC2C˛. Such results also follow



5. Isometric imbedding of Riemannian manifolds 147

by the methods used to prove Proposition 4.10. A result stronger than Proposition
4.10, using Morrey spaces, is proved in [T2].

Exercises
1. Consider the system F.x;Dmu/ D f when

F.x;Dmu/ D
X

j˛j�m

a˛.x;D
j u/ D˛u;

for some j such that 0 � j < m. Assume this quasi-linear system is elliptic. Given
p; q 2 .1;1/; r > 0, assume

u 2 C j Cr \Hm�1C�;p ; r C � > 1:

Show that
f 2 H s;q H) u 2 H sCm;q :

5. Isometric imbedding of Riemannian manifolds

In this section we will establish the following result.

Theorem 5.1. If M is a compact Riemannian manifold, there exists a C1-map

(5.1) ˆ W M �! RN ;

which is an isometric imbedding.

This was first proved by J. Nash [Na1], but the proof was vastly simplified by
M. Günther [Gu1]–[Gu3]. These works also deal with noncompact Riemannian
manifolds and derive good bounds for N , but to keep the exposition simple we
will not cover these results.

To prove Theorem 5.1, we can suppose without loss of generality that M is a
torus T k . In fact, imbed M smoothly in some Euclidean space Rk I M will sit
inside some box; identify opposite faces to haveM � T k . Then smoothly extend
the Riemannian metric on M to one on T k .

If R denotes the set of smooth Riemannian metrics on T k and E is the set of
such metrics arising from smooth imbeddings of T k into some Euclidean space,
our goal is to prove

(5.2) E D R:

Now R is clearly an open convex cone in the Fréchet space

V D C1.T k; S2T �/
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of smooth, second-order, symmetric, covariant tensor fields. As a preliminary to
demonstrating (5.2), we show that the subset E shares some of these properties.

Lemma 5.2. E is a convex cone in V .

Proof. If g0 2 E , it is obvious from scaling the imbedding producing g0 that
˛g0 2 E , for any ˛ 2 .0;1/. Suppose also that g1 2 E . If these metrics gj arise
from imbeddings 'j W T k ! R�j , then g0 C g1 is a metric arising from the
imbedding '0 ˚ '1 W T k ! R�0C�1 . This proves the lemma.

Using Lemma 5.2 plus some functional analysis, we will proceed to establish
that any Riemannian metric on T k can be approximated by one in E . First, we
define some more useful objects. If u W T k ! Rm is any smooth map, let �u

denote the symmetric tensor field on T k obtained by pulling back the Euclidean
metric on Rm. In a natural local coordinate system on T k D Rk=Zk , arising from
standard coordinates .x1; : : : ; xk/ on Rk ,

(5.3) �u D
X
i;j;`

@u`

@xi

@u`

@xj

dxi ˝ dxj :

Whenever u is an immersion, �u is a Riemannian metric; and if u is an imbedding,
then �u is of course an element of E . Denote by C the set of tensor fields on T k of
the form �u. By the same reasoning as in Lemma 5.2, C is a convex cone in V .

Lemma 5.3. E is a dense subset of R.

Proof. If not, take g 2 R such that g … E , the closure of E in V . Now E is a
closed, convex subset of V , so the Hahn–Banach theorem implies that there is a
continuous linear functional ` W V ! R such that `.E/ � 0 while `.g/ D a > 0.

Let us note that C � E (and hence C D E). In fact, if u W T k ! Rm is any
smooth map and ' W T k ! Rn is an imbedding, then, for any " > 0; "' ˚ u W
T k ! RnCm is an imbedding, and �"'˚u D "2�' C �u 2 E . Taking " & 0, we
have �u 2 E .

Consequently, the linear functional ` produced above has the property
`.C/ � 0. Now we can represent ` as a k � k symmetric matrix of distribu-
tions `ij on T k , and we deduce that

(5.4)
X
i;j

˝
@if @jf; `ij

˛ � 0; 8f 2 C1.T k/:

If we apply a Friedrichs mollifier J", in the form of a convolution opera-
tor on T k , it follows easily that (5.4) holds with `ij 2 D0.T k/ replaced by
�ij D J"`ij 2 C1.T k/. Now it is an exercise to show that if �ij 2 C1.T k/

satisfies both �ij D �j i and the analogue of (5.4), then ƒ D .�ij / is a negative-
semidefinite, matrix-valued function on T k , and hence, for any positive-definite
G D .gij / 2 C1.T k ; S2T �/,
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(5.5)
X
i;j

˝
gij ; �ij

˛ � 0:

Taking �ij D J"`ij and passing to the limit " ! 0, we have

(5.6)
X
i;j

˝
gij ; `ij

˛ � 0;

for any Riemannian metric tensor .gij / on T k . This contradicts the hypothesis
that we can take g … E , so Lemma 5.3 is proved.

The following result, to the effect that E has nonempty interior, is the analytical
heart of the proof of Theorem 5.1.

Lemma 5.4. There exist a Riemannian metric g0 2 E and a neighborhood U of
0 in V such that g0 C h 2 E whenever h 2 U .

We now prove (5.2), hence Theorem 5.1, granted this result. Let g 2 R, and
take g0 2 E , given by Lemma 5.4. Then set g1 D g C ˛.g � g0/, where ˛ > 0

is picked sufficiently small that g1 2 R. It follows that g is a convex combination
of g0 and g1; that is, g D ag0 C .1 � a/g1 for some a 2 .0; 1/. By Lemma 5.4,
we have an open set U � V such that g0 C h 2 E whenever h 2 U . But by
Lemma 5.3, there exists h 2 U such that g1 � bh 2 E ; b D a=.1 � a/. Thus
g D a.g0 C h/C .1� a/.g1 � bh/ is a convex combination of elements of E , so
by Lemma 5.1, g 2 E , as desired.

We turn now to a proof of Lemma 5.4. The metric g0 will be one arising from
a free imbedding

(5.7) u W T k �! R�;

defined as follows.

Definition. An imbedding as in (5.7) is free provided that the k C k.k C 1/=2

vectors

(5.8) @j u.x/; @j @ku.x/

are linearly independent in R�, for each x 2 T k .

Here, we regard T k D Rk=Zk , so u W Rk ! R�, invariant under the transla-
tion action of Zk on Rk , and .x1; : : : xk/ are the standard coordinates on Rk . It is
not hard to establish the existence of free imbeddings; see the exercises.

Now, given that u is a free imbedding and that .hij / is a smooth, symmetric
tensor field that is small in some norm (stronger than the C 2-norm), we want to
find v 2 C1.T k;R�/, small in a norm at least as strong as the C 1-norm, such
that, with g0 D �u,
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(5.9)
X

`

@i .u` C v`/@j .u` C v`/ D g0ij C hij ;

or equivalently, using the dot product on R�,

(5.10) @i u � @j v C @j u � @iv C @iv � @j v D hij :

We want to solve for v. Now, such a system turns out to be highly underdeter-
mined, and the key to success is to append convenient side conditions. Following
[Gu3], we apply� � 1 to (5.10), where � D P

@2
j , obtaining

(5.11)

@i

n
.� � 1/.@j u � v/C�v � @j v

o
C @j

n
.� � 1/.@i u � v/C�v � @iv

o

�2
�
.� � 1/.@i@j u � v/C 1

2
@iv � @j v � @i@`v � @j @`v

C�v � @i@j v C 1

2
.� � 1/hij



D 0;

where we sum over `. Thus (5.10) will hold whenever v satisfies the new system

(5.12)

.� � 1/��i .x/ � v� D ��v � @iv;

.� � 1/
�
�ij .x/ � v� D � 1

2
.� � 1/hij

C


@i@`v � @j @`v ��v � @i@j v � 1

2
@iv � @j v

�
:

Here we have set �i .x/ D @i u.x/; �ij .x/ D @i@j u.x/, smooth R�-valued func-
tions on T k .

Now (5.12) is a system of k.k C 3/=2 D 
 equations in � unknowns, and it
has the form

(5.13) .� � 1/
�
�.x/v

�CQ.D2v;D2v/ D H D


0;�1

2
.� � 1/hij

�
;

where �.x/ W R� ! R	 is surjective for each x, by the linear independence hy-
pothesis on (5.8), and Q is a bilinear function of its arguments D2v D fD˛v W
j˛j � 2g. This is hence an underdetermined system for v. We can obtain a deter-
mined system for a function w on T k with values in R	 , by setting

(5.14) v D �.x/tw;

namely

(5.15) .� � 1/
�
A.x/w

�C eQ.D2w;D2w/ D H;
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where, for each x 2 T k ,

(5.16) A.x/ D �.x/�.x/t 2 End.R	/ is invertible:

If we denote the left side of (5.15) by F.w/, the operator F is a nonlinear differ-
ential operator of order 2, and we have

(5.17) DF.w/f D .� � 1/
�
A.x/f

�C B.D2w;D2f /;

where B is a bilinear function of its arguments. In particular,

(5.18) DF.0/f D .� � 1/�A.x/f �:
We thus see that, for any r 2 RC n ZC,

(5.19) DF.0/ W C rC2.T k;R	/ �! C r.T k ;R	/ is invertible.

Consequently, if we fix r 2 RC n ZC, and if H 2 C r.T k;R	/ has sufficiently
small norm (i.e., if .hij / 2 C rC2.T k; S2T �/ has sufficiently small norm), then
(5.15) has a unique solution w 2 C rC2.T k ;R	/ with small norm, and via (5.14)
we get a solution v 2 C rC2.T k;R�/, with small norm, to (5.13). If the norm of
v is small enough, then of course u C v is also an imbedding.

Furthermore, if the C rC2-norm of w is small enough, then (5.15) is an elliptic
system for w. By the regularity result of Theorem 4.6, we can deduce that w is
C1 (hence v is C1) if h is C1. This concludes the proof of Lemma 5.4, hence
of Nash’s imbedding theorem.

Exercises

In Exercises 1–3, let B be the unit ball in Rk , centered at 0. Let .�ij / be a smooth,
symmetric, matrix-valued function on B such that

(5.20)
X
i;j

Z
.@if /.x/ .@j f /.x/ �ij .x/ dx � 0; 8f 2 C1

0 .B/:

1. Taking f" 2 C1
0 .B/ of the form

f".x/ D f ."�2x1; "
�1x0/; 0 < " < 1;

examine the behavior as " & 0 of (5.20), with f replaced by f". Establish that
�11.0/ � 0.

2. Show that the condition (5.20) is invariant under rotations of Rk , and deduce that�
�ij .0/

�
is a negative-semidefinite matrix.

3. Deduce that
�
�ij .x/

�
is negative-semidefinite for all x 2 B .

4. Using the results above, demonstrate the implication (5.4) ) (5.5), used in the proof of
Lemma 5.3.
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5. Suppose we have a C1-imbedding ' W Tk ! Rn. Define a map

 W Tk �! Rn ˚ S2Rn 	 R�; � D nC 1

2
n.nC 1/;

to have components

'j .x/; 1 � j � n; 'i .x/'j .x/; 1 � i � j � n:

Show that  is a free imbedding.
6. Using Leibniz’ rule to expand derivatives of products, verify that (5.10) and (5.11) are

equivalent, for v 2 C1.Tk ;R�/.
7. In [Na1] the system (5.10) was augmented with @i u � v D 0, yielding, instead of (5.12),

the system

(5.21)
�i .x/ � v D 0;

�ij .x/ � v D 1

2

�
@iv � @j v � hij

�
:

What makes this system more difficult to solve than (5.12)?

6. Minimal surfaces

A minimal surface is one that is critical for the area functional. To begin, we
consider a k-dimensional manifoldM (generally with boundary) in Rn. Let � be
a compactly supported normal field to M , and consider the one-parameter family
of manifoldsMs � Rn, images of M under the maps

(6.1) 's.x/ D x C s�.x/; x 2 M:
We want a formula for the derivative of the k-dimensional area of Ms, at s D 0.
Let us suppose � is supported on a single coordinate chart, and write

(6.2) A.s/ D
Z

�

		@1X ^ � � � ^ @kX
		 du1 � � �duk;

where � � Rk parameterizes Ms by X.s; u/ D X0.u/ C s�.u/. We can also
suppose this chart is chosen so that k@1X0 ^ � � � ^ @kX0k D 1. Then we have

(6.3)

A0.0/ D
kX

j D1

Z ˝
@1X0 ^ � � � ^ @j � ^ � � � ^ @kX0; @1X0 ^ � � � ^ @kX0

˛
du1 � � �duk:

By the Weingarten formula (see (4.9) of Appendix C), we can replace @j � by
�A�Ej , where Ej D @jX0. Without loss of generality, for any fixed x 2 M , we
can assume that E1; : : : ; Ek is an orthonormal basis of TxM . Then

(6.4)
˝
E1 ^ � � � ^ A�Ej ^ � � � ^Ek; E1 ^ � � � ^ Ek

˛ D ˝
A�Ej ; Ej

˛
;
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at x. Summing over j yields Tr A�.x/, which is invariantly defined, so we have

(6.5) A0.0/ D �
Z

M

Tr A�.x/ dA.x/;

where A�.x/ 2 End.TxM/ is the Weingarten map of M and dA.x/ the Rie-
mannian k-dimensional area element. We sayM is a minimal submanifold of Rn

providedA0.0/ D 0 for all variations of the form (6.1), for which the normal field
� vanishes on @M .

If we specialize to the case where k D n�1 andM is an oriented hypersurface
of Rn, letting N be the “outward” unit normal to M , for a variation Ms of M
given by

(6.6) 's.x/ D x C sf .x/N.x/; x 2 M;

we hence have

(6.7) A0.0/ D �
Z

M

Tr AN .x/ f .x/ dA.x/:

The criterion for a hypersurfaceM of Rn to be minimal is hence that Tr AN D 0

on M .
Recall from � 4 of Appendix C that AN .x/ is a symmetric operator on TxM .

Its eigenvalues, which are all real, are called the principal curvatures of M at x.
Various symmetric polynomials in these principal curvatures furnish quantities of
interest. The mean curvature H.x/ of M at x is defined to be the mean value of
these principal curvatures, that is,

(6.8) H.x/ D 1

k
Tr AN .x/:

Thus a hypersurface M � Rn is a minimal submanifold of Rn precisely when
H D 0 on M .

Note that changing the sign of N changes the sign of AN , hence of H . Under
such a sign change, the mean curvature vector

(6.9) H.x/ D H.x/N.x/

is invariant. In particular, this is well defined whether or not M is orientable, and
its vanishing is the condition for M to be a minimal submanifold. There is the
following useful formula for the mean curvature of a hypersurfaceM � Rn. Let
X W M ,! Rn be the isometric imbedding. We claim that

(6.10) H.x/ D 1

k
�X;
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with k D n�1, where� is the Laplace operator on the Riemannian manifoldM ,
acting componentwise on X . This is easy to see at a point p 2 M if we translate
and rotate Rn to make p D 0 and representM as the image of Rk D Rn�1 under

(6.11) Y.x0/ D �
x0; f .x0/

�
; x0 D .x1; : : : ; xk/; rf .0/ D 0:

Then one verifies that

�X.p/ D @2
1Y.0/C � � � C @2

kY.0/ D �
0; : : : ; 0; @2

1f .0/C � � � C @2
kf .0/

�
;

and (6.10) follows from the formula

(6.12) hAN .0/X; Y i D
kX

i;j D1

@i@jf .0/ XiYj

for the second fundamental form of M at p, derived in (4.19) of Appendix C.
More generally, if M � Rn has dimension k � n� 1, we can define the mean

curvature vector H.x/ by

(6.13) hH.x/; �i D 1

k
Tr A�.x/; H.x/ ? TxM;

so the criterion for M to be a minimal submanifold is that H D 0. Further-
more, (6.10) continues to hold. This can be seen by the same type of argument
used above; represent M as the image of Rk under (6.11), where now f .x0/ D
.xkC1; : : : ; xn/. Then (6.12) generalizes to

(6.14) hA�.0/X; Y i D
kX

i;j D1

h�; @i@jf .0/i XiYj ;

which yields (6.10). We record this observation.

Proposition 6.1. Let X W M ! Rn be an isometric immersion of a Riemannian
manifold into Rn. Then M is a minimal submanifold of Rn if and only if the
coordinate functions x1; : : : ; xn are harmonic functions on M .

A two-dimensional minimal submanifold of Rn is called a minimal surface.
The theory is most developed in this case, and we will concentrate on the two-
dimensional case in the material below.

When dim M D 2, we can extend Proposition 6.1 to cases where X W M !
Rn is not an isometric map. This occurs because, in such a case, the class of
harmonic functions onM is invariant under conformal changes of metric. In fact,
if � is the Laplace operator for a Riemannian metric gij on M and �1 that for
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g1ij D e2ugij , then, since �f D g�1=2 @i .g
ijg1=2 @jf / and gij

1 D e�2ugij ,

while g1=2
1 D ekug1=2 (if dim M D k), we have

(6.15) �1f D e�2u �f C e�kuhdf; de.k�2/ui D e�2u�f if k D 2:

Hence ker � D ker �1 if k D 2. We hence have the following:

Proposition 6.2. If� is a Riemannian manifold of dimension 2 andX W � ! Rn

a smooth immersion, with image M , then M is a minimal surface provided X is
harmonic and X W � ! M is conformal.

In fact, granted that X W � ! M is conformal,M is minimal if and only if X
is harmonic on �.

We can use this result to produce lots of examples of minimal surfaces, by the
following classical device. Take� to be an open set in R2 D C, with coordinates
.u1; u2/. Given a map X W � ! Rn, with components xj W � ! R, form the
complex-valued functions

(6.16)  j .�/ D @xj

@u1

� i
@xj

@u2

D 2
@

@�
xj ; � D u1 C iu2:

Clearly,  j is holomorphic if and only if xj is harmonic (for the standard flat
metric on �), since � D 4.@=@�/.@=@�/. Furthermore, a short calculation gives

(6.17)
nX

j D1

 j .�/
2 D ˇ̌

@1X
ˇ̌2 � ˇ̌

@2X
ˇ̌2 � 2i @1X � @2X:

Granted that X W � ! Rn is an immersion, the criterion that it be conformal is
precisely that this quantity vanish. We have the following result.

Proposition 6.3. If  1; : : : ;  n are holomorphic functions on � � C such that

(6.18)
nX

j D1

 j .�/
2 D 0 on �;

while
P j j .�/j2 ¤ 0 on �, then setting

(6.19) xj .u/ D Re
Z
 j .�/ d�

defines an immersion X W � ! Rn whose image is a minimal surface.

If� is not simply connected, the domain ofX is actually the universal covering
surface of�.
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We mention some particularly famous minimal surfaces in R3 that arise in such
a fashion. Surely the premier candidate for (6.18) is

(6.20) sin2 � C cos2 � � 1 D 0:

Here, take  1.�/ D sin �;  2.�/ D � cos �, and  3.�/ D �i . Then (6.19) yields

(6.21) x1 D .cos u1/.cosh u2/; x2 D .sin u1/.cosh u2/; x3 D u2:

The surface obtained in R3 is called the catenoid. It is the surface of revolution
about the x3-axis of the curve x1 D coshx3 in the .x1 � x3/-plane. When-
ever  j .�/ are holomorphic functions satisfying (6.18), so are ei
 j .�/, for any
� 2 R. The resulting immersions X
 W � ! Rn give rise to a family of minimal
surfaces M
 � Rn, which are said to be associated. In particular, M�=2 is said
to be conjugate to M D M0. When M0 is the catenoid, defined by (6.21), the
conjugate minimal surface arises from  1.�/ D i sin �;  2.�/ D �i cos �, and
 3.�/ D 1 and is given by

(6.22) x1 D .sin u1/.sinh u2/; x2 D .cos u1/.sinh u2/; x3 D u1:

This surface is called the helicoid. We mention that associated minimal surfaces
are locally isometric but generally not congruent; that is, the isometry between
the surfaces does not extend to a rigid motion of the ambient Euclidean space.

The catenoid and helicoid were given as examples of minimal surfaces by
Meusnier, in 1776.

One systematic way to produce triples of holomorphic functions  j .�/ satis-
fying (6.18) is to take

(6.23)  1 D 1

2
f .1 � g2/;  2 D i

2
f .1C g2/;  3 D fg;

for arbitrary holomorphic functions f and g on �. More generally, g can be
meromorphic on � as long as f has a zero of order 2m at each point where
g has a pole of order m. The resulting map X W � ! M � R3 is called
the Weierstrass–Enneper representation of the minimal surface M . It has an
interesting connection with the Gauss map of M , which will be sketched in the
exercises. The example arising from f D 1; g D � produces “Enneper’s surface.”
This surface is immersed in R3 but not imbedded.

For a long time the only known examples of complete imbedded minimal
surfaces in R3 of finite topological type were the plane, the catenoid, and the
helicoid, but in the 1980s it was proved by [HM1] that the surface obtained by
taking g D � and f .�/ D }.�/ (the Weierstrass }-function) is another example.
Further examples have been found; computer graphics have been a valuable aid
in this search; see [HM2].
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A natural question is how general is the class of minimal surfaces arising from
the construction in Proposition 6.3. In fact, it is easy to see that every minimal
M � Rn is at least locally representable in such a fashion, using the existence of
local isothermal coordinates, established in � 10 of Chap. 5. Thus any p 2 M has
a neighborhood O such that there is a conformal diffeomorphism X W � ! O,
for some open set � � R2. By Proposition 6.2 and the remark following it, if
M is minimal, then X must be harmonic, so (6.16) furnishes the functions  j .�/

used in Proposition 6.3. Incidentally, this shows that any minimal surface in Rn is
real analytic.

As for the question of whether the construction of Proposition 6.3 globally rep-
resents every minimal surface, the answer here is also “yes.” A proof uses the fact
that every noncompact Riemann surface (without boundary) is covered by either
C or the unit disk in C. This is a more complete version of the uniformization
theorem than the one we established in � 2 of this chapter. A positive answer, for
simply connected, compact minimal surfaces, with smooth boundary, is implied
by the following result, which will also be useful for an attack on the Plateau
problem.

Proposition 6.4. If M is a compact, connected, simply connected Riemannian
manifold of dimension 2, with nonempty, smooth boundary, then there exists a
conformal diffeomorphism

(6.24) ˆ W M �! D;

where D D f.x; y/ 2 R2 W x2 C y2 � 1g.

This is a slight generalization of the Riemann mapping theorem, established
in � 4 of Chap. 5, and it has a proof along the lines of the argument given there.
Thus, fix p 2 M , and let G 2 D0.M/\ C1.M n p/ be the unique solution to

(6.25) �G D 2
ı; G D 0 on @M:

Since M is simply connected, it is orientable, so we can pick a Hodge star oper-
ator, and 
dG D ˇ is a smooth closed 1-form on M n p. If � is a curve in M
of degree 1 about p, then

R
� ˇ can be calculated by deforming � to be a small

curve about p. The parametrix construction for the solution to (6.25), in nor-
mal coordinates centered at p, gives G.x/ � log dist.x; p/, and one establishes
that

R
�
ˇ D 2
 . Thus we can write ˇ D dH , where H is a smooth function

on M n p, well defined mod 2
Z. Hence ˆ.x/ D eGCiH is a single-valued
function, tending to 0 as x ! p, which one verifies to be the desired conformal
diffeomorphism (6.24), by the same reasoning as used to complete the proof of
Theorem 4.1 in Chap. 5.

An immediate corollary is that the argument given above for the local
representation of a minimal surface in the form (6.19) extends to a global
representation of a compact, simply connected minimal surface, with smooth
boundary.
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So far we have dealt with smooth surfaces, at least immersed in Rn. The
theorem of J. Douglas and T. Rado that we now tackle deals with “generalized”
surfaces, which we will simply define to be the images of two-dimensional mani-
folds under smooth maps into Rn (or some other manifold). The theorem, a partial
answer to the “Plateau problem,” asserts the existence of an area-minimizing gen-
eralized surface whose boundary is a given simple, closed curve in Rn.

To be precise, let � be a smooth, simple, closed curve in Rn, that is, a diffeo-
morphic image of S1. Let

(6.26)
X� D f' 2 C.D;Rn/ \ C1.D;Rn/ W

' W S1 ! � monotone, and ˛.'/ < 1g;

where ˛ is the area functional:

(6.27) ˛.'/ D
Z

D

j@1' ^ @2'j dx1dx2:

Then let

(6.28) A� D inff˛.'/ W ' 2 X�g:

The existence theorem of Douglas and Rado is the following:

Theorem 6.5. There is a map ' 2 X� such that ˛.'/ D A� .

We can choose '� 2 X� such that ˛.'�/ & A� , but f'�g could hardly be
expected to have a convergent subsequence unless some structure is imposed on
the maps '� . The reason is that ˛.'/ D ˛.' ı  / for any C1-diffeomorphism
 W D ! D. We say ' ı  is a reparameterization of '. The key to success is
to take '� , which approximately minimize not only the area functional ˛.'/ but
also the energy functional

(6.29) #.'/ D
Z

D

jr'.x/j2 dx1dx2;

so that we will also have #.'�/ & d� , where

(6.30) d� D inff#.'/ W ' 2 X� g:

To relate these, we compare (6.29) and the area functional (6.27).
To compare integrands, we have

(6.31) jr'j2 D j@1'j2 C j@2'j2;
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while the square of the integrand in (6.27) is equal to

(6.32)

j@1' ^ @2'j2 D j@1'j2j@2'j2 � h@1'; @2'i
� j@1'j2j@2'j2

� 1

4

�j@1'j2 C j@2'j2�2;
where equality holds if and only if

(6.33) j@1'j D j@2'j and h@1'; @2'i D 0:

Whenever r' ¤ 0, this is the condition that ' be conformal. More generally, if
(6.33) holds, but we allow r'.x/ D 0, we say that ' is essentially conformal.
Thus, we have seen that, for each ' 2 X� ,

(6.34) ˛.'/ � 1

2
#.'/;

with equality if and only if ' is essentially conformal. The following result allows
us to transform the problem of minimizing ˛.'/ over X� into that of minimizing
#.'/ over X� , which will be an important tool in the proof of Theorem 6.5. Set

(6.35) X1
� D f' 2 C1.D;Rn/ W ' W S1 ! � diffeo.g:

Proposition 6.6. Given " > 0, any ' 2 X1
� has a reparameterization ' ı such

that

(6.36)
1

2
#.' ı  / � ˛.'/C ":

Proof. We will obtain this from Proposition 6.4, but that result may not apply
to '.D/, so we do the following. Take ı > 0 and define ˆı W D ! RnC2 by
ˆı.x/ D �

'.x/; ıx
�
. For any ı > 0; ˆı is a diffeomorphism of D onto its

image, and if ı is very small, area ˆı .D/ is only a little larger than area '.D/.
Now, by Proposition 6.4, there is a conformal diffeomorphism‰ W ˆı.D/ ! D.
Set  D  ı D �

‰ ı ˆı

��1 W D ! D. Then ˆı ı  D ‰�1 and, as established
above, .1=2/#.‰�1/ D Area.‰�1.D//, i.e.,

(6.37) 1
2
#.ˆı ı  / D Area

�
ˆı .D/

�
:

Since #.' ı / � #.ˆı ı /, the result (6.34) follows if ı is taken small enough.

One can show that

(6.38) A� D inff˛.'/ W ' 2 X1
� g; d� D inff#.'/ W ' 2 X1

� g:
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It then follows from Proposition 6.6 that A� D .1=2/d� , and if '� 2 X1
� is

chosen so that #.'�/ ! d� , then a fortiori ˛.'�/ ! A� .
There is still an obstacle to obtaining a convergent subsequence of such f'�g.

Namely, the energy integral (6.29) is invariant under reparameterizations ' 7!
' ı for which  W D ! D is a conformal diffeomorphism. We can put a clamp
on this by noting that, given any two triples of (distinct) points fp1; p2; p2g and
fq1; q2; q3g in S1 D @D, there is a unique conformal diffeomorphism  W D !
D such that  .pj / D qj ; 1 � j � 3. Let us now make one choice of fpj g on
S1—for example, the three cube roots of 1—and make one choice of a triple fqj g
of distinct points in � . The following key compactness result will enable us to
prove Theorem 6.5.

Proposition 6.7. For any d 2 .d� ;1/, the set

(6.39) †d D ˚
' 2 X1

� W ' harmonic; '.pj / D qj ; and #.'/ � d
�

is relatively compact in C.D;Rn/.

In view of the mapping properties of the Poisson integral, this result is equiva-
lent to the relative compactness in C.@D; �/ of

(6.40) SK D fu 2 C1.S1; �/ diffeo. W u.pj / D qj ; and kukH 1=2.S1/ � Kg;

for any given K < 1. For u 2 SK , we have kukH 1=2.S1/ 	 kPI ukH 1.D/. To
demonstrate this compactness, there is no loss of generality in taking � D S1 �
R2 and pj D qj .

We will show that the oscillation of u over any arc I � S1 of length 2ı is
� CK

ıp
log.1=ı/. This modulus of continuity will imply the compactness, by

Ascoli’s theorem.
Pick a point z 2 S1. Let Cr denote the portion of the circle of radius r and

center z which lies in D. Thus Cr is an arc, of length � 
r . Let ı 2 .0; 1/. As r
varies from ı to

p
ı; Cr sweeps out part of an annulus, as illustrated in Fig. 6.1.

FIGURE 6.1 Annular Region in the Disk
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We claim there exists � 2 Œı;pı� such that

(6.41)
Z

C�

jr'j ds � K

s
2


log 1
ı

if K D kr'kL2.D/; ' D PI u. To establish this, let

!.r/ D r

Z

Cr

jr'j2 ds:

Then Z p
ı

ı

!.r/
dr

r
D
Z p

ı

ı

Z

Cr

jr'j2 ds dr D I � K2:

By the mean-value theorem, there exists � 2 Œı;pı� such that

I D !.�/

Z p
ı

ı

dr

r
D !.�/

2
log

1

ı
:

For this value of �, we have

(6.42) �

Z

C�

jr'j2 ds D 2I

log 1
ı

� 2K2

log 1
ı

:

Then Cauchy’s inequality yields (6.41), since length.C�/ � 
�.
This almost gives the desired modulus of continuity. The arc C� is mapped

by ' into a curve of length � K
p
2
=log.1=ı/, whose endpoints divide � into

two segments, one rather short (if ı is small) and one not so short. There are two
possibilities: '.z/ is contained in either the short segment (as in Fig. 6.2) or the
long segment (as in Fig. 6.3). However, as long as '.pj / D pj for three points
pj , this latter possibility cannot occur. We see that

FIGURE 6.2 Mapping of an Arc
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FIGURE 6.3 Alternative Mapping of an Arc

ju.a/� u.b/j � K

s
2


log 1
ı

;

if a and b are the points whereC� intersects S1. Now the monotonicity of u along
S1 guarantees that the total variation of u on the (small) arc from a to b in S1 is

� K
q
2

ı

log.1=ı/. This establishes the modulus of continuity and concludes
the proof.

Now that we have Proposition 6.7, we proceed as follows. Pick a sequence '�

in X1
� such that #.'�/ ! d� , so also ˛.'�/ ! A� . Now we do not increase

#.'�/ if we replace '� by the Poisson integral of '�

ˇ̌
@D

, and we do not alter this
energy integral if we reparameterize via a conformal diffeomorphism to take fpj g
to fqj g. Thus we may as well suppose that '� 2 †d . Using Proposition 6.7 and
passing to a subsequence, we can assume

(6.43) '� �! ' in C.D;Rn/;

and we can furthermore arrange

(6.44) '� �! ' weakly in H 1.D;Rn/:

Of course, by interior estimates for harmonic functions, we have

(6.45) '� �! ' in C1.D;Rn/:

The limit function ' is certainly harmonic on D. By (6.44), we of course have

(6.46) #.'/ � lim
�!1 #.'�/ D d� :

Now (6.34) applies to ', so we have

(6.47) ˛.'/ � 1

2
#.'/ � 1

2
d� D A� :
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On the other hand, (6.43) implies that ' W @D ! � is monotone. Thus ' belongs
to X� . Hence we have

(6.48) ˛.'/ D A� :

This proves Theorem 6.5 and most of the following more precise result.

Theorem 6.8. If � is a smooth, simple, closed curve in Rn, there exists a contin-
uous map ' W D ! Rn such that

#.'/ D d� and ˛.'/ D A� ;(6.49)

' W D �! Rn is harmonic and essentially conformal;(6.50)

' W S1 �! �; homeomorphically:(6.51)

Proof. We have (6.49) from (6.46)–(6.48). By the argument involving (6.31) and
(6.32), this forces ' to be essentially conformal. It remains to demonstrate (6.51).

We know that ' W S1 ! � , monotonically. If it fails to be a homeomorphism,
there must be an interval I � S1 on which ' is constant. Using a linear fractional
transformation to mapD conformally onto the upper half-plane�C � C, we can
regard ' as a harmonic and essentially conformal map of �C ! Rn, constant
on an interval I on the real axis R. Via the Schwartz reflection principle, we can
extend ' to a harmonic function

' W C n .R n I / �! Rn:

Now consider the holomorphic function W C n .Rn I / ! Cn, given by  .�/ D
@'=@�. As in the calculations leading to Proposition 6.3, the identities

(6.52) j@1'j2 � j@2'j2 D 0; @1' � @2' D 0;

which hold on �C, imply
Pn

j D1  j .�/
2 D 0 on �C; hence this holds on C n

.R n I /, and so does (6.52). But since @1' D 0 on I , we deduce that @2' D 0 on
I , hence  D 0 on I , hence  � 0. This implies that ', being both Rn-valued
and antiholomorphic, must be constant, which is impossible. This contradiction
establishes (6.51).

Theorem 6.8 furnishes a generalized minimal surface whose boundary is a
given smooth, closed curve in Rn. We know that ' is smooth on D. It has been
shown by [Hild] that ' is C1 onD when the curve � is C1, as we have assumed
here. It should be mentioned that Douglas and others treated the Plateau problem
for simple, closed curves � that were not smooth. We have restricted attention to
smooth � for simplicity. A treatment of the general case can be found in [Nit1];
see also [Nit2].

There remains the question of the smoothness of the image surfaceM D '.D/.
The map ' W D ! Rn would fail to be an immersion at a point z 2 D where
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r'.z/ D 0. At such a point, the Cn-valued holomorphic function  D @'=@�

must vanish; that is, each of its components must vanish. Since a holomorphic
function on D � C that is not identically zero can vanish only on a discrete set,
we have the following:

Proposition 6.9. The map ' W D ! Rn parameterizing the generalized minimal
surface in Theorem 6.8 has injective derivative except at a discrete set of points
in D.

If r'.z/ D 0, then '.z/ 2 M D '.D/ is said to be a branch point of the
generalized minimal surface M ; we say M is a branched surface. If n � 4, there
are indeed generalized minimal surfaces with branch points that arise via Theorem
6.8. Results of Osserman [Oss2], complemented by [Gul], show that if n D 3, the
construction of Theorem 6.8 yields a smooth minimal surface, immersed in R3.
Such a minimal surface need not be imbedded; for example, if � is a knot in R3,
such a surface with boundary equal to � is certainly not imbedded. If � is analytic,
it is known that there cannot be branch points on the boundary, though this is open
for merely smooth � . An extensive discussion of boundary regularity is given in
Vol. 2 of [DHKW].

The following result of Rado yields one simple criterion for a generalized min-
imal surface to have no branch points.

Proposition 6.10. Let � be a smooth, closed curve in Rn. If a minimal surface
with boundary � produced by Theorem 6.8 has any branch points, then � has the
property that

(6.53)
for some p 2 Rn; every hyperplane through p

intersects � in at least four points.

Proof. Suppose z0 2 D and r'.z0/ D 0, so  D @'=@� vanishes at z0. Let
L.x/ D ˛ � x C c D 0 be the equation of an arbitrary hyperplane through
p D '.z0/. Then h.x/ D L

�
'.x/

�
is a (real-valued) harmonic function on D,

satisfying

(6.54) �h D 0 on D; rh.z0/ D 0:

The proposition is then proved, by the following:

Lemma 6.11. Any real-valued h 2 C1.D/ \ C.D/ having the property (6.54)
must assume the value h.z0/ on at least four points on @D.

We leave the proof as an exercise for the reader.
The following result gives a condition under which a minimal surface con-

structed by Theorem 6.8 is the graph of a function.
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Proposition 6.12. Let O be a bounded convex domain in R2 with smooth
boundary. Let g W @O ! Rn�2 be smooth. Then there exists a function

(6.55) f 2 C1.O;Rn�2/\ C.O;Rn�2/;

whose graph is a minimal surface, and whose boundary is the curve � � Rn that
is the graph of g, so

(6.56) f D g on @O:

Proof. Let ' W D ! Rn be the function constructed in Theorem 6.8. Set F.x/ D�
'1.x/; '2.x/

�
. Then F W D ! R2 is harmonic on D and F maps S1 D @D

homeomorphically onto @O. It follows from the convexity of O and the maximum
principle for harmonic functions that F W D ! O.

We claim that DF.x/ is invertible for each x 2 D. Indeed, if x0 2 D and
DF.x0/ is singular, we can choose nonzero ˛ D .˛1; ˛2/ 2 R2 such that, at
x D x0,

˛1

@'1

@xj

C ˛2

@'2

@xj

D 0; j D 1; 2:

Then the function h.x/ D ˛1'1.x/ C ˛2'2.x/ has the property (6.54), so h.x/
must take the value h.x0/ at four distinct points of @D. Since F W @D ! @O is
a homeomorphism, this forces the linear function ˛1x1 C ˛2x2 to take the same
value at four distinct points of @O, which contradicts the convexity of O.

Thus F W D ! O is a local diffeomorphism. Since F gives a homeomorphism
of the boundaries of these regions, degree theory implies that F is a diffeomor-
phism of D onto O and a homeomorphism of D onto O. Consequently, the
desired function in (6.55) is f De' ı F �1, wheree'.x/ D �

'2.x/; : : : ; 'n.x/
�
.

Functions whose graphs are minimal surfaces satisfy a certain nonlinear PDE,
called the minimal surface equation, which we will derive and study in � 7.

Let us mention that while one ingredient in the solution to the Plateau problem
presented above is a version of the Riemann mapping theorem, Proposition 6.4,
there are presentations for which the Riemann mapping theorem is a consequence
of the argument, rather than an ingredient (see, e.g., [Nit2]).

It is also of interest to consider the analogue of the Plateau problem when,
instead of immersing the disk in Rn as a minimal surface with given boundary,
one takes a surface of higher genus, and perhaps several boundary components.
An extra complication is that Proposition 6.4 must be replaced by something more
elaborate, since two compact surfaces with boundary which are diffeomorphic to
each other but not to the disk may not be conformally equivalent. One needs to
consider spaces of “moduli” of such surfaces; Theorem 4.2 of Chap. 5 deals with
the easiest case after the disk. This problem was tackled by Douglas [Dou2] and
by Courant [Cou2], but their work has been criticized by [ToT] and [Jos], who
present alternative solutions. The paper [Jos] also treats the Plateau problem for
surfaces in Riemannian manifolds, extending results of [Mor1].
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There have been successful attacks on problems in the theory of minimal
submanifolds, particularly in higher dimension, using very different techniques,
involving geometric measure theory, currents, and varifolds. Material on these
important developments can be found in [Alm, Fed, Morg].

So far in this section, we have devoted all our attention to minimal submani-
folds of Euclidean space. It is also interesting to consider minimal submanifolds
of other Riemannian manifolds. We make a few brief comments on this topic.
A great deal more can be found in [Cher, Law, Law2, Mor1, Pi] and in survey
articles in [Bom].

Let Y be a smooth, compact Riemannian manifold. Assume Y is isometrically
imbedded in Rn, which can always be arranged, by Nash’s theorem. Let M be a
compact, k-dimensional submanifold of Y . We say M is a minimal submanifold
of Y if its k-dimensional volume is a critical point with respect to small variations
ofM , within Y . The computations in (6.1)–(6.13) extend to this case. We need to
take X D X.s; u/ with @sX.s; u/ D �.s; u/, tangent to Y , rather than X.s; u/ D
X0.u/C s�.u/. Then these computations show that M is a minimal submanifold
of Y if and only if, for each x 2 M ,

(6.57) H.x/ ? TxY;

where H.x/ is the mean curvature vector of M (as a submanifold of Rn), defined
by (6.13).

There is also a well-defined mean curvature vector HY .x/ 2 TxY , orthogonal
to TxM , obtained from the second fundamental form of M as a submanifold
of Y . One sees that HY .x/ is the orthogonal projection of H.x/ onto TxY , so the
condition that M be a minimal submanifold of Y is that HY D 0 onM .

The formula (6.10) continues to hold for the isometric imbedding X W M !
Rn. ThusM is a minimal submanifold of Y if and only if, for each x 2 M ,

(6.58) �X.x/ ? TxY:

If dim M D 2, the formula (6.15) holds, so if M is given a new metric, con-
formally scaled by a factor e2u, the new Laplace operator �1 has the property
that �1X D e�2u�X , hence is parallel to �X . Thus the property (6.58) is unaf-
fected by such a conformal change of metric; we have the following extension of
Proposition 6.2:

Proposition 6.13. If M is a Riemannian manifold of dimension 2 and X W M !
Rn is a smooth imbedding, with image M1 � Y , then M1 is a minimal submani-
fold of Y provided X W M ! M1 is conformal and, for each x 2 M ,

(6.59) �X.x/ ? TX.x/Y:

We note that (6.59) alone specifies that X is a harmonic map from M into Y .
Harmonic maps will be considered further in �� 11 and 12B; they will also be
studied, via parabolic PDE, in Chap. 15, � 2.
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Exercises
1. Consider the Gauss map N W M ! S2, for a smooth, oriented surface M � R3.

Show that N is antiholomorphic if and only if M is a minimal surface.
(Hint: IfN.p/ D q; DN.p/ W TpM ! TqS

2 	 TpM is identified with �AN . Com-
pare (4.67) in Appendix C. Check whenAN J D �JAN , where J is counterclockwise
rotation by 90ı, on TpM:) Thus, if we define the antipodal Gauss map eN W M ! S2

by eN.p/ D �N.p/, this map is holomorphic precisely when M is a minimal surface.
2. If x 2 S2 � R3, pick v 2 TxS

2 � R3, set w D J v 2 TxS
2 � R3, and take

� D v C iw 2 C3. Show that the one-dimensional, complex span of � is independent
of the choice of v, and that we hence have a holomorphic map

„ W S2 �! CP3:

Show that the image „.S2/ � CP3 is contained in the image of f� 2 C3 n 0 W
�2
1 C �2

2 C �3
3 D 0g under the natural map C3 n 0 ! CP3.

3. Suppose that M � R3 is a minimal surface constructed by the method of Proposition
6.3, via X W � ! M � R3. Define ‰ W � ! C3 n 0 by ‰ D . 1;  2;  3/, and
define X W � ! CP3 by composing ‰ with the natural map C3 n 0 ! CP3. Show
that, for u 2 �,

X.u/ D „ ı eN �X.u/�:
For the relation between  j and the Gauss map for minimal surfaces in Rn; n > 3,
see [Law].

4. Give a detailed demonstration of (6.38).
5. In analogy with Proposition 6.4, extend Theorem 4.3 of Chap. 5 to the following result:

Proposition. If M is a compact Riemannian manifold of dimension 2 which is
homeomorphic to an annulus, then there exists a conformal diffeomorphism

‰ W M �! A�;

for a unique � 2 .0; 1/, where A� D fz 2 C W � � jzj � 1g.

6. IfeII is the second fundamental form of a minimal hypersurface M � Rn, show thateII
has divergence zero. As in Chap. 2, � 3, we define the divergence of a second-order ten-
sor field T by T jk Ik . (Hint: Use the Codazzi equation (cf. Appendix C, � 4, especially
(4.18)) plus the zero trace condition.)

7. Similarly, if eII is the second fundamental form of a minimal submanifold M of codi-
mension 1 in Sn (with its standard metric), show that eII has divergence zero.
(Hint: The Codazzi equation, from (4.16) of Appendix C, is

.rY eII /.X;Z/ � .rY eII /.Y; Z/ D hR.X; Y /Z;N i;
where r is the Levi–Civita connection onM I X; Y;Z are tangent toM I Z is normal
toM (but tangent to Sn); and R is the curvature tensor of Sn. In such a case, the right
side vanishes. (See Exercise 6 in � 4 of Appendix C.) Thus the argument needed for
Exercise 6 above extends.)

8. Extend the result of Exercises 6–7 to the case where M is a codimension-1 minimal
submanifold in any Riemannian manifold � with constant sectional curvature.
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9. Let M be a two-dimensional minimal submanifold of S3, with its standard metric.
Assume M is diffeomorphic to S2. Show that M must be a “great sphere” in S3.
(Hint: By Exercise 7, eII is a symmetric trace free tensor of divergence zero; that is,eII belongs to

V D fu 2 C1.M; S2
0T

�/ W div u D 0g;
a space introduced in (10.47) of Chap. 10. As noted there, when M is a Riemann
surface, V 	 O.
 ˝ 
/. By Corollary 9.4 of Chap. 10, O.
 ˝ 
/ D 0 when M has
genus g D 0:)

10. Prove Lemma 6.11.

6B. Second variation of area

In this appendix to � 6, we take up a computation of the second variation of the
area integral, and some implications, for a family of manifolds of dimension k,
immersed in a Riemannian manifold Y . First, we take Y D Rn and suppose the
family is given by X.s; u/ D X0.u/C s�.u/, as in (6.1)–(6.5).

Suppose, as in the computation (6.2)–(6.5), that k@1X0 ^ � � � ^ @kX0k D 1

on M , while Ej D @jX0 form an orthonormal basis of TxM , for a given point
x 2 M . Then, extending (6.3), we have

A0.s/ D(6b.1)

kP
j D1

R ˝@1X ^ � � � ^ @j � ^ � � � ^ @kX; @1X ^ � � � ^ @kX
˛

k@1X ^ � � � ^ @kXk du1 � � �duk:

Consequently, A00.0/ will be the integral with respect to du1 � � �duk of a sum of
three terms:

�
X
i;j

˝
@1X0 ^ � � � ^ @i� ^ � � � ^ @kX0; @1X0 ^ � � � ^ @kX0

˛

� ˝@1X0 ^ � � � ^ @j � ^ � � � ^ @kX0; @1X0 ^ � � � ^ @kX0

˛
C 2

X
i<j

˝
@1X0 ^ � � � ^ @i� ^ � � � ^ @j � ^ � � � ^ @kX0; @1X0 ^ � � � ^ @kX0

˛

C
X
i;j

˝
@1X0 ^ � � � ^ @j � ^ � � � ^ @kX0; @1X0 ^ � � � ^ @i� ^ � � � ^ @kX0

˛
:

(6b.2)

Let us write

(6b.3) A�Ei D
X

`

ai`
� E`;
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with Ej D @jX0 as before. Then, as in (6.4), the first sum in (6b.2) is equal to

(6b.4) �
X
i;j

ai i
� a

jj

�
:

Let us move to the last sum in (6b.2). We use the Weingarten formula @j � D
r1

j � � A�Ej , to write this sum as

(6b.5)
X
i;j

a
jj

�
ai i

� C
X
i;j

˝r1
j �;r1

i �
˛
;

at x. Note that the first sum in (6b.5) cancels (6b.4), while the last sum in (6b.5)
can be written as kr1�k2. Here, r1 is the connection induced on the normal
bundle of M .

Now we look at the middle term in (6b.2), namely,

(6b.6) 2
X
i<j

X
`;m

ai`
� a

jm

�

˝
E1 ^ � � � ^ E` ^ � � � ^Em ^ � � � ^ Ek; E1 ^ � � � ^ Ek

˛
;

at x, whereE` appears in the i th slot and Em appears in the j th slot in the k-fold
wedge product. This is equal to

(6b.7) 2
X
i<j

�
ai i

� a
jj

�
� a

ij

�
a

j i

�

� D 2 Tr ƒ2A� ;

at x. Thus we have

(6b.8) A00.0/ D
Z

M

h
kr1�k2 C 2 Tr ƒ2A�

i
dA.x/:

If M is a hypersurface of Rn, and we take � D fN , where N is a unit normal
field, then kr1�k2 D krf k2 and (6b.7) is equal to

(6b.9) 2
X
i<j

˝
R.Ej ; Ei /Ei ; Ej

˛
f 2 D Sf 2;

by the Theorema Egregium, where S is the scalar curvature of M . Consequently,
ifM � Rn is a hypersurface (with boundary), and the hypersurfacesMs are given
by (6.6), with area integral (6.2), then

(6b.10) A00.0/ D
Z

M

h
krf k2 C S.x/f 2

i
dA.x/:
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Recall that when dim M D 2, so M � R3,

(6b.11) S D 2K;

where K is the Gauss curvature, which is � 0 whenever M is a minimal surface
in R3.

If M has general codimension in Rn, we can rewrite (6b.8) using the identity

(6b.12) 2 Tr ƒ2A� D .Tr A�/
2 � kA�k2;

where kA�k denotes the Hilbert–Schmidt norm of A� , that is,

kA�k2 D Tr.A�
�A�/:

Recalling (6.13), if k D dim M , we get

(6b.13) A00.0/ D
Z

M

h
kr1�k2 � kA�k2 C k2hH.x/; �i2

i
dA.x/:

Of course, the last term in the integrand vanishes for all compactly supported
fields � normal to M when M is a minimal submanifold of Rn.

We next suppose the family of manifolds Ms is contained in a manifold Y �
Rn. Hence, as before, instead ofX.s; u/ D X0.u/Cs�.u/, we require @sX.s; u/ D
�.s; u/ to be tangent to Y . We take X.0; u/ D X0.u/. Then (6b.1) holds, and we
need to add to (6b.2) the following term, in order to compute A00.0/:

(6b.14)
ˆ D

kX
j D1

˝
@1X0 ^ � � � ^ @j 
 ^ � � � ^ @kX0; @1X0 ^ � � � ^ @kX0

˛
;


 D @s� D @2
sX:

If, as before, @jX0 D Ej form an orthonormal basis of TxM , for a given x 2 M ,
then

(6b.15) ˆ D
kX

j D1

h@j 
;Ej i; at x:

Now, given the compactly supported field �.0; u/, tangent to Y and normal to
M , let us suppose that, for each u; �u.s/ D X.s; u/ is a constant-speed geodesic
in Y , such that � 0

u.0/ D �.0; u/. Thus 
 D � 00
u .0/ is normal to Y , and, by the

Weingarten formula forM � Rn,

(6b.16) @j 
 D r1
Ej

 � A	Ej ;
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at x, where r1 is the connection on the normal bundle to M � Rn and A is as
before the Weingarten map forM � Rn. Thus

(6b.17) ˆ D �
X

j

hA	Ej ; Ej i D �Tr A	 D �khH.x/; 
i;

where k D dim M .
If we suppose M is a minimal submanifold of Y , then H.x/ is normal to

Y , so, for any compactly supported field �, normal to M and tangent to Y , the
computationss (6b.13) supplemented by (6b.14)–(6b.17) gives

(6b.18) A00.0/ D
Z

M

h
kr1�k2 � kA�k2 � khH.x/; 
i

i
dA.x/:

Recall that A� is the Weingarten map of M � Rn.
We prefer to use B� , the Weingarten map of M � Y . It is readily verified that

(6b.19) A� D B� 2 End TxM

if � 2 TxY and � ? TxM ; see Exercise 13 in � 4 of Appendix C. Thus in (6b.18)
we can simply replace kA�k2 by kB�k2. Also recall that r1 in (6b.18) is the
connection on the normal bundle to M � Rn. We prefer to use the connection
on the normal bundle to M � Y , which we denote by r#. To relate these two
objects, we use the identities

(6b.20)
@j � D r1

j � �A�Ej ; @j � D erj � C IIY .Ej ; �/;

erj � D r#
j � � B�Ej ;

where er denotes the covariant derivative on Y , and IIY is the second fundamen-
tal form of Y � Rn. In view of (6b.19), we obtain

(6b.21) r1
j � D r#

j � C IIY .Ej ; �/;

a sum of terms tangent to Y and normal to Y , respectively. Hence

(6b.22) kr1�k2 D kr#�k2 C
X

j

kIIY .Ej ; �/k2:

Thus we can rewrite (6b.18) as

(6b.23) A00.0/ D
Z

M

h
kr#�k2 � kB�k2 C

X
j

kIIY .Ej ; �/k2 � Tr A	

i
dA.x/:
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We want to replace the last two terms in this integrand by a quantity defined
intrinsically by Ms � Y , not by the way Y is imbedded in Rn. Now Tr A	 DPhIIM .Ej ; Ej /; 
i, where IIM is the second fundamental form of M � Rn.
On the other hand, it is easily verified that

(6b.24) 
 D � 00
u .0/ D IIY .�; �/:

Thus the last two terms in the integrand sum to

(6b.25) ‰ D
X

j

h
kIIY .Ej ; �/k2 � hIIY .�; �/; IIM .Ej ; Ej /i

i
:

We can replace IIM .Ej ; Ej / by IIY .Ej ; Ej / here, since these two objects have
the same component normal to Y . Then Gauss’ formula implies

(6b.26) ‰ D
X

j

hRY .�; Ej /�; Ej i;

where RY is the Riemann curvature tensor of Y . We define R 2 End NxM ,
where N.M/ is the normal bundle of N � Y , by

(6b.27) hR.�/; �i D
X

j

hRY .�; Ej /�;Ej i;

at x, where fEj g is an orthonormal basis of TxM . It follows easily that this is
independent of the choice of such an orthonormal basis.

Our calculation of A00.0/ becomes

(6b.28) A00.0/ D
Z

M

h
kr#�k2 � kB�k2 C ˝

R.�/; �
˛i
dA.x/

whenM is a minimal submanifold of Y , where r# is the connection on the normal
bundle to M � Y , B is the Weingarten map for M � Y , and R is defined
by (6b.27). If we define a second-order differential operator L0 and a zero-order
operator B on C1

0

�
M;N.M/

�
by

(6b.29) L0� D .r#/�r#�; hB.�/; �i D Tr.B�

B�/;

respectively, we can write this as

(6b.30) A00.0/ D .L�; �/L2.M/; L� D L0� � B.�/C R.�/:

We emphasize that these formulas, and the ones below, for A00.0/ are valid for
immersed minimal submanifolds of Y as well as for imbedded submanifolds.
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Suppose that M has codimension 1 in Y and that Y and M are orientable.
Complete the basis fEj g of TxM to an orthonormal basis

fEj W 1 � j � k C 1g

of TxY . In this case, EkC1.x/ and �.x/ are parallel, so

hRY .�; EkC1/�;EkC1i D 0:

Thus (6b.27) becomes

(6b.31) R.�/ D �RicY � if dim Y D dim M C 1;

where RicY denotes the Ricci tensor of Y . In such a case, taking � D fEkC1 D
f �, where � is a unit normal field to M , tangent to Y , we obtain

(6b.32)
A00.0/ D

Z

M

h
krf k2 � �kB�k2 C hRicY �; �i�jf j2

i
dA.x/

D .Lf; f /L2.M/;

where

(6b.33) Lf D ��f C 'f; ' D �kB�k2 � hRicY �; �i:

We can express ' in a different form, noting that

(6b.34) hRicY �; �i D SY �
kX

j D1

hRicYEj ; Ej i;

where SY is the scalar curvature of Y . From Gauss’ formula we readily obtain,
for general M � Y of any codimension,

(6b.35)
hRicYEj ; Ej i D hRY .Ej ; �/�; Ej i C hRicMEj ; Ej i

C
X

`

kII.Ej ; E`/k2 � k
˝
HY ; II.Ej ; Ej /

˛
;

where II denotes the second fundamental form of M � Y . Summing over 1 �
j � k, when M has codimension 1 in Y , and � is a unit normal to M , we get

(6b.36) 2hRicY �; �i D SY � SM � kB�k2 C kHY k2:
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If M is a minimal submanifold of Y of codimension 1, this implies that

(6b.37)
' D 1

2
.SM � SY /� 1

2
kB�k2

D 1

2
.SM � SY /C Tr ƒ2B� :

We also note that when dim M D 2 and dim Y D 3, then, for x 2 M ,

(6b.38) Tr ƒ2B�.x/ D KM .x/ �KY .TxM/;

where KM D .1=2/SM is the Gauss curvature of M and KY .TxM/ is the
sectional curvature of Y , along the plane TxM .

We consider another special case, where dim M D 1. We have hR.�/; �i D
�j�j2KY .…M�/, whereKY .…M�/ is the sectional curvature of Y along the plane
in TxY spanned by TxM and �. In this case, to say M is minimal is to say it is
a geodesic; hence B� D 0 and r#� D erT �, where er is the covariant derivative
on Y , and T is a unit tangent vector to M . Thus (6b.28) becomes the familiar
formula for the second variation of arc length for a geodesic:

(6b.39) `00.0/ D
Z

�

h
kerT �k2 � j�j2KY .…��/

i
ds;

where we have used � instead of M to denote the curve, and also ` instead of A
and ds instead of dA, to denote arc length.

The operators L and L are second-order elliptic operators that are self-adjoint,
with domain H 2.M/, if M is compact and without boundary, and with domain
H 2.M/\H 1

0 .M/, if M is compact with boundary. In such cases, the spectra of
these operators consist of eigenvalues�j % C1. IfM is not compact, butB and
R are bounded, we can use the Friedrichs method to define self-adjoint extensions
L and L, which might have continuous spectrum.

We say a minimal submanifold M � Y is stable if A00.0/ � 0 for all smooth,
compactly supported variations �, normal to M (and vanishing on @M ). Thus the
condition that M be stable is that the spectrum of L (equivalently, of L, if codim
M D 1) be contained in Œ0;1/. In particular, if M is actually area minimizing
with respect to small perturbations, leaving @M fixed (which we will just call
“area minimizing”), then it must be stable, so

(6b.40) M area minimizing H) spec L � Œ0;1/:

The second variational formulas above provide necessary conditions for a
minimal immersed submanifold to be stable. For example, supposeM is a bound-
aryless, codimension-1 minimal submanifold of Y , and both are orientable. Then
we can take f D 1 in (6b.32), to get
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(6b.41) M stable H)
Z

M

�
kB�k2 C hRicY �; �i

�
dA � 0:

If dim M D 2 and dim Y D 3, then, by (6b.37), we have

(6b.42) M stable H)
Z

M

�
kB�k2 C SY � 2KM

�
dA � 0:

In this case, if M has genus g, the Gauss–Bonnet theorem implies thatR
KM dA D 4
.1 � g/, so

(6b.43) M stable H)
Z

M

�
kB�k2 C SY

�
dA � 8
.1 � g/:

This implies some nonexistence results.

Proposition 6b.1. Assume that Y is a compact, oriented Riemannian manifold
and that Y andM have no boundary.

If the Ricci tensor RicY is positive-definite, then Y cannot contain any com-
pact, oriented, area-minimizing immersed hypersurface M . If RicY is positive-
semidefinite, then any suchM would have to be totally geodesic in Y .

Now assume dim Y D 3. If Y has scalar curvature SY > 0 everywhere, then
Y cannot contain any compact, oriented, area-minimizing immersed surface M
of genus g � 1.

More generally, if SY � 0 everywhere, and if M is a compact, oriented, im-
mersed hypersurface of genus g � 1, then for M to be area minimizing it is
necessary that g D 1 and that M be totally geodesic in Y .

R. Schoen and S.-T. Yau [SY] obtained topological consequences for a com-
pact, oriented 3-manifold Y from this together with the following existence
theorem. Suppose M is a compact, oriented surface of genus g � 1, and sup-
pose the fundamental group 
1.Y / contains a subgroup isomorphic to 
1.M/.
Then, given any Riemannian metric on Y , there is a smooth immersion of M
into Y which is area minimizing with respect to small perturbations, as shown in
[SY]. It follows that if Y is a compact, oriented Riemannian 3-manifold, whose
scalar curvature SY is everywhere positive, then 
1.Y / cannot have a subgroup
isomorphic to 
1.M/, for any compact Riemann surface M of genus g � 1.

We will not prove the result of [SY] on the existence of such minimal immer-
sions. Instead, we demonstrate a topological result, due to Synge, of a similar
flavor but simpler to prove. It makes use of the second variational formula (6b.39)
for arc length.

Proposition 6b.2. If Y is a compact, oriented Riemannian manifold of even
dimension, with positive sectional curvature everywhere, then Y is simply
connected.
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Proof. It is a simple consequence of Ascoli’s theorem that there is a length-
minimizing, closed geodesic in each homotopy class of maps from S1 to Y . Thus,
if 
1.Y / ¤ 0, there is a nontrivial stable geodesic, � . Pick p 2 �; �p normal to
� at p (i.e., �p 2 Np.�/), and parallel translate � about � , obtaining �p 2 Np.�/

after one circuit. This defines an orientation-preserving, orthogonal, linear trans-
formation � W Np� ! Np� . If Y has dimension 2k, then Np� has dimension
2k � 1, so � 2 SO.2k � 1/. It follows that � must have an eigenvector in Np� ,
with eigenvalue 1. Thus we get a nontrivial, smooth section � of N.�/ which is
parallel over � , so (6b.39) implies

(6b.44)
Z

�

KY .…��/ ds � 0:

If KY .…/ > 0 everywhere, this is impossible.

One might compare these results with Proposition 4.7 of Chap. 10, which states
that if Y is a compact Riemannian manifold and RicY > 0, then the first coho-
mology group H1.Y / D 0.

7. The minimal surface equation

We now study a nonlinear PDE for functions whose graphs are minimal surfaces.
We begin with a formula for the mean curvature of a hypersurface M � RnC1

defined by u.x/ D c, where ru ¤ 0 on M . If N D ru=jruj, we have the
formula

(7.1) hANX; Y i D �jruj�1.D2u/.X; Y /;

for X; Y 2 TxM , as shown in (4.26) of Appendix C. To take the trace of the
restriction of D2u to TxM , we merely take Tr.D2u/ � D2u.N;N /. Of course,
Tr.D2u/ D �u. Thus, for x 2 M ,

(7.2) Tr AN .x/ D �jru.x/j�1
h
�u � jruj�2D2u.ru;ru/

i
:

Suppose now that M is given by the equation

xnC1 D f .x0/; x0 D .x1; : : : ; xn/:

Thus we take u.x/ D xnC1 � f .x0/, with ru D .�rf; 1/. We obtain for the
mean curvature the formula

(7.3) nH.x/ D � 1

hrf i3

h
hrf i2�f �D2f .rf;rf /

i
D M.f /;
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where hrf i2 D 1 C jrf .x0/j2. Written out more fully, the quantity in brackets
above is

(7.4)
�
1C jrf j2��f �

X
i;j

@2f

@xi@xj

@f

@xi

@f

@xj

D fM.f /:

Thus the equation stating that a hypersurface xnC1 D f .x0/ be a minimal sub-
manifold of RnC1 is

(7.5) fM.f / D 0:

In case n D 2, we have the minimal surface equation, which can also be written as

(7.6)
�
1C j@2f j2� @2

1f � 2
�
@1f � @2f

�
@1@2f C �

1C j@1f j2� @2
2f D 0:

It can be verified that this PDE also holds for a minimal surface in Rn described
by x00 D f .x0/, where x00 D .x3; : : : ; xn/, if (7.6) is regarded as a system of k
equations in k unknowns, k D n � 2, and .@1f � @2f / is the dot product of
Rk-valued functions. We continue to denote the left side of (7.6) by fM.f /.

Proposition 6.12 can be translated immediately into the following existence
theorem for the minimal surface equation:

Proposition 7.1. Let O be a bounded, convex domain in R2 with smooth bound-
ary. Let g 2 C1.@O;Rk/ be given. Then there is a solution

(7.7) u 2 C1.O;Rk/ \ C.O;Rk/

to the boundary problem

(7.8) fM.u/ D 0; u
ˇ̌
@O D g:

When k D 1, we also have uniqueness, as a consequence of the following:

Proposition 7.2. Let O be any bounded domain in Rn. Let uj 2 C1.O/\C.O/
be real-valued solutions to

(7.9) fM.uj / D 0; uj D gj on @O;

for j D 1; 2. Then

(7.10) g1 � g2 on @O H) u1 � u2 on O:

Proof. We prove this by deriving a linear PDE for the difference v D u2 �u1 and
applying the maximum principle. In general,

(7.11) ˆ.u2/ �ˆ.u1/ D Lv; L D
Z 1

0

Dˆ
�
�u2 C .1 � �/u1

�
d�:
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Supposeˆ is a second-order differential operator:

(7.12) ˆ.u/ D F.u; @u; @2u/; F D F.u; p; �/:

Then, as in (3.4),

(7.13) Dˆ.u/ D F� .u; @u; @2u/ @2v C Fp.u; @u; @2u/ @v C Fu.u; @u; @2u/v:

When ˆ.u/ D fM.u/ is given by (7.4), Fu.u; �; �/ D 0, and we have

(7.14) DfM.u/v D A.u/v C B.u/v;

where

(7.15) A.u/v D �
1C jruj2��v �

X
i;j

@u

@xi

@u

@xj

@2v

@xi@xj

is strongly elliptic, and B.u/ is a first-order differential operator. Consequently,
we have

(7.16) fM.u2/� fM.u1/ D Av C Bv;

where A D R 1

0
A
�
�u2 C .1� �/u2

�
d� is strongly elliptic of order 2 at each point

of O, and B is a first-order differential operator, which annihilates constants. If
(7.9) holds, thenAvCBv D 0. Now (7.10) follows from the maximum principle,
Proposition 2.1 of Chap. 5.

We have as of yet no estimates on jruj .x/j as x ! @O, so A, which is elliptic
in O, could conceivably degenerate at @O. To achieve a situation where the results
of Chap. 5, � 2, apply, we could note that the hypotheses of Proposition 7.2 imply
that, for any " > 0; u1 � u2 C " on a neighborhood of @O. Alternatively, one can
check that the proof of Proposition 2.1 in Chap. 5 works even if the elliptic oper-
ator is allowed to degenerate at the boundary. Either way, the maximum principle
then applies to yield (7.10).

While Proposition 7.2 is a sort of result that holds for a large class of second-
order, scalar, elliptic PDE, the next result is much more special and has interesting
consequences. It implies that the size of a solution to the minimal surface equation
(7.8) can sometimes be controlled by the behavior of g on part of the boundary.

Proposition 7.3. Let O � R2 be a domain contained in the annulus
r1 < jxj < r2, and let u 2 C 2.O/ \ C.O/ solve fM.u/ D 0. Set

(7.17) G.xI r/ D r cosh�1


 jxj
r

�
; for jxj > r; G.xI r/ � 0:
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If

(7.18) u.x/ � G.xI r1/CM on fx 2 @O W jxj > r1g;

for some M 2 R, then

(7.19) u.x/ � G.xI r1/CM on O:

Here, z D G.xI r1/ defines the lower half of a catenoid, over fx 2 R2 W
jxj � r1g. This function solves the minimal surface equation on jxj > r1 and
vanishes on jxj D r1.

Proof. Given s 2 .r1; r2/, let

(7.20) ".s/ D max
s�jxj�r2

ˇ̌
G.xI r1/�G.xI s/ˇ̌:

The hypothesis (7.18) implies that

(7.21) u.x/ � G.xI s/CM C ".s/

on fx 2 @O W jxj � sg. We claim that (7.21) holds for x in

(7.22) O.s/ D O \ fx W s < jxj < r2g:

Once this is established, (7.19) follows by taking s & r1. To prove this, it suffices
by Proposition 7.2 to show that (7.21) holds on @O.s/. Since it holds on @O, it
remains to show that (7.21) holds for x in

(7.23) C.s/ D O \ fx W jxj D sg;

illustrated by a broken arc in Fig. 7.1. If not, then u.x/ � G.xI s/ would have a
maximumM1 > M C ".s/ at some point p 2 C.s/. By Proposition 7.1, we have
u.x/ � G.xI s/ � M1 on O.s/. However, ru.x/ is bounded on a neighborhood
of p, while

(7.24)
@

@r
G.xI s/ D �1 on jxj D s:

This implies that u.x/�G.xI s/ > M1, for all points in O.s/ sufficiently near p.
This contradiction shows that (7.21) must hold on C.s/, and the proposition is
proved.

One implication is that if O � R2 is as illustrated in Fig. 7.1, it is not pos-
sible to solve the boundary problem (7.8) with g prescribed arbitrarily on all of
@O. A more precise statement about domains O � R2 for which (7.8) is always
solvable is the following:
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FIGURE 7.1 Nonconvex Region O

FIGURE 7.2 Another Nonconvex Region O

Proposition 7.4. Let O � R2 be a bounded, connected domain with smooth
boundary. Then (7.8) has a solution for all g 2 C1.@O/ if and only if O is
convex.

Proof. The positive result is given in Proposition 7.1. Now, if O is not convex,
let p 2 @O be a point where O is concave, as illustrated in Fig. 7.2. Pick a disk D
whose boundary C is tangent to @O at p and such that, near p; C intersects the
complement Oc only at p. Then apply Proposition 7.3 to the domain eO D O nD,
taking the origin to be the center of D and r1 to be the radius of D. We deduce
that if u solves fM.u/ D 0 on O, then

(7.25) u.x/ � M CG.xI r1/ on @O n D H) u.p/ � M;

which certainly restricts the class of functions g for which (7.8) can be solved.
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Note that the function v.x/ D G.xI r/ defined by (7.17) also provides an
example of a solution to the minimal surface equation (7.8) on an annular region

O D fx 2 R2 W r < jxj < sg;

with smooth (in fact, locally constant) boundary values

v D 0 on jxj D r; v D �r cosh�1 s

r
on jxj D s;

which is not a smooth function, or even a Lipschitz function, on O. This is another
phenomenon that is different when O is convex. We will establish the following:

Proposition 7.5. If O � R2 is a bounded region with smooth boundary which is
strictly convex (i.e., @O has positive curvature), and g 2 C1.@O/ is real-valued,
then the solution to (7.8) is Lipschitz at each point x0 2 @O.

Proof. Given x0 2 @O, we have z0 D �
x0; g.x0/

� 2 � � R3, where � is the
boundary of the minimal surface M which is the graph of z D u.x/. The strict
convexity hypothesis on O implies that there are two planes …j in R3 through
z0, such that …1 lies below � and …2 above � , and …j are given by z D ˛j �
.x�x0/Cg.x0/ D wjx0

.x/; ˛j D ˛j .x0/ 2 R3. There is an estimate of the form

(7.26) j˛j .x0/j � K.x0/kg ı �x0
kC 2 ;

where �x0
is the radial projection (from the center of O) of @O onto a circle C.x0/

containing O and tangent to @O at x0, and K.x0/ depends on the curvature of
C.x0/. Now Proposition 7.2 applies to give

(7.27) w1x0
.x/ � u.x/ � w2x0

.x/; x 2 O;

since linear functions solve the minimal surface equation. This establishes the
Lipschitz continuity, with the quantitative estimate

(7.28) ju.x0/� u.x/j � Ajx � x0j; x0 2 @O; x 2 O;

where

(7.29) A D sup
x02@O

j˛1.x0/j C j˛2.x0/j:

This result points toward an estimate on jru.x/j; x 2 O, for a solution to
(7.8). We begin the line of reasoning that leads to such an estimate, a line that
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applies to other situations. First, let’s rederive the minimal surface equation, as
the stationary condition for

(7.30) I.u/ D
Z

O

F
�ru.x/

�
dx;

where

(7.31) F.p/ D
�
1C jpj2

�1=2

;

so (7.30) gives the area of the graph of z D u.x/. The method used in Chapter 2,
� 1, yields the PDE

(7.32)
X

Aij .ru/ @i@j u D 0;

where

(7.33) Aij .p/ D @2F

@pi@pj

:

Compare this with (1.68) and (1.36) of Chap. 2. When F.p/ is given by (7.31),
we have

(7.34) Aij .p/ D hpi�3
�
ıij hpi2 � pipj

�
;

so in this case (7.32) is equal to �M.u/, defined by (7.3). Now, when u is a
sufficiently smooth solution to (7.32), we can apply @` D @=@x` to this equation
and obtain the PDE

(7.35)
X

@iA
ij .ru/ @jw` D 0;

for w` D @`u, not for all PDE of the form (7.32), but whenever Aij .p/ is sym-
metric in .i; j / and satisfies

(7.36)
@Aij

@pm

D @Aim

@pj

;

which happens when Aij .p/ has the form (7.33). If (7.35) satisfies the ellipticity
condition

(7.37)
X

Aij
�ru.x/

�
�i�j � C.x/j�j2; C.x/ > 0;

for x 2 O, then we can apply the maximum principle, to obtain the following:
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Proposition 7.6. Assume u 2 C 1.O/ is real-valued and satisfies the PDE (7.32),
with coefficients given by (7.33). If the ellipticity condition (7.37) holds, then
@`u.x/ assumes its maximum and minimum values on @O; hence

(7.38) sup
x2O

jru.x/j D sup
x2@O

jru.x/j:

Combining this result with Proposition 7.5, we have the following:

Proposition 7.7. Let O � R2 be a bounded region with smooth boundary which
is strictly convex, g 2 C1.@�/ real-valued. If u 2 C 2.O/\C 1.O/ is a solution
to (7.8), then there is an estimate

(7.39) kukC 1.O/ � C.O/ kgkC 2.@O/:

Note that the existence result of Proposition 7.1 does not provide us with the
knowledge that u belongs to C 1.O/, and thus it will take further work to demon-
strate that the estimate (7.39) actually holds for an arbitrary real-valued solution
to (7.8) when O � R2 is strictly convex and g is smooth. We will be in a position
to establish this result, and further regularity, after sufficient theory is developed
in the next two sections. See in particular Theorem 10.4. For now, we can regard
this as motivation to develop the tools in the following sections, on the regularity
of solutions to elliptic boundary problems.

We next look at the Gauss curvature of a minimal surface M , given by z D
u.x/; x 2 O � R2. For a general u, the curvature is given by

(7.40) K D �
1C jruj2��2

det



@2u

@xj @xk

�
:

See (4.29) in Appendix C. When u satisfies the minimal surface equation, there
are some other formulas for K , in terms of operations on

(7.41) ˆ.x/ D F.ru/�1 D �
1C jruj2��1=2

;

which we will list, leaving their verification as an exercise:

K D � jrˆj2
1 �ˆ2

;(7.42)

K D 1

2ˆ
�ˆ;(7.43)

K D � log.1Cˆ/:(7.44)

Now if we alter the metric g induced on M via its imbedding in R3 by a
conformal factor:

(7.45) g0 D .1Cˆ/2g D e2vg; v D log.1Cˆ/;
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then, as in formula (1.30), we see that the Gauss curvature k of M in the new
metric is

(7.46) k D .��v CK/e�2v D 0I

in other words, the metric g0 D .1Cˆ/2g is flat! Using this observation, we can
establish the following remarkable theorem of S. Bernstein:

Theorem 7.8. If u W R2 ! R is an everywhere-defined C 2-solution to the mini-
mal surface equation, then u is a linear function.

Proof. Consider the minimal surface M given by z D u.x/; x 2 R2, in the
metric g0 D .1 C ˆ/2g, which, as we have seen, is flat. Now g0 � g, so this is
a complete metric on M . Thus .M; g0/ is isometrically equivalent to R2. Hence
.M; g/ is conformally equivalent to C.

On the other hand, the antipodal Gauss map

(7.47) eN W M �! S2; eN D hrui�1.ru;�1/;

is holomorphic; see Exercise 1 of � 6. But the range of eN is contained in the lower
hemisphere of S2, so if we take S2 D C [ f1g with the point at infinity identi-
fied with the “north pole” .0; 0; 1/, we see that eN yields a bounded holomorphic
function on M 	 C. By Liouville’s theorem, eN must be constant. Thus M is a
flat plane in R3.

It turns out that Bernstein’s theorem extends to u W Rn ! R, for n � 7, by
work of E. DeGiorgi, F. Almgren, and J. Simons, but not to n � 8.

Exercises
1. If DfM.u/ is the differential operator given by (7.14)–(7.15), show that its principal

symbol satisfies

(7.48) �	
DeM.u/

.x; �/ D �
1C jpj2�j�j2 � .p � �/2 � j�j2;

where p D ru.x/.
2. Show that the formula (7.3) for M.f / is equivalent to

(7.49) M.f / D
X

j

@j

�hrf i�1 @j f
� D div

�hrf i�1rf �:

3. Give a detailed demonstration of the estimate (7.26) on the slope of planes that can lie
above and below the graph of g over @O (assumed to have positive curvature), needed
for the proof of Proposition 7.5. (Hint: In case @O is the unit circle S1, consider the
cases g.�/ D cosk �:)

4. Establish the formulas (7.42)–(7.44) for the Gauss curvature of a minimal surface.
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8. Elliptic regularity II (boundary estimates)

We establish estimates and regularity for solutions to nonlinear elliptic bound-
ary problems. We treat completely nonlinear, second-order equations, obtaining
L2-Sobolev estimates for solutions assumed a priori to belong to C 2Cr.M/; r >

0. We make note of improved estimates for solutions to quasi-linear, second-order
equations. In � 10 we will show how such results, when supplemented by the
DeGiorgi–Nash–Moser theory, apply to the solvability of the Dirichlet problem
for certain quasi-linear elliptic PDE.

Though we restrict attention to second-order equations, the analysis in this
section extends readily to higher-order elliptic systems, such as we treated in � 11
of Chap. 5. The exposition here is taken from [T].

Having looked at interior regularity in � 4, we restrict attention to a collar
neighborhood of the boundary @M D X , so we look at a PDE of the form

(8.1) @2
yu D F.y; x;D2

xu;D1
x@yu/;

with y 2 Œ0; 1�; x 2 X . We set

(8.2) v1 D ƒu; v2 D @yu;

and produce a first-order system for v D .v1; v2/,

(8.3)

@v1

@y
D ƒv2;

@v2

@y
D F.y; x;D2

xƒ
�1v1;D

1
xv2/:

An operator like T D ƒ or T D D2
xƒ

�1 does not map C kC1Cr.I � X/ to
C kCr.I �X/, but if we set

(8.4) C kCrC.I �X/ D
[
">0

C kCrC".I �X/;

then

(8.5) T W C kC1CrC.I �X/ �! C kCrC.I �X/:
Thus we will assume u 2 C 2CrC. This implies v 2 C 1CrC, and the arguments
D2

xƒ
�1v1 and D1

xv2 appearing in (8.3) belong to C rC. We will be able to drop
the “C” in the statement of the main result.

Now if we treat y as a parameter and apply the paradifferential operator con-
struction developed in � 10 of Chap. 13 to the family of operators on functions of
x, we obtain

(8.6)
F.y; x;D2

xƒ
�1v1;D

1
xv2/ D A1.vIy; x;Dx/v1

C A2.vIy; x;Dx/v2 CR.v/;
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with (for fixed y) R.v/ 2 C1.X/,

(8.7) Aj .vIy; x; �/ 2 Ar
0S

1
1;1 � C rS1

1;0 \ S1
1;1

and

(8.8) Dˇ
xAj 2 S1

1;1; for jˇj � r; S
1C.jˇ j�r/
1;1 ; for jˇj > r;

provided u 2 C 2CrC.
Note that if we write F D F.y; x; �; �/; �˛ D D˛

x u .j˛j � 2/; �˛ D
D˛

x@yu .j˛j � 1/, then we can set

(8.9) B1.vIy; x; �/ D
X

j˛j�2

@F

@�˛

.D2
xƒ

�1v1;D
1
xv2/�

˛h�i�1

(suppressing the y- and x-arguments of F ) and

(8.10) B2.vIy; x; �/ D
X

j˛j�1

@F

@�˛

.D2
xƒ

�1v1;D
1
xv2/�

˛ :

Thus

(8.11) v 2 C 1CrC H) Aj � Bj 2 C rS1�r
1;1 :

Using (8.4), we can rewrite the system (8.3) as

(8.12)

@v1

@y
D ƒv2;

@v2

@y
D A1.x;D/v1 C A2.x;D/v2 CR.v/:

We also write this as

(8.13)
@v

@y
D K.vIy; x;Dx/v CR .R 2 C1/;

whereK.vIy; x;Dx/ is a 2� 2 matrix of first-order pseudodifferential operators.
Let us denote the symbol obtained by replacing Aj by Bj as QK , so

(8.14) K � QK 2 C rS1�r
1;1 :

The ellipticity condition can be expressed as

(8.15) spec QK.vIy; x; �/ � fz 2 C W jRe zj � C j�jg;
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for j�j large. Hence we can make the same statement about the spectrum of the
symbolK , for j�j large, provided v 2 C 1CrC with r > 0.

In order to derive L2-Sobolev estimates, we will construct a symmetrizer, in
a fashion similar to � 11 in Chap. 5. In particular, we will make use of Lemma
11.4 of Chap. 5. Let QE D QE.vIy; x; �/ denote the projection onto the fRe z > 0g
spectral space of QK, defined by

(8.16) QE.y; x; �/ D 1

2
i

Z

�

�
z � QK.y; x; �/��1

d z;

where � is a curve enclosing that part of the spectrum of QK.y; x; �/ contained in
fRe z > 0g. Then the symbol

(8.17) QA D .2 QE � 1/ QK 2 C rS1
cl

has spectrum in fRe z > 0g. (The symbol class C rSm
cl

is defined as in (9.46) of
Chap. 13.) Let QP 2 C rS0

cl
be a symmetrizer for the symbol QA, constructed via

Lemma 11.4 of Chap. 5, namely,

QP.y; x; �/ D ˆ
� QA.y; x; �/�;

where ˆ is as in (11.54)–(11.55) in Chap. 5. Thus QP and . QP QA C QA� QP / are
positive-definite symbols, for j�j � 1.

We now want to apply symbol smoothing to QP ; QA, and QE . It will be convenient
to modify the construction slightly, and smooth in both x and y. Thus we obtain
various symbols in Sm

1;ı
, with the understanding that the symbol classes reflect

estimates onDy;x-derivatives. For example, we obtain (with 0 < ı < 1)

(8.18) P.y; x; �/ 2 S0
1;ı I P � QP 2 C rS�rı

1;ı

by smoothing QP , in .y; x/. We set

(8.19) Q D 1

2

�
P.y; x;Dx/C P.y; x;Dx/

��CKƒ�1;

withK > 0 picked to make the operatorQ positive-definite on L2.X/. Similarly,
define A and E by smoothing QA and QE in .y; x/, so

(8.20)
A.y; x; �/ 2 S1

1;ı ; A� QA 2 C rS1�rı
1;ı ;

E.y; x; �/ 2 S0
1;ı ; E � QE 2 C rS�rı

1;ı ;

and we smoothK , writing

(8.21) K D K0 CKbI K0 2 S1
1;ı ; K

b 2 C rS1�rı
1;ı \ S1�rı

1;1 :



188 14. Nonlinear Elliptic Equations

Consequently, on the symbol level,

(8.22)
A D .2E � 1/K0 C Ab; Ab 2 S1�rı

1;ı ;

PAC A�P � C j�j; for j�j large.

Let us note that the homogeneous symbols QK; QE, and QA commute, for each
.y; x; �/; hence the commutators of the various symbols K; E; A have order
� rı units less than the sum of the orders of these symbols; for example,

(8.23) ŒE.y; x; �/;K0.y; x; �/� 2 S1�rı
1;ı :

Using this symmetrizer construction, we will look for estimates for solutions
to a system of the form (8.3) in the spacesHk;s.M/ D Hk;s.I �X/, with norms

(8.24) kvk2
k;s D

kX
j D0

k@j
yƒ

k�j Csv.y/k2
L2.I�X/

:

We shall differentiate .QƒsEv;ƒsEv/ and .Qƒs.1 � E/v;ƒs.1 � E/v/ with
respect to y (these expressions being L2.X/-inner products) and sum the two
resulting expressions, to obtain the desired a priori estimates, parallel to the
treatment in � 11 of Chap. 5.

Using (8.13), we have

(8.25)

d

dy
.QƒsEv;ƒsEv/ D 2 Re.QƒsE.Kv CR/;ƒsEv/

C .Q0ƒsEv;ƒsEv/

C 2 Re.QƒsE 0v;ƒsEv/:

Note that given v 2 C 1CrC; r > 0; Q0 and E 0 belong to OPSı
1;ı

. Hence, for
fixed y, each of the last two terms is bounded by

(8.26) Ckv.y/k2
H sCı=2 :

Here and below, we will adopt the convention that C D C.kvkC 1CrC
/, with a

slight abuse of notation. Namely, v 2 C 1CrC belongs to C 1CrC" for some " > 0,
and we loosely use kvkC 1CrC

instead of kvkC 1CrC" .
To analyze the first term on the right side of (8.25), we write

(8.27)

.QƒsE.Kv CR/;ƒsEv/ D .QƒsEK0v;ƒ
sEv/

C .QƒsKbv;ƒsEv/

C .QƒsER;ƒsEv/;
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where the last term is harmless and, for fixed y,

(8.28) j.QƒsEKbv;ƒsEv/j � Ckv.y/k2
H sC.1�rı/=2 ;

provided s C .1 � rı/=2� .1 � rı/ > �.1 � ı/r , that is,

(8.29) s >
1

2
� r C 1

2
rı;

in view of (8.21).
Since QE.y; x; �/ is a projection, we haveE.y; x; �/2 �E.y; x; �/ 2 S�rı

1;ı
and

(8.30)
E.y; x;D/ � E.y; x;D/2 D F.y; x;D/ 2 OPS��

1;ı ;

	 D min .rı; 1 � ı/:

Thus

(8.31) QEK0 D QAE CGI G.y/ 2 OPS1��
1;ı :

Consequently, we can write the first term on the right side of (8.27) as

(8.32) .QAEƒsv;ƒsEv/ � .Gƒsv;ƒsEv/C .QŒƒs; EK0�v;ƒ
sEv/:

The last two terms in (8.32) are bounded (for each y) by

(8.33) Ckv.y/k2
H sC.1��/=2 :

As for the contribution of the first term in (8.32) to the estimation of (8.25), we
have, for each y,

(8.34) .QAEƒsv;ƒsEv/ D .QAƒsEv;ƒsEv/C .QAŒE;ƒs �v;ƒsv/;

the last term estimable by (8.33), and

(8.35) 2 Re.QAƒsEv;ƒsEv/ � C1kEv.y/k2
H sC1=2 � C2kEv.y/k2

H s ;

by (8.22) and Gårding’s inequality. Keeping track of the various ingredients in the
analysis of (8.25), we see that

(8.36)

d

dy
.QƒsEv;ƒsEv/ � C1kEv.y/k2

H sC1=2

� C2kv.y/k2
H sC.1��/=2 � C3kR.y/k2

H s ;

where Cj D Cj .kvkC 1CrC
/ > 0.
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A similar analysis gives

(8.37)

d

dy
.Qƒs.1 �E/v;ƒs.1 � E/v/

� �C1k.1 � E/v.y/k2
H sC1=2 C C2kv.y/k2

H sC.1��=2/ C C3kR.y/k2
H s :

Putting together these two estimates yields

1

2
C1kv.y/k2

H sC1=2 � C1kEv.y/k2
H sC1=2 C C1k.1 �E/v.y/k2

H sC1=2

� d

dy
.QƒsEv;ƒsEv/ � d

dy
.Qƒs.1 � E/v;ƒs.1 �E/v/

C C2kv.y/k2
H sC.1��/=2 C C3kR.y/k2

H s :

(8.38)

Now standard arguments allow us to replace H sC.1��/=2 by H t , with t << s.
Then integration over y 2 Œ0; 1� gives

(8.39)
C1kvk2

0;sC1=2 � kƒsEv.1/k2
L2 C kƒs.1 � E/v.0/k2

L2

C C2kvk2
0;t C C3kRk2

0;s :

Recalling that

(8.40) kvk2
1;s D kƒ1Csvk2

L2.M/
C kƒs@yvk2

L2.M/

and using (8.13) to estimate @yv, we have

(8.41) kvk2
1;s�1=2 � C

h
kEv.1/k2

H s C k.1 �E/v.0/k2
H s C kvk2

0;t C kRk2
0;s

i
;

with C D C.kvkC 1CrC
/, provided that v 2 C 1CrC with r > 0 and that s satisfies

the lower bound (8.29). Let us note that

C1

h
kƒs.1 � E/v.1/k2

L2 C kƒsEv.0/k2
L2

i

could have been included on the left side of (8.39), so we also have the estimate

(8.42) k.1 � E/v.1/k2
H s C kEv.0/k2

H s � right side of (8.41).

Having completed a first round of a priori estimates, we bring in a consid-
eration of boundary conditions that might be imposed. Of course, the boundary
conditions Ev.1/ D f1; .1 � E/v.0/ D f0 are a possibility, but these are really
a tool with which to analyze other, more naturally occurring boundary condi-
tions. The “real” boundary conditions of interest include the Dirichlet condition
on (8.1):

(8.43) u.0/ D f0; u.1/ D f1;
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various sorts of (possibly nonlinear) conditions involving first-order derivatives:

(8.44) Gj .x;D
1u/ D fj ; at y D j .j D 0; 1/;

and when (8.1) is itself a K � K system, other possibilities, which can
be analyzed in the same spirit. Now if we write D1u D .u; @xu; @yu/ D
.ƒ�1v1; @xƒ

�1v1; v2/, and use the paradifferential operator construction of
Chap. 13, � 10, we can write (8.44) as

(8.45) Hj .vI x;D/v D gj ; at y D j;

where, given v 2 C 1CrC,

(8.46) Hj .vI x; �/ 2 A1Cr
0 S0

1;1 � C 1CrS0
1;0 \ S0

1;1:

Of course, (8.43) can be written in the same form, with Hj v D v1.
Now the following is the natural regularity hypothesis to make on (8.45);

namely, that we have an estimate of the form

(8.47)

X
j

kv.j /k2
H s � C

h
kEv.0/k2

H s C k.1 � E/v.1/k2
H s

i

C C
X

j

h
kHj .vI x;D/v.j /k2

H s C kv.j /k2
H s�1

i
:

We then say the boundary condition is regular. If we combine this with (8.41) and
(8.42), we obtain the following fundamental estimate:

Proposition 8.1. If v satisfies the elliptic system (8.3), together with the bound-
ary condition (8.45), assumed to be regular, then

(8.48) kvk2
1;s�1=2 � C

hX
j

kgj k2
H s C kvk2

0;t C kRk2
0;s

i
;

provided v 2 H1;s�1=2 \C 1Cr ; r > 0, and s satisfies (8.29). We can take t << s.
In case (8.44) holds, we can replace kgj kH s by kfj kH s , and in case the Dirichlet
condition (8.43) holds and is regular, we can replace kgj kH s by kfj kH sC1 in
(8.48).

Here, we have taken the opportunity to drop the “C” from C 1CrC; to justify
this, we need only shift r slightly. For the same reason, we can assume that, in
(8.1), u 2 C 2Cr , for some r > 0. In the rest of this section, we assume for
simplicity that s � 1=2 2 ZC [ f0g.

We can now easily obtain higher-order estimates, of the form

(8.49) kvk2
k;s�1=2 � C

hX
j

kgj k2
H sCk�1 C kvk2

0;t C kRk2
k�1;s

i
;
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for t << s � 1=2, by induction from

kvk2
k;s�1=2 D kvk2

k�1;sC1=2 C k@yvk2
k�1;s�1=2;

plus substituting the right side of (8.3) for @yv. This follows from the existence of
Moser-type estimates:

(8.50)
kF.�; �; w1; w2/kk;s�1=2

� C
�kw1kL1 ; kw2kL1

��kw1kk;s�1=2 C kw2kk;s�1=2

�
;

for k; kCs�1=2 > 0. If s�1=2 2 ZC [f0g, such an estimate can be established
by methods used in � 3 of Chap. 13.

We also obtain a corresponding regularity theorem, via inclusion of Friedrich
mollifiers in the standard fashion. Thus replace ƒs by ƒs

" D ƒsJ" in (8.25) and
repeat the analysis. One must keep in mind thatKb must be applicable to v.y/ for
the analogue of (8.28) to work. Given (8.21), we need v.y/ 2 H � with 	 > 1�r .
However, v 2 C 1Cr already implies this. We thus have the following result.

Theorem 8.2. Let v be a solution to the elliptic system (8.3), satisfying the bound-
ary conditions (8.45), assumed to be regular. Assume

(8.51) v 2 C 1Cr ; r > 0;

and

(8.52) gj 2 H sCk�1.X/;

with s � 1=2 2 ZC [ f0g. Then

(8.53) v 2 Hk;s�1=2.I �X/:

In particular, taking s D 1=2, and noting that

(8.54) Hk;0.M/ D H k.M/;

we can specialize this implication to

(8.55) gj 2 H k�1=2.X/ H) v 2 H k.I �X/;

for k D 1; 2; 3; : : : , granted (8.51) (which makes the k D 1 case trivial).
Note that, in (8.36)–(8.38), one could replace the term kR.y/k2

H s by the prod-
uct kR.y/kH s�1=2 � kv.y/kH sC1=2 ; then an absorption can be performed in (8.38),
and hence in (8.39)–(8.41) we can substitute kRk2

0;s�1=2
, and use kRk2

k�1;s�1=2

in (8.49).
We note that Theorem 8.2 is also valid for solutions to a nonhomogeneous

elliptic system, where R in (8.13) can contain an extra term, belonging to
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Hk�1;s�1=2, and then the estimate (8.49), strengthened as indicated above, and
consequent regularity theorem are still valid. If (8.1) is generalized to

(8.56) @2
yu D F.D2

xu;D1
x@yu/C f;

then a term of the form .0; f /t is added to (8.13).
In view of the estimate (8.11) comparing the symbol of K with that obtained

from the linearization of the original PDE (8.1), and the analogous result that
holds forHj , derived from Gj , we deduce the following:

Proposition 8.3. Suppose that, at each point on @M , the linearization of the
boundary condition of (8.44) is regular for the linearization of the PDE (8.1).
Assume u 2 C 2Cr ; r > 0. Then the regularity estimate (8.49) holds. In particu-
lar, this holds for the Dirichlet problem, for any scalar (real) elliptic PDE of the
form (8.1).

We next establish a strengthened version of Theorem 8.2 when u solves a quasi-
linear, second-order elliptic PDE, with a regular boundary condition. Thus we are
looking at the special case of (8.1) in which

(8.57)

F.y; x;D2
xu;D1

x@yu/ D �
X

j

Bj .x; y;D1u/ @j @yu

�
X
j;k

Ajk.x; y;D1u/ @j @ku

C F1.x; y;D
1u/:

All the calculations done above apply, but some of the estimates are better. This
is because when we derive the equation (8.13), namely,

(8.58)
@v

@y
D K.vIy; x;Dx/v CR .R 2 C1/

for v D .v1; v2/ D .ƒu; @yu/, (8.7) is improved to

(8.59) u 2 C 1CrC H) K 2 Ar
0S

1
1;1 C S1�r

1;1 .r > 0/:

Compare with (4.62). Under the hypothesis u 2 C 1CrC, one has the result (8.17),
QA 2 C rS1

cl
, which before required u 2 C 2CrC. Also (8.20)–(8.22) now hold

for u 2 C 1CrC. Thus all the a priori estimates, down through (8.49), hold, with
C D C.kukC 1CrC

/. As before, we can delete the “C.” One point that must be
taken into consideration is that, for the estimates to work, one needs v.y/ 2 H �

with 	 > 1 � r , and now this does not necessarily follow from the hypothesis
u 2 C 1Cr . Hence we have the following regularity result. Compare the interior
regularity established in Theorem 4.5.
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Theorem 8.4. Let u satisfy a second-order, quasi-linear elliptic PDE with a
regular boundary condition, of the form (8.45), for v D .ƒu; @yu/. Assume that

(8.60) u 2 C 1Cr \H1;� ; r > 0; r C 	 > 1:

Then, for k D 0; 1; 2; : : : ,

(8.61) gj 2 H k�1=2.X/ H) v 2 H k.I �X/:

The Dirichlet boundary condition is regular (if the PDE is real and scalar), and

(8.62) u.j / D fj 2 H kCs.X/ H) v 2 Hk;s� 1
2
.I �X/

if s > .1 � r/=2. In particular,

(8.63)
u.j / D fj 2 H kC1=2.X/ H) v 2 H k.I �X/

H) u 2 H kC1.I �X/:

We consider now the further special case

(8.64)

F.y; x;D2
xu;D1

x@yu/ D �
X

j

Bj .x; y; u/ @j @yu

�
X
j;k

Ajk.x; y; u/ @j @ku C F1.x; y;D
1u/:

In this case, when we derive the system (8.58), we have the implication

(8.65) u 2 C rC.M/ H) K 2 Ar
0S

1
1;1 C S1�r

1;1 .r > 0/:

Similarly, under this hypothesis, we have QA 2 C rS1
cl

, and so forth. Therefore we
have the following:

Proposition 8.5. If u satisfies the PDE (8.1) with F given by (8.64), then the
conclusions of Theorem 8.4 hold when the hypothesis (8.60) is weakened to

(8.66) u 2 C r \H1;� ; r C 	 > 1:

Note that associated to this regularity is an estimate. For example, if u satisfies
the Dirichlet boundary condition, we have, for k � 2,

(8.67) kukH k.M/ � Ck.kukC r .M//
�kuj@M kH k�1=2.@M/ C kukL2.M/

�
;

where we have used Poincaré’s inequality to replace the H1;� -norm of u by the
L2-norm on the right.
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Let us see to what extent the results obtained here apply to solutions to the
minimal surface equation produced in � 7. Recall the boundary problem (7.8):

(8.68) hrui2�u �
X
i;j

@u

@xi

@u

@xj

@2u

@xi@xj

D 0; u D g on @O;

where O is a strictly convex region in R2, with smooth boundary. For this bound-
ary problem, Theorem 8.4 applies, to yield the implication

(8.69) g 2 H kC1=2.@O/ H) u 2 H kC1.O/; k D 0; 1; 2; : : : ;

provided we know that

(8.70) u 2 C 1Cr.O/\H1;� .A/; r > 0; r C 	 > 1;

where A is a collar neighborhood of @O in O. Now, while we know that solutions
to the minimal surface equation are smooth inside O (having proved that minimal
surfaces are real analytic), we so far have only continuity of a solution u on O ,
plus a Lipschitz bound on u

ˇ̌
@O and a hope of obtaining a bound in C 1.O/. We

therefore have a gap to close to be able to apply the results of this section to
solutions of (8.68).

The material of the next two sections will close this gap. As we’ll see, we will
be able to treat (8.68), not only for dim O D 2, but also for dim O D n > 2. Also,
the gap will be closed on a number of other quasi-linear elliptic PDE.

Exercises
1. Suppose u is a solution to a quasi-linear elliptic PDE of the form

X
ajk .x;u/@j @ku C b.x;u;ru/ D 0 on M;

satisfying boundary conditions

B0.x;u/u D g0; B1.x; u;D/u D g1; on @M;

assumed to be regular. The operators Bj have order j . Generalizing (8.67), show that,
for any r > 0; k � 2, there is an estimate

(8.71)

kukH k .M/ � Ck

�kuk
C r .M/

��kg0kH k�1=2.@M/ C kg1kH k�3=2.@M/ C kukL2.M/

�
:

2. Extend Theorem 8.4 to nonhomogeneous, quasi-linear equations,

(8.72)
X

ajk.x;D
1u/ @j @ku C b.x;D1u/ D h.x/;
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satisfying regular boundary conditions. If one uses the Dirichlet boundary condition,
u
ˇ̌
@M

D g, show that

(8.73)

kukH k .M/ � Ck

�kuk
C 1Cr .M/

��kgkH k�1=2.@M/ C khkH k�2.M/ C kukL2.M/

�
:

3. Give a proof of the mapping property (8.5).
4. Prove the Moser-type estimate (8.50), when s � 1=2 D ` 2 ZC [ f0g. (Hint. Rework

Propositions 3.2–3.9 of Chap. 13, with Hk replaced by Hk;`.)

9. Elliptic regularity III (DeGiorgi–Nash–Moser theory)

As noted at the end of � 8, there is a gap between conditions needed on the solution
of boundary problems for many nonlinear elliptic PDEs, in order to obtain higher-
order regularity, and conditions that solutions constructed by methods used so far
in this chapter have been shown to satisfy. One method of closing this gap, that
has proved useful in many cases, involves the study of second-order, scalar, linear
elliptic PDE, in divergence form, whose coefficients have no regularity beyond
being bounded and measurable.

In this section we establish regularity for a class of PDE Lu D f , for second-
order operators of the form (using the summation convention)

(9.1) Lu D b�1@j

�
ajkb @ku

�
;

where .ajk.x// is a positive-definite, bounded matrix and 0 < b0 � b.x/ � b1; b

scalar, and ajk ; b are merely measurable. The breakthroughs on this were first
achieved by DeGiorgi [DeG] and Nash [Na2]. We will present Moser’s derivation
of interior bounds and Hölder continuity of solutions to Lu D 0, from [Mo2], and
then Morrey’s analysis of the nonhomogeneous equation Lu D f and proof of
boundary regularity, from [Mor2]. Other proofs can be found in [GT] and [KS].

We make a few preliminary remarks on (9.1). We will use ajk to define an
inner product of vectors:

(9.2) hV;W i D Vja
jkWk;

and use b dx D dV as the volume element. In case gjk.x/ is a metric tensor, if
one takes ajk D gjk and b D g1=2, then (9.1) defines the Laplace operator. For a
compactly supported function w,

(9.3) .Lu; w/ D �
Z

hru;rwi dV:

The behavior of L on a nonlinear function of u; v D f .u/, plays an important
role in estimates; we have

(9.4) v D f .u/ H) Lv D f 0.u/Lu C f 00.u/jruj2;
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where we set jV j2 D hV; V i. Also, taking w D  2u in (9.3) gives the following
important identity. If Lu D g on an open set � and  2 C 1

0 .�/, then

(9.5)
Z
 2jruj2 dV D �2

Z
h ru; ur i dV �

Z
 2gu dV:

Applying Cauchy’s inequality to the first term on the right yields the useful
estimate

(9.6)
1

2

Z
 2jruj2 dV � 2

Z
juj2jr j2 dV �

Z
 2gu dV:

Given these preliminaries, we are ready to present an approach to sup norm
estimates known as “Moser iteration.” Once this is done (in Theorem 9.3 below),
we will then tackle Hölder estimates.

To implement Moser iteration, consider a nested sequence of open sets with
smooth boundary

(9.7) �0 � � � � � �j � �j C1 � � � �

with intersection O, as illustrated in Fig. 9.1. We will make the geometrical
hypothesisthat the distance of any point on @�j C1 to @�j is � Cj�2. We want
to estimate the sup norm of a function v on O in terms of its L2-norm on �0,
assuming

(9.8) v > 0 is a subsolution of L .i.e., Lv � 0/:

In view of (9.4), an example is

(9.9) v D .1C u2/1=2; Lu D 0:

FIGURE 9.1 Setup for Moser Iteration
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We will obtain such an estimate in terms of the Sobolev constants �.�j / and Cj ,
defined below. Ingredients for the analysis include the following two lemmas, the
first being a standard Sobolev inequality.

Lemma 9.1. For v 2 H 1.�j /; 
 � n=.n � 2/,

(9.10) kv	k2
L2.�j /

� �.�j /
�krvk2	

L2.�j /
C kvk2	

L2.�j /

�
:

The next lemma follows from (9.6) if we take D 1 on�j C1, tending roughly
linearly to 0 on @�j .

Lemma 9.2. If v > 0 is a subsolution of L, then, with Cj D C.�j ; �j C1/,

(9.11) krvkL2.�j C1/ � Cj kvkL2.�j /:

Under the geometrical conditions indicated above on �j , we can assume

(9.12) �.�j / � �0; Cj � C.j 2 C 1/:

Putting together the two lemmas, we see that when v satisfies (9.8),

(9.13)
kv	k2

L2.�j C1/
� �.�j C1/

h
C 2	

j kvk2	
L2.�j /

C kvk2	
L2.�j C1/

i

� �0.C
2	
j C 1/kvk2	

L2.�j /
:

Fix 
 2 .1; n=.n� 2/�. Now, if v satisfies (9.8), so does

(9.14) vj D v	j

;

by (9.4). Note that vj C1 D v	
j . Now let

(9.15) Nj D kvk
L2�j

.�j /
D kvj k1=	j

L2.�j /
;

so

(9.16) kvkL1.O/ � lim sup
j !1

Nj :

If we apply (9.13) to vj , we have

(9.17) kvj C1k2
L2.�j C1/

� �0.C
2	
j C 1/kvj k2	

L2.�j /
:

Note that the left side is equal to N 2	j C1

j C1 , and the norm on the right is equal to

N 2	j C1

j . Thus (9.17) is equivalent to
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(9.18) N 2
j C1 �

h
�0.C

2	
j C 1/

i1=	j C1

N 2
j :

By (9.12), C 2	
j C 1 � C0.j

4	 C 1/, so

(9.19)

lim sup
j !1

N 2
j �

1Y
j D0

h
�0C0.j

4	 C 1/
i1=	j C1

N 2
0

� .�0C0/
1=.	�1/

2
4exp

1X
j D0


�j �1 log.j 4	 C 1/

3
5N 2

0

� K2N 2
0 ;

for finite K . This gives Moser’s sup-norm estimate:

Theorem 9.3. If v > 0 is a subsolution of L, then

(9.20) kvkL1.O/ � KkvkL2.�0/;

where K D K.�0; C0; n/.

Hölder continuity of a solution to Lu D 0 will be obtained as a consequence
of the following “Harnack inequality.” Let B� D fx W jxj < �g.

Proposition 9.4. Let u � 0 be a solution of Lu D 0 in B2r . Pick c0 2 .0;1/.
Suppose

(9.21) measfx 2 Br W u.x/ � 1g > c�1
0 rn:

Then there is a constant c > 0 such that

(9.22) u.x/ > c�1 in Br=2:

This will be established by examining v D f .u/ with

(9.23) f .u/ D maxf� log.u C "/; 0g;

where " is chosen in .0; 1/. Note that f is convex, so v is a subsolution. Our first
goal will be to estimate the L2.Br /-norm of rv. Once this is done, Theorem 9.3
will be applied to estimate v from above (hence u from below) on Br=2.

We begin with a variant of (9.5), obtained by taking w D  2f 0.u/ in (9.3).
The identity (for smooth f ) is

(9.24)
Z
 2f 00jruj2 dV C 2

Z
h f 0ru;r i dV D �.Lu;  2f 0/:
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This vanishes if Lu D 0. Applying Cauchy’s inequality to the second integral, we
obtain

(9.25)
Z
 2
h
f 00.u/� ı2f 0.u/2

i
jruj2 dV � 1

ı2

Z
jr j2 dV:

Now the function f .u/ in (9.23) has the property that

(9.26) h D �e�f is a convex functionI

indeed, in this case h.u/ D maxf�.u C "/;�1g. Thus

(9.27) f 00 � .f 0/2 D ef h00 � 0:

Thus f 00.u/jruj2 � f 0.u/2jruj2 D jrvj2 if v D f .u/. Taking ı2 D 1=2 in
(9.25), we obtain

(9.28)
Z
 2jrvj2 dV � 4

Z
jr j2 dV;

after one overcomes the minor problem that f 0 has a jump discontinuity. If we
pick  to D 1 on Br and go linearly to 0 on @B2r , we obtain the estimate

(9.29)
Z

Br

jrvj2 dV � Crn�2;

for v D f .u/, given that Lu D 0 and that (9.26) holds.
Now the hypothesis (9.21) implies that v vanishes on a subset ofBr of measure

> c�1
0 rn. Hence there is an elementary estimate of the form

(9.30) r�n

Z

Br

v2 dV � Cr2�n

Z

Br

jrvj2 dV;

which is bounded from above by (9.29). Now Theorem 9.3, together with a simple
scaling argument, gives

(9.31) v.x/2 � Cr�n

Z

Br

v2 dV � C 2
1 ; x 2 Br=2;

so

(9.32) u C " � e�C1 ; for x 2 Br=2;

for all " 2 .0; 1/. Taking " ! 0, we have the proof of Proposition 9.4.
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We remark that Moser obtained a stronger Harnack inequality in [Mo3], by a
more elaborate argument. In that work, the hypothesis (9.21) is weakened to

(9.21a) sup
Br

u.x/ � 1:

To deduce the Hölder continuity of a solution to Lu D 0 given Proposition 9.4
is fairly simple. Following [Mo2], who followed DeGiorgi, we have from (9.20)
a bound

(9.33) ju.x/j � K

on any compact subset O of �0, given u 2 H 1.�0/; Lu D 0. Fix x0 2 O, such
that B�.x0/ � O, and, for r � �, let

(9.34) !.r/ D sup
Br

u.x/� inf
Br

u.x/;

whereBr D Br.x0/. Clearly, !.�/ � 2K . Adding a constant to u, we can assume

(9.35) sup
B�

u.x/ D � inf
B�

u.x/ D 1

2
!.�/ D M:

Then uC D 1 C u=M and u� D 1 � u=M are also annihilated by L. They are
both � 0 and at least one of them satisfies the hypothesis (9.21), with r D �=2.
If, for example, uC does, then Proposition 9.4 implies

(9.36) uC.x/ > c�1 in B�=4;

so

(9.37) �M
�
1 � 1

c

�
� u.x/ � M in B�=4:

Hence

(9.38) !.�=4/ �
�
1 � 1

2c

�
!.�/;

which gives Hölder continuity:

(9.39) !.r/ � !.�/
� r
�

�˛

; ˛ D � log4

�
1 � 1

2c

�
:

We state the result formally.
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Theorem 9.5. If u 2 H 1.�0/ solves Lu D 0, then for every compact O in �0,
there is an estimate

(9.40) kukC ˛.O/ � CkukL2.�0/:

It will be convenient to replace (9.40) by an estimate involving Morrey spaces,
which are discussed in Appendix A at the end of this chapter. We claim that under
the hypotheses of Theorem 9.5,

(9.41) ru
ˇ̌
O 2 M p

2 ; p D n

1 � ˛
;

where the Morrey space M p
2 consists of functions f satisfying the q D 2 case

of (A.2). The property (9.41) is stronger than (9.40), by Morrey’s lemma (Lemma
A.1). To see (9.41), if BR is a ball of radius R centered at y; B2R � �, then let
c D u.y/ and replace u by u.x/� c in (9.6), to get

1

2

Z
 2jruj2 dV � 2

Z
ju.x/� cj2jr j2 dV:

Taking  D 1 on BR, going linearly to 0 on @B2R , gives

(9.42)
Z

BR

jruj2 dV � C Rn�2C2˛;

as needed to have (9.41).
So far we have dealt with the homogeneous equation, Lu D 0. We now turn to

regularity for solutions to a nonhomogeneous equation. We will follow a method
of Morrey, and Morrey spaces will play a very important role in this analysis. We
take L as in (9.1), with ajk measurable, satisfying

(9.43) 0 < �0j�j2 �
X

ajk.x/�j �k � �1j�j2;

while for simplicity we assume b; b�1 2 Lip.�/. We consider a PDE

(9.44) Lu D f:

It is clear that, for u 2 H 1
0 .�/,

(9.45) .Lu; u/ � C
X

k@j uk2
L2 ;

so we have an isomorphism

(9.46) L W H 1
0 .�/

��! H�1.�/:
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Thus, for any f 2 H�1.�/, (9.44) has a unique solution u 2 H 1
0 .�/. One can

write such f as

(9.47) f D
X

@jgj ; gj 2 L2.�/:

The solution u 2 H 1
0 .�/ then satisfies

(9.48) kuk2
H 1.�/

� C
X

kgj k2
L2 :

Here C depends on �;�0; �1, and b 2 Lip.�/.
One can also consider the boundary problem

(9.49) Lv D 0 on �; v D w on @�;

given w 2 H 1.�/, where the latter condition means v � w 2 H 1
0 .�/. Indeed,

setting v D u C w, the equation for u is Lu D �Lw; u 2 H 1
0 .�/. Thus (9.49) is

uniquely solvable, with an estimate

(9.50) krvkL2.�/ � CkrwkL2.�/;

where C has a dependence as in (9.48).
Our present goal is to give Morrey’s proof of the following local regularity

result.

Theorem 9.6. Suppose u 2 H 1.�/ solves (9.44), with f D P
@jgj ; gj 2

M
q
2 .�/; q > n, that is,

(9.51)
Z

Br

jgj j2 dV � K2
1

� r
R

�n�2C2�

; � D 1 � n

q
2 .0; 1/:

Assume L is of the form (9.1), where the coefficients ajk satisfy (9.43) and
b; b�1 2 Lip.�/. Let O �� �, and assume � < �0 D ˛, for which Theorem
9.5 holds. Then u 2 C�.O/; more precisely, ru 2 M q

2 .O/, that is,

(9.52)
Z

Br

jruj2 dV � K2
2

� r
R

�n�2C2�

:

Morrey established this by using (9.48), (9.50), and an elegant dilation argu-
ment, in concert with Theorem 9.5. For this, suppose BR D BR.y/ � � for each
y 2 O. We can write u D U CH on BR, where

(9.53)
LU D

X
@jgj on BR; U 2 H 1

0 .BR/;

LH D 0 on BR; H � u 2 H 1
0 .BR/;
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and we have

(9.54) krU kL2.BR/ � C1kgkL2.BR/; krHkL2.BR/ � C2krukL2.BR/;

where kgk2
L2 D P kgj k2

L2 . Let us set

(9.55) kF kr D kF kL2.Br /:

Also let 
.gj ; R/ be the best constantK1 for which (9.51) is valid for 0 < r � R.
If g� .x/ D g.�x/, note that


.g� ; �
�1S/ D �n=2
.g; S/:

Now define

(9.56)
'.r/ D sup

˚krU krS W U 2 H 1
0 .BS /; LU D

X
@jgj ; on BS ;


.gj ; S/ � 1; 0 < S � R
�
:

Let us denote by 'S .r/ the sup in (9.56) with S fixed, in .0;R�. Then 'S .r/

coincides with 'R.r/, with L replaced by the dilated operator, coming from the
dilation taking BS to BR. More precisely, the dilated operator is

(9.57) LS D bS @j a
jk
S b�1

S @k ;

with
a

jk
S .x/ D ajk.SR�1x/; bS .x/ D b.SR�1x/;

assuming 0 has been arranged to be the center of BR. To see this, note that if
� D S=R, U� .x/ D ��1U.�x/, and gj� .x/ D gj .�x/, then

(9.58) LU D
X

@jgj ” LSU� D
X

@jgj� :

Also, rU� .x/ D .rU /.�x/, so krU�kS=� D �n=2krU kS .
Now for this familyLS , one has a uniform bound on C in (9.48); hence '.r/ is

finite for r 2 .0; 1�. We also note that the bounds in (9.40) and (9.42) are uniformly
valid for this family of operators. Theorem 9.6 will be proved when we show that

(9.59) '.r/ � A rn=2�1C�:

In fact, this will give the estimate (9.52) with u replaced by U ; meanwhile such
an estimate with u replaced byH is a consequence of (9.42). LetH satisfy (9.42)
with ˛ D �0. We take � < �0.

Pick S 2 .0;R� and pick gj satisfying (9.51), withR replaced by S andK1 by
K . Write theU of (9.53) asU D US CHS onBS , whereUS 2 H 1

0 .BS /; LUS D
LU D P

@jgj on BS . Clearly, (9.51) implies
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(9.60)
Z

Br

jgj j2 dV � K2
�S
R

�n�2C2�� r
S

�n�2C2�

:

Thus, as in (9.54) (and recalling the definition of '), we have

(9.61)
krUSkS � A1K

�S
R

�n=2�1C�

;

krHS kS � A2krU kS � A2K'
�S
R

�
:

Now, suppose 0 < r < S < R. Then, applying (9.42) to HS , we have

(9.62)
krU kr � krUS kr C krHS kr

� K
�S
R

�n=2�1C�

'
� r
S

�
C A3K'

�S
R

�� r
S

�n=2�1C�0

:

Therefore, setting s D r=R; t D S=R, we have the inequality

(9.63) '.s/ � tn=2�1C�'
�s
t

�
C A3'.t/

�s
t

�n=2�1C�0

;

valid for 0 < s < t � 1. Since it is clear that '.r/ is monotone and finite on .0; 1�,
it is an elementary exercise to deduce from (9.63) that '.r/ satisfies an estimate
of the form (9.59), as long as � < �0. This proves Theorem 9.6.

Now that we have interior regularity estimates for the nonhomogeneous prob-
lem, we will be able to use a few simple tricks to establish regularity up to the
boundary for solutions to the Dirichlet problem

(9.64) Lu D
X

@jgj ; u D f on @�;

where L has the form (9.1),� is compact with smooth boundary, f 2 Lip.@�/,
and gj 2 Lq.�/, with q > n. First, extend f to f 2 Lip.�/. Then u D v C f ,
where v solves

(9.65) Lv D
X

@jhj ; v D 0 on @�;

where

(9.66) @jhj D @jgj � b�1@j

�
ajkb @kf

�
:

We will assume b 2 Lip.�/; then hj can be chosen in Lq also.
The class of equations (9.65) is invariant under smooth changes of variables

(indeed, invariant under Lipschitz homeomorphisms with Lipschitz inverses, hav-
ing the further property of preserving volume up to a factor in Lip.�/). Thus
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make a change of variables to flatten out the boundary (locally), so we consider a
solution v 2 H 1 to (9.65) in xn > 0; jxj � R. We can even arrange that b D 1.
Now extend v to negative xn, to be odd under the reflection xn 7! �xn. Also ex-
tend ajk.x/ to be even when j; k < n or j D k D n, and odd when j or k D n

(but not both). Extend hj to be odd for j < n and even for j D n. With these
extensions, we continue to have (9.65) holding, this time in the ball jxj � R. Thus
interior regularity applies to this extension of v, yielding Hölder continuity. The
following is hence proved.

Theorem 9.7. Let u 2 H 1.�/ solve the PDE

(9.67)
X

b�1@j

�
ajkb @ku

� D
X

@jgj on �; u D f on @�:

Assume gj 2 Lq.�/ with q > n D dim �, and f 2 Lip.@�/. Assume that
b; b�1 2 Lip.�/ and that .ajk/ is measurable and satisfies the uniform ellipticity
condition (9.43). Then u has a Hölder estimate

(9.68) kukC �.�/ � C1

�X
kgj kLq .�/ C kf kLip.@�/

�
:

More precisely, if � D 1 � n=q 2 .0; 1/ is sufficiently small, then ru belongs to
the Morrey space M q

2 .�/, and

(9.69) krukM
q
2

.�/ � C2

�X
kgj kLq.�/ C kf kLip.@�/

�
:

In these estimates, Cj D Cj .�; �1; �2; b/.

So far in this section we have looked at differential operators of the form
(9.1) in which .ajk/ is symmetric, but unlike the nondivergence case, where
ajk.x/ @j @ku D akj .x/ @j @ku, nonsymmetric cases do arise; we will see an ex-
ample in � 15. Thus we briefly describe the extension of the analysis of (9.1) to

(9.70) Lu D b�1 @j

�
Œajk C !jk �b @ku

�
:

We make the same hypotheses on ajk.x/ and b.x/ as before, and we assume
.!jk/ is antisymmetric and bounded:

(9.71) !jk.x/ D �!kj .x/; !jk 2 L1.�/:

We thus have both a positive symmetric form and an antisymmetric form defined
at almost all x 2 �:

(9.72) hV;W i D Vja
jk.x/Wk ; ŒV;W � D Vj!

jk.x/Wk :
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We use the subscript L2 to indicate the integrated quantities:

(9.73) hv;wiL2 D
Z

hv;wi dV; Œv; w�L2 D
Z
Œv; w� dV:

Then, in place of (9.3), we have

(9.74) .Lu; w/ D �hru;rwiL2 � Œru;rw�L2 :

The formula (9.4) remains valid, with jruj2 D hru;rui, as before. Instead of
(9.5), we have

(9.75)
Z
 2jruj2 dV D �2h ru; ur iL2 �2Œ ru; ur �L2 �

Z
 2gu dV;

when Lu D g on � and  2 C 1
0 .�/. This leads to a minor change in (9.6):

(9.76)
1

2

Z
 2jruj2 dV � .2C C0/

Z
juj2jr j2 dV �

Z
 2gu dV;

where C0 is determined by the operator norm of .!jk/, relative to the inner prod-
uct h ; i.

From here, the proofs of Lemmas 9.1 and 9.2, and that of Theorem 9.3, go
through without essential change, so we have the sup-norm estimate (9.20). In the
proof of the Harnack inequality, (9.24) is replaced by

(9.77)

Z
 2f 00jruj2 dV C 2h f 0ru;r iL2 C 2Œ f 0ru;r �L2

D �.Lu;  2f 0/:

Hence (9.25) still works if you replace the factor 1=ı2 by .1 C C1/=ı
2, where

again C1 is estimated by the size of .!jk/. Thus Proposition 9.4 extends to our
present case, and hence so does the key regularity result, Theorem 9.5. Let us
record what has been noted so far:

Proposition 9.8. Assume Lu has the form (9.70), where .ajk/ and b satisfy the
hypotheses of Theorem 9.5, and .!jk/ satisfies (9.71). If u 2 H 1.�0/ solves
Lu D 0, then, for every compact O � �0, there is an estimate

(9.78) kukC ˛.O/ � CkukL2.�0/:

The Morrey space estimates go through as before, and the analysis of (9.64) is
also easily modified to incorporate the change in L. Thus we have the following:

Proposition 9.9. The boundary regularity of Theorem 9.7 extends to the opera-
tors L of the form (9.70), under the hypothesis (9.71) on .!jk/.
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Exercises
1. Given the strengthened form of the Harnack inequality, in which the hypothesis (9.21) is

replaced by (9.21a), produce a shorter form of the argument in (9.33)–(9.40) for Hölder
continuity of solutions to Lu D 0.

2. Show that in the statement of Theorem 9.7,
P
@j gj in (9.67) can be replaced by

hC
X

@j gj ; gj 2 Lq.�/; h 2 Lp.�/; q > n; p >
n

2
:

(Hint: Write h D P
@j hj for some hj 2 Lq.�/:)

3. With L given by (9.1), consider

L1 D LCX; X D
X

Aj .x/ @j :

Show that in place of (9.4) and (9.6), we have

v D f .u/ H) L1v D f 0.u/L1u C f 00.u/jruj2

and

1

2

Z
 2jruj2 dV �

Z �
4jr j2 C 2A 2

�
juj2 dV �

Z
 2u.L1u/ dV;

where A.x/2 D P
Aj .x/

2.
Extend the sup-norm estimate of Theorem 9.3 to this case, given Aj 2 L1.�/.

4. With L given by (9.1), suppose u solves

Lu C
X

@j

�
Aj .x/u

�C C.x/u D g on � 2 Rn:

Supppose we have

Aj 2 Lq.�/; C 2 Lp.�/; g 2 Lp.�/; p >
n

2
; q > n;

and suppose we also have

kukH 1.�/ C kukL1.�/ � K; u
ˇ̌
@�

D f 2 Lip.@�/:

Show that, for some � > 0; u 2 C�.�/. (Hint: Apply Theorem 9.7, together with
Exercise 2.)

10. The Dirichlet problem for quasi-linear elliptic equations

The primary goal in this section is to establish the existence of smooth solutions
to the Dirichlet problem for a quasi-linear elliptic PDE of the form

(10.1)
X

Fpj pk
.ru/@j @ku D 0 on �; u D ' on @�:
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More general equations will also be considered. As noted in (7.32), this is the
PDE satisfied by a critical point of the function

(10.2) I.u/ D
Z

�

F.ru/ dx

defined on the space

V 1
' D fu 2 H 1.�/ W u D ' on @�g:

Assume ' 2 C1.�/. We assume F is smooth and satisfies

(10.3) A1.p/j�j2 �
X

Fpj pk
.p/�j �k � A2.p/j�j2;

with Aj W Rn ! .0;1/, continuous.
We use the method of continuity, showing that, for each � 2 Œ0; 1�, there is a

smooth solution to

(10.4) ˆ� .D
2u/ D 0 on�; u D '� on @�;

where ˆ1.D
2u/ D ˆ.D2u/ is the left side of (10.1) and '1 D '. We arrange a

situation where (10.4) is clearly solvable for � D 0. For example, we might take
'� � ' and

(10.5) ˆ� .D
2u/ D �ˆ.D2u/C .1 � �/�u D

X
Ajk

� .ru/ @j @ku;

with

(10.6) Ajk
� .p/ D @pj

@pk

h
�F.p/C 1

2
.1 � �/jpj2

i
:

Another possibility is to take

(10.7) ˆ� .D
2u/ D ˆ.D2u/; '� .x/ D �'.x/;

since at � D 0 we have the solution u D 0 in this case.
Let J be the largest interval containing f0g such that (10.7) has a solution

u D u� 2 C1.�/ for each � 2 J . We will show that J is all of Œ0; 1� by showing
it is both open and closed in Œ0; 1�. We will deal specifically with the method
(10.5)–(10.6), but a similar argument can be applied to the method (10.7).

Demonstrating the openness of J is the relatively easy part.

Lemma 10.1. If �0 2 J , then, for some " > 0; Œ�0; �0 C "/ � J .
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Proof. Fix k large and define

(10.8) ‰ W Œ0; 1� � V k
' �! H k�2.�/

by ‰.�; u/ D ˆ� .D
2u/, where

(10.9) V k
' D fu 2 H k.�/ W u D ' on @�g:

This map is C 1, and its derivative with respect to the second argument is

(10.10) D2‰.�0; u/v D Lv;

where

(10.11) L W V k
0 D H k \H 1

0 �! H k�2.�/

is given by

(10.12) Lv D
X

@jA
jk
�0
.ru.x// @kv:

L is an elliptic operator with coefficients in C1.�/ when u D u�0
, clearly an

isomorphism in (10.11). Thus, by the inverse function theorem, for � close enough
to �0, there will be u� , close to u�0

, such that ‰.�; u� / D 0. Since u� 2 H k.�/

solves the regular elliptic boundary problem (10.4), if we pick k large enough, we
can apply the regularity result of Theorem 8.4 to deduce u� 2 C1.�/.

The next task is to show that J is closed. This will follow from a sufficient a
priori bound on solutions u D u� ; � 2 J . We start with fairly weak bounds. First,
the maximum principle implies

(10.13) kukL1.M/ D k'kL1.@M/;

for each u D u� ; � 2 J .
Next we estimate derivatives. Each w` D @`u satisfies

(10.14)
X

@jA
jk.ru/@kw` D 0;

where Ajk.ru/ is given by (10.6); we drop the subscript � .
The next ingredient is a “boundary gradient estimate,” of the form

(10.15) jru.x/j � K; for x 2 @�;

As we have seen in the discussion of the minimal surface equation in � 7, whether
this holds depends on the nature of the PDE and the region M . For now, we will
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make (10.15) a hypothesis. Then the maximum principle applied to (10.14) yields
a uniform bound

(10.16) krukL1.�/ � K:

For the next step of the argument, we will suppose for simplicity that � D
T n�1 � Œ0; 1�, for the present, and discuss the modification of the argument for
the general case later. Under this assumption, in addition to (10.14), we also have

(10.17) w` D @`' on @�; for 1 � ` � n � 1;

since @` is tangent to @� for 1 � ` � n � 1.
Now we can say that Theorem 9.7 applies to u` D @`u, for 1 � ` � n � 1.

Thus there is an r > 0 for which we have bounds

(10.18) kw`kC r .�/ � K; 1 � ` � n � 1:

Let us note that Theorem 9.7 yields the bounds

(10.19) krw`kM
p
2

.�/ � K 0; 1 � ` � n � 1;

which are more precise than (10.18); here 1 � r D n=p. Away from the bound-
ary, such a property on all first derivatives of a solution to (10.1) leads to the
applicability of Schauder estimates to establish interior regularity.

In the case of examining regularity at the boundary, more work is required since
(10.18) does not include a derivative @n transverse to the boundary. Now, using
(10.4), we can solve for @2

nu in terms of @j @ku, for 1 � j � n; 1 � k � n � 1.
This will lead to the estimate

(10.20) kukC rC1.�/ � K;

as we will now show.
In order to prove (10.20), note that, by (10.19),

(10.21) @k@`u 2 M p
2 .�/; for 1 � ` � n � 1; 1 � k � n;

where p 2 .n;1/ and r 2 .0; 1/ are related by 1 � r D n=p. Now the PDE
(10.4) enables us to write @2

nu as a linear combination of the terms in (10.21),
with L1.�/-coefficients. Hence

(10.22) @2
nu 2 M p

2 .�/;

so

(10.23) r.@nu/ 2 M p
2 .�/ � M p.�/:
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Morrey’s lemma (Lemma A.1) states that

(10.24) rv 2 M p.�/ H) v 2 C r.�/ if r D 1 � n

p
2 .0; 1/:

Thus

(10.25) @nu 2 C r .�/;

and this together with (10.18) yields (10.20). From this, plus the Morrey space
inclusions (10.21)–(10.22), we have the hypothesis (8.60) of Theorem 8.4, with
r > 0 and 	 D 1. Thus, by Theorem 8.4, and the associated estimate (8.73), we
deduce estimates

(10.26) kukH k.�/ � Kk;

for k D 2; 3; : : : . Therefore, if Œ0; �1/ � J , as �� % �1, we can pick a subse-
quence of u��

converging weakly in H kC1.�/, hence strongly in H k.�/. If k is
picked large enough, the limit u1 is an element of H kC1.�/, solving (10.4) for
� D �1, and furthermore the regularity result Theorem 8.4 is applicable; hence
u1 2 C1.�/. This implies that J is closed.

Hence we have a proof of the solvability of the boundary problem (10.1), for
the special case � D T n�1 � Œ0; 1�, granted the validity of the boundary gradient
estimate (10.15).

As noted, to have @`; 1 � ` � n� 1, tangent to @M , we required� D T n�1 �
Œ0; 1�. For � � Rn, if X D P

b`@` is a smooth vector field tangent to @�, then
uX D Xu solves, in place of (10.14),

(10.27)
X

@jA
jk.ru/ @kuX D

X
@jFj ;

with Fj 2 L1 calculable in terms of ru. Thus Theorem 9.7 still applies, and the
rest of the argument above extends easily. We have the following result.

Theorem 10.2. Let F W Rn ! R be a smooth function satisfying (10.3). Let
� � Rn be a bounded domain with smooth boundary. Let ' 2 C1.@�/. Then
the Dirichlet problem (10.1) has a unique solution u 2 C1.�/, provided the
boundary gradient estimate (10.15) is valid for all solutions u D u� to (10.4), for
� 2 Œ0; 1�.

Proof. Existence follows from the fact that J is open and closed in Œ0; 1�, and
nonempty, as 0 2 J . Uniqueness follows from the maximum principle argument
used to establish Proposition 7.2.

Let us record a result that implies uniqueness.
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Proposition 10.3. Let � be any bounded domain in Rn. Assume that u� 2
C1.�/\ C.�/ are real-valued solutions to

(10.28) G.ru�; @
2u�/ D 0 on �; u� D g� on @�;

for � D 1; 2, where G D G.p; �/; � D .�jk/. Then, under the ellipticity hypoth-
esis

(10.29)
X @G

@�jk

.p; �/ �j �k � A.p/j�j2 > 0;

we have

(10.30) g1 � g2 on @� H) u1 � u2 on�:

Proof. Same as Proposition 7.2. As shown there, v D u2 � u1 satisfies the iden-
tity Lv D G.ru2; @

2u2/ � G.ru1; @
2u1/, and L satisfies the conditions for the

maximum principle, in the form of Proposition 2.1 of Chap. 5, given (10.29).

It is also useful to note that we can replace the first part of (10.28) by

(10.31) G.ru2; @
2u2/ � G.ru1; @

2u1/;

and the maximum principle still yields the conclusion (10.30).
Since the boundary gradient estimate was verified in Proposition 7.5 for the

minimal surface equation whenever � � R2 has strictly convex boundary, we
have existence of smooth solutions in that case. In fact, the proof of Proposition
7.5 works when � � Rn is strictly convex, so that @� has positive Gauss
curvature everywhere. We hence have the following result.

Theorem 10.4. If � � Rn is a bounded domain with smooth boundary that is
strictly convex, then the Dirichlet problem

(10.32)
˝ru

˛2
�u �

X
j;k

@u

@xj

@u

@xk

@2u

@xj @xk

D 0; u D g on @�;

for a minimal hypersurface, has a unique solution u 2 C1.�/, given
g 2 C1.@�/.

In Proposition 7.1, it was shown that when n D 2, the equation (10.32) has a
solution u 2 C1.�/ \ C.�/, and Proposition 7.2 showed that such a solution
must be unique. Hence in the case n D 2, Theorem 10.4 implies the regularity at
@� for this solution, given ' 2 C1.@�/.

We now look at other cases where the boundary gradient estimate can be ver-
ified, by extending the argument used in Proposition 7.5. Some terminology is
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useful. Let us be given a nonlinear operator F.D2u/, and g 2 C1.@�/. We say
a function BC 2 C 2.�/ is an upper barrier at y 2 @� (for g), provided

(10.33)
F.D2BC/ � 0 on�; BC 2 C 1.�/;

BC � g on @�; BC.y/ D g.y/:

Similarly, we say B� 2 C 2.�/ is a lower barrier at y (for g), provided

(10.34)
F.D2B�/ � 0 on�; B� 2 C 1.�/;

B� � g on @�; B�.y/ D g.y/:

An alternative expression is that g has an upper (or lower) barrier at y. Note well
the requirement that B˙ belong to C 1.�/. We say g has upper (resp., lower) bar-
riers along @� if there are upper (resp., lower) barriers for g at each y 2 @�, with
uniformly bounded C 1.�/-norms. The following result parallels Proposition 7.5.

Proposition 10.5. Let � � Rn be a bounded region with smooth boundary.
Consider a nonlinear differential operator of the form F.D2u/ D G.ru; @2u/,
satisfying the ellipticity hypothesis (10.29). Assume that g has upper and lower
barriers along @�, whose gradients are everywhere bounded by K . Then a
solution u 2 C 2.�/\ C.�/ to F.D2u/ D 0; u D g on @�, satisfies

(10.35) ju.y/� u.x/j � 2Kjy � xj; y 2 @�; x 2 �:

If u 2 C 2.�/\ C 1.�/, then

(10.36) jru.x/j � 2K; x 2 �:

Proof. Same as Proposition 7.5. If B˙y are the barriers for g at y 2 @�, then

B�y.x/ � u.x/ � BCy.x/; x 2 �;

which readily yields (10.35). Note that w` D @`u satisfies the PDE

(10.37)
X @G

@�jk

@j @kw` C
X @G

@pj

@jw` D 0 on �;

so the maximum principle yields (10.36).

Now, behind the specific implementation of Proposition 7.5 is the fact that
when @� is strictly convex and g 2 C1.@�/, there are linear functions B˙y ,
satisfying B�y � g � BCy on @�; B�y.y/ D g.y/ D BCy.y/, with bounded
gradients. Such functions B˙y are annihilated by operators of the form (10.1).
Therefore, we have the following extension of Theorem 10.4.
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Theorem 10.6. If � � Rn is a bounded domain with smooth boundary that
is strictly convex, then the Dirichlet problem (10.1) has a unique solution u 2
C1.�/, given ' 2 C1.@�/, provided the ellipticity hypothesis (10.3) holds.

We next consider the construction of upper and lower barriers whenF.D2u/ DP
Ajk.ru/ @j@ku satisfies the uniform ellipticity condition

(10.38) �0j�j2 �
X

Ajk.p/�j �k � �1j�j2;

for some �j 2 .0;1/, independent of p. Given z 2 Rn; R D jy� zj; ˛ 2 .0;1/,
set

(10.39) Ey;z.x/ D e�˛r2 � e�˛R2

; r2 D jx � zj2:

A calculation, used already in the derivation of maximum principles in � 2 of
Chap. 5, gives

(10.40)

X
Ajk.p/ @j @kEy;z.x/

D e�˛r2
h
4˛2Ajk.p/.xj � zj /.xk � zk/� 2˛Aj

j .p/
i
:

Under the hypothesis (10.38), we have

(10.41)
X

Ajk.p/ @j @kEy;z.x/ � 2˛e�˛r2 �
2˛�0jx � zj2 � n�1

�
:

To make use of these functions, we proceed as follows. Given y 2 @�, pick
z D z.y/ 2 Rn n � such that y is the closest point to z on �. Given that � is
compact and @� is smooth, we can arrange that jy � zj D R, a positive constant,
with the property thatR�1 is greater than twice the absolute value of any principal
curvature of @� at any point. Note that, for any choice of ˛ > 0; Ey;z.y/ D 0 and
Ey;z.x/ < 0 for x 2 � n fyg. From (10.41) we see that if ˛ is picked sufficiently
large (namely, ˛ > n�1=2R

2�0), then

(10.42)
X

Ajk.p/ @j @kEy;z.x/ > 0; x 2 �;

for all p, since jx � zj � R. Now, given g 2 C1.@�/, we can find K 2 .0;1/

such that, for all x 2 @�,

(10.43) B˙y.x/ D g.y/
KEy;z.x/ H) B�y.x/ � g.x/ � BCy.x/:

Consequently, we have upper and lower barriers for g along @�. Therefore, we
have the following existence theorem.
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Theorem 10.7. Let� � Rn be any bounded region with smooth boundary. If the
PDE (10.1) is uniformly elliptic, then (10.1) has a unique solution u 2 C1.�/
for any ' 2 C1.@�/.

Certainly the equation (10.32) for minimal hypersurfaces is not uniformly el-
liptic. Here is an example of a uniformly elliptic equation. Take

(10.44) F.p/ D
�p

1C jpj2 � a
�2 D jpj2 � 2a

p
1C jpj2 C 1C a2;

with a 2 .0; 1/. This models the potential energy of a stretched membrane, say
a surface S � R3, given by z D u.x/, with the property that each point in S is
constrained to move parallel to the z-axis. Compare with (1.5) in Chap. 2.

It is also natural to look at the variational equation for a stretched membrane
for which gravity also contributes to the potential energy. Thus we replace F.p/
in (10.44) by

(10.45) F #.u; p/ D F.p/C au;

where a is a positive constant. This is of a form not encompassed by the class
considered so far in this section. The PDE for u in this case has the form

(10.46) div F #
p.u;ru/� F #

u .u;ru/ D 0;

which, when F #.u; p/ has the form (10.45), becomes

(10.47)
X

Fpj pk
.ru/ @j@ku � a D 0:

We want to extend the existence argument to this case, to produce a solution u 2
C1.�/, with given boundary data ' 2 C1.@�/. Using the continuity method,
we need estimates parallel to (10.13)–(10.20). Now, since a > 0, the maximum
principle implies

(10.48) sup
x2�

u.x/ D sup
y2@�

'.y/:

To estimate kukL1 , we also need control of inf� u.x/. Such an estimate will
follow if we obtain an estimate on krukL1.�/. To get this, note that the equation
(10.14) for w` D @`u continues to hold. Again the maximum principle applies, so
the boundary gradient estimate (10.15) continues to imply (10.16). Furthermore,
the construction of upper and lower barriers in (10.39)–(10.43) is easily extended,
so one has such a boundary gradient estimate.

Now one needs to apply the DeGiorgi–Nash–Moser theory. Since (10.14) con-
tinues to hold, this application goes through without change, to yield (10.20), and
the argument producing (10.26) also goes through as before. Thus Theorem 10.7
extends to PDE of the form (10.47).
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One might consider more general force fields, replacing the potential energy
function (10.45) by

(10.49) F #.u; p/ D F.p/C V.u/:

Then the PDE for u becomes

(10.50)
X

Fpj pk
.ru/@j @ku � V 0.u/ D 0:

In this case, w` D @`u satisfies

(10.51)
X

@jA
jk.ru/@kw` � V 00.u/w` D 0:

This time, we won’t start with an estimate on kukL1 , but we will aim directly for
an estimate on krukL1 , which will serve to bound kukL1 , given that u D ' on
@�.

The maximum principle applies to (10.51), to yield

(10.52) krukL1.�/ D sup
y2@�

jru.y/j; provided V 00.u/ � 0:

Next, we check whether the barrier construction (10.39)–(10.43) yields a bound-
ary gradient estimate in this case. Having (10.43) (with g D '), we want

(10.53) H.D2BCy/ � H.D2u/ � H.D2B�y/ on �;

in place of (10.42), where H.D2u/ is given by the left side of (10.50), and we
want this sequence of inequalities together with (10.43) to yield

(10.54) B�y.x/ � u.x/ � BCy.x/; x 2 �:

To obtain (10.53), note that we can arrange the left side of (10.42) to exceed a
large constant, and also a large multiple of Ey;z.x/. Note that the middle quentity
in (10.53) is zero, so we want H.D2BCy/ � 0 and H.D2B�y/ � 0, on �. We
can certainly achieve this under the hypothesis that there is an estimate

(10.55) jV 0.u/j � A1 C A2juj:

In such a case, we have (10.53). To get (10.54) from this, we use the following
extension of Proposition 10.3.

Proposition 10.8. Let � � Rn be bounded. Consider a nonlinear differential
operator of the form

(10.56) H.x;D2u/ D G.x; u;ru; @2u/;
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where G.x; u; p; �/ satisfies the ellipticity hypothesis (10.29), and

(10.57) @uG.x; u; p; �/ � 0:

Then, given u� 2 C 2.�/\ C.�/,

(10.58) H.D2u2/ � H.D2u1/ on �; u1 � u2 on @� H) u1 � u2 on�:

Proof. Same as Proposition 10.3. For the relevant maximum principle, replace
Proposition 2.1 of Chap. 5 by Proposition 2.6 of that chapter.

To continue our analysis of the PDE (10.50), Proposition 10.8 applies to give
(10.53) ) (10.54), provided V 00.u/ � 0. Consequently, we achieve a bound on
krukL1.�/, and hence also on kukL1.�/, provided V.u/ satisfies the hypotheses
stated in (10.52) and (10.55).

It remains to apply the DeGiorgi–Nash–Moser theory. In the simplified case
where � D T n�1 � Œ0; 1�, we obtain (10.18), this time by regarding (10.51)
as a nonhomogeneous PDE for w`, of the form (9.67), with one term @jgj ,
namely @`V

0.u/. The L1-estimate we have on u is more than enough to apply
Theorem 9.7, so we again have (10.18)–(10.19). Next, the argument (10.21)–
(10.23) goes through, so we again have (10.20) and the Morrey space inclusions
(10.21)–(10.22). Hence the hypothesis (8.60) of Theorem 8.4 holds, with r > 0

and 	 D 1. Theorem 8.4 yields

(10.59) kukH k.�/ � Kk;

and a modification of the argument parallel to the use of (10.27) works for
� � Rn.

The estimates above work for

(10.60) �
X

Fpj pk
.ru/@j @ku � �V 0.u/C .1 � �/�u D 0; u

ˇ̌
@�

D ';

for all � 2 Œ0; 1�. Also, each linearized operator is seen to be invertible, provided
V 00.u/ � 0. Thus all the ingredients needed to use the method of continuity are in
place. We have the following existence result.

Proposition 10.9. Let � � Rn be any bounded domain with smooth boundary.
If the PDE

(10.61)
X

Fpj pk
.ru/@j @ku � V 0.u/ D 0; u D ' on @�;

is uniformly elliptic, and if V 0.u/ satisfies

(10.62) jV 0.u/j � A1 C A2juj; V 00.u/ � 0;

then (10.61) has a unique solution u 2 C1.�/, given ' 2 C1.@�/.
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Consider the case V.u/ D Au2. This satisfies (10.62) if A � 0 but not if
A < 0. The case A < 0 corresponds to a repulsive force (away from u D 0) that
increases linearly with distance. The physical basis for the failure of (10.61) to
have a solution is that if u.x/ takes a large enough value, the repulsive force due
to the potential V cannot be matched by the elastic force of the membrane. If
Fpj pk

.p/ is independent of p and 2A < 0 is an eigenvalue of the linear operatorP
Fpj pk

@j @k , then certainly (10.61) is not solvable.
On the other hand, if V.u/ D Au2 with 0 > A > �`0, where `0 is less

than the smallest eigenvalue of all operators
P
Ajk @j @k with coefficients satis-

fying (10.38), then one can still hope to establish solvability for (10.61), in the
uniformly elliptic case. We will not pursue the details on such existence results.

We now consider more general equations, of the form

(10.63) H.D2u/ D
X

Fpj pk
.ru/ @j @ku C g.x; u;ru/ D 0; u

ˇ̌
@�

D ':

Consider the family

(10.64) H� .D
2u/ D

X
Fpj pk

.ru/ @j@ku C �g.x; u;ru/ D 0; u
ˇ̌
@�

D �':

We will prove the following:

Proposition 10.10. Assume that the equation (10.63) satisfies the ellipticity con-
dition (10.3) and that @ug.x; u; p/ � 0. Let � � Rn be a bounded domain with
smooth boundary, and let ' 2 C1.@�/ be given. Assume that, for � 2 Œ0; 1�, any
solution u D u� to (10.64) has an a priori bound in C 1.�/. Then (10.63) has a
solution u 2 C1.�/.

Proof. For w` D @`u, we have, in place of (10.14),

(10.65)
X

@jA
jk.ru/ @kw` D �@`g.x; u;ru/:

The C 1-bound on u yields an L1-bound on g.x; u;ru/, so, as in the proof of
Proposition 10.9, we can use Theorem 9.7 and proceed from there to obtain high-
order Sobolev estimates on solutions to (10.64).

Thus the largest interval J in Œ0; 1� that contains � D 0 and such that (10.64)
is solvable for all � 2 J is closed. The hypothesis @ug � 0 implies that the
linearized equation at � D �0 is uniquely solvable, so, as in Lemma 10.1, J is
open in Œ0; 1�, and the proposition is proved.

A simple example of (10.63) is the equation for a surface z D u.x/ of given
constant mean curvatureH :

(10.66) hrui�3
h
hrui2�u �D2u.ru;ru/

i
C nH D 0; u D ' on @�;
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which is of the form (10.63), with F.p/ D �
1C jpj2�1=2

and g.x; u; p/ D nH .
Note that members of the family (10.64) are all of the same type in this case,
namely equations for surfaces with mean curvature �H . We see that Proposition
10.3 applies to this equation. This implies uniqueness of solutions to (10.66),
provided they exist, and also gives a tool to estimate L1-norms, at least in some
cases, by using equations of graphs of spheres of radius 1=H as candidates to
bound u from above and below. We can also use such functions to construct barri-
ers, replacing the linear functions used in the proof of Proposition 7.5. This change
means that the class of domains and boundary data for which upper and lower bar-
riers can be constructed is different when H ¤ 0 than it is in the minimal surface
case H D 0.

Note that if u solves (10.66), then w` D @`u solves a PDE of the form
(10.14). Thus the maximum principle yields krukL1.�/ D sup@� jru.y/j. Con-
sequently, we have the solvability of (10.66) whenever we can construct barriers
to prove the boundary gradient estimate.

The methods for constructing barriers described above do not exhaust the re-
sults one can obtain on boundary gradient estimates, which have been pushed
quite far. We mention a result of H. Jenkins and J. Serrin. They have shown that the
Dirichlet problem (10.66) for surfaces of constant mean curvature H is solvable
for arbitrary ' 2 C1.@�/ if and only if the mean curvature ~.y/ of @� � Rn

satisfies

(10.67) ~.y/ � n

n� 1
jH j; 8y 2 @�:

In the special case n D 2;H D 0, this implies Proposition 7.3 in this chapter.
See [GT] and [Se2] for proofs of this and extensions, including variable mean
curvature H.x/, as well as extensive general discussions of boundary gradient
estimates. We will have a little more practice constructing barriers and deducing
boundary gradient estimates in �� 13 and 15 of this chapter. See the proofs of
Lemma 13.12 and of the estimate (15.54).

Results discussed above extend to more general second-order, scalar,
quasi-linear PDE. In particular, Proposition 10.10 can be extended to all equations
of the form

(10.68)
X

ajk.x; u;ru/ @j @ku C b.x; u;ru/ D 0; u
ˇ̌
@�

D ':

Let ' 2 C1.@�/ be given. As long as it can be shown that, for each � 2 Œ0; 1�, a
solution to

(10.69)
X

ajk.x; u;ru/ @j @ku C �b.x; u;ru/ D 0; u
ˇ̌
@�

D �';

has an a priori bound in C 1.�/, then (10.68) has a solution u 2 C1.�/. This
result, due to O. Ladyzhenskaya and N. Ural’tseva, is proved in [GT] and [LU].
These references, as well as [Se2], also discuss conditions under which one can
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establish a boundary gradient estimate for solutions to such PDE, and when one
can pass from that to a C 1.�/-estimate on solutions. The DeGiorgi–Nash–Moser
estimates are still a major analytical tool in the proof of this general result, but
further work is required beyond what was used to prove Proposition 10.10.

Exercises
1. Carry out the construction of barriers for the equation of a surface of constant mean cur-

vature mentioned below (10.66) and thus obtain some existence results for this equation.
Compare these results with the result of Jenkins and Serrin, stated in (10.67).

Exercises 2–4 deal with quasi-linear elliptic equations of the form

(10.70)
X

@jA
jk.x; u/@ku D 0 on �; u

ˇ̌
@�

D ':

Assume there are positive functions Aj such that

A1.u/j�j2 �
X

Ajk.x;u/�j �k � A2.u/j�j2:

2. Fix ' 2 C1.@�/. Consider the operator ˆ.u/ D v, the solution to

X
@jA

jk.x; u/@kv D 0; v
ˇ̌
@�

D ':

Show that, for some r > 0,

ˆ W C.�/ �! C r .�/;

continuously. Use the Schauder fixed-point theorem to deduce that ˆ has a fixed point
in fu 2 C.�/ W sup juj � sup j'jg \ C r .�/.

3. Show that this fixed point lies in C1.�/.
4. Examine whether solutions to (10.70) are unique.
5. Extend results on (10.1) to the case

(10.71)
X

@jFpj
.x;ru/ D 0; u

ˇ̌
@�

D ';

arising from the search for critical points of I.u/ D R
� F.x;ru/ dx, generalizing the

case considered in (10.2).

In Exercises 6–9, we consider a PDE of the form

(10.72)
X

@j a
j .x; u;ru/C b.x; u/ D 0 on �:

We assume aj and b are smooth in their arguments and

jaj .x; u; p/j � C.u/hpi; jrpa
j .x; u; p/j � C.u/:

We make the ellipticity hypothesis

X @aj

@pk

.x;u; p/�j �k � A.u/j�j2; A.u/ > 0:
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6. Show that if u 2 H1.�/\ L1.�/ solves (10.72), then u solves a PDE of the form

X
@jA

jk .x/@ku C @j c
j .x; u/C b.x; u/ D 0;

with
Ajk 2 L1;

X
Ajk.x/�j �k � Aj�j2:

(Hint: Start with

aj .x; u; p/ D aj .x; u; 0/C
X

k

eAjk.x;u; p/pk ;

eAjk.x;u; p/ D
Z 1

0

@aj

@pk

.x; u; sp/ ds:/

7. Deduce that if u 2 H1.�/ \ L1.�/ solves (10.72), then u is Hölder continuous on
the interior of �.

8. If� is a smooth, bounded region in Rn and u 2 H1.�/\L1.�/ satisfies (10.72) and
u
ˇ̌
@�

D ' 2 C 1.@�/, show that u is Hölder continuous on � and that ru 2 M
q
2 .�/,

for some q > n.
9. If u 2 C 2.�/ satisfies (10.72), show that u` D @`u satisfies

@j a
j
pk
.x; u;ru/ @ku` C @j

�
aj

u .x; u;ru/u`

�
C@j a

j
x`
.x; u;ru/C bu.x;u/u` C bx`

.x; u/ D 0:

Discuss obtaining estimates on u in C 1Cr .�/, given estimates on u in C 1.�/.

11. Direct methods in the calculus of variations

We study the existence of minima (or other stationary points) of functionals of the
form

(11.1) I.u/ D
Z

�

F.x; u;ru/ dV.x/;

on some set of functions, such as fu 2 B W u D g on @�g, where B is a suitable
Banach space of functions on �, possibly taking values in RN , and g is a given
smooth function on @�. We assume � is a compact Riemannian manifold with
boundary and

(11.2) F W RN � .RN ˝ T ��/ �! R is continuous:

Let us begin with a fairly direct generalization of the hypotheses (1.3)–(1.8)
made in � 1. Thus, let

(11.3) V D fu 2 H 1.�;RN / W u D g on @�g:
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For now, we assume that, for each x 2 �,

(11.4) F.x; �; �/ W RN � .RN ˝ T �
x �/ �! R is convex;

where the domain has its natural linear structure. We also assume

(11.5) A0j�j2 � B0juj � C0 � F.x; u; �/;

for some positive constants A0; B0; C0, and

(11.6) jF.x; u; �/ � F.x; v; �/j � C
�ju � vj C j� � �j��j�j C j�j C 1

�
:

These hypotheses will be relaxed below.

Proposition 11.1. Assume � is connected, with nonempty boundary. Assume
I.u/ < 1 for some u 2 V . Under the hypotheses (11.2)–(11.6), I has a min-
imum on V .

Proof. As in the situation dealt with in Proposition 1.2, we see that I W V ! R is
Lipschitz continuous, bounded below, and convex. Thus, if ˛0 D infV I.u/, then

(11.7) K" D fu 2 V W ˛0 � I.u/ � ˛0 C "g

is, for each " 2 .0; 1�, a nonempty, closed, convex subset of V . Hence K" is
weakly compact in H 1.�;RN /. Hence

T
">0K" D K0 ¤ ;, and inf I.u/ is

assumed onK0.

We will state a rather general result whose proof is given by the argument
above.

Proposition 11.2. Let V be a closed, convex subset of a reflexive Banach space
W , and let ˆ W V ! R be a continuous map, satisfying:

inf
V
ˆ D ˛0 2 .�1;1/;(11.8)

9 b > ˛0 such that ˆ�1
�
Œ˛0; b�

�
is bounded in W;(11.9)

8 y 2 .˛0; b�; ˆ�1
�
Œ˛0; y�

�
is convex.(11.10)

Then there exists v 2 V such thatˆ.v/ D ˛0.

As above, the proof comes down to the observation that, for 0 < " �
b � ˛0; K" is a nested family of subsets of W that are compact when W has
the weak topology. This result encompasses such generalizations of Proposition
11.1 as the following. Given p 2 .1;1/; g 2 C1.@�;RN /, let

(11.11) V D fu 2 H 1;p.�;RN / W u D g on @�g:
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We continue to assume (11.4), but replace (11.5) and (11.6) by

(11.12) A0j�jp � B0juj � C0 � F.x; u; �/;

for some positive A0; B0; C0, and

(11.13) jF.x; u; �/ � F.x; v; �/j � C
�ju � vj C j� � �j��j�j C j�j C 1

�p�1
:

Then we have the following:

Proposition 11.3. Assume � is connected, with nonempty boundary. Take p 2
.1;1/, and assume I.u/ < 1 for some u 2 V . Under the hypotheses (11.2),
(11.4), and (11.11)–(11.13), I has a minumum on V .

It is useful to extend Propositions 11.1 and 11.3, replacing (11.4) by a hypoth-
esis of convexity only in the last set of variables.

Proposition 11.4. Make the hypotheses of Proposition 11.1, or more generally of
Proposition 11.3, but weaken (11.4) to the hypothesis that

(11.14) F.x; u; �/ W RN ˝ T �
x � �! R is convex,

for each .x; u/ 2 � � RN . Then I has a minimum on V .

Proof. Let ˛0 D infV I.u/. The hypothesis (11.12) plus Poincaré’s inequality
imply that ˛0 > �1 and that

(11.15) B D fu 2 V W I.u/ � ˛0 C 1g is bounded in H 1;p.�;RN /:

Pick uj 2 B so that I.uj / ! ˛0. Passing to a subsequence, we can assume

(11.16) uj ! u weakly in H 1;p.�;RN /:

Hence uj ! u strongly in Lp.�;RN /. We want to show that

(11.17) I.u/ D ˛0:

To this end, set

(11.18) ˆ.u; v/ D
Z

�

F.x; u; v/ dV.x/:

With vj D ruj , we have

(11.19) ˆ.uj ; vj / ! ˛0:

Also vj ! v D ru weakly in Lp.�;RN ˝ T �/.
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We can conclude that I.u/ � ˛0, and hence (11.17) holds if we show that

(11.20) ˆ.u; v/ � ˛0:

Now, by hypothesis (11.13) we have

(11.21)
jˆ.uj ; vj / �ˆ.u; vj /j � C

Z

�

juj � uj�jvj j C 1
�p�1

dV.x/

� C 0kuj � ukLp.�/;

so

(11.22) ˆ.u; vj / �! ˛0:

This time, by (11.5), (11.6), and (11.14) we have that, for each " 2 .0; 1�,

(11.23) K" D fw 2 Lp.�;RN ˝ T �/ W ˆ.u; w/ � ˛0 C "g

is a closed, convex subset of Lp.�;RN ˝ T �/. Hence K" is weakly compact,
provided it is nonempty. Furthermore, by (11.22), vj 2 K"j

with "j ! 0, so we
have v 2 K0. This implies (11.20), so Proposition 11.4 is proved.

The following extension of Proposition 11.4 applies to certain constrained
minimization problems.

Proposition 11.5. Let p 2 .1;1/, and let F.x; u; �/ satisfy the hypotheses of
Proposition 11.4. Then, if S is any subset of V (given by (11.11)) that is closed in
the weak topology of H 1;p.�;RN /, it follows that I

ˇ̌
S

has a minimum in S .

Proof. Let ˛0 D infS I.u/, and take uj 2 S; I.uj / ! ˛0. Since (11.15) holds,
we can take a subsequence uj ! u weakly in H 1;p.�;RN /, so u 2 S . We
want to show that I.u/ D ˛0. Indeed, if we form ˆ.u; v/ as in (11.18), then the
argument involving (11.19)–(11.23)continues to hold, and our assertion is proved.

For example, if X � RN is a closed subset, we could take

(11.24) S D fu 2 V W u.x/ 2 X for a.e. x 2 �g;

and Proposition 11.5 applies. As a specific example, X could be a compact Rie-
mannian manifold, isometrically imbedded in RN , and we could take p D 2;

F.x; u;ru/ D jruj2. The resulting minimum of I.u/ is a harmonic map of �
into X . If u W � ! X is a harmonic map, it satisfies the PDE

(11.25) �u � �.u/.ru;ru/ D 0;
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where �.u/.ru;ru/ is a certain quadratic form in ru. See � 2 of Chap. 15 for a
derivation.

A generalization of the notion of harmonic map arises in the study of “liquid
crystals.” One takes

(11.26) F.x; u;ru/ D a1jruj2 Ca2.div u/2 Ca3.u � curl u/2 Ca4ju �curl uj2;

where the coefficients aj are positive constants, and then one minimizes the func-
tional

R
�
F.x; u;ru/ dV.x/ over a set S of the form (11.24), withX DS2 � R3,

namely, over

(11.27) S D fu 2 H 1.�;R3/ W ju.x/j D 1 a.e. on �; u D g on @�g:

In this case, F.x; u; �/ has the form

F.x; u; �/ D
X
j;˛

bj˛.u/�
2
j˛; bj;˛.u/ � a1 > 0;

where each coefficient bj˛.u/ is a polynomial of degree 2 in u. Clearly, this func-
tion is convex in �. The functionF.x; u; �/ does not satisfy (11.6); hence, in going
through the argument establishing Proposition 11.4, we would need to replace the
p D 2 case of (11.22) by

(11.28) jˆ.uj ; vj / �ˆ.u; vj /j � C

Z

�

juj � uj � jvj j2 dV.x/:

The following result covers integrands of the form (11.26), as well as many
others. It assumes a slightly bigger lower bound on F than the previous results,
but it greatly relaxes the hypotheses on how rapidly F can vary.

Theorem 11.6. Assume � is connected, with nonempty boundary. Take p 2
.1;1/, and set

V D fu 2 H 1;p.�;RN / W u D g on @�g:

Assume I.u/ < 1 for some u 2 V . Assume that F.x; u; �/ is smooth in
its arguments and satisfies the convexity condition (11.14) in � and the lower
bound

(11.29) A0j�jp � F.x; u; �/;

for some A0 > 0. Then I has a minimum on V .
Also, if S is a subset of V that is closed in the weak topology ofH 1;p.�;RN /,

then I
ˇ̌
S

has a minimum in S .
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Proof. Clearly, ˛0 D infS I.u/ � 0. With B as in (11.15), pick uj 2 B \ S so
that

(11.30) I.uj / ! ˛0; uj ! u weakly in H 1;p.�;RN /:

Passing to a subsequence, we can assume uj ! u a.e. on �. We need to show
that

(11.31)
Z

�

F.x; u;ru/ dV � ˛0:

By Egorov’s theorem, we can pick measurable sets E� � E�C1 � � � � in�, of
measure < 2�� , such that uj ! u uniformly on� nE� . We can also arrange that

(11.32) ju.x/j C jru.x/j � C � 2� ; for x 2 � nE� :

Now, we have

(11.33)

Z

�nE�

F.x; u;ru/ dV D
Z

�nE�

F.x; uj ;ruj / dV

C
Z

�nE�

�
F.x; uj ;ru/� F.x; uj ;ruj /

�
dV

C
Z

�nE�

�
F.x; u;ru/� F.x; uj ;ru/

�
dV:

To estimate the second integral on the right side of (11.33), we use the convexity
hypothesis to write

(11.34) F.x; uj ;ru/� F.x; uj ;ruj / � D�F.x; uj ;ru/ � .ru � ruj /:

Now, for each �,

(11.35) D�F.x; uj ;ru/ �! D�F.x; u;ru/; uniformly on � n E� ;

while ru � ruj ! 0 weakly in Lp.�;Rn/, so

(11.36) lim
j !1

Z

�nE�

�
F.x; uj ;ru/� F.x; uj ;ruj /

�
dV D 0:

Estimating the last integral in (11.33) is easy, since

(11.37) F.x; u;ru/� F.x; uj ;ru/ �! 0; uniformly on � n E�:
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Thus, from our analysis of (11.33), we have

(11.38)
Z

�nE�

F.x; u;ru/ dV � lim sup
j !1

Z

�nE�

F.x; uj ;ruj / dV � ˛0;

for all �, and taking � ! 1 gives (11.31). The theorem is proved.

There are a number of variants of the results above. We mention one:

Proposition 11.7. Assume that F is smooth in .x; u; �/, that

(11.39) F.x; u; �/ � 0;

and that

(11.40) F.x; u; �/ W RN ˝ T �
x � �! R is convex,

for each x; u. Suppose

(11.41) u� ! u weakly in H 1;1
loc .�;R

N /:

Then

(11.42) I.u/ � lim inf
�!1 I.u�/:

For a proof, and other extensions, see [Gia] or [Dac]. It is a result of J. Serrin
[Se1] that, in the case where u is real-valued, the hypothesis (11.41) can be
weakened to

(11.43) u�; u 2 H 1;1
loc .�/; u� ! u in L1

loc.�/:

In [Mor2] there is an attempt to extend Serrin’s result to systems, but it was shown
by [Eis] that such an extension is false.

In [Dac] there is also a discussion of a replacement for convexity, due to
Morrey, called “quasi-convexity.” For other contexts in which the convexity hy-
pothesis is absent, and one often looks not for a minimizer but some sort of saddle
point, see [Str2] and [Gia2].

In this section we have obtained solutions to extremal problems, but these so-
lutions lie in Sobolev spaces with rather low regularity. The problem of higher
regularity for such solutions is considered in � 12.

Exercises
1. In Theorem 11.6, take p > n D dim � D N , and consider

S D fu 2 V W det Du D 1; a.e. on �g:
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Show that S is closed in the weak topology of H1;p.�;Rn/ and hence that Theorem
11.6 applies. (Hint: See (6.35)–(6.36) of Chap. 13.)

2. In Theorem 11.6, take p 2 .1;1/; � � Rn; N D 1. Let h 2 C1.�/, and consider

S D fu 2 V W u � h on �g:
Show that S is closed in the weak topology of H1;p.�/ and hence that Theorem 11.6
applies.

Say I
ˇ̌
S

achieves its minimum at u, and suppose you are given that u 2 C.�/, so

O D fx 2 � W u.x/ > h.x/g
is open. Assume also that @F=@�j and @F=@u satisfy convenient bounds. Show that, on
O; u satisfies the PDE

X
j

@jF�j
.x;u;ru/C Fu.x;u;ru/ D 0:

For more on this sort of variational problem, see [KS].

12. Quasi-linear elliptic systems

Here we (partially) extend the study of the scalar equation (10.1) to a study of an
N �N system

(12.1) A
jk

˛ˇ
.ru/@j @kuˇ D 0 on �; u D ' on @�;

where ' 2 C1.@�;RN / is given. The hypothesis of strong ellipticity used
previously is

(12.2)
X

A
jk

˛ˇ
.p/v˛vˇ �j �k � C jvj2j�j2; C > 0;

but many nonlinear results require that Ajk

˛ˇ
.p/ satisfy the very strong ellipticity

hypothesis:

(12.3)
X

A
jk

˛ˇ
.p/�j˛�kˇ � 
j�j2; 
 > 0:

We mention that, in much of the literature, (12.3) is called strong ellipticity and
(12.2) is called the “Legendre–Hadamard condition.”

In the case when (12.1) arises from minimizing the function

(12.4) I.u/ D
Z

�

F.ru/ dx;
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we have

(12.5) A
jk

˛ˇ
.p/ D @pj˛

@pkˇ
F.p/:

In such a case, (12.3) is the statement that F.p/ is a uniformly strongly convex
function of p. If (12.5) holds, (12.1) can be written as

(12.6)
X

j

@jG
j
˛ .ru/ D 0 on �; u D ' on @�I Gj

˛ .p/ D @pj˛
F.p/:

We will assume

(12.7)
a0jpj2 � b0 � F.p/ � a1jpj2 C b1;

jGj
˛ .p/j � C0hpi; jAjk

˛ˇ
.p/j � C1:

These are called “controllable growth conditions.”
If (12.5) holds, then

(12.8)

@jG
j
˛ .ru/� @jG

j
˛ .rv/ D @jAjk

˛ˇ
.x/@k.u

ˇ � vˇ /;

Ajk

˛ˇ
.x/ D

Z 1

0

A
jk

˛ˇ

�
sru C .1 � s/rv� ds:

This leads to a uniqueness result:

Proposition 12.1. Assume � � Rn is a smoothly bounded domain, and assume
that (12.3) and (12.7) hold. If u; v 2 H 1.�;RN / both solve (12.6), then u D v

on �.

Proof. By (12.8), we have

(12.9)
Z

�

Ajk

˛ˇ
.x/ @j .u

˛ � v˛/ @k.u
ˇ � vˇ / dx D 0;

so (12.3) implies @j .u � v/ D 0, which immediately gives u D v.

LetX D P
b`@` be a smooth vector field on�, tangent to @�. If we knew that

u 2 H 2.�/, we could deduce that uX D Xu is the unique solution inH 1.�;RN /

to

(12.10)
X

@jA
jk.ru/ @kuX D

X
@jf

j C g; uX D X' on @�;

where

(12.11)
f j D Ajk.ru/.@kb

`/.@`u/C .@`b
j /G`

˛.ru/;

g D �.@`@j b
`/Gj

˛ .ru/:
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Under the growth hypothesis (12.7), jf j .x/j � C jru.x/j, so kf j kL2.�/ �
CkrukL2.�/. Similarly, kgkL2.�/ � CkrukL2.�/ C C . Hence, we can say that
(12.10) has a unique solution, satisfying

(12.12) kuX kH 1.�/ � C
�kukH 1.�/ C k'kH 2.�/ C 1

�
:

It is unsatisfactory to hypothesize that u belong to H 2.�/, so we replace the
differentiation of (12.6) by taking difference quotients. Let F t

X denote the flow on
� generated by X , and set uh D u ı Fh

X . Then uh extremizes a functional

(12.13) Ih.uh/ D
Z

�

Fh.x;ruh/ dx;

where Fh.x; p/ depends smoothly on .h; x; p/ and F0.x; p/ D F.p/. (In fact,
(12.13) is simply (12.4), after a coordinate change.) Thus uh satisfies the PDE

(12.14) @j .@pj˛
Fh/.x;ruh/ D 0; uh D 'k on @�:

Applying the fundamental theorem of calculus to the difference of (12.14) and
(12.6), we have

(12.15) @jAjk

˛ˇh
.x/ @k

�uˇ

h
� uˇ

h

�
D @jH

j

˛h
.x;ruh/;

where Ajk

˛ˇh
.x/ is as in (12.8), with v D uh, and

(12.16) H
j

˛h
.x; p/ D

Z h

0

d

ds
.@pj˛

Fs/.x; p/ ds:

As in the analysis of (12.10), we have

(12.17) kh�1.uh � u/kH 1.�/ � C
�kukH 1.�/ C k'kH 2.�/ C 1

�
:

Taking h ! 0, we have uX 2 H 1.�;RN /, with the estimate (12.12).
From here, a standard use of ellipticity, parallel to the argument in

(10.21)–(10.25), gives an H 1-bound on a transversal derivative of u; hence
u 2 H 2.�;Rn/, and

(12.18) kukH 2.�/ � C
�kukH 1.�/ C k'kH 2.�/ C 1

�
:

As in the scalar case, one of the keys to the further analysis of a solution to
(12.6) is an examination of regularity for solutions to linear elliptic systems with
L1-coefficients. Thus we consider linear operators of the form
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(12.19) Lu D b.x/�1

nX
j;kD1

@j

�
Ajk.x/b.x/ @ku

�
;

Compare with (9.1). Here u takes values in RN and each Ajk is anN �N matrix,
with real-valued entries Ajk

˛ˇ
2 L1.�/. We assume Ajk

˛ˇ
D A

kj

ˇ˛
. As in (12.3),

we make the hypothesis

(12.20) �1j�j2 �
X

A
jk

˛ˇ
.x/�j˛�kˇ � �0j�j2; �0 > 0;

of very strong ellipticity. Thus Ajk

˛ˇ
defines a positive-definite inner product h ; i

on T � ˝ RN . We also assume

(12.21) 0 < C0 � b.x/ � C1:

Then b.x/ dx D dV defines a volume element, and, for ' 2 C 1
0 .�;R

N /,

(12.22) .Lu; '/ D �
Z

�

hru;r'i dV:

We will establish the following result of [Mey].

Proposition 12.2. Let � � Rn be a bounded domain with smooth boundary, let
fj 2 Lq.�;RN / for some q > 2, and let u be the unique solution in H 1;2

0 .�/ to

(12.23) Lu D
X

@jfj :

Assume L has the form (12.19), with coefficients Ajk 2 L1.�/, satisfying
(12.20), and b 2 C1.�/, satisfying (12.21). Then u 2 H 1;p.�/, for some p > 2.

Proof. We define the affine map

(12.24) T W H 1;p
0 .�/ �! H

1;p
0 .�/

as follows. Let � be the Laplace operator on �, endowed with a smooth
Riemannian metric whose volume element is dV D b.x/ dx, and adjust �0; �1

so (12.20) holds when j�j2 is computed via the inner product . ; / on T � ˝ RN

associated with this metric, so that

(12.25) .�u; '/ D �
Z

�

.ru;r'/ dV:
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Then we define Tw D v to be the unique solution in H 1;2
0 .�/ to

(12.26) �v D �w � ��1
1 Lw C ��1

1

X
@jfj :

The mapping property (12.24) holds for 2 � p � q, by the Lp-estimates of
Chap. 13. In fact, if �v D P

@jgj ; v 2 H 1;2
0 .�/, then

(12.27) krvkLp.�/ � C.p/kgkLp.�/:

If we fix r > 2, then, for 2 � p � r , interpolation yields such an estimate, with

(12.28) C.p/ D C.r/
 ;
1 � �

2
C �

r
D 1

p
; i.e., � D r

p

p � 2
r � 2 :

Hence C.p/ & 1, as p & 2. Now we see that Tw1 � Tw2 D v1 � v2 satisfies

(12.29) �.v1 � v2/ D �
� � ��1

1 L
�
.w1 � w2/ D rg;

where

(12.30) g˛
j D @j .w

˛
1 � w˛

2 / � ��1
1 A

jk

˛ˇ
@k.w

ˇ
1 � w

ˇ
2 /;

and hence, under our hypotheses,

(12.31) kgkLp .�/ �
�
1 � �0

�1

�
kr.w1 � w2/kLp.�/;

so

(12.32) kr.v1 � v2/kLp.�/ � C.p/
�
1 � �0

�1

�
kr.w1 � w2/kLp.�/;

for 2 � p � q. We see that, for some p > 2; C.p/
�
1 � �0=�1

�
< 1; hence T is

a contraction on H 1;p.�/ in such a case. Thus T has a unique fixed point. This
fixed point is u, so we have u 2 H 1;p

0 .�/, as claimed.

Corollary 12.3. With hypotheses as in Proposition 12.2, given a function  2
H 1;q.�/, the unique solution u 2 H 1;2.�/ satisfying (12.23) and

(12.33) u D  on @�

also belongs to H 1;p.�/, for some p > 2.
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Proof. Apply Proposition 12.2 to u �  .

Let us return to the analysis of a solution u 2 H 1.�;RN / to the nonlinear
system (12.6), under the hypotheses of Proposition 12.1. Since we have estab-
lished that u 2 H 2.�;RN /, we have a bound

(12.34) krukLq.�/ � A; q > 2:

In fact, this holds with q D 2n=.n � 2/ if n � 3, and for all q < 1 if n D 2.
As above, if X D P

b` @` is a smooth vector field on �, tangent to @�, then
uX D Xu is the unique solution in H 1.�;RN / to (12.10), and we can now say
that f j 2 Lq.�/. Thus Corollary 12.3 gives

(12.35) Xu 2 H 1;p.�/; for some p > 2;

with a bound, and again a standard use of ellipticity gives an H 1;p-bound on a
transversal derivative of u. We have established the following result.

Theorem 12.4. If u 2 H 1.�;RN / solves (12.6) on a smoothly bounded domain
� 2 Rn, and if the very strong ellipticity hypothesis (12.3) and the controllable
growth hypothesis (12.7) hold, then u 2 H 2;p.�;RN /, for some p > 2, and

(12.36) kukH 2;p.�/ � C
�krukL2.�/ C k'kH 2;q.�/ C 1

�
:

The case n D dim � D 2 of this result is particularly significant, since, for
p > n, H 1;p.�/ � C r.�/; r > 0. Thus, under the hypotheses of Theorem 12.4,
we have u 2 C 1Cr.�/, for some r > 0, if n D 2. Then the material of � 8 applies
to (12.1), so we have the following:

Proposition 12.5. If u 2 H 1.�;RN / solves (12.6) on a smoothly bounded
domain � � R2, and the hypotheses (12.3) and (12.7) hold, then u 2 C1.�/,
provided ' 2 C1.@�/.

When n D 2, we then have existence of a unique smooth solution to (12.1),
given ' 2 C1.@�/. In fact, we have two routes to such existence. We could
obtain a minimizer u 2 H 1.�;RN / for (12.4), subject to the condition that
u
ˇ̌
@�

D ', by the results of � 11, and then apply Proposition 12.5 to deduce
smoothness.

Alternatively, we could apply the continuity method, to solve

(12.37) A
jk

˛ˇ
.ru/@j @kuˇ D 0 on �; u D �' on @�:

This is clearly solvable for � D 0, and the proof that the biggest �-interval
J � Œ0; 1�, containing 0, on which (12.37) has a unique solution u 2 C1.�/,
is both open and closed is accomplished along lines similar to arguments in � 10.
However, unlike in � 10, we do not need to establish a sup-norm bound on ru,
or even on u; we make do with an H 1-norm bound, which can be deduced from
(12.3) as follows.
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If Ajk

˛ˇ
.x/ is given by (12.8), with v D ', we have

(12.38)

Z

�

Ajk

˛ˇ
.x/ @k.u

ˇ � 'ˇ / @j .u
˛ � '˛/ dx

D
Z

�

@jG
j
˛ .r'/.u˛ � '˛/ dx;

for a solution to (12.37) (in case � D 1). Hence

(12.39) 
kr.u � '/k2
L2.�/

� Cku � 'kL2.�/:

Note the different exponents. We have ku � 'k2
L2.�/

� C2kr.u � '/k2
L2.�/

, by
Poincaré’s inequality, so

(12.40) ku � 'kL2.�/ � C


C2

:

Plugging this back into (12.39) gives

(12.41) kr.u � '/k2
L2.�/

� C 2


2C2

;

which implies the desired H 1-bound on u.
Once we have the H 1-bound on u D u� , (12.36) gives an H 2;p-bound for

some p > 2, hence a bound in C 1Cr.�/, for some r > 0. Then the results of � 8
give bounds in higher norms, sufficient to show that J is closed.

Proposition 12.5 does not in itself imply all the results of � 10 when dim� D 2,
since the hypotheses (12.3) and (12.7) imply that (12.1) is uniformly elliptic. For
example, the minimal surface equation is not covered by Proposition 12.5. How-
ever, it is a simple matter to prove the following result, which does (essentially)
contain the n D 2 case of Theorem 10.2.

Proposition 12.6. Assume Ajk

˛ˇ
.p/ is smooth in p and satisfies

(12.42) A
jk

˛ˇ
.p/�j˛�kˇ � C.p/j�j2; C.p/ > 0:

Let � � R2 be a smoothly bounded domain. Then the Dirichlet problem (12.1)
has a unique solution u 2 C1.�/, provided one has an a priori bound

(12.43) kru� kL1.�/ � K;

for all smooth solutions u D u� to (12.37), for � 2 Œ0; 1�.
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Proof. Use the method of continuity, as above. To prove that J is closed, simply
modify F.p/ on fp W jpj � K C 1g to obtain eF .p/, satisfying (12.3) and (12.7).
The solution u� to (12.1) for � 2 J also solves the modified equation, for which
(12.36) works, so as above we have strong norm bounds on u� as � approaches an
endpoint of J .

Recall that, for scalar equations, (12.43) follows from a boundary gradient es-
timate, via the maximum principle. The maximum principle is not available for
general elliptic N �N systems, even under the very strong ellipticity hypothesis,
so (12.43) is then a more severe hypothesis.

Moving beyond the case n D 2, we need to confront the fact that solutions
to elliptic PDE of the form (12.1) need not be smooth everywhere. A number
of examples have been found; we give one of J. Necas [Nec], where Ajk

˛ˇ
.p/ in

(12.1) has the form (12.5), satisfying (12.3), such that F.p/ satisfies jD˛F.p/j �
C˛hpi�j˛jjpj2; 8 ˛ � 0. Namely, take

(12.44)
F.ru/ D 1

2

@uij

@xk

@uij

@xk

C �

2

@uij

@xi

@ukk

@xj

C �
@uij

@xi

@uak

@xa

@u`b

@x`

@ujk

@xb

hrui�2;

where u takes values in Mn�n 	 Rn2
, and we set

(12.45) � D 2
n3 � 1

n.n � 1/.n3 � nC 1/
; � D 4C n�

n2 � nC 1
:

Since �;� ! 0 as n ! 1, we have ellipticity for sufficiently large n. But for
any n,

(12.46) uij .x/ D xixj

jxj
is a solution to (12.1). Thus u is Lipschitz but not C 1 on every neighborhood
of 0 2 Rn. See [Gia] for other examples. Also, when one looks at more general
classes of nonlinear elliptic systems, there are examples of singular solutions even
in the case n D 2; this is discussed further in � 12B.

We now discuss some results known as partial regularity, to the effect that so-
lutions u 2 H 1.�;RN / to (12.1) can be singular only on relatively small subsets
of �.

We will measure how small the singular set is via the Hausdorff s-dimensional
measure Hs , which is defined for s 2 Œ0;1/ as follows. First, given � > 0; S �
Rn, set

(12.47) h�
s;�.S/ D inf

( X
j �1

�
diam Yj

�s W S �
[
j �1

Yj ; diam Yj � �

)
:
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Here diam Yj D supfjx � yj W x; y 2 Yj g. Each set function h�
s;� is an outer

measure on Rn. As � decreases, h�
s;�.S/ increases. Set

(12.48) h�
s .S/ D lim

�!0
h�

s;�.S/:

Then h�
s .S/ is an outer measure. It is seen to be a metric outer measure, that

is, if A;B � Rn and inffjx � yj W x 2 A; y 2 Bg > 0, then h�
s .A [ B/ D

h�
s .A/C h�

s .B/. It follows by a fundamental theorem of Caratheodory that every
Borel set in Rn is h�

s -measurable. For any h�
s -measurable set A, we set

(12.49) Hs.A/ D �sh
�
s .A/; �s D 
s=22�s

�. s
2

C 1/
;

the factor �s being picked so that if k � n is an integer and S � Rn is a smooth, k-
dimensional surface, then Hk.S/ is exactly the k-dimensional surface area of S .
Treatments of Hausdorff measure can be found in [EG, Fed, Fol].

Our next goal will be to establish the following result. Assume n � 3.

Theorem 12.7. If � � Rn is a smoothly bounded domain and u 2 H 1.�;RN /

solves (12.1), then there exists an open�0 � � such that u 2 C1.�0/ and

(12.50) Hr .� n�0/ D 0; for some r < n � 2:

We know from Theorem 12.4 that u 2 H 2;p.�;RN /, for some p > 2. Hence
(12.10) holds for derivatives of u; in particular,

(12.51) u` D @`u H) u` 2 H 1;p.�;RN /

and

(12.52) @jA
jk.ru/@ku` D 0; 1 � ` � n:

Regarding this as an elliptic system for v D .@1u; : : : ; @nu/, we see that to
establish Theorem 12.7, it suffices to prove the following:

Proposition 12.8. Assume that v 2 H 1;p.�;RM /, for some p > 2, and that v
solves the system

(12.53) @jA
jk.x; v/ @kv D 0;

where Ajk

˛ˇ
.x; v/ is uniformly continuous in .x; v/ and satisfies

(12.54) �1j�j2 � A
jk

˛ˇ
.x; v/�j˛�kˇ � �0j�j2; �0 > 0:

Then there is an open �0 � � such that v is Hölder continuous on �0, and
(12.50) holds.
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In turn, we will derive Proposition 12.8 from the following more precise result:

Proposition 12.9. Under the hypotheses of Proposition 12.8, consider the subset
† � � defined by

(12.55) x 2 † ” lim inf
R!0

R�n

Z

BR.x/

jv.y/ � vx;Rj2 dy > 0;

where

(12.56) vx;R D AvgBR.x/ v D 1

Vol BR.x/

Z

BR.x/

v.y/ dy:

Then

(12.57) Hr.†/ D 0; for some r < n � 2;

and† contains a closed subset e† of� such that v is Hölder continuous on�0 D
� n e†.

Note that every point of continuity of v belongs to � n †; it follows from
Proposition 12.9 that v is Hölder continuous on a neighborhood of every point of
continuity, under the hypotheses of Proposition 12.8. As Lemma 12.11 will show,
for this fact we need assume only that u 2 H 1;2, instead of u 2 H 1;p for some
p > 2.

Let us first prove that†, defined by (12.55), has the property (12.57). First, by
Poincaré’s inequality,

(12.58) † �
n
x 2 � W lim inf

R!0
R2�n

Z

BR.x/

jrv.y/j2 dy > 0
o
:

Since rv 2 Lp.�/ for some p > 2, Hölder’s inequality implies

(12.59) † �
n
x 2 � W lim inf

R!0
Rp�n

Z

BR.x/

jrv.y/jp dy > 0
o
:

Therefore, (12.57) is a consequence of the following.

Lemma 12.10. Given w 2 L1.�/; 0 � s < n, let

(12.60) Es D
n
x 2 � W lim sup

r!0

r�s

Z

Br .x/

jw.y/j dy > 0
o
:
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Then

(12.61) HsC".Es/ D 0; 8 " > 0:

It is actually true that Hs.Es/ D 0 (see [EG] and [Gia]), but to shorten the
argument we will merely prove the weaker result (12.61), which will suffice for
our purposes. In fact, we will show that

(12.62) Hs.Esı/ < 1; 8 ı > 0;

where

Esı D
n
x 2 � W lim sup

r!0

r�s

Z

Br .x/

jw.y/j dy � ı
o
:

This implies that HsC".Esı/ D 0; 8 " > 0, and since Es D S
nEs;1=n, this

yields (12.61).
As a tool in the argument, we use the following:

Vitali covering lemma. Let C be a collection of closed balls in Rn (with positive
radius) such that diamB < C0 < 1, for all B 2 C. Then there exists a countable
family F of disjoint balls in C such that

(12.63)
[

B2F
bB �

[
B2C

B;

where bB is a ball concentric with B, with five times its radius.

Sketch of proof. Take Cj D fB 2 C W 2�jC0 � diam B < 21�jC0g. Let F1

be a maximal disjoint collection of balls in C1. Inductively, let Fk be a maximal
disjoint set of balls in

fB 2 Ck W B disjoint from all balls in F1; : : : ;Fk�1g:

Then set F D SFk . One can then verify (12.63).

To begin the proof of (12.62), note that, for each � > 0; Esı is covered by a
collection C of balls Bx of radius rx < �, such that

(12.64)
Z

Bx

jw.y/j dy � ırs
x:

Thus there is a collection F of disjoint balls B� in C (of radius r�) such that
(12.63) holds. In particular, fbB�g covers Esı , so
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(12.65) h�
s;5�.Esı/ � Cn

X
�

rs
� � Cn

ı

Z
S

B�

jw.y/j dy � Cn

ı
kwkL1.�/;

where Cn is independent of �. This proves (12.62) and hence Lemma 12.10.
Thus we have (12.57) in Proposition 12.9. To prove the other results stated in

that proposition, we will establish the following:

Lemma 12.11. Given � 2 .0; 1/, there exist constants

"0 D "0.�; n;M; �
�1
0 �1/; R0 D R0.�; n;M; �

�1
0 �1/;

and furthermore there exists a constant

A0 D A0.n;M; �
�1
0 �1/;

independent of � , such that the following holds. If u 2 H 1.�;RM / solves (12.53)
and if, for some x0 2 � and some

R < R0.x0/ D min.R0; dist.x0; @�//;

we have

(12.66) U.x0; R/ < "
2
0;

where

(12.67) U.x0; R/ D R�n

Z

BR.x0/

ju.y/� ux0;Rj2 dy;

then

(12.68) U.x0; �R/ � 2A0�
2U.x0; R/:

Let us show how this result yields Proposition 12.9. Pick ˛ 2 .0; 1/, and
choose � 2 .0; 1/ such that 2A0�

2�2˛ D 1. Suppose x0 2 � and R < min.R0;

dist.x0; @�//, and suppose (12.66) holds. Then (12.68) implies

U.x0; �R/ � �2˛U.x0; R/:

In particular, U.x0; �R/ < U.x0; R/ < "
2
0, so inductively the implication (12.66)

) (12.68) yields

U.x0; �
kR/ � �2˛kU.x0; R/:
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Hence, for � < R,

(12.69) U.x0; �/ � C
� �
R

�2˛

U.x0; R/:

Note that, for fixedR > 0; U.x0; R/ is continuous in x0, so if (12.66) holds at
x0, then we have U.x;R/ < "2

0 for every x in some neighborhood Br .x0/ of x0,
and hence

U.x; �/ � C
� �
R

�2˛

U.x;R/; x 2 Br .x0/I
that is, we have

(12.70)
Z

B�.x/

ju.y/� ux;�j2 dy � C�nC2˛

uniformly for x 2 Br .x0/. This implies, by Proposition A.2,

(12.71) u 2 C ˛
�
Br .x0/

�
:

In fact, we can say more. Extending some of the preliminary results of � 9, we
have, for a solution u 2 H 1.�/ of (12.53), estimates of the form

(12.72) kruk2
L2.B�=2.x//

� C��2

Z

B�.x/

ju.y/� ux;�j2 dyI

see Exercise 2 below. Consequently, (12.70) implies

(12.73) ru
ˇ̌
Br .x0/

2 M q
2

�
Br .x0/

�
; q D n

1 � ˛
:

which by Morrey’s lemma implies (12.71). Thus, granted Lemma 12.11,
Proposition 12.9 is proved, with

(12.74) �0 D fx0 2 � W inf
R<R0.x0/

U.x0; R/ < "
2
0g;

since clearly † � � n�0 D e†.
The proof of Lemma 12.11 (following the exposition in [Gia]) evolved from

work of E. DeGiorgi [DeG2] and F. Almgren [Alm2] on regularity for minimal
surfaces. It consists of blowing up small neighborhoods of x0 and obtaining a
limiting PDE for a limit of the resulting dilations of u. As a preliminary to the
proof of Lemma 12.11, we first identify the constant A0.

Lemma 12.12. There is a constant A0 D A0.n;M; �1=�0/ such that whenever
b

jk

˛ˇ
are constants satisfying

(12.75) �1j�j2 �
X

b
jk

˛ˇ
�j˛�kˇ � �0j�j2; �0 > 0;
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the following holds. If u 2 H 1
�
B1.0/;RM / solves

(12.76) @j b
jk

˛ˇ
@kuˇ D 0 on B1.0/;

then, for all � 2 .0; 1/,
(12.77) U.0; �/ � A0�

2U.0; 1/:

Proof. For � 2 .0; 1=2�, we have

(12.78) U.0; �/ � �2�n

Z

B�.0/

jru.y/j2 dy � Cn�
2kruk2

L1.B1=2.0//:

On the other hand, regularity for the constant-coefficient, elliptic PDE (12.76)
readily yields an estimate

(12.79) kruk2
L1.B1=2.0// � B0kruk2

L2.B3=4.0//
� B1ku � u0;1k2

L2.B1.0//
;

with Bj D Bj .n;M; �1=�0/, from which (12.77) easily follows.

We now tackle the proof of Lemma 12.11. If the conclusion (12.68) is false,
then there exist � 2 .0; 1/ and x� 2 �; "� ! 0; R� ! 0, and u� 2 H 1.�;RM /,
solving (12.53), such that

(12.80) U�.x� ; R�/ D "2
� ; U�.x� ; �R�/ > 2A0�

2"2
� :

To implement the dilation argument mentioned above, we set

(12.81) v�.x/ D "�1
�

�
u�.x� CR�x/ � u�x� ;R�

�
:

Then v� solves

(12.82) @jA
jk

˛ˇ

�
x� CR�x; "�v�.x/C u�x� ;R�

�
@kv

ˇ
� D 0 on B1.0/:

If we set

(12.83)

V�.0; �/ D ��n

Z

B�.0/

jv�.y/ � v�0;�j2 dy

D "�2
� ��nR�n

�

Z

B�R� .x�/

ju�.y/� u�x�;R�
j2 dy;

we have (since v�0;1 D 0)

(12.84) V�.0; 1/ D kv�k2
L2.B1.0//

D 1; V�.0; �/ > 2A0�
2:
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Passing to a subsequence, we can assume that

(12.85) v� ! v weakly in L2
�
B1.0/;R

M /; "�v� ! 0 a.e. in B1.0/:

Also

(12.86) A
jk

˛ˇ
.x� ; u�x� ;R�

/ �! b
jk

˛ˇ
;

an array of constants satisfying (12.75). The uniform continuity of Ajk

˛ˇ
then im-

plies

(12.87) A
jk

˛ˇ

�
x� CR�x; "�v�.x/C u�x� ;R�

� �! b
jk

˛ˇ
a.e. in B1.0/:

Now, as in (12.72), the fact that v� solves (12.82) implies

(12.88) kv�kH 1.B�.0// � C�; 8 � < 1:

Hence, passing to a further subsequence if necessary, we have

(12.89)
v� �! v strongly in L2

loc

�
B1.0/

�
;

rv� �! rv weakly in L2
loc

�
B1.0/

�
:

Since the functions in (12.87) are uniformly bounded on B1.0/, these results
imply that we can pass to the limit in (12.82), to conclude that

(12.90) @j b
jk

˛ˇ
@kv

ˇ D 0 on B1.0/:

Then Lemma 12.12 implies

(12.91) V.0; �/ � A0�
2V.0; 1/;

which is � A0�
2 by (12.85). On the other hand, (12.89) implies

(12.92) V.0; �/ � 2A0�
2

if (12.80) holds. This contradiction proves Lemma 12.11.
Hence the proof of Proposition 12.9 is complete, so we have Theorem 12.7.
Theorem 12.7 can be extended to a result on partial regularity up to the bound-

ary (see [Gia]).
There is a condition more general than strong convexity on the integrand in

(12.4), known as “quasi-convexity,” under which extrema for (12.4) have been
shown to possess partial regularity of the sort established in Theorem 12.7 (see
[Ev3]).
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There are also some results on regularity everywhere for stationary points of
(12.4) when � has dimension � 3. A notable result of [U] is that such solutions
are smooth on � provided F.ru/ in (12.4), in addition to being strongly convex
in ru and satisfying the controllable growth conditions, depends only on jruj2.
A proof can also be found in [Gia].

Exercises
In Exercises 1–3, we consider an N �N system

(12.93)
X

@jA
jk
˛ˇ
.x/@kuˇ D

X
@j f

˛
j on B1 D fx 2 Rn W jxj < 1g;

under the very strong ellipticity hypothesis (12.20). Assume fj 2 L2.B1/.
1. Show that, with C D C.�0; �1/,

(12.94) krukL2.B1=2/ � CkukL2.B1/ C C
X

kfj kL2.B1/:

(Hint: Extend (9.6).)
2. Let ırv.x/ D v.rx/. Show that, for r 2 .0; 1�,

(12.95) kır .ru/kL2.B1=2/ � Cr�1kır .u � u/kL2.B1/ C C
X

kırfj kL2.B1/;

where u D AvgB1
u. (Hint: First apply a dilation argument to (12.94). Then apply the

result to u � u:) This sort of estimate is called a “Caccioppoli inequality.”
3. Deduce from Exercise 2 that if u 2 H1.�/ solves (12.93), then
(12.96)

kır .ru/kL2.B1=2/ � Ckır .ru/kLq .B1/ C C
X

kırfj kL2.B1/; q D 2n

nC 2
< 2:

This sort of estimate is sometimes called a “reverse Hölder inequality.”
4. Deduce from (12.95) that if u 2 H1.�/ solves (12.93), then, for 0 < r < 1,

(12.97) u 2 C r .B1/; fj 2 Mp
2 .B1/; p D n

1 � r
H) ru 2 Mp

2 .B1=2/:

Compare (9.41)–(9.42).
5. Let C.p/ be the constant in (12.27), in case � D B1. Show that if C.n/

�
1��0=�1

�
<

1, then a solution u 2 H1
0 .�/ to (12.93) is Hölder continuous on B1, provided fj 2

Lq.B1/ for some q > n. Consider the problem of obtaining precise estimates on C.p/
in this case.

12B. Further results on quasi-linear systems

Regularity questions can become more complex when lower-order terms are
added to systems of the form (12.1). In fact, there are extra complications even
for solutions to a semilinear system of the form

(12b.1) Lu C B.x; u;ru/ D f;
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where L is a second-order, linear elliptic differential operator and B.x; u; p/ is
smooth in its arguments. One limitation on what one could possibly prove is given
by the following example of J. Frehse [Freh], namely that

(12b.2) u1.x/ D sin log log jxj�1; u2.x/ D cos log log jxj�1

provides a bounded, weak solution to the 2 � 2 system

(12b.3)
�u1 C 2.u1 C u2/

1C juj2 jruj2 D 0;

�u2 C 2.u2 � u1/

1C juj2 jruj2 D 0;

belonging toH 1.B/, for any ballB � R2, centered at the origin, of radius r < 1.
Evidently, u is not continuous at the origin; one can also see that ru does not
belong to Lp.B/ for any p > 2. (After all, that would force u to be Hölder
continuous.) Thus Theorem 12.4 and Proposition 12.5 do not extend to this case.

The following result shows that if a weak solution to such a semilinear system
as (12b.1) has any Hölder continuity, then higher-order regularity results hold.

Proposition 12B.1. Assume u 2 H 1 solves (12b.1) and B.x; u; p/ is a smooth
function of its arguments, satisfying

(12b.4) jB.x; u; p/j � C hpi2:

Then, given r > 0; s > �1,

(12b.5) u 2 C r ; f 2 C s� H) u 2 C sC2� :

Proof. Write

(12b.6) u D Ef � EB.x; u;ru/; mod C1;

where E 2 OPS�2
1;0 is a parametrix for the elliptic operator L. We have Ef 2

C sC2� , and, since u 2 H 1 ) B.x; u;ru/ 2 L1, we have

EB.x; u;ru/ 2 H 2��;1C"; 8 " > 0; 	 > n"

1C "
:

If s � 0, this implies

(12b.7) u 2 H 2��;1C" \H r��;p ;

for all p < 1, hence

(12b.8) u 2 ŒH 2��;1C";H r��;p �
 ; 8 � 2 .0; 1/:
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Results on such interpolation spaces follow from (6.30) of Chap. 13. If we set
� D 1=2 and take p large enough, we have

(12b.9) u 2 H 1Cr=2��;2C2"; 8 " 2 .0; 1/; 	 > n"

1C "
:

On the other hand, if we set � D .1 � 	/=.2 � r/, (assuming r < 1), we have

(12b.10) u 2 H 1;2q ; 8 q < 1 � 1
2
r

1 � r
;

hence

(12b.11) B.x; u;ru/ 2 Lq ; 8 q < 1 � 1
2
r

1 � r
; e.g., q D 1C r

2
:

Another look at (12b.6) now yields

(12b.12) u 2 H 2;1Cr=2 \H r��;p ; 8p < 1;

provided s � 0, which is an improvement of (12b.7). We can iterate this argument
until we get (12b.5), provided s � 0.

If instead we merely assume s > �1, then, instead of (12b.7), we deduce from
(12b.6) and EB.x; u;ru/ 2 H 2��;1C" that

(12b.13) EB.x; u;ru/ 2 H 2��;1C" \H r��;p

and hence (parallel to (12b.8)–(12b.11)) that

(12b.14)
EB.x; u;ru/ 2

\

2.0;1/

ŒH 2��;1C";H r��;p �


� H 1Cr=2��;2 \H 1;2Cr ;

so another look at (12b.6) gives

u 2 H 1;2Cr ;

hence

(12b.15) B.x; u;ru/ 2 L1Cr=2;

so

(12b.16) EB.x; u;ru/ 2 H 2;1Cr=2 \H r��;p ;

and we can iterate this argument until (12b.5) is proved.
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Note that Proposition 12B.1 applies to the semilinear system (11.25) for a
harmonic map u W � ! X , where X is a submanifold of RN :

(12b.17) �u � �.u/.ru;ru/ D 0:

On the other hand, there are quasi-linear equations with a somewhat similar struc-
ture that also arise naturally in geometry, such as the system (4.94) satisfied by
the metric tensor, in harmonic coordinates, when the Ricci tensor is given. This
system has the following form, more general than (12b.1):

(12b.18)
X

@j a
jk.x; u/@ku C B.x; u;ru/ D f:

We assume that ajk.x; u/ and B.x; u; p/ are smooth in their arguments and that
(12b.4) holds. Recall that we have established one regularity result for such a
system in � 4, namely, if n D dim � and n < q < p < 1, then

(12b.19) u 2 H 1;q; f 2 H s;p H) u 2 H sC2;p

if s � �1. Here, we want to weaken the hypothesis that u 2 H 1;q for some q > n,
which of course implies u 2 C r ; r D 1 � n=q. We will establish the following:

Proposition 12B.2. Assume that u 2 H 1 solves (12b.18) and that B.x; u; p/
satisfies (12b.4). Also assume u 2 C r for some r > 0. Then

(12b.20) f 2 L1 H) u 2 H 2��;1C"; 8 " 2 .0; 1/; 	 > n"

1C "
;

and, if 1 < p < 1,

(12b.21) f 2 Lp H) u 2 H 2;p :

More generally, for s � 0,

(12b.22) f 2 H s;p H) u 2 H sC2;p:

To begin the proof, as in the demonstration of Proposition 4.9, we write

(12b.23)
X

ajk.x; u/ @ku D Aj .uI x;D/u;

mod C1, with

(12b.24) u 2 C r H) Aj .uI x; �/ 2 C rS1
1;0 \ S1

1;1 C S1�r
1;1 :
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Hence, given ı 2 .0; 1/,

(12b.25)
Aj .uI x; �/ D A#

j .x; �/C Ab
j .x; �/;

A#
j .x; �/ 2 S1

1;ı ; Ab
j .x; �/ 2 S1�rı

1;1 :

Thus we can write

(12b.26)
X

@j a
jk.x; �/ @ku D P #u C P bu;

with

(12b.27) P # D
X

@jA
#
j .x;D/ 2 OPS2

1;ı ; elliptic

and

(12b.28) P b D
X

@jA
b
j .x;D/:

Then we let

(12b.29) E# 2 OPS�2
1;ı

be a parametrix for P #, and we have

(12b.30) u D �E#P bu C E#B.x; u;ru/C E#f;

mod C1, and if u 2 C r ,

(12b.31) P b W H �;p �! H ��2Crı;p ; P b W C �� �! C ��2Crı� ;

provided 1 < p < 1 and 	 � 2C rı > �1, so

(12b.32) 	 > 1 � rı:

Therefore, our hypotheses on u imply

(12b.33) E#P bu 2 H 1Crı;2:

Now, if u 2 H 1.�/, then (12b.4) implies

(12b.34) B.x; u;ru/ 2 L1;

so, for small " > 0; 	 > n"=.1C "/,

(12b.35) E#B.x; u;ru/ 2 H 2��;1C":
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Hence we have (12b.30), mod C1, with

(12b.36)
E#P bu 2 H 1Crı;2; E#B.x; u;ru/ 2 H 2��;1C";

E#f 2 H 2��;1C":

This implies
u 2 H 1Crı;1C";

hence, by (12b.31),

(12b.37) E#P bu 2 H 1C2rı;1C":

Another look at (12b.30) gives

(12b.38)
u 2 H 1C2rı;1C" if 1C 2rı � 2 � 	;

H 2��;1C" if 1C 2rı � 2 � 	:

If the first of these alternatives holds, then

E#P bu 2 H 1C3rı;1C":

We continue until the conclusion of (12b.20) is achieved.
Given that u 2 C r and that (12b.20) holds, by interpolation we have

(12b.39) u 2 �H 2��;1C";H r��;p
�



; 8 � 2 .0; 1/;

using C r� � H r��;p ; 8 	 > 0; p < 1. If we take � D 1=2 we get

u 2 H 1Cr=2��;q ;
1

q
D 1

2C 2"
C 1

2p
;

hence, taking p arbitrarily large, we have

(12b.40) u 2 H 1Cr=2��;2C2"; 8 " 2 .0; 1/; 	 > n"

1C "
:

Note that this is an improvement of the original hypothesis that u 2 H 1;2. On the
other hand, if we take � D .1 � 	/=.2 � r/, we get

(12b.41) u 2 H 1;2q ; 8 q < 1 � 1
2
r

1 � r
;

so

(12b.42) B.x; u;ru/ 2 Lq ; 8 q < 1 � 1
2
r

1 � r
:
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Hence

(12b.43) E#B.x; u;ru/ 2 H 2;q:

Meanwhile, by (12b.40),

(12b.44) E#P bu 2 H 1Cr=2Crı��;2:

On the other hand, if we set

(12b.45) q D 1C r

2
;

which satisfies the condition in (12b.41), we can take � 	 r=.2C r/ in (12b.39)
and get

(12b.46) u 2 H�;q; 8 � < 4C r2

2C r
;

hence

(12b.47) E#P bu 2 H �;q; 8 � < 4C r2

2C r
C rı:

Note that

(12b.48)
4C r2

2C r
C rı D 2 � r C rı C r2 � 1

4
r3 C � � � ;

which is > 2, for any given r 2 .0; 1/, if ı is taken close enough to 1. Now,
another look at (12b.30) establishes the following special case of (12b.21):

(12b.49) 1 < p � 1C r

2
; f 2 Lp.�/ H) u 2 H 2;p :

Under the hypotheses that u 2 C r and that (12b.49) holds, we have, parallel to
(12b.39),

(12b.50) u 2 �H 2;p ;H r��;Q
�



; 8 � 2 .0; 1/;

for all 	 > 0; Q < 1. As before, we can take � 	 1=.2� r/ and get

(12b.51) u 2 H 1;2q ; 8 q < 1 � 1
2
r

1 � r p:

Hence, parallel to (12b.43), and as before using 1C r=2 < .1� r=2/=.1� r/, we
have
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(12b.52) E#B.x; u;ru/ 2 H 2;.1Cr=2/p :

Similarly, if we take � 	 r=.2C r/ in (12b.50), we get

(12b.53) u 2 H�;.1Cr=2/p; 8 � < 4C r2

2C r
;

and hence

E#P bu 2 H �;.1Cr=2/p; 8 � < 4C r2

2C r
C rı:

As before, given r 2 .0; 1/, we can choose ı close enough to 1 that � > 2. Another
look at (12b.30) establishes that

(12b.54) 1 < p �
�
1C r

2

�2

; f 2 Lp.�/ H) u 2 H 2;p:

Now we can iterate this argument repeatedly, and since, for all r > 0, we have
.1C r=2/k ! 1 as k ! 1, we obtain (12b.21).

We next want to weaken the requirement of Hölder continuity on u.

Proposition 12B.3. Let u 2 H 1.�/ solve (12b.18). Assume the very strong
ellipticity condition

(12b.55) a
jk

˛ˇ
.x; u/�j˛�kˇ � �0j�j2; �0 > 0:

Also assume B.x; u;ru/ is a quadratic form in ru. Assume furthermore that u is
continuous on �. Then, locally, if p > n=2,

(12b.56) f 2 M p
2 H) ru 2 M q

2 ; for some q > n:

Hence u 2 C r , for some r > 0.

To begin, given x0 2 �, shrink� down to a smaller neighborhood, on which

(12b.57) ju.x/� u0j � E;

for some u0 2 RM (if (12b.18) is an M �M system). We will specify E below.
With the same notation as in (12.22), write

(12b.58)
�
@j a

jk.x; u/ @ku; w
�

L2 D �
Z

hru;rwi dx;

so ajk

˛ˇ
.x; u/ determines an inner product on T �

x ˝ RM for each x 2 �, in a
fashion that depends on u, perhaps, but one has bounds on the set of inner products
so arising. Now, if we let  2 C1

0 .�/ andw D  .x/2.u�u0/, and take the inner
product of (12b.18) with w, we have
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(12b.59)

Z
 2jruj2 dx C 2

Z
 .ru/.r /.u � u0/ dx

�
Z
 2.u � u0/B.x; u;ru/ dx

D �
Z
 2f .u � u0/ dx:

Hence we obtain the inequality

(12b.60)

Z
 2
�jruj2 � ju � u0j � jB.x; u;ru/j � ı2jruj2� dx

� 1

ı2

Z
jr j2ju � u0j2 dx C

Z
 2jf j � ju � u0j dx;

for any ı 2 .0; 1/. Now, for some A < 1, we have

(12b.61) jB.x; u;ru/j � Ajruj2:

Then we choose E in (12b.57) so that

(12b.62) EA � 1 � a < 1:

Then take ı2 D a=2, and we have

(12b.63)
a

2

Z
 2jruj2 dx � 2

a

Z
jr j2 � ju�u0j2 dxC

Z
 2jf j � ju�u0j dx:

Now, given x 2 �, for R < dist.x; @�/, define U.x;R/ as in (12.67) by

(12b.64) U.x;R/ D R�n

Z

BR.x/

ju.y/� ux;Rj2 dy;

where, as before, ux;R is the mean value of u
ˇ̌
BR.x/

. The following result is
analogous to Lemma 12.11. Let A0 be the constant produced by Lemma 12.12,
applied to the present case, and pick � such that A0�

2 � 1=2.

Lemma 12B.4. Let O �� �. There exist R0 > 0; # < 1, and C0 < 1 such
that if x 2 O and r � R0, then either

(12b.65) U.x; r/ � C0r
2.2�n=p/;

or

(12b.66) U.x; �r/ � #U.x; r/:
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Proof. If not, there exist x� 2 O; R� ! 0; #� ! 1, and u� 2 H 1.�;RM /

solving (12b.18) such that

(12b.67) U�.x� ; R�/ D "2
� > C0R

2.2�n=p/
�

and

(12b.68) U�.x� ; �R�/ > #�U�.x� ; R�/:

The hypothesis that u is continuous implies "� ! 0. We want to obtain a contra-
diction.

As in (12.81), set

(12b.69) v�.x/ D "�1
�

�
u�.x� CR�x/ � u�x� ;R�

�
:

Then v� solves

(12b.70)
@j a

jk

˛ˇ

�
x� CR�x; "�v�.x/C u�x� ;R�

�
@kv

ˇ
�

C "�B
�
x� CR�x; "�v�.x/C u�x� ;R�

;rv�.x/
� D R2

�

"�

f:

Note that, by the hypothesis (12b.67),

(12b.71)
R2

�

"�

<
1

C0

Rn=p
� :

Now set

(12b.72) V�.0; r/ D r�n

Z

Br .0/

jv�.y/ � v�0;r j2 dy:

Then, as in (12.84), we have

(12b.73) V�.0; 1/ D kv�k2
L2.B1.0//

D 1; V�.0; �/ > #� :

Passing to a subsequence, we can assume that

(12b.74) v� ! v weakly in L2
�
B1.0/;R

M
�
; "�v� ! 0 a.e. in B1.0/:

Also, as in (12.87), there is an array of constants bjk

˛ˇ
such that

(12b.75) a
jk

˛ˇ

�
x� CR�x; "�v�.x/C u�x� ;R�

� �! b
jk

˛ˇ
a.e. in B1.0/;

and this is bounded convergence.
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We next need to estimate the L2-norm of rv� , which will take just slightly
more work than it did in (12.88).

Substituting "�v�

�
.x�x�/=R�

�Cu�x� ;R�
for u�.x/ in (12b.63), and replacing

u0 by u�x� ;R�
, we have

(12b.76)

a

2

Z
 2
ˇ̌
ˇrv�

�x � x�

R�

�ˇ̌
ˇ2 dx

� 2

a

Z
R2

� jr j2
ˇ̌
ˇv�

�x � x�

R�

�ˇ̌
ˇ2 dx

C R2
�

"�

Z
 2jf j �

ˇ̌
ˇv�

�x � x�

R�

�ˇ̌
ˇ dx;

for  2 C1
0

�
BR�

.x�/
�
. Actually, for this new value of u0, the estimate (12b.57)

might change to ju.x/ � u0j � 2E , so at this point we strengthen the hypothesis
(12b.62) to

(12b.77) 2EA � 1 � a < 1;

in order to get (12b.76). Since R2
�="� � R

n=p
� =C0, we have, for ‰.x/ D  .x� C

R�x/ 2 C1
0

�
B1.0/

�
,

(12b.78)
a

2

Z
‰2jrv� j2 dx � 2

a

Z
jr‰j2jv� j2 dxCR

n=p
�

C0

Z
‰2jF j � jv�j dx;

where F.x/ D f .x� CR�x/.
Since kv�kL2.B1.0// D 1, if ‰ � 1, we have

(12b.79)
Z
‰2jF j � jv� j dx �

� Z

B1.0/

jF j2 dx
�1=2 � C1R

�n=p
�

if f 2 M p
2 , so we have

(12b.80)
a

2

Z
‰2jrv� j2 dx � 2

a

Z
jr‰j2jv� j2 dx C C1

C0

kf kM
p
2
:

This implies that v� is bounded inH 1
�
B�.0/

�
for each � < 1. Now, as in (12.89),

we can pass to a further subsequence and obtain

(12b.81)
v� �! v strongly in L2

loc

�
B1.0/

�
;

rv� �! rv weakly in L2
loc

�
B1.0/

�
:



12B. Further results on quasi-linear systems 255

Thus, as in (12.90), we can pass to the limit in (12b.70), to obtain

(12b.82) @j b
jk

˛ˇ
@kv

ˇ D 0 on B1.0/:

Also, by (12b.73),

(12b.83) V.0; 1/ D kvkL2.B1.0// � 1; V .0; �/ � 1:

This contradicts Lemma 12.12, which requires V.0; �/ � .1=2/V .0; 1/.

Now that we have Lemma 12B.4, the proof of Proposition 12B.3 is easily com-
pleted, by estimates similar to those in (12.69)–(12.73).

We can combine Propositions 12B.2 and 12B.3 to obtain the following:

Corollary 12B.5. Let u 2 H 1.�/\C.�/ solve (12b.18). If the very strong ellip-
ticity condition (12b.53) holds and B.x; u;ru/ is a quadratic form in ru, then,
given p � n=2; q 2 .1;1/; s � 0,

(12b.84) f 2 M p
2 \H s;q H) u 2 H sC2;q:

We mention that there are improvements of Proposition 12B.3, in which the
hypothesis that u is continuous is relaxed to the hypothesis that the local oscilla-
tion of u is sufficiently small (see [HW]). For a number of results in the case when
the hypothesis (12b.4) is strengthened to

jB.x; u; p/j � C hpia;

for some a < 2, see [Gia]. Extensions of Corollary 12B.5, involving Morrey space
estimates, can be found in [T2].

Corollary 12B.5 implies that any harmonic map (satisfying (12b.17)) is smooth
wherever it is continuous. An example of a discontinuous harmonic map from R3

to the unit sphere S2 � R3 is

(12b.85) u.x/ D x

jxj :

It has been shown by F. Helein [Hel2] that any harmonic map u W � ! M from a
two-dimensional manifold� into a compact Riemannian manifoldM is smooth.
Here we will give the proof of Helein’s first result of this nature:

Proposition 12B.6. Let � be a two-dimensional Riemannian manifold and let

(12b.86) u W � �! Sm

be a harmonic map into the standard unit sphere Sm � RmC1. Then u 2 C1.�/.
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Proof. We are assuming that u 2 H 1
loc.�/, that u satisfies (12b.86), and that the

components uj of u D .u1; : : : ; umC1/ satisfy

(12b.87) �uj C uj jruj2 D 0:

Here, �uj and jruj2 D P jru`j2 are determined by the Riemannian metric on
�, but the property of being a harmonic map is invariant under conformal changes
in this metric (see Chap. 15, � 2, for more on this), so we may as well take � to
be an open set in R2, and � D @2

1 C @2
2 the standard Laplace operator. Now

ju.x/j2 D 1 a.e. on � implies

(12b.88)
mC1X
j D1

uj .@i uj / D 0; i D 1; 2;

and putting this together with (12b.87) gives

(12b.89) �uj D �
mC1X
kD1

.uj ruk � ukruj / � ruk; 8 j:

On the other hand, a calculation gives

(12b.90) div.uj ruk � ukruj / D
X

`

@`.uj @`uk � uk@`uj / D 0;

for all j and k. Furthermore, since u 2 H 1
loc.�/\L1.�/,

(12b.91) uj ruk � ukruj 2 L2
loc.�/; ruk 2 L2

loc.�/:

Now Proposition 12.14 of Chap. 13 implies

(12b.92)
X

k

.uj ruk � ukruj / � ruk D fj 2 H1
loc.�/;

where H1
loc.�/ is the local Hardy space, discussed in � 12 of Chap. 13. Also, by

Corollary 12.12 of Chap. 13, when dim � D 2,

(12b.93) �uj D �fj 2 H1
loc.�/ H) uj 2 C.�/:

Now that we have u 2 C.�/, Proposition 12B.6 follows from Corollary 12B.5.

If dim� > 2, there are results on partial regularity for harmonic maps u W � !
M , for energy-minimizing harmonic maps [SU] and for “stationary” harmonic
maps; see [Ev4] and [Bet]. See also [Si2], for an exposition. On the other hand,
there is an example due to T. Riviere [Riv] of a harmonic map for which there is
no partial regularity.
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We mention another system of the type (12b.1), the 3 � 3 system

(12b.94) �u D 2Hux � uy on �; u D g on @�:

Here H is a real constant, � is a bounded open set in R2, and g 2 C1.�;R3/.
We seek u W � ! R3. This equation arises in the study of surfaces in R3 of
constant mean curvature H . In fact, if † � R3 is a surface and u W � ! † a
conformal map (using, e.g., isothermal coordinates) then, by (6.10) and (6.15),
† has constant mean curvature H if and only if (12b.94) holds. In one approach
to the analogue of the Plateau problem for surfaces of mean curvature H , the
problem (12b.94) plays a role parallel to that played by �u D 0 in the study of
the Plateau problem for minimal surfaces (theH D 0 case) in � 6. For this reason,
in some articles (12b.94) is called the “equation of prescribed mean curvature,”
though that term is a bit of a misnomer.

The equation (12b.94) is satisfied by a critical point of the functional

(12b.95) J.u/ D
Z

�

n1
2

jruj2 C 2

3
H.u � ux � uy/

o
dx dy;

acting on the space

(12b.96) V D fu 2 H 1.�;R3/ W u D g on @�g:

That J is well defined and smooth on V follows from the following estimate of
Rado:

(12b.97) jV.u/� V.g/j2 � 1

32


�kruk2
L2 C krgk2

L2

�3
;

provided u D g on @�, where

(12b.98) V.u/ D
Z

�

.u � ux � uy/ dx dy:

The boundary problem (12b.94) is not solvable for all g, though it is known to
be solvable provided

(12b.99) jH j � kgkL1 � 1:

We refer to [Str1] for a discussion of this and also a treatment of the Plateau prob-
lem for surfaces of mean curvature H , using (12b.94). Here we merely mention
that given u 2 H 1.�;R3/, solving (12b.94), the fact that

(12b.100) u 2 C.�;R3/
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then follows from Corollary 12.12 and Proposition 12.14 of Chap. 13, just as in
(12b.93). Hence Corollary 12B.5 is applicable. This result, established by [Wen],
was an important precursor to Proposition 12.13 of Chap. 13.

13. Elliptic regularity IV (Krylov–Safonov estimates)

In this section we obtain estimates for solutions to second-order elliptic equations
of the form

(13.1) Lu D f; Lu D ajk.x/ @j @ku C bj .x/ @j u C c.x/u;

on a domain � � Rn. We assume that ajk ; bj , and c are real-valued and that
ajk 2 L1.�/, with

(13.2) �j�j2 � ajk.x/�j �k � ƒj�j2;

for certain �;ƒ 2 .0;1/. We define

(13.3) D D det .ajk/; D� D D1=n:

A. Alexandrov [Al] proved that if jbj=D� 2 Ln.�/ and c � 0 on �, then

(13.4) u 2 C.�/ \H 2;n
loc .�/; Lu � f on�;

implies

(13.5) sup
x2�

u.x/ � sup
y2@�

uC.y/C CkD�1� f kLn.�/;

where C D C
�
n; diam �; kb=D�kLn

�
. We will not make use of this and will

not include a proof, but we will establish the following result of I. Bakelman [B],
essentially a more precise version of (13.5) for the special case bj D c D 0

(under stronger regularity hypotheses on u). It is used in some proofs of (13.5)
(see [GT]).

To formulate this result, set

(13.6)
�C D fy 2 � W u.x/ � u.y/C p � .x � y/;8 x 2 �;

for some p D p.y/ 2 Rng:

If u 2 C 1.�/, then y belongs to �C if and only if the graph of u lies everywhere
below its tangent plane at

�
y; u.y/

�
. If u 2 C 2.�/, then u is concave on �C, that

is, .@j @ku/ � 0 on �C.
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Proposition 13.1. If u 2 C 2.�/ \ C.�/, we have

(13.7) sup
x2�

u.x/ � sup
y2@�

u.y/C d

nV
1=n

n

		D�1� .ajk@j @ku/
		

Ln.�C/
;

where d D diam �, and Vn is the volume of the unit ball in Rn.

To establish this, we use the matrix inequality

(13.8) .det A/.det B/ �
� 1
n

Tr AB
�n

;

for positive, symmetric, n � n matrices A and B . (See the exercise at the end of
this section for a proof.) Setting

(13.9) A D �H.u/ D ��@j @ku.x/
�
; B D �

ajk.x/
�
; x 2 �C;

whereH.u/ is the Hessian matrix, as in (3.7a), we have

(13.10) jdet H.u/j � D�1
�
�1
n
ajk @j @ku

�n

on �C:

Thus Proposition 13.1 follows from

Lemma 13.2. For u 2 C 2.�/\ C.�/, we have

(13.11) sup
x2�

u.x/ � sup
y2@�

u.y/C d

V
1=n

n

�Z

�C

jdet H.u/j dx
�1=n

:

Proof. Replacing u by u � sup@� u, it suffices to assume u � 0 on @�. Define
�.�/ to be

S
y2� �.y/, where

(13.12) �.y/ D fp 2 Rn W u.x/ � u.y/C p � .x � y/;8 x 2 �g;

so �.y/ ¤ ; , y 2 �C. Also, if u 2 C 1.�/ (as we assume here),

(13.13) �.y/ D fDu.y/g; for y 2 �C:

Thus the Lebesgue measure of �.�/ is given by

(13.14) Ln
�
�.�/

� D Ln
�
�.�C/

� D Ln
�
Du.�C/

� �
Z

�C

jdet H.u/j dx:
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Thus it suffices to show that if u 2 C.�/\ C 2.�/ and u � 0 on @�, then

(13.15) sup
x2�

u.x/ � d

V
1=n

n

Ln
�
�.�/

�
:

This is basically a comparison result. Assume sup u > 0 is attained at x0. Let
W1 be the function on � whose graph is the cone with apex at

�
x0; u.x0/

�
and

base @� � f0g. Then, if �W1
.y/ denotes the function (13.12) with u replaced by

W1, we have

(13.16) �u.�/ � �W1
.�/:

Similarly, if W2 is the function on Bd .x0/ whose graph is the cone with apex at�
x0; u.x0/

�
and base fx W jx � x0j D d g � f0g, then

(13.17) �W1
.�/ � �W2

�
Bd .x0/

�
:

Finally, the inequality

(13.18) sup W2 � d

V
1=n

n

Ln
�
�W2

.Bd .x0//
�

is elementary, so we have (13.15), and hence Lemma 13.2 is proved.

We now make the assumption that

(13.19)
ƒ

�
� �;

� jbj
�

�2 � �;
jcj
�

� �;

and establish the following local maximum principle, following [GT].

Proposition 13.3. Let u 2 H 2;n.�/; Lu � f; f 2 Ln.�/. Then, for any ball
B D B2R.y/ � � and any p 2 .0; n�, we have

(13.20) sup
x2BR.y/

u.x/ � C

8<
:
� 1

Vol.B/

Z

B

.uC/p dx
�1=p C R

�
kf kLn.B/

9=
; ;

where C D C.n; �; �R2; p/.

Proof. Translating and dilating, we can assume without loss of generality that
0 2 � and B D B1.0/. We will also assume that u 2 C 2.�/ \ H 2;n.�/, since
if (13.20) is established in this case, the more general case follows by a simple
approximation argument.
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Given ˇ � 1, define

(13.21) �.x/ D �
1 � jxj2�ˇ ; for jxj � 1:

Setting v D �u on B , we have

(13.22)
ajk @j @kv D �ajk @j @ku C 2ajk.@j �/.@ku/C uajk @j @k�

� �.f � bj @j u � cu/C 2ajk.@j�/.@ku/C uajk @j @k�:

Let �C
v be as in (13.6), but with u replaced by v, and � replaced by B . Clearly,

u � 0 on �C
v . We have

(13.23) jDvj � v

1 � jxj on �C
v ;

so

(13.24)
jDuj D ��1jDv � uD�j � 1

�

� v

1 � jxj C ujD�j
�

� 2.1C ˇ/��1=ˇ u on �C
v :

Hence

(13.25)
�ajk @j @kv �

n�
16ˇ2 C 2ˇ�

�
ƒ��2=ˇ C 2ˇjbj��1=ˇ C c

o
v C �f

� C���2=ˇv C f;

on �C
v , where C D C.n; ˇ; �; �/. Of course, ajk@j @kv � 0 on �C

v . If ˇ � 2, we
have, upon applying Proposition 13.1 to v,

(13.26)

sup
B

v � C
�		��2=ˇvC		

Ln.B/
C 1

�
kf kLn.B/

�

� C1

��
sup
B

vC�1�2=ˇ		.uC/2=ˇ
		

Ln.B/
C 1

�
kf kLn.B/



:

Choose ˇ D 2n=p � 2, so we have

(13.27) sup
B

v � C1

��
sup
B

vC�1�p=nkuCkp=n

Lp.B/
C 1

�
kf kLn.B/



:

(Here we allow p < 1, in which case k � kLp is not a norm, but (13.27) is still
valid.) Using the elementary inequality

(13.28) a1�p=nbp=n � "aC "�
�

n=p�1
�
b; 8 " 2 .0;1/;
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and taking a D supB vC; b D kuCkLp.B/, and " D 1=2C1, we have (the R D 1

case of) (13.20), so Proposition 13.3 is proved.

Replacing u by �u, we have an estimate on supBR.y/ .�u/ when Lu � f .
Thus, when Lu D f and the hypotheses of Proposition 13.3 hold, we have

(13.29) sup
BR.y/

juj � C

8<
:
� 1

Vol.B/

Z

B

jujp dx
�1=p C R

�
kf kLn.B/

9=
; :

Next we establish a “weak Harnack inequality” of [KrS], which will lead to
results on Hölder continuity of solutions of Lu D f . This result will also be
applied directly in the next section, to results on solutions to certain completely
nonlinear equations.

Proposition 13.4. Assume u 2 H 2;n.�/; Lu � f in�; f 2 Ln.�/, and u � 0

on a ball B D B2R.y/ � �. Then

(13.30)

0
B@ 1

Vol.BR/

Z

BR

up dx

1
CA

1=p

� C
�

inf
BR

u C R

�
kf kLn.B/

�
;

for some positive p D p.n; �; �R2/ and C D C.n; �; �R2/.

As before, there is no loss of generality in assuming B D B1.0/. Also, replac-
ing L and f by ��1L and ��1f , we can assume � D 1.

To begin the proof, take " > 0 and set

(13.31)
u D u C "C kf kLn.B/; w D log

1

u
;

v D �w; g D f

u
;

where � is given by (13.21). Note that w is large (positive) where u is small. We
have

(13.32)

�ajk @j @kv D ��ajk @j @kw � 2ajk.@j �/.@kw/ � wajk @j @k�

� �
��ajk.@jw/.@kw/C bj @jw C jcj C g

�
� 2ajk.@j�/.@kw/ �wajk @j @k�

� 2

�
ajk.@j�/.@k�/ � wajk @j @k�C .jbj2 C jcj C g/�;

where the last inequality is obtained via Cauchy’s inequality, applied to the inner
product hV;W i D Vja

jkWk .
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Now the form of � implies that ajk @j @k� � 0 provided 2.ˇ � 1/ajkxj xk C
ajj jxj2 � ajj , and hence

(13.33) 2ˇjxj2 � nƒ H) ajk @j @k� � 0:

Thus, if ˛ 2 .0; 1/, then

(13.34) ˇ � n�

2˛
; jxj � ˛ H) ajk @j @k� � 0:

Hence, on the set BC D fx 2 B W w.x/ > 0g, we have

(13.35)

�ajk @j @kv � 4ˇ2
�
1 � jxj2�ˇ�2jxj2 C v�B˛

sup
B˛

 
�a

jk @j @k�

�

!

C �jbj2 C jcj C g
�
�

� 4ˇ2ƒC jbj2 C jcj C g C 2nˇƒ

1 � ˛2
v�B˛

:

Note that kgkLn.B/ � 1. Thus Proposition 13.1 yields

(13.36) sup
B

v � C
�
1C kvCkLn.B˛/

�
;

with C D C.n; ˛; �; �/.
Note that if u satisfies the hypotheses of Proposition 13.4 and t 2 .0;1/, then

u=t satisfies L.u=t/ � f=t , and the analogue of w in (13.31) is w � k, where
k D log.1=t/. The function g in (13.31) is unchanged, and, working through
(13.32)–(13.36), we obtain the following extension of (13.36):

(13.37) sup
B

�.w � k/ � C
�
1C k�.w � k/CkLn.B˛/

�
; 8 k 2 R;

with constants independent of k.
The next stage in the proof of Proposition 13.4 will involve a decomposition

into cubes of the sort used for Calderon–Zygmund estimates in � 5 of Chap. 13.
To set up some notation, given y 2 Rn; R > 0, let QR.y/ denote the open cube
centered at y, of edge 2R:

(13.38) QR.y/ D fx 2 Rn W jxj � yj j < R; 1 � j � ng:

If ˛ < 1=
p
n, thenQ˛ D Q˛.0/ �� B .

The cube decomposition we will use in the proof of Lemma 13.5 below can
be described in general as follows. Let Q0 be a cube in Rn, let ' � 0 be an
element of L1.Q0/, and suppose

R
Q0
' dx � tLn.Q0/; t 2 .0;1/. Bisecting

the edges of Q0, we subdivide it into 2n subcubes. Those subcubes that satisfy
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R
Q
' dx � tLn.Q/ are similarly subdivided, and this process is repeated

indefinitely. Let F denote the set of subcubes so obtained that satisfy

Z

Q

' dx > tLn.Q/I

we do not further subdivide these cubes. For each Q 2 F , denote by eQ the
subcube whose subdivision givesQ. Since Ln.eQ/=Ln.Q/ D 2n, we see that

(13.39) t <
1

Ln.Q/

Z

Q

' dx � 2nt; 8 Q 2 F :

Also, setting F D S
Q2F Q and G D Q0 n F , we have

(13.40) ' � t; a.e. in G:

This subdivision was also done in the proof of Lemma 5.5 in Chap. 13. Let us
also set eF D S

Q2F eQ; since Q 2 F ) eQ … F , we have

(13.41)
Z

eF
' dx � tLn.eF /:

In particular, when ' is the characteristic function �� of a measurable subset �
of Q0, of measure � t � Ln.Q0/, we deduce from (13.40)–(13.41) that

(13.42) Ln.�/ D Ln.� \ eF / � tLn.eF /:
We have the following measure-theoretic result:

Lemma 13.5. Let Q0 be a cube in Rn; w 2 L1.Q0/, and, for k 2 R, set

(13.43) �k D fx 2 Q0 W w.x/ � kg:

Suppose there are positive constants ı < 1 and C such that

(13.44) sup
Q0\Q3r .z/

.w � k/ � C

whenever k andQ D Qr.z/ � Q0 satisfy

(13.45) Ln.�k \Q/ � ıLn.Q/:
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Then, for all k 2 R,

(13.46) sup
Q0

.w � k/ � C

 
1C log

�Ln.�k/=Ln.Q0/
�

log ı

!
:

Proof. We show by induction that

(13.47) sup
Q0

.w � k/ � mC;

for any m 2 ZC and k 2 R such that Ln.�k/ � ımLn.Q0/. This is true by
hypothesis if m D 1. Suppose that it holds for m D M 2 ZC and that Ln.�k/ �
ıMC1Ln.Q0/. Define e�k by

(13.48) e�k D
[˚

Q3r.z/ \Q0 W Ln
�
Qr.z/\ �k

� � ı Ln
�
Qr.z/

��
:

Applying the estimate (13.42), with t D ı, we see that eithere�k D Q0 or

(13.49) Ln.e�k/ � ı�1Ln.�k/ � ıM vol.Q0/;

and hence, replacing k by k C C , we obtain

(13.50) sup
Q0

.w � k/ � .M C 1/C;

which verifies (13.47) for m D M C 1.
Now, the estimate (13.46) follows by choosingm appropriately, and the lemma

is proved.

Returning to the estimation of the functions defined in (13.31), we see that
(13.36) implies

(13.51) sup
B

v � C
�
1C kvCkLn.Q˛/

� � C
�
1C �

vol.QC̨/
�1=n

sup
B

vC
�
;

whereQ˛ D Q˛.0/, as stated below (13.38), and

QC̨ D fx 2 Q˛ W v.x/ > 0g D fx 2 Q˛ W u.x/ < 1g:

Hence, if C is the constant in (13.36),

(13.52)
vol.QC̨/
vol.Q˛/

�
� 1

4˛C

�n D � H) sup
B

v � 2C:

Now choose ˛ D 1=3n, and take � D .4˛C /�n, as in (13.52). Using the coor-
dinate change x 7! ˛.x � z/=r , we obtain for any cube Q D Qr.z/ such that
B3nr .z/ � B , the implication
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(13.53)
vol.QC/
vol.Q/

� � H) sup
Q3r .z/

w � C.n; �; �/:

With ˛ and � as specified above, take ı D 1 � �; Q0 D Q˛.0/, and note that
the estimate (13.53) holds also when w is replaced by w � k, andQC is replaced
by the set fx 2 Q W w.x/ � k > 0g, as a consequence of (13.37). Let

(13.54) �.t/ D Ln
�fx 2 Q0 W u.x/ > tg�:

Setting k D log 1=t , we have from Lemma 13.5 the estimate

(13.55) �.t/ � C
�
inf
Q0

t�1u
�	
; 8 t > 0;

where C D C.n; �; �/; 
 D 
.n; �; �/. Replacing the cube Q0 by the inscribed
ball B˛.0/; ˛ D 1=3n, and using the identity

(13.56)
Z

Q0

.u/p dx D p

Z 1

0

tp�1�.t/ dt;

we have

(13.57)
Z

B˛

.u/p dx � C
�
inf
B˛

u
�p
; for p D 


2
:

The inequality (13.30) then follows by letting " ! 0 if we use a covering
argument to extend (13.57) to arbitrary ˛ < 1 (especially, ˛ D 1=2) and use the
coordinate transformation x 7! .x�y/=2R. Thus Proposition 13.4 is established.

Putting together (13.29) and (13.30), we have the following.

Corollary 13.6. Assume u 2 H 2;n.�/; Lu D f on �; f 2 Ln.�/, and u � 0

on a ball B D B4R.y/ � �. Then

(13.58) sup
BR.y/

u.x/ � C1

�
inf

B2R.y/
u C R

�
kf kLn.B4R/

�
;

for some C1 D C1.n; �; �R
2/. In particular, if u � 0 on �,

(13.59) Lu D 0 H) sup
BR.y/

u.x/ � C1 inf
B2R.y/

u.x/:

We can use this to establish Hölder estimates on solutions to Lu D f . We will
actually apply Corollary 13.6 to L1 D ajk @j @k Cbj @j , so L1u D f1 D f �cu.
Suppose that
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(13.60) a D inf
B4R.y/

u � sup
B4R.y/

u D b:

Then v D .u�a/=.b�a/ is � 0 onB4R.y/, and L1v D f1=.b�a/, so Corollary
13.6 yields

(13.61) sup
BR.y/

u � a

b � a
� C1

�
inf

B2R.y/

u � a

b � a
C R

�

1

b � akf � cukLn.B4R/

�
:

Without loss of generality, we can assume C1 � 1. Now given this, one of the
following two cases must hold:

(i) C1 inf
B2R.y/

u � a

b � a
� 1

2
sup

BR.y/

u � a

b � a
;

(ii) C1 inf
B2R.y/

u � a
b � a <

1

2
sup

BR.y/

u � a
b � a :

If case (i) holds, then either

sup
BR.y/

u � a

b � a
� 1

2
or inf

B2R.y/

u � a

b � a
� 1

4C1

;

and hence (since we are assuming C1 � 1)

(13.62) (i) H) osc
BR.y/

u �


1 � 1

4C1

�
osc

B4R.y/
u:

If case (ii) holds, then

sup
BR.y/

u � a

b � a
� 2R

�

1

b � a kf � cukLn.B4R/;

so

(13.63) (ii) H) osc
BR.y/

u � 2R

�
kf � cukLn.B4R/;

which is bounded byC2R in view of the sup-norm estimate (13.29). Consequently,
under the hypotheses of Corollary 13.6, we have

(13.64) osc
BR.y/

u � max
�
C2R;

�
1 � 1

C1

�
osc

B4R.y/
u
�
;
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with C1 D C1.n; �; �R
2
0/; C2 D C2.n; �; �R

2
0/
�kf kLn.�/ C kukLn.�/

�
, given

B4R0
.y/ � �; R � R0. Therefore, we have the following:

Theorem 13.7. Assume u 2H 2;n.�/; Lu Df , and f 2Ln.�/. Given O���,
there is a positive � D �.O; �; n; �; �/ such that

(13.65) kukC �.O/ � A
�kukLn.�/ C kf kLn.�/

�
;

with A D A.O; �; n; �; �/.

Some boundary regularity results follow fairly easily from the methods devel-
oped above. For the present, assume � is a smoothly bounded region in Rn, that

(13.66) u 2 H 2;n.�/\ C.�/; u
ˇ̌
@�

� 0;

and that Lu D f on �. Let B D B2R.y/ be a ball centered at y 2 @�. Then,
extending (13.20), we have, for any p 2 .0; n�,

(13.67) sup
�\BR.y/

u � C

8<
:
� 1

vol.B/

Z

B\�

.uC/p dx
�1=p C R

�
kf kLn.B\�/

9=
; ;

with C D C.n; �; �R2; p/. To establish this, extend u to be 0 on B n �. This
extended function might not belong toH 2;n.B/, but the proof of Proposition 13.3
can still be seen to apply, given the following observation:

Lemma 13.8. Assume that u satisfies the hypotheses of Proposition 13.1 and that
� � e�, and set u D 0 on e� n�. Then

(13.68) supe� u � sup
@e� u C

ed
nV

1=n
n

		D�1� .ajk @j @ku/
		

Ln.e�C/
;

where ed D diam e�, and e�C is the upper contact set of u, defined as in (13.6),
with �, replaced by e�.

Note that if u.x/ > 0 anywhere on �, then e�C � �C.
The following result extends Proposition 13.4.

Proposition 13.9. Assume u 2 H 2;n.�/; Lu D f on�; u � 0 on B \�. Set

(13.69) m D inf
B\@�

u;
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and

(13.70)
eu.x/ D min

�
m; u.x/

�
; x 2 B \�;

m; x 2 B n�:

Then

(13.71)

0
B@ 1

vol.BR/

Z

BR

.eu /p dx
1
CA

1=p

� C
�

inf
�\BR

u C R

�
kf kLn.B\�/

�
;

for some positive p D p.n; �; �R2/ and C D C.n; �; �R2/.

Proof. One adapts the proof of Proposition 13.4, with u replaced byeu. One gets
an estimate of the form (13.53), with w replaced by w � k; k � � logm. From
there, one gets an estimate of the form (13.55), for 0 < t � m. But �.t/ D 0 for
t > m, so (13.71) follows as before.

This leads as before to a Hölder estimate:

Proposition 13.10. Assume u 2 H 2;n.�/; Lu D f 2 Ln.�/; u
ˇ̌
@�

D ' 2
C ˇ .@�/, and ˇ > 0. Then there is a positive � D �.�; n; �; �; ˇ/ such that

(13.72) kukC �.�/ � A
�
kukLn.�/ C kf kLn.�/ C k'kC ˇ.@�/

�
;

with A D A.�; n; �; �; ˇ/.

We next establish another type of boundary estimate, which will also be very
useful in applications in the following sections. The following result is due to
[Kry2]; we follow the exposition in [Kaz] of a proof of L. Caffarelli.

Proposition 13.11. Assume u 2 C 2.�/ satisfies

(13.73) Lu D f; u
ˇ̌
@�

D 0:

Assume

(13.74) kukL1.�/ C krukL1.�/ C kf kL1.�/ � K:

Then there is a Hölder estimate for the normal derivative of u on @�:

(13.75) k@�ukC ˛.@�/ � CK;

for some positive ˛ D ˛.�; n; �; �;ƒ;K/ and C D C.�; n; �; �;ƒ/.
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To prove this, we can flatten out a portion of the boundary. After having done
so, absorb the terms bj .x/@j u C c.x/u into f . It suffices to assume that

(13.76) Lu D f on BC; Lu D ajk.x/ @j @ku;

where
BC D fx 2 Rn W jxj < 4; xn � 0g;

and that

(13.77) u D 0 on † D fx 2 Rn W jxj < 4; xn D 0g;

and to show that there is an estimate

(13.78) k@nukC ˛.�/ � CK; C D C.n; �;ƒ/;

whereK is as in (13.74), with � replaced by BC, ˛ D ˛.n; �;ƒ;K/ > 0, and

(13.79) � D fx 2 † W jxj � 1g:

Note that, for .x0; 0/ 2 †,

(13.80) @nu.x0; 0/ D v.x0; 0/;

where

(13.81) v.x/ D x�1
n u.x/:

Let us fix some notation. Given R � 1 and ı D �=9nƒ < 1=2, let

(13.82)
Q.R/ D ˚

x 2 BC W jx0j � R; 0 � xn � ıR
�
;

QC.R/ D ˚
x 2 Q.R/ W 1

2
ıR � xn � ıR

�

(see Fig. 13.1). Then set

(13.83) mR D inf
Q.R/

v; MR D sup
Q.R/

v;

so oscQ.R/ v D MR � mR. Before proving Proposition 13.11, we establish two
lemmas.

Lemma 13.12. Under the hypotheses (13.76) and (13.77), if also u � 0 onQ.R/,
then

(13.84) inf
QC.R/

v � 2

ı
inf

Q.R=2/
v C R

�
sup jf j:
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FIGURE 13.1 Setup for Boundary Estimate

Proof. Let � D inffv.x/ W jx0j � R; xn D ıRg, and set

(13.85) z.x/ D �xn

�
ı � 2ı

R2
jx0j2 C 1

R
xn

�
� 1

2�
xn

�
ıR � xn

�
sup jf j:

Given ı 2 .0; 1=2�, we have the following behavior on @Q.R/:

(13.86)

z.x/ D 0; for x D .x0; 0/; (bottom),

z.x/ < 0 on fx 2 Q.R/ W jx0j D Rg; (side),

z.x/ < 2�ı2R < �ıR on fx 2 Q.R/ W xn D ıRg (top).

Also,

(13.87) Lz � � sup jf j � f on Q.R/ if ı D �

9nƒ
:

Since u � 0 onQ.R/ and u D xnv � �ıR on the top ofQ.R/, we have

(13.88) L.u � z/ � 0 on Q.R/; u � z on @Q.R/:

Thus, by the maximum principle, u � z on Q.R/, so v.z/ � z.x/=xn on Q.R/.
Hence

(13.89) inf
Q.R=2/

v � ı

2

�
� � R

�
sup jf j

�
:

Since � � infQC.R/ v, this yields (13.84).

Lemma 13.13. If u satisfies (13.76) and (13.77) and u � 0 on Q.2R/, then

(13.90) sup
QC.R/

v � C
�

inf
QC.R/

v CR sup jf j
�
;

with C D C.n; �;ƒ;K/.
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Proof. By (13.58), if x 2 QC.R/; r D ıR=8, we have

(13.91) sup
Br .x/

u � C
�

inf
Br .x/

u C r2 sup jf j
�
:

Since ıR=2 � xn � ıR on QC.R/, (13.90) follows from this plus a simple
covering argument.

We now prove Proposition 13.11. The various factors Cj will all have the form
Cj D Cj .n; �;ƒ;K/. If we apply (13.90), with u replaced by u � m2Rxn � 0,
on Q.2R/, we obtain

(13.92) sup
QC.R/

.v �m2R/ � C1

�
inf

QC.R/
.v �m2R/CR sup jf j

�
:

By Lemma 13.12, this is

(13.93)
� C2

�
inf

Q.R=2/
.v �m2R/CR sup jf j

�

D C2

�
mR=2 �m2R CR sup jf j�:

Reasoning similarly, with u replaced by M2Rxn � u � 0 on Q.2R/, we have

(13.94) sup
QC.R/

.M2R � v/ � C2

�
M2R �MR=2 CR sup jf j�:

Summing these two inequalities yields

(13.95) M2R �m2R � C3

�
.M2R �m2R/ � .MR=2 �mR=2/CR sup jf j�;

which implies

(13.96) osc
Q.R=2/

v � # osc
Q.2R/

v CR sup jf j;

with # D 1�1=C3 < 1. This readily implies the Hölder estimate (13.78), proving
Proposition 13.11.

Exercises
1. Prove the matrix inequality (13.8). (Hint: Set C D A1=2 � 0 and reduce (13.8) to

(13.97)
1

n
Tr X � .det X/1=n;

for X D CBC � 0. This is equivalent to the inequality

(13.98)
1

n
.�1 C � � � C �n/ � .�1 � � ��n/

1=n; �j > 0;
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which is called the arithmetic-geometric mean inequality. It can be deduced from the
facts that log x is concave and that any concave function ' satisfies

(13.99) '
� 1
n
.�1 C � � � C �n/

�
� 1

n

�
'.�1/C � � � C '.�n/

�
:/

14. Regularity for a class of completely nonlinear equations

In this section we derive Hölder estimates on the second derivatives of real-valued
solutions to nonlinear PDE of the form

(14.1) F.x;D2u/ D 0;

satisfying the following conditions. First we require uniform strong ellipticity:

(14.2) �j�j2 � @�jk
F.x; u;ru; @2u/�j �k � ƒj�j2;

with �;ƒ 2 .0;1/, constants. Next, we require that F be a concave function
of �:

(14.3) @�jk
@�`m

F.x; u; p; �/„jk„`m � 0; „jk D „kj ;

provided � D @2u.x/; p D ru.x/.
As an example, consider

(14.4) F.x; u; p; �/ D log det � � f .x; u; p/:

Then .D�F /„ D Tr.��1„/, so the quantity (14.3) is equal to

(14.5) �Tr
�
��1„��1„

� D � Tr
�
��1=2„��1„��1=2

�
; „t D „;

provided the real, symmetric, n � n matrix � is positive-definite, and ��1=2 is the
positive-definite square root of ��1. Then the function (14.4) satisfies (14.3), on
the region where � is positive-definite. It also satisfies (14.2) for @2u.x/ D � 2 K,
any compact set of positive-definite, real, n � n matrices. In particular, if F is a
bounded set in C 2.�/ such that .@j @ku/ is positive-definite for each u 2 F , and
(14.1) holds, with jf .x; u;ru/j � C0, then (14.2) holds, uniformly for u 2 F .

We first establish interior estimates on solutions to (14.1). We will make use of
results of � 13 to establish these estimates, following [Ev], with simplifications of
[GT]. To begin, let � 2 Rn be a unit vector and apply @� to (14.1), to get

(14.6) F�ij
@i@j @�u C Fpi

@i@�u C Fu @�u C �i @xi
F D 0:
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Then apply @� again, to obtain

(14.7)
F�ij

@i@j @
2
�u C .@�ij

@�k`
F /.@i@j @�u/.@k@`@�u/

CAij
� .x;D

2u/ @i@j @�u CB�.x;D
2u/ D 0;

where

Aij
� .x;D

2u/ D 2.@�ij
@pk

F /.@k@�u/C 2.@�ij
@uF /.@�u/C 2�k.@�ij

@xk
F /;

and B�.x;D
2u/ also involves first- and second-order derivatives of F .

Given the concavity of F , we have the differential inequality

(14.8) F�ij
@i@j @

2
�u � �Aij

� @i@j @�u � B�;

where Aij
� D A

ij
� .x;D

2u/; B� D B�.x;D
2u/. If we set

(14.9) h� D 1

2

�
1C @2

�u

1CM

�
; M D sup

�

j@2uj;

then (14.8) implies

(14.10) �F�ij
@i@jh� � C

1CM

�
A0j@3uj C B0

�
;

where

(14.11) A0 D A0

�kukC 2.�/

�
; B0 D B0

�kukC 2.�/

�
:

Now let f�k W 1 � k � N g be a collection of unit vectors, and set

(14.12) hk D h�k
; v D

NX
kD1

h2
k:

Use hk in (14.10), multiply this by hk , and sum over k, to obtain

(14.13)
NX

kD1

F�ij
.@ihk/.@jhk/� 1

2
F�ij

@i@j v � C

1CM

�
A0j@3uj C B0

�
:

Make sure that f�k W 1 � k � N g contains the set

(14.14) U D fej W 1 � j � ng [ f2�1=2.ei ˙ ej / W 1 � i < j � ng;
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where fej g is the standard basis of Rn. Consequently,

(14.15) j@3uj2 D
X
i;j;`

j@i@j @`uj2 � 4.1CM/2
NX

kD1

j@hkj2:

The ellipticity condition (14.2) implies

(14.16)
NX

kD1

F�ij
.@ihk/.@jhk/ � �

NX
kD1

j@hkj2:

Now, take " 2 .0; 1/, and set

(14.17) wk D hk C "v:

We have

(14.18) "�
NX

kD1

j@hkj2 � 1

2
F�ij

@i@jwk � C

(
A0

� NX
kD1

j@hkj2
�1=2 C B0

1CM

)
:

Thus, by Cauchy’s inequality,

(14.19) F�ij
@i@jwk � ���; � D Cn

�

�A2
0

�"
C B0

1CM

�
:

We now prepare to apply Proposition 13.4. Let BR � B2R be concentric balls
in �, and set

(14.20)

Wks D sup
BsR

wk; Mks D sup
BsR

hk; mks D inf
BsR

hk ;

!.sR/ D
NX

kD1

osc
BsR

hk D
NX

kD1

.Mks �mks/:

Applying Proposition 13.4 to (14.19), we have

(14.21)

0
B@ 1

vol BR

Z

BR

�
Wk2 � wk

�p
dx

1
CA

1=p

� C.Wk2 �Wk1 C �R2/;

where p D p.n;ƒ=�/ > 0; C D C.n;ƒ=�/. Denote the left side of (14.21) by

ˆp;R.Wk2 � wk/:
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Note that

(14.22)
Wk2 �wk � Mk2 � hk � 2"!.2R/;

Wk2 �Wk1 � Mk2 �Mk1 C 2"!.2R/:

Hence

(14.23) ˆp;R.Mk2 � hk/ � C
˚
Mk2 �Mk1 C "!.2R/C �R2

�
:

Consequently,

(14.24)
ˆp;R

�X
k

.Mk2 � hk/
�

� N 1=p
X

k

ˆp;R.Mk2 � hk/

� ˚
.1C "/!.2R/� !.R/C �R2

�
:

We want a complementary estimate on ˆp;R.h` � m`2/. We exploit the con-
cavity of F in � again to obtain

(14.25)

F�ij

�
y;D2u.y/

��
@i@j u.y/� @i@j u.x/

�
� F

�
y;Du.y/; @2u.x/

� � F �y;Du.y/; @2u.y/
�

D F
�
y;Du.y/; @2u.x/

�� F
�
x;Du.x/; @2u.x/

�
� D0jx � yj;

where

(14.26) D0 D D0

�kukC 2.�/

�
:

The equality in (14.25) follows from F.x;D2u/ D 0. At this point, we impose a
special condition on the unit vectors �k used to define hk above. The following
is a result of [MW]:

Lemma 14.1. Given 0 < � < ƒ < 1, let S.�;ƒ/ denote the set of positive-
definite, real, n � n matrices with spectrum in Œ�;ƒ�. Then there exist N 2 ZC
and �� < ƒ� in .0;1/, depending only on n; �, and ƒ, and unit vectors �k 2
Rn; 1 � k � N , such that

(14.27) f�k W 1 � k � N g � U;

where U is defined by (14.14), and such that every A 2 S.�;ƒ/ can be written in
the form

(14.28) A D
NX

kD1

ˇkP�k
; ˇk 2 Œ��; ƒ��;

where P�k
is the orthogonal projection of Rn onto the linear span of �k .
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Proof. Let the set of real, symmetric, n � n matrices be denoted as Symm.n/
	 Rn.nC1/=2. Note that A 2 Symm.n/ belongs to S.�;ƒ/ if and only if

�jvj2 � v � Av � ƒjvj2; 8 v 2 Rn:

Thus S.�;ƒ/ is seen to be a compact, convex subset of Symm.n/. Also, S.�;ƒ/
is contained in the interior of S.�1; ƒ1/ if 0 < �1 < � < ƒ < ƒ1.

It suffices to prove the lemma in the case ƒ D 1=2n. Suppose 0 < � < 1=2n.
By the spectral theorem for elements of Symm.n/; S.�=2; 1=2n/ is contained in
the interior of the convex hull CH.P/ of the set

P D f0g [ fP� W � 2 Sn�1 � Rng:

Thus, there exists a finite subset A � U of unit vectors such that S.�=2; 1=2n/ is
contained in the interior of CH.P0/, with P0 D f0g [ fP� W � 2 Ag. Write A as
f�k W 1 � k � N g. Then any element of S.�=2; 1=2n/ has a representation of
the form

PN
kD1

ě
kP�k

, with ěk 2 Œ0; 1�.
Now, if we take A 2 S.�; 1=2n/, it follows that

A�
NX

kD1

�

2N
P�k

2 S
��
2
;
1

2n

�
;

so A D PN
kD1

�ě
k C�=2N

�
P�k

has the form (14.28), with ˇk D ě
k C�=2N 2�

�=2N; 2
�
. This proves the lemma.

If we choose the set f�k W 1 � k � N g of unit vectors to satisfy the condition
of Lemma 14.1, then

(14.29)

F�ij

�
y;D2u.y/

��
@i@j u.y/� @i@j u.x/

�

D
NX

kD1

ˇk.y/
�
@2

�k
u.y/� @2

�k
u.x/

�

D 2.1CM/

NX
kD1

ˇk.y/
�
hk.y/� hk.x/

�
;

with ˇk.y/ 2 Œ��; ƒ��. Consequently, for x 2 B2R; y 2 BR, we have from
(14.25) that

(14.30)
NX

kD1

ˇk.y/
�
hk.y/� hk.x/

� � C�e�R; e� D D0

�.1CM/
:
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Hence, for any ` 2 f1; : : : ; N g,

(14.31)

h`.y/ �m`2 � 1

��
n
C�e�RCƒ� X

k¤`

�
Mk2 � hk.y/

�o

� C
ne�RC

X
k¤`

�
Mk2 � hk.y/

�o
;

where C D C.n;ƒ=�/. We can use (14.24) to estimate the right side of (14.31),
obtaining

(14.32) ˆp;R.h` �m`2/ � C
˚
.1C "/!.2R/� !.R/Ce�RC �R2

�
:

Setting ` D k, adding (14.32) to (14.23), and then summing over k, we obtain

(14.33) !.2R/ � C
˚
.1C "/!.2R/� !.R/Ce�RC �R2

�
;

and hence

(14.34) !.R/ �
�
1 � 1

C
C "

�
!.2R/C �e�R C �R2

�
:

Now C is independent of ", though � is not. Thus fix " D 1=2C , to obtain

(14.35) !.R/ �
�
1� 1

2C

�
!.2R/C �e�RC �R2

�
:

From this it follows that if B2R0
� � and R � R0, we have

(14.36) osc
BR

@2u � C
� R
R0

�˛

.1CM/
�
1Ce�R0 C �R2

0

�
;

where C and ˛ are positive constants depending only on n and ƒ=�. We have
proved the following interior estimate:

Proposition 14.2. Let u 2 C 4.�/ satisfy (14.1), and assume that (14.2) and
(14.3) hold. Then, for any O �� �, there is an estimate

(14.37) k@2ukC ˛.O/ � C
�O; �; n; �;ƒ; kF kC 2 ; kukC 2.�/

�
:

In fact, examining the derivation of (14.36), we can specify the dependence on
O; �. If O is a ball, and jx � yj � � for all x 2 O; y 2 @�, then

(14.38) k@2ukC ˛.O/ � C
�
n; �;ƒ; kF kC 2 ; kukC 2.�/

�
��˛:
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We now tackle global estimates on� for solutions to the Dirichlet problem for
(14.1). We first obtain estimates for @2u

ˇ̌
@�

.

Lemma 14.3. Under the hypotheses of Proposition 14.2, if u
ˇ̌
@�

D ', there is an
estimate

(14.39) k@2ukC ˛.@�/ � C
�
�;n; �;ƒ; kF kC 2 ; kukC 2.�/; k'kC 3.@�/

�
:

Proof. Let Y D b`.x/@` be a smooth vector field tangent to @�, and consider
v D Y u, which solves the boundary problem

(14.40) F�ij
@i@j v D G.x/; v

ˇ̌
@�

D Y';

where

(14.41)
G.x/ D 2F�ij

.@iB
`/.@j @`u/C F�ij

.@i@j b
`/@`u

C Fpi
.@ib

`/.@`u/� Fpi
@iv � Fuv � b`@x`

F:

The hypotheses give a bound on kGkL1.�/ in terms of the right side of (14.39).
If  2 C 2.�/ denotes an extension of Y' from @� to�, then Proposition 13.11,
applied to v �  , yields an estimate

(14.42) k@�Y ukC ˛.@�/ � C;

where C is of the form (14.39). On the other hand, the ellipticity of (14.1) allows
one to solve for @2

�u
ˇ̌
@�

in terms of quantities estimated in (14.42), plus u
ˇ̌
@�

and
ru
ˇ̌
@�

, and second-order tangential derivatives of u, so (14.39) is proved.

We now want to estimate j@2
� u.x/�@2

� u.x0/j, given x0 2 @�; x 2 �; � 2 Rn

a unit vector. For simplicity, we will strengthen the concavity hypothesis (14.3) to
strong concavity:

(14.43) @�jk
@�`m

F.x; u; p; �/„jk„`m � ��0j„j2; „ D „t ;

for some �0 > 0, when � D @2u; p D ru. Then we can improve (14.8) to

(14.44) F�ij
@i@j .@

2
� u/ � �Aij

� @i@j @� u � B� � �0j@2@� uj2 � �C1;

by Cauchy’s inequality, where

C1 D C1

�
n; �;ƒ; �0; kA� .x;D

2u/kL1 ; kB� .x;D
2u/kL1

�
:

Now the function

(14.45) W.x/ D C2jx � x0j˛ .0 < ˛ < 1/
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is concave on Rn n fx0g, and if C2 is sufficiently large, compared to C1 �
diam.�/2�˛=�, we have

(14.46) LW � �C1; Lv D F�ij
@i@j v:

Hence, by the maximum principle,

(14.47) @2
� u � @2

� .x0/CW on @� H) @2
� u � @2

� u.x0/CW on �:

Now the estimate (14.39) implies that the hypothesis of (14.47) is satisfied, pro-
vided that also C2 � k@2ukC ˛.@�/, so we have the one-sided estimate given by
the conclusion of (14.47).

For the reverse estimate, use (14.25), with y D x0, together with (14.29), to
write

(14.48)
NX

kD1

ˇk.x0/
�
@2

�k
u.x0/� @2

�k
u.x/

� � D0jx � x0j:

Recall that ˇk.x0/ 2 Œ��; ƒ��; �� > 0. This together with (14.47) implies

(14.49) j@2
�k

u.x/� @2
�k

u.x0/j � C3jx � x0j˛;

withC3 of the form (14.39), and we can express any @j @`u as a linear combination
of the @2

�k
u, to obtain the following:

Lemma 14.4. If we have the hypotheses of Lemma 14.3, and we also assume
(14.43), then there is an estimate

(14.50) j@2u.x/ � @2u.x0/j � C jx � x0j˛; x0 2 @�; x 2 �;

with

(14.51) C D C
�
�;n; �;ƒ; �0; kF kC 2 ; kukC 2.�/; k'kC 3.@�/

�
:

We now put (14.38) and (14.50) together to obtain a Hölder estimate for @2u
on �. To estimate j@2u.x/ � @2u.y/j, given x; y 2 �, suppose dist.x; @�/ C
dist.y; @�/ D 2�, and consider two cases:

(i) jx � yj < �2,
(ii) jx � yj � �2.

In case (i), we can use (14.38) to deduce that

(14.52) j@2u.x/� @2u.y/j � C jx � yj˛��˛ � C jx � yj˛=2:
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In case (ii), let x0 2 @� minimize the distance from x to @�, and let y0 2 @�

minimize the distance from y to @�. Thus

(14.53)
jx � x0j � 2� � 2jx � yj1=2; jy � y0j � 2� � 2jx � yj1=2;

jx0 � y0j � jx � yj C jx0 � xj C jy0 � yj � jx � yj C 4jx � yj1=2:

Thus

(14.54)

j@2u.x/� @2u.y/j � j@2u.x/� @2u.x0/j C j@2u.x0/� @2u.y0/j
C j@2u.y0/� @2u.y/j

� eC jx � x0j˛ C eC jx0 � y0j˛ C eC jy0 � yj˛
� C jx � yj˛=2:

In (14.52) and (14.54), C has the form (14.51). Taking r D ˛=2, we have the
following global estimate:

Proposition 14.5. Let u 2 C 4.�/ satisfy (14.1), with u
ˇ̌
@�

D '. Assume the
ellipticity hypothesis (14.2) and the strong concavity hypothesis (14.43). Then
there is an estimate

(14.55) kukC 2Cr .�/ � C
�
�;n; �;ƒ; �0; kF kC 2 ; kukC 2.�/; k'kC 3.@�/

�
;

for some r > 0, depending on the same quantities as C .

Now that we have this estimate, the continuity method yields the following
existence result. For � 2 Œ0; 1�, consider a family of boundary problems

(14.56) F� .x;D
2u/ D 0 on �; u

ˇ̌
@�

D '� :

Assume F� and '� are smooth in all variables, including � . Also, assume that
the ellipticity condition (14.2) and the strong concavity condition (14.43) hold,
uniformly in � , for any smooth solution u� .

Theorem 14.6. Assume there is a uniform bound in C 2.�/ for any solution u� 2
C1.�/ of (14.56). Also assume that @uF� � 0. Then, if (14.56) has a solution in
C1.�/ for � D 0, it has a smooth solution for � D 1.

With some more work, one can replace the strong concavity hypothesis (14.43)
by (14.3); see [CKNS].

There is an interesting class of elliptic PDE, known as Bellman equations,
for which F.x; u; p; �/ is concave but not strongly concave in �, and also it is
Lipschitz but not C1 in its arguments; see [Ev2] for an analysis.

Verifying the hypothesis in Theorem 14.6 that u� is bounded in C 2.�/ can be
a nontrivial task. We will tackle this, for Monge–Ampere equations, in the next
section.
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Exercises
1. Discuss the Dirichlet problem for

�u C @2
1u C 1

2

�
1C .�u/2

�1=2 D 	eu;

for 	 � 0.

15. Monge–Ampere equations

Here we look at equations of Monge–Ampere type:

(15.1) det H.u/� F.x; u;ru/ D 0 on �; u D ' on @�;

where � is a smoothly bounded domain in Rn, which we will assume to be
strongly convex. As in (3.7a),H.u/ D .@j @ku/ is the Hessian matrix. We assume
F.x; u;ru/ > 0, say F.x; u;ru/ D exp f .x; u;ru/, and look for a convex
solution to (15.1). It is convenient to set

(15.2) G.u/ D log det H.u/� f .x; u;ru/;

so (15.1) is equivalent to G.u/ D 0 on �; u D ' on @�. Note that

(15.3) DG.u/v D gjk @j @kv � .@pj
f /.x; u;ru/ @j v � .@uf /.x; u;ru/v;

where .gjk/ is the inverse matrix of .@j @ku/, which we will also denote as .gjk/.
We will assume

(15.4) .@uf /.x; u; p/ � 0;

this hypothesis being equivalent to .@uF /.x; u; p/ � 0.
The hypotheses made above do not suffice to guarantee that (15.1) has a

solution. Consider the following example:

(15.5) det H.u/�K
�
1C jruj2�2 D 0 on �; u D 0 on @�;

where� is a domain in R2. Compare with (3.41). LetK be a positive constant. If
there is a convex solution u, the surface † D f.x; u.x// W x 2 �g is a surface in
R3 with Gauss curvature K . If � is convex, then the Gauss map N W † ! S2 is
one-to-one and the imageN.†/ has area equal toK �Area.�/. ButN.†/must be
contained in a hemisphere of S2, so we must haveK � Area.�/ � 2
 . We deduce
that if K � Area.�/ > 2
 , then (15.5) has no solution.

To avoid this obstruction to existence, we hypothesize that there exists ub 2
C1.�/, which is convex and satisfies

(15.6) log det H.ub/ � f .x; ub ;rub/ � 0 on �; ub D ' on @�:
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We call ub a lower solution to (15.1). Note that the first part of (15.6) is equivalent
to det H.ub/ � F.x; ub;rub/. In such a case, we will use the method of conti-
nuity and seek a convex u� 2 C1.�/ solving

(15.7)

log det H.u� / � f .x; u� ;ru� /

D .1 � 	/�log det H.ub/ � f .x; ub ;rub/
�

D .1 � 	/h.x/;

for 	 2 Œ0; 1� and u� D ' on @�. Note that u0 D ub solves (15.7) for 	 D 0. If
such u� exists for all 	 2 Œ0; 1�, then u D u1 is the desired solution to (15.1).

Let J be the largest interval in Œ0; 1�, containing 0, such that (15.7) has a convex
solution u� 2 C1.�/ for all 	 2 J . Since the linear operator in (15.3) is elliptic
and invertible (by the maximum principle) under the hypothesis (15.4), the same
sort of argument used in the proof of Lemma 10.1 shows that J is open, and the
real work is to show that J is closed. In this case, we need to obtain bounds on u�

in C 2C�.�/, for some � > 0, in order to apply the regularity theory of � 8 and
conclude that J is closed.

Lemma 15.1. Given 	 � � 2 J , we have

(15.8) ub � u� � u� on �:

Proof. The operatorG.u/ satisfies the hypotheses of Proposition 10.8; since ub D
u� D u� on @�, (15.8) follows.

In particular, taking 	 D � , we have uniqueness of the solution u� 2 C1.�/
to (15.7).

Next we record some estimates that are simple consequences of convexity
alone:

Lemma 15.2. Assume � is convex. For any 	 2 J ,

(15.9) u� � sup
@�

' on �

and

(15.10) sup
x2�

jru� .x/j � sup
y2@�

jru�.y/j:

Thus we will have a bound on u� in C 1.�/ if we bound ru� on @�. Since
u�

ˇ̌
@�

D ' 2 C1.@�/, it remains to bound the normal derivative @�u� on @�.
Assume @� points out of �. Then (15.8) implies

(15.11) @�u� .y/ � @�ub.y/; 8 y 2 @�:
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On the other hand, a lower bound on @�u� .y/ follows from convexity alone. In
fact, if �.y/ is the outward normal to @� at y, sayey D y � `.y/�.y/ is the other
point in @� through which the normal line passes. Then convexity of u� implies

(15.12) u�

�
sy C .1 � s/ey� � s'.y/C .1 � s/'.ey /;

for 0 � s � 1. Noting that `.y/ D jy �eyj, we have

@�u�.y/ � '.ey /� '.y/

jey � yj :

Thus we have the next result:

Lemma 15.3. If � is convex, then, for any 	 2 J ,

(15.13) sup
�

jru� j � Lip1.'/C sup
�

jrubj:

Here, Lip1.'/ denotes the Lipschitz constant of ':

(15.14) Lip1.'/ D sup
y;y02@�

j'.y/� '.y0/j
jy � y0j :

We now look for C 2-bounds on solutions to (15.7). For notational simplicity,
we write (15.7) as

(15.15) log det H.u/� f .x; u;ru/ D 0; u
ˇ̌
@�

D ';

where the second term on the left is

f� .x; u;ru/ D f .x; u;ru/C .1 � 	/h.x/;

and we drop the 	 . By (15.4) and (15.6), we have f .x; u; p/ > 0 and
.@uf /.x; u; p/ � 0.

Since u is convex, it suffices to estimate pure second derivatives @2
� u from

above. Following [CNS], who followed [LiP2], we make use of the function

w D eˇ jruj2=2 @2
� u;

where ˇ is a constant that will be chosen later. Suppose this is maximized, among
all unit � 2 Rn; x 2 �, at � D �0; x D x0. Rotating coordinates, we can
assume

�
gjk.x0/

� D �
@j @ku.x0/

�
is in diagonal form and �0 D .1; 0; : : : ; 0/. Set

u11 D @2
1u, so we take

(15.16) w D eˇ jruj2=2u11 D  .ru/u11:

We now derive some identities and inequalities valid on all of �.
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Differentiating (15.15), we obtain

(15.17)
gij @i@j @`u D @`f .x; u;ru/;

gij @i@j u11 D gi`gjm.@i@j @1u/.@k@m@1u/C @2
1f;

where .gij / is the inverse matrix to .gij / D .@i@j u/, as above. Also, a calculation
gives

(15.18)
w�1 @iw D .log /pk

@i@ku C u�1
11 .@i@

2
1u/;

w�1 @i@jw D w�2.@iw/.@jw/C .log /pk p`
.@i@ku/.@j @`u/

C .log /pk
.@i@j @ku/C u�1

11 @i@j u11 � u�2
11 .@i@

2
1u/.@j @

2
1u/:

Formingw�1 gij @i@jw and using (15.17) to rewrite the term u�1
11 g

ij @i@j u11, we
obtain

(15.19)

 �1gij @i@jw

� u11

h
.log /pkp`

gij .@i@ku/.@j @`u/C .log /pk
gij @i@j @ku

i

C gik gi`.@i@j @1u/.@k@`@1u/� u�1
11 g

ij .@i@
2
1u/.@j @

2
1u/C @2

1f:

Now we have .log /pk
D ˇpk and .log /pk p`

D ˇık`, and hence

(15.20) .log /pkp`
gij .@i@ku/.@j @`u/ D ˇık` ıj

k.@j @`u/ D ˇ�u:

Let us assume the following bounds hold on f .x; u; p/:

(15.21) j.rf /.x; u; p/j � �; j.@2f /.x; u; p/j � �:

Using the first identity in (15.17), we have

(15.22)
u11.log /pk

gij @i@j @ku C @2
1f

� fpi
.w�1@iw/u11 � C �1C j@2uj2 C ˇ.1C j@2uj/�;

with C D C
�
�; krukL1.�/

�
.

Now, let us look at x0, where, recall, eˇ jruj2=2@2
1u is maximal, among all values

of eˇ jru.x/j2=2@2
� u.x/. If x0 2 � (i.e., x0 … @�), then @iw.x0/ D 0 and the left

side of (15.19) is � 0 at x0. Furthermore, due to the diagonal nature of .gij / at
x0, we easily verify that g11gij �i1�j1 � gijgk`�ik�j`, and hence

(15.23) u�1
11 g

ij .@i@
2
1u/.@j @

2
1u/ � gikgj`.@i@j @1u/.@k@`@1u/;
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at x0. Thus the evaluation of (15.19) at x0 implies the estimate

(15.24) 0 � ˇ.@2
1u/.�u/� � � C �1C j@2uj2 C ˇ.1C j@2uj/�

if x0 … @�. Hence, with X D @2
1u.x0/,

(15.25) .ˇ � C1/X
2 � ˇC2.1CX/C �;

where C1 and C2 depend on � and krukL1 , but not on ˇ. Taking ˇ large, we
obtain a bound on X :

(15.26) @2
1u.x0/ � C

�
�; krukL1.�/

�
if x0 … @�:

On the other hand, if sup w is achieved on @�, we have

sup
x;�

j@2
� u.x/j � sup

@�

j@2uj � exp
�
ˇkrukL1

�
:

This establishes the following.

Lemma 15.4. If u 2 C 3.�/ \ C 2.�/ solves (15.15) and the hypotheses above
hold, then

(15.27) sup
�

j@2uj � C
�
�; krukL1.�/

�h
1C sup

@�

j@2uj
i
:

To estimate @2u at a boundary point y 2 @�, suppose coordinates are rotated
so that �.y/ is parallel to the xn-axis. Pick vector fields Yj , tangent to @�, so that
Yj .y/ D @j ; 1 � j � n � 1. Then we easily get

(15.28) j@j @ku.y/j � jYjYk'.y/j C C jru.y/j; 1 � j; k � n � 1:

In fact, for later reference, we note the following. Suppose Yj is the vector field
tangent to @�, equal to @j at y, and obtained by parallel transport along geodesics
emanating from y. If Yk D b`

k
@`, then

(15.29)
YjYku.y/ D @j @ku.y/C �

@j b
`
k.y/

�
@`u.y/

D @j @ku.y/C �r0
@j
Yk

�
u.y/;

where r0 is the standard flat connection on Rn. If r is the Levi–Civita connection
on @�, we have r@j

Yk D 0 at y, hence r0
@j
Yk D �fII .@j ; @k/ @� at y, where

@� D �N is the outward-pointing normal and fII is the second fundamental form
of @�; see � 4 of Appendix C. Hence

(15.30) @j @ku.y/ D YjYku.y/C fII .@j ; @k/ @�u.y/; 1 � j; k � n � 1:



15. Monge–Ampere equations 287

Later it will be important to note that strong convexity of @� implies positive
definiteness of fII .

We next need to estimate @nYku.y/; 1 � k � n � 1. If Yk D b`
k
.x/ @`, then

vk D Yku satisfies the equation

(15.31) gij @i@j vk � fpi
@ivk D A.x/C gijBij .x/;

where

(15.32)
A.x/ D 2@ib

i
k C fx`

b`
k C fuvk C fpi

.@ib
`
k/ @`u;

Bij .x/ D .@i@j b
`
k/ @`u;

and vk

ˇ̌
@�

D Yk'. This follows by multiplying the first identity in (15.17) by b`
k

and summing over `; one also makes use of the identity gij @j @`u D ıi
`.

We first derive a boundary gradient estimate for vk D Yku when (15.15) takes
the simpler form

(15.33) log det H.u/� f .x; u/ D 0; u
ˇ̌
@�

D 'I

that is, ru is not an argument of f . Here, we follow [Au]. We assume ' 2
C1.�/, set

(15.34) wk D Yk.u � '/ D vk � Yk';

then let ˛ and ˇ be real numbers, to be fixed below, and set

(15.35) ewk D wk C ˛hC ˇ.u � '/:

Here, h 2 C1.�/ is picked to vanish on @� and satisfy a strong convexity con-
dition:

(15.36) .@i@jh/ � I; h
ˇ̌
@�

D 0:

The hypothesis that � is strongly convex is equivalent to the existence of such a
function.

Now, a calculation using (15.31) (and noting that in this case fpi
D 0) gives

(15.37) gij @i@jewk D A.x/C nˇ C gijeBij .x/; ewk

ˇ̌
@�

D 0;

where A.x/ is as in (15.32) (with the last term equal to zero), and

(15.38) eB ij .x/ D Bij .x/ � @i@jYk' C ˛ @i@jh � ˇ @i@j':
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We now choose ˛ and ˇ. Pick ˇ D ˇ0, so large that A.x/ C nˇ0 � 0. This
done, pick ˛ D ˛0, so large that .eB ij / � 0. Then ewk0, defined by (15.34) with
˛ D ˛0; ˇ D ˇ0, satisfies

(15.39) gij @i@jewk0 � 0; ewk0

ˇ̌
@�

D 0:

Similarly, pick ˇ D ˇ1 sufficiently negative that A.x/C nˇ1 � 0, and then pick
˛ D ˛1 sufficiently negative that .eB ij / � 0. Then, ewk1, defined by (15.35) with
˛ D ˛1 and ˇ D ˇ1, satisfies

(15.40) gij @i@jewk1 � 0; ewk1

ˇ̌
@�

D 0:

The maximum principle implies ewk0 � 0 and ewk1 � 0; hence

(15.41) Yk' � ˛1h � ˇ1.u � '/ � Yku � Yk' � ˛0h� ˇ0.u � '/:

Thus, if @� denotes the normal derivative at @�,

(15.42) j@�Ykuj � .˛0 � ˛1/j@�hj C .ˇ0 � ˇ1/j@�u � @�'j C j@�Yk'j;

when u solves (15.33).
In view of the example (15.5), for a surface with Gauss curvature K , we have

ample motivation to estimate the normal derivative of Yku when u solves the more
general equation (15.15). We now tackle this, following [CNS].

Generally, if wk D Yk.u � '/, (15.31) yields

(15.43)
gij @i@jwk � fpi

@iwk

D �
A.x/C fpi

@iYk'
�C gij

�
Bij .x/ � @i@jYk'

� D ˆ.x/:

Note that, given a bound for u in C 1.�/, we have

(15.44) jˆ.x/j � C C Cgjj ;

where gjj is the trace of .gij /.
Translate coordinates so that y D 0. Recall that we assume �.y/ is parallel

to the xn-axis. Assume xn � 0 on �. As above, assume h 2 C1.�/ satisfies
(15.36). Take � 2 .0; 1=4/ and M 2 .0;1/, and set h�.x/ D h.x/ � �jxj2. We
have

(15.45)

.gij @i@j � fpi
@i /.h� CMx2

n/

D gij @i@jh� � fpi
@ih� C 2Mgnn � 2Mfpn

xn

� �1
2
gjj C 2Mgnn

� � �
Mfpn

xn C fpi
@ih�

�
:
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The arithmetic-geometric mean inequality implies

�
M	1 � � �	n

�1=n � 1

n

�X
j <n

	j CM	n

�
;

and if the eigenvalues of .gij / are 	n � � � � � 	1, we have gnn � 	n, and hence

(15.46)
�
M det.gij /

�1=n � 1

n

�
gjj CMgnn

�
:

Given a positive lower bound on det.gij / D 1=F.x; u;ru/, we have

(15.47)
1

2
gjj C 2Mgnn � cgjj C c1M

1=n:

Hence (15.45) implies

(15.48) .gij @i@j � fpi
@i /.h� CMx2

n/ � cgjj C c1M
1=n � c2 � c3Mxn:

At this point, fix M sufficiently large that c1M
1=n � 1C c2, so that

(15.49) .gij @i@j � fpi
@i /.h� CMx2

n/ � 1C cgjj � c3Mxn on �:

Now, let
O" D fx 2 � W 0 < xn < "g;

as illustrated in Fig. 15.1. We can then pick " sufficiently small that (e.g., with
� D 1=8)

(15.50) .gij @i@j � fpi
@i /.h� CMx2

n/ � cgjj C 1

2
on O":

Note that the function h has the property rh ¤ 0 on @�. Thus, after possibly
further shrinking ", we have

(15.51)
h� CMx2

n � 0 on @O" \ @�;

�c4 < 0 on � \ fxn D "g:

FIGURE 15.1 Setup for Normal Derivative Estimate
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With " > 0 so fixed, we can then pick A sufficiently large (depending on
kukC 1.�/) that c4A � kYkukL1.�/; hence

(15.52)
wk C A.h� CMx2

n/ � 0;

wk � A.h� CMx2
n/ � 0

on @O". We can also pick A so large that (by (15.50) and (15.43)–(15.44))

(15.53)
.gij @i@j � fpi

@i /
�
wk C A.h� CMx2

n/
� � 0;

.gij @i@j � fpi
@i /
�
wk � A.h� CMx2

n/
� � 0

on O". The maximum principle then implies that (15.52) holds on O". Thus

(15.54) j@nYku.y/j � Aj@nh�.y/j:

This completes our estimation of @nYku.y/, begun at (15.31).
We prepare to tackle the estimation of @2

nu.y/. A key ingredient will be a pos-
itive lower bound on @2

j u.y/, for 1 � j � n � 1. In order to get this, we make
a further (temporary) hypothesis, namely that there is a strictly convex function
u# 2 C1.�/ satisfying

(15.55) log det H.u#/ � f .x; u#;ru#/ � 0 on �; u#
ˇ̌
@�

D ':

The function u# is called an upper solution to (15.1). The proof of (15.8) yields

(15.56) ub � u� � u� � u# on �;

for 	 � � 2 J . In the present context, where we have dropped the 	 and where
u 2 C1.�/ is a solution to (15.15), this means ub � u � u# on�. Consequently,
complementing (15.11), we have

(15.57) @�u � @�u# on @�:

Now let Yj be the vector field tangent to @�, equal to @j at y, used in (15.30).
We have

(15.58) @2
j u.y/ D Y 2

j u.y/C 
j @�u.y/; 
j D fII .@j ; @j / > 0;

for 1 � j � n�1, by (15.30), assuming @� is strongly convex. There is a similar
identity for @2

j u#.y/. Since u D u# D ' on @�, subtraction yields

(15.59) @2
j u.y/ D @2

j u#.y/C 
j

�
@�u.y/� @�u#.y/

� � @2
j u#.y/;
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for 1 � j � n � 1, the inequality following from (15.57). Since u# is assumed to
be a given strongly convex function, this yields a positive lower bound:

(15.60) @2
j u.y/ � K0 > 0; 1 � j � n � 1:

Now we can get an upper bound on @2
nu.y/. Rotating the x1 : : : xn�1 coordinate

axes, we can assume
�
@j @ku.y/

�
1�j;k�n�1

is diagonal. Then, at y,

(15.61) det H.u/ D .@2
nu/

n�1Y
j D1

.@2
j u/C ~.@2u/;

where ~ is an n-linear form in @2u.y/ that does not contain @2
nu.y/. Since det

H.u/ D f .x; u;ru/ and we have estimates on ru, as well as @j @ku.y/ for
@j @k ¤ @2

n, we deduce that

(15.62) Kn�1
0 @2

nu.y/ � K1:

This completes the estimation of kukC 2.�/.

Once we have a bound in C 2.�/ for solutions to (15.15), we can apply The-
orem 14.6 to deduce the existence of a solution u 2 C1.�/ to (15.1). We thus
have the following:

Proposition 15.5. Let � � Rn be a smoothly bounded, open set with strongly
convex boundary. Consider the Dirichlet problem (15.1), with ' 2 C1.@�/.
Assume F.x; u; p/ is a smooth function of its arguments satisfying

F.x; u; p/ > 0; @uF.x; u; p/ � 0:

Furthermore, assume (15.1) has a lower solution ub, and an upper solution u# 2
C1.�/. Then (15.1) has a unique convex solution u 2 C1.�/.

After a little more work, we will show that we need not assume the existence
of an upper solution u#. Note that u# was not needed for the estimates of

s0 D sup juj; s1 D sup jruj

in Lemmas 15.1–15.3. Thus, if we take a constant a satisfying

0 < a < inf fF.x; u; p/ W x 2 �; juj � s0; jpj � s1g;

then any smooth, strongly convex u# satisfying

(15.63) det H.u#/ � a on �; u#
ˇ̌
@�

D ';
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will serve as an upper solution to (15.1). Thus, for arbitrary a > 0, we want to
produce u# 2 C1.�/, which is strongly convex and satisfies (15.63). For this
purpose, it is more than sufficient to have the following result, which is of interest
in its own right.

Proposition 15.6. Let � � Rn be a smoothly bounded, open set with strongly
convex boundary. Let ' 2 C1.@�/ be given and assume F 2 C1.�/ is positive.
Then there is a unique convex solution u 2 C1.�/ to

(15.64) det H.u/ D F.x/; u
ˇ̌
@�

D ':

Proof. First, note that (15.64) always has a lower solution. In fact, if you extend
' to an element of C1.�/ and let h 2 C1.�/ be as in (15.36), then ub D 'C�h
will work, for sufficiently large � .

Following the proof of Proposition 15.5, we see that to establish Proposition
15.6, it suffices to obtain an a priori estimate in C 2.�/ for a solution to (15.64).
All the arguments used above to establish Proposition 15.5 apply in this case, up
to the use of u#, in (15.55)–(15.59), to establish the estimate (15.60), namely,

(15.65) @2
j u.y/ � K0 > 0; 1 � j � n � 1:

Recall that y is an arbitrarily selected point in @�, and we have rotated coordinates
so that the normal �.y/ to @� is parallel to the xn-axis. If we establish (15.65) in
this case, without using the hypothesis that an upper solution exists, then the rest
of the previous argument giving an estimate in C 2.�/ will work, and Proposition
15.6 will be proved.

We establish (15.65), following [CNS], via a certain barrier function. It suffices
to treat the case j D 1. We can also assume that y is the origin in Rn and that,
near y; @� is given by

(15.66) xn D �.x0/ D
n�1X
j D1

Bjx
2
j CO.jx0j3/; Bj > 0;

where x0 D .x1; : : : ; xn�1/.
Note that adding a linear term to u leaves the left side of (15.64) unchanged

and also has no effect on @2
j u. Thus, without loss of generality, we can assume

that

(15.67) u.0/ D 0; @j u.0/ D 0; 1 � j � n � 1:

We have, on @�,

(15.68) u D ' D 1

2

X
j;k<n

�jkxjxk C ~3.x
0/CO.jxj4/;

where ~3.x
0/ is a polynomial, homogeneous of degree 3 in x0.
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Now consider

(15.69) Qu.x/ D u.x/ � �xn; � D B�1
1 �11:

This function satisfies det H.Qu/ D F.x/. Looking at Quˇ̌
@�

D ' � ��.x0/, we see
that the coefficients of x2

1 cancel out here. We claim there is an estimate of the
form

(15.70) Quˇ̌
@�

�
X

1<j �n

a1j x1xj C C
� X

1<k<n

x2
k C jxj4

�
:

Indeed, in light of our remark about the disappearance of x2
1 , we need only worry

about a multiple of x3
1 , which can be dominated on @� by a term of the form

a1nx1xn plus a multiple of the quantity in parentheses in (15.70).
The barrier function will take the form

(15.71) W.x/ D 1

2B

X
1<j �n

.a1jx1 C Bxj /
2 C ıjxj2 � "xn:

Take B >> C , then fix ı > 0 small, and take " << ı. We can do this in such a
fashion as to arrange

(15.72) W � Qu on @�:

Note that 2ı is the smallest eigenvalue ofH.W /, and all the other eigenvalues are
bounded above independently of ı 2 .0; 1/, so choosing ı small enough gives

(15.73) detH.W / < F.x/ on �:

ThenW is an upper barrier for Qu; the maximum principle yields

(15.74) Qu � W on �:

Consequently,

(15.75) @n Qu.0/ � @nW.0/ D �":
As noted above, our construction (15.69) yields

(15.76) @2
1 Qu�x0; �.x0/

� D 0; at x0 D 0;

that is, @2
1 Qu C .@n Qu/@2

1� D 0, at x0 D 0. Hence

(15.77) @2
1u.0/ D @2

1 Qu.0/ D �@n Qu.0/ � @2
1�.0/ � "@2

1�.0/:

This proves the j D 1 case of (15.65), as needed, so Proposition 15.6 is proved.
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In light of the comments made after the statement of Proposition 15.5, we have

Corollary 15.7. In Proposition 15.5, the hypothesis that there exists an upper
solution u# can be omitted.

There are some results for Monge–Ampere equations on nonconvex domains;
see [GS] and [HRS].

In addition to the Monge–Ampere equations studied here, there are complex
Monge–Ampere equations, whose study has been very important in complex
function theory and differential geometry; see [Au, BT, CKNS, Fef, Yau1].

Exercises
1. Let � � R2 be a strongly convex, smoothly bounded region. Let us assume that F 2
C1.�/; ' 2 C1.@�/, and F > 0. Show that

det H.u/ D F.x/ on �; u
ˇ̌
@�

D ';

has exactly two solutions in C1.�/, one convex and one concave.
2. Suppose the hypothesis @uF.x; u; p/ � 0 in Proposition 15.5 is dropped. Establish the

existence of solutions, using the Leray–Schauder theory.
3. Given � as in Proposition 15.5, ' 2 C1.@�/, show that there exists K0 > 0 such

that, for all K 2 .0;K0/, there is a unique convex solution uK 2 C1.�/ to

(15.78) det H.uK / D K
�
1C jruK j2�.nC2/=2 on �; uK

ˇ̌
@�

D ':

(Hint: Show that the convex solution to (15.64), with F D 1, yields a lower solution
for (15.78), provided K > 0 is sufficiently small.)
Note that the graph of uK is a surface with Gauss curvature K.

4. With uK as in Exercise 3, show that there is u0 2 Lip1.�/ such that

(15.79) uK % u0 as K & 0:

In what sense can you say that u0 solves

(15.80) det H.u0/ D 0 on �; u0

ˇ̌
@�

D '?

See [RT] and [TU] for more on (15.80).

16. Elliptic equations in two variables

We have seen in � 12 that results on quasi-linear, uniformly elliptic equations for
real-valued functions on a domain � are obtained more easily when dim � D 2

than when dim � � 3 and have extensions to systems that do not work in higher
dimensions. Here we will obtain results on completely nonlinear equations for
functions of two variables which are more general than those established in � 14
for functions of n variables. The key is the following result of Morrey on linear
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equations with bounded measurable coefficients, whose conclusion is stronger
than that of Theorem 13.7:

Theorem 16.1. Assume u 2 C 2.�/ and Lu D f on � � R2, where

(16.1) Lu D
2X

j;kD1

ajk.x/ @j @ku:

Assume ajk D akj are measurable on� and

(16.2) �j�j2 � ajk.x/�j �k � ƒj�j2;

for some �;ƒ 2 .0;1/. Pick p > 2. Then, for O �� �, there is a � > 0 such
that

(16.3) kukC 1C�.O/ � C
�kukH 1.�/ C kf kLp.�/

�
;

where C D C.O; �; p; �;ƒ/.
Proof. Let Vj D @j u. Then these functions satisfy the divergence-form equations

(16.4)
@1

�a11

a22
@1V1 C 2

a12

a22
@2V1

�
C @2

�
@2V1

� D @1

� f
a22

�
;

@1

�
@1V2

�C @2

�a22

a11
@2V2 C 2

a12

a11
@1V2

�
D @2

� f
a11

�
:

Proposition 9.8 applies to each of these equations, yielding

(16.5) kVj kC �.O/ � C
�kVj kL2.�/ C kf kLp.�/

�
:

This yields the desired estimate (16.3).

Morrey’s original proof of Theorem 16.1 came earlier than the DeGiorgi-
Nash-Moser estimate used in the proof above. Instead, he used estimates on
quasi-conformal mappings (see [Mor2]).

We apply Theorem 16.1 to estimates for real-valued solutions to equations of
the form

(16.6) F.x; u;ru; @2u/ D f on � � R2;

where F D F.x; u; p; �/ is a smooth function of its arguments satisfying the
ellipticity condition

(16.7)
�j�j2 �

X @F

@�jk

.x; u; p; �/�j �k � ƒj�j2;
0 < � D �.u; p; �/; ƒ D ƒ.u; p; �/:
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For h > 0; ` D 1; 2, set

(16.8) V`h.x/ D h�1
�
u.x C he`/� u.x/

�
:

Then V`h satisfies the equation

(16.9)
X
j;k

a
jk

`h
.x/@j @kV`h D g`h.x/

on �h D fx 2 � W dist.x;R2 n �/ > hg, where the coefficients ajk

`h
.x/ are

given by

(16.10) a
jk

`h
.x/ D

Z 1

0

@F

@�jk

�
x C she`; : : : ; s@

2�`hu C .1 � s/@2u
�

ds;

with �`hu.x/ D u.x C he`/, and the functions g`h.x/ are given by

g`h.x/ D �
X

j

�Z 1

0

@F

@pj

�
x C she`; : : : ; s@

2�`hu C .1 � s/@2u
�
ds

�
@jV`k

�
Z 1

0

@F

@u

�
x C she`; : : : ; s@

2�`h C .1 � s/@2u
�
ds V`h

(16.11) �
Z 1

0

@F

@x`

�
x C she`; : : : ; s@

2�`hu C .1 � s/@2u
�
ds

C h�1
�
f .x C he`/� f .x/

�
:

Theorem 16.1 then yields an estimate

(16.12) kV`hkC 1C�.O/ � C
�kV`hkL2.�/ C kg`hkLp.�/

�
;

with C D C.O; �; p; �;ƒ; kukC 2.�//. Note that

(16.13) kg`hkLp.�/ � C
�kukC 2.�/

�C 		h�1.�`hf � f /		
Lp.�/

:

Letting h ! 0, we have the following:

Theorem 16.2. Assume that � � R2, that u 2 C 2.�/ solves (16.6), that the
ellipticity condition (16.7) holds, and that f 2 H 1;p.�/, for some p > 2. Then,
given O �� �, there is a � > 0 such that u 2 C 2C�.O/ and

(16.14) kukC 2C�.O/ � C
�
1C kf kH 1;p.�/

�
;
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where

(16.15) C D C
�O; �; p; �;ƒ; kukC 2.�/

�
:

For estimates up to the boundary, we use the following complement to
Theorem 16.1:

Proposition 16.3. If u 2 C 2.�/ and the hypotheses of Theorem 16.1 hold, then
there is an estimate

(16.16) kukC 1C�.�/ � C
�kukH 1;p.�/ C k'kC 2.@�/ C kf kLp.�/

�
;

where ' D u
ˇ̌
@�

and C D C.�; p; �;ƒ/.

Proof. Given y 2 @�, locally flatten @� near y, using a coordinate change, trans-
forming it to the x1-axis. In the new coordinates, u satisfies an elliptic equation of
the form

(16.17) eajk@j @ku D f �ebj @j u D ef :
Then eV 1 D @1u satisfies an analogue of the first equation in (16.4), while eV 1 D
@1' on the flattened part of @�. Thus Proposition 9.9 (or rather the local version
mentioned at the end of � 9) yields an estimate on eV 1 in C�.U \ �/, for some
neighborhoodU of y in R2.

Thus, for any smooth vector fieldX on R2, tangent to @�, we have an estimate
on kXukC �.�/ by the right side of (16.16). Furthermore, by Proposition 9.9, there
is a Morrey space estimate

(16.18) krXukM
q
2

.�/ � RHS;

for some q > 2, where “RHS” stands for the right side of (16.16). We may as well
assume q � p, so ef 2 Lp.�/ � M

q
2 .�/. Then (16.17) and (16.18) together

imply

(16.19) k@j @kukM
q
2

.�/ � RHS;

for all j; k � 2, which in turn implies (16.16).

We now establish the following:

Theorem 16.4. Assume that � � R2 and that u 2 C 3.�/ solves (16.6), with the
ellipticity condition (16.7), with f 2 H 1;p.�/ for some p > 2, and u

ˇ̌
@�

D '.
Then, for some � > 0, there is an estimate

(16.20) kukC 2C�.�/ � C
�
1C k'kC 3.@�/ C kf kH 1;p.�/

�
;
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where

(16.21) C D C
�
�;p; �;ƒ; kukC 2.�/

�
:

Proof. If X D b`@` is a smooth vector field in R2, tangent to @�, then Xu
satisfies

(16.22)
F�jk

@j @k.Xu/ D � Fpj
@j .Xu/� Fu Xu C F�jk

.@j @kb
`/.@`u/

C 2F�jk
.@j b

`/.@k@`u/C Fpj
.@j b

`/.@`u/CXf;

and Xu D X' on @�. Thus Proposition 16.3 applies. We have a C 1C�.�/-
estimate on Xu, and even better, a Morrey space estimate:

(16.23) k@j @kXukM
q
2

.�/ � RHS;

for some q > 2, and for all j; k � 2, where “RHS” now stands for the right side
of (16.20).

The proof is almost done. Parallel to (16.22), we have, for any `,

(16.24) F�jk
@j @k@`u D �Fpj

@j @`u � Fu @`u C @`f:

Thus we can solve for @j @k@`u in terms of functions of the form @j @kXu and
other terms estimable in the M q

2 .�/-norm by the right side of (16.20). Hence we
have (16.20), and even the stronger estimate

(16.25) k@3ukM
q
2

.�/ � RHS:

From this result the continuity method readily gives the following:

Theorem 16.5. Let � be a smoothly bounded domain in R2. Let the function
F� .x; u; p; �/ depend smoothly on all its arguments, for 	 2 Œ0; 1�, and let '� 2
C1.�/ have smooth dependence on 	 . Assume that, for each 	 2 Œ0; 1�,

@uF� .x; u; p; �/ � 0

and that the ellipticity condition (16.7) holds. Also assume that, for any solution
u� 2 C1.�/ to the equation

(16.26) F� .x; u� ;ru� ; @
2u� / D 0 on �; u�

ˇ̌
@�

D '� ;
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there is a C 2.�/-bound:

(16.27) ku�kC 2.�/ � K:

If (16.26) has a solution in C1.�/ for 	 D 0, then it has a solution in C1.�/
for 	 D 1.

Exercises
1. In the proof of Theorem 16.1, can you replace the use of Proposition 9.8 by a result

analogous to Proposition 12.5?
2. Suppose that, in (16.7), � andƒ are independent of �. Obtain a variant of Theorem 16.5

in which (16.27) is weakened to a bound in C 1.�/.

A. Morrey spaces

Given f 2 L1
loc.R

n/; p 2 Œ1;1/, one says f 2 M p.Rn/ provided that

(A.1) R�n

Z

BR

jf .x/j dx � C R�n=p;

for all balls BR of radius R � 1 in Rn. More generally, if 1 � q � p and
f 2 Lq

loc.R
n/, we will say f 2 M p

q .Rn/ provided that, for all such BR,

(A.2) R�n

Z

BR

jf .x/jq dx � C R�nq=p:

The spaces M p
q .Rn/ are called Morrey spaces. If we set ıRf .x/ D f .Rx/, the

left side of (A.2) is equal to
R

B1
jıRf .x/jq dx, so an equivalent condition is

(A.3) kıRf kLq.B1/ � C 0R�n=p;

for all balls B1 of radius 1, and for all R 2 .0; 1�. It follows from Hölder’s
inequality that

L
p
unif.R

n/ D M p
p .R

n/ � M p
q .R

n/ � M p.Rn/:

We can give an equivalent characterization of M p in terms of the heat kernel.
Let pr .�/ D e�jr�j2 . Then, given f 2 L1

unif.R
n/,

(A.4) f 2 M p.Rn/ ” pr .D/jf j � C r�n=p;
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for 0 < r � 1. To see the implication ), given x 2 Rn write f D f1 C f2,
where f1 is the restriction of f to the unit ball B1.x/ centered at x, and f2 is the
restriction of f to the complement. That pr.D/jf1j.x/ � Cr�n=p, for r 2 .0; 1�,
follows easily from the characterization (A.1) and the formula

pr .D/ıx.y/ D .4
r2/�n=2 e�jx�yj2=4r2

;

while this formula also implies that pr .D/jf2j.x/ is rapidly decreasing as r & 0.
The implication ( is similarly easy to verify. Note that

(A.5) f satisfies (A.4) H) jpr.D/f j � Cr�n=p:

Recall the Zygmund spaces C r� .Rn/; r 2 R, introduced in � 8 of Chap. 13,
with norms defined as follows. Let ‰0.�/ 2 C1

0 .Rn/ be equal to 1 for j�j � 1,
set ‰k.�/ D ‰0.2

�k�/, and let  k.�/ D ‰k.�/ �‰k�1.�/. The set f k.�/g is a
Littlewood–Paley partition of unity. One sets

(A.6) kf kC r
�

D sup
k

2krk k.D/f kL1 :

For r 2 .0;1/ n ZC; C r� coincides with the Hölder space C r , and C 1� is the
classical Zygmund space. As shown in Chap. 13, one has, for all m; r 2 R,

(A.7) P 2 OPSm
1;0 H) P W C r� �! C r�m� :

The following relation exists between Zygmund spaces and Morrey spaces.
From (A.4)–(A.5) we readily obtain the inclusion

(A.8) M p.Rn/ � C�n=p� .Rn/:

From this we deduce a result known as Morrey’s lemma:

Lemma A.1. If p > n, then, for f 2 S 0.Rn/,

(A.9) rf 2 M p.Rn/ H) f 2 C r
loc.R

n/; r D 1 � n

p
2 .0; 1/:

Proof. We can write

(A.10) f D
nX

j D1

Bj .@jf /CRf; Bj 2 OPS�1.Rn/; R 2 OPS�1.Rn/:

Then (A.7)–(A.8) imply that Bj @jf 2 C r� .Rn/, if the hypothesis of (A.9) holds.
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If � � Rn is a bounded region, we say f 2 M p
q .�/ if Qf 2 M p

q .Rn/, where
Qf .x/ D f .x/ for x 2 �; 0 for x … �. If @� is smooth, it is easy to extend (A.9)

to the implication (for p > n):

(A.11) rf 2 M p.�/ H) f 2 C r.�/; r D 1 � n

p
2 .0; 1/;

via a simple reflection argument (across @�).
One also considers homogeneous versions of Morrey spaces. If p 2 .1;1/

and 1 � q � p; f 2 L
q
loc.R

n/, we say f 2 Mp
q .Rn/ provided (A.2) holds for

all R 2 .0;1/, not just for R � 1. Note that if we set

(A.12) kf kMp
q

D sup
R

Rn=p
�
R�n

Z

BR

jf .x/jq dx
�1=q

;

where R runs over .0;1/ and BR over all balls of radius R, then

(A.13) kır f kMp
q

D r�n=p kf kMp
q
;

where ırf .x/ D f .rx/. This is the same type of scaling as the Lp.Rn/-norm.
It is clear that compactly supported elements of M p

q .Rn/ and of Mp
q .Rn/ coin-

cide. In a number of references, including [P], Mp
q is denoted Lq;�, with � D n�

1 � q=p
�
.

The following refinement of Morrey’s lemma is due to S. Campanato.

Proposition A.2. Given p 2 Œ1;1/; s 2 .0; 1/, assume that u 2 L
p
loc.R

n/ and
that, for each ball BR.x/ with R � 1, there exists ˛ 2 C such that

(A.14)
Z

BR.x/

ju.y/� ˛jp dy � CRnCps:

Then

(A.15) u 2 C s
loc.R

n/:

Proof. Pick ' 2 C1
0 .Rn/ to be a radial function, supported on jxj � 1, such that

b'.�/ � 0, and let  D �', so
R
 dx D 0. It suffices to show that

(A.16)
ˇ̌
. R 
 u/.x/

ˇ̌ � CRs; R � 1;

where  R.x/ D R�n .R�1x/. Note that, for fixed x; R; ˛ D ˛
�
BR.x/

�
, we

have

(A.17) . R 
 u/.x/ D  R 
 .u � ˛/.x/;
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so

(A.18)

ˇ̌
. R 
 u/.x/

ˇ̌
� k RkLp0

.BR.0//ku � ˛kLp.BR.x//

�
 Z

BR.0/

R�np0 j .R�1y/jp0

dy

!1=p0 Z

BR.x/

ju.y/� ˛jp dy
!1=p

� C R�n �Rn=p0 �Rn=p �Rs D Rs;

as desired.

B. Leray–Schauder fixed-point theorems

We will demonstrate several fixed-point theorems that are useful for nonlin-
ear PDE. The first, known as Schauder’s fixed-point theorem, is an infinite
dimensional extension of Brouwer’s fixed-point theorem, which we recall.

Proposition B.1. If K is a compact, convex set in a finite-dimensional vector
space V , and F W K ! K is a continuous map, then F has a fixed point.

This was proved in � 19 of Chap. 1, specifically when K was the closed unit
ball in Rn. Now, given any compact convex K � V , if we translate it, we can
assume 0 2 K . Let W denote the smallest vector space in V that containsK; say
dimR W D n. Thus there is a basis ofW , of the formE � K . Clearly, the convex
hull of E has nonempty interior in W . From here, it is easily established that K
is homeomorphic to the closed unit ball in Rn.

A quicker reduction to the case of a ball goes like this. Put an inner product
on V , and say a ball B � V contains K . Let  W B ! K map a point x to the
point in K closest to x. Then consider a fixed point of F ı  W B ! K � B .

The following is Schauder’s generalization:

Theorem B.2. If K is a compact, convex set in a Banach space V , and
F W K ! K is a continuous map, then F has a fixed point.

Proof. Whether or not V has a countable dense set, K certainly does; say fvj W
j 2 ZCg is dense in K . For each n � 1, let Vn be the linear span of fv1; : : : ; vng
and Kn � K the closed, convex hull of fv1; : : : ; vng. Thus Kn is a compact,
convex subset of Vn, a linear space of dimension � n.

We define continuous maps Qn W K ! Kn as follows. Cover K by balls of
radius ın centered at the points vj ; 1 � j � n. Let f'nj W 1 � j � ng be a
partition of unity subordinate to this cover, satisfying 0 � 'j � 1. Then set

(B.1) Qn.v/ D
nX

j D1

'nj .v/vj ; Qn W K ! Kn:
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Since 'nj .v/ D 0 unless kv � vj k � ın, it follows that

(B.2) kQn.v/ � vk � ın:

The denseness of fvj W j 2 ZCg in K implies we can take ın ! 0 as n ! 1.
Now consider the maps Fn W Kn ! Kn, given by Fn D Qn ı F ˇ̌

Kn
. By

Proposition B.1, each Fn has a fixed point xn 2 Kn. Now

(B.3) QnF.xn/ D xn H) kF.xn/� xnk � ın:

Since K is compact, .xn/ has a limit point x 2 K and (B.3) implies F.x/ D x,
as desired.

It is easy to extend Theorem B.2 to the case where V is a Fréchet space, using
a translation-invariant distance function. In fact, a theorem of Tychonov extends
it to general locally convex V .

The following slight extension of Theorem B.2 is technically useful:

Corollary B.3. Let E be a closed, convex set in a Banach space V , and let F W
E ! E be a continuous map such that F.E/ is relatively compact. Then F has
a fixed point.

Proof. The closed, convex hull K of F.E/ is compact; simply consider F
ˇ̌
K

,
which mapsK to itself.

Corollary B.4. Let B be the open unit ball in a Banach space V . Let F W B ! V

be a continuous map such that F.B/ is relatively compact and F.@B/ � B . Then
F has a fixed point.

Proof. Define a map G W B ! B by

G.x/ D F.x/ if kF.x/k � 1; G.x/ D F.x/

kF.x/k if kF.x/k � 1:

Then G W B ! B is continuous and G.B/ is relatively compact. Corollary B.3
implies that G has a fixed point; G.x/ D x. The hypothesis F.@B/ � B implies
kxk < 1, so F.x/ D G.x/ D x.

The following Leray-Schauder theorem is the one we directly apply to such
results as Theorem 1.10. The argument here follows [GT].

Theorem B.5. Let V be a Banach space, and let F W Œ0; 1� � V ! V be a
continuous, compact map, such that F.0; v/ D v0 is independent of v 2 V .
Suppose there exists M < 1 such that, for all .	; x/ 2 Œ0; 1� � V ,

(B.4) F.	; x/ D x H) kxk < M:

Then the map F1 W V ! V given by F1.v/ D F.1; v/ has a fixed point.
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Proof. Without loss of generality, we can assume v0 D 0 and M D 1. Let B be
the open unit ball in V . Given " 2 .0; 1�, define G" W B ! V by

G".x/ D F



1 � kxk

"
;
x

kxk
�

if 1 � " � kxk � 1;

F
�
1;

x

1 � "

�
if kxk � 1 � ":

Note that G".@B/ D 0. For each " 2 .0; 1�, Corollary B.4 applies to G". Hence
each G" has a fixed point x."/. Let xk D x.1=k/, and set

	k D k
�
1 � kxkk� if 1 � 1

k
� kxkk � 1;

1 if kxkk � 1 � 1

k
;

so 	k 2 .0; 1� and F.	k; xk/ D xk . Passing to a subsequence, we have
.	k ; xk/ ! .	; x/ in Œ0; 1� � B, since the map F is compact.

We claim 	 D 1. Indeed, if 	 < 1, then kxkk � 1 � 1=k for large k, hence
kxk D 1 and F.	; x/ D x, contradicting (B.4) (with M D 1). Thus 	k ! 1 and
we have F.1; x/ D x, as desired.

There are more general results, involving Leray-Schauder “degree theory,”
which can be found in [Schw, Ni6, Deim].
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[DHKW] U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab, Minimal Surfaces,

Vols. 1 and 2, Springer, Berlin, 1992.
[DK] D. DeTurck and D. Kazdan, Some regularity theorems in Riemannian geometry,

Ann. Sci. Ecole Norm. Sup. 14(1980), 249–260.
[Dou] J. Douglas, Solution of the problem of Plateau, Trans. AMS 33(1931), 263–321.

[Dou2] J. Douglas, Minimal surfaces of higher topological structure, Ann. Math. 40
(1939), 205–298.

[Eis] G. Eisen, A counterexample for some lower semicontinuity results, Math. Zeit.
162(1978), 241–243.

[Ev] L. C. Evans, Classical solutions of fully nonlinear convex second order elliptic
equations, CPAM 35(1982), 333–363.

[Ev2] L. C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for
uniformly elliptic operators, Trans. AMS 275(1983), 245–255.

[Ev3] L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations,
Arch. Rat. Mech. Anal. 95(1986), 227–252.

[Ev4] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch.
Rat. Math. Anal. 116(1991), 101–113.

[EG] L. C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions,
CRC, Boca Raton, Fla., 1992.

[Fed] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[Fef] C. Fefferman, Monge–Ampere equations, the Bergman kernel, and geometry of

pseudoconvex domains, Ann. Math. 103(1976), 395–416.
[Fl] W. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo

11(1962), 69–90.
[Fol] G. Folland, Real Analysis: Modern Techniques and Applications, Wiley-Inter-

science, New York, 1984.
[Fom] A. Fomenko, The Plateau Problem, 2 vols., Gordon and Breach, New York,

1990.



References 307

[Freh] J. Frehse, A discontinuous solution of a mildly nonlinear elliptic system, Math.
Zeit. 134(1973), 229–230.

[Fri] K. Friedrichs, On the differentiability of the solutions of linear elliptic equations,
CPAM 6(1953), 299–326.

[FuH] N. Fusco and J. Hutchinson, Partial regularity in problems motivated by nonlin-
ear elasticity, SIAM J. Math. Anal. 22(1991), 1516–1551.

[Ga] P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.
[Geh] F. Gehring, The Lp-integrability of the partial derivatives of a quasi conformal

mapping, Acta Math. 130(1973), 265–277.
[Gia] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear

Elliptic Systems, Princeton University Press, Princeton, N. J., 1983.
[Gia2] M. Giaquinta (ed.), Topics in Calculus of Variations, LNM #1365, Springer,

New York, 1989.
[GiaM] M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex
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