Preface

Partial differential equations is a many-faceted subject. Created to describe the
mechanical behavior of objects such as vibrating strings and blowing winds, it
has developed into a body of material that interacts with many branches of math-
ematics, such as differential geometry, complex analysis, and harmonic analysis,
as well as a ubiquitous factor in the description and elucidation of problems in
mathematical physics.

This work is intended to provide a course of study of some of the major aspects
of PDE. It is addressed to readers with a background in the basic introductory
graduate mathematics courses in American universities: elementary real and com-
plex analysis, differential geometry, and measure theory.

Chapter 1 provides background material on the theory of ordinary differential
equations (ODE). This includes both very basic material-on topics such as the
existence and uniqueness of solutions to ODE and explicit solutions to equations
with constant coefficients and relations to linear algebra—and more sophisticated
results—on flows generated by vector fields, connections with differential geom-
etry, the calculus of differential forms, stationary action principles in mechanics,
and their relation to Hamiltonian systems. We discuss equations of relativistic
motion as well as equations of classical Newtonian mechanics. There are also
applications to topological results, such as degree theory, the Brouwer fixed-point
theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat
scalar first-order PDE, via Hamilton—Jacobi theory.

Chapters 2—6 constitute a survey of basic linear PDE. Chapter 2 begins with the
derivation of some equations of continuum mechanics in a fashion similar to the
derivation of ODE in mechanics in Chap. 1, via variational principles. We obtain
equations for vibrating strings and membranes; these equations are not necessarily
linear, and hence they will also provide sources of problems later, when nonlinear
PDE is taken up. Further material in Chap. 2 centers around the Laplace operator,
which on Euclidean space R” is
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We also consider the Laplace operator on a general Riemannian manifold and
the wave equation on a general Lorentz manifold. We discuss basic consequences
of Green’s formula, including energy conservation and finite propagation speed
for solutions to linear wave equations. We also discuss Maxwell’s equations for
electromagnetic fields and their relation with special relativity. Before we can
establish general results on the solvability of these equations, it is necessary to
develop some analytical techniques. This is done in the next couple of chapters.

Chapter 3 is devoted to Fourier analysis and the theory of distributions. These
topics are crucial for the study of linear PDE. We give a number of basic ap-
plications to the study of linear PDE with constant coefficients. Among these
applications are results on harmonic and holomorphic functions in the plane,
including a short treatment of elementary complex function theory. We derive ex-
plicit formulas for solutions to Laplace and wave equations on Euclidean space,
and also the heat equation,
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We also produce solutions on certain subsets, such as rectangular regions, using
the method of images. We include material on the discrete Fourier transform, ger-
mane to the discrete approximation of PDE, and on the fast evaluation of this
transform, the FFT. Chapter 3 is the first chapter to make extensive use of func-
tional analysis. Basic results on this topic are compiled in Appendix A, Outline of
Functional Analysis.

Sobolev spaces have proven to be a very effective tool in the existence the-
ory of PDE, and in the study of regularity of solutions. In Chap.4 we introduce
Sobolev spaces and study some of their basic properties. We restrict attention
to L?-Sobolev spaces, such as H*(R"), which consists of L? functions whose
derivatives of order < k (defined in a distributional sense, in Chap. 3) belong to
L?(R™), when k is a positive integer. We also replace k by a general real number
s. The L?-Sobolev spaces, which are very useful for nonlinear PDE, are treated
later, in Chap. 13.

Chapter 5 is devoted to the study of the existence and regularity of solutions to
linear elliptic PDE, on bounded regions. We begin with the Dirichlet problem for
the Laplace operator,
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and then treat the Neumann problem and various other boundary problems, in-
cluding some that apply to electromagnetic fields. We also study general boundary
problems for linear elliptic operators, giving a condition that guarantees regu-
larity and solvability (perhaps given a finite number of linear conditions on the
data). Also in Chap.5 are some applications to other areas, such as a proof of
the Riemann mapping theorem, first for smooth simply connected domains in the
complex plane C, then, after a treatment of the Dirichlet problem for the Laplace
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operator on domains with rough boundary, for general simply connected domains
in C. We also develop Hodge theory and apply it to DeRham cohomology, extend-
ing the study of topological applications of differential forms begun in Chap. 1.

In Chap.6 we study linear evolution equations, in which there is a “time”
variable ¢, and initial data are given at ¢ = 0. We discuss the heat and wave
equations. We also treat Maxwell’s equations, for an electromagnetic field, and
more general hyperbolic systems. We prove the Cauchy—Kowalewsky theorem, in
the linear case, establishing local solvability of the Cauchy initial value problem
for general linear PDE with analytic coefficients, and analytic data, as long as the
initial surface is “noncharacteristic.” The nonlinear case is treated in Chap. 16.
Also in Chap.6 we treat geometrical optics, providing approximations to solu-
tions of wave equations whose initial data either are highly oscillatory or possess
simple singularities, such as a jump across a smooth hypersurface.

Chapters 1-6, together with Appendix A and Appendix B, Manifolds, Vector
Bundles, and Lie Groups, make up the first volume of this work. The second
volume consists of Chaps. 7-12, covering a selection of more advanced topics in
linear PDE, together with Appendix C, Connections and Curvature.

Chapter 7 deals with pseudodifferential operators (¥ DOs). This class of opera-
tors includes both differential operators and parametrices of elliptic operators, that
is, inverses modulo smoothing operators. There is a “symbol calculus” allowing
one to analyze products of ¥ DOs, useful for such a parametrix construction. The
L?-boundedness of operators of order zero and the Garding inequality for elliptic
¥DOs with positive symbol provide very useful tools in linear PDE, which will
be used in many subsequent chapters.

Chapter 8 is devoted to spectral theory, particularly for self-adjoint elliptic
operators. First we give a proof of the spectral theorem for general self-adjoint
operators on Hilbert space. Then we discuss conditions under which a differential
operator yields a self-adjoint operator. We then discuss the asymptotic distribu-
tion of eigenvalues of the Laplace operator on a bounded domain, making use of
a construction of a parametrix for the heat equation from Chap. 7. In the next four
sections of Chap. 8 we consider the spectral behavior of various specific differ-
ential operators: the Laplace operator on a sphere, and on hyperbolic space, the
“harmonic oscillator”
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and the operator
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which arises in the simplest quantum mechanical model of the hydrogen atom.
Finally, we consider the Laplace operator on cones.

In Chap. 9 we study the scattering of waves by a compact obstacle K in R3.
This scattering theory is to some degree an extension of the spectral theory of the
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Laplace operator on R3 \ K, with the Dirichlet boundary condition. In addition to
studying how a given obstacle scatters waves, we consider the inverse problem:
how to determine an obstacle given data on how it scatters waves.

Chapter 10 is devoted to the Atiyah—Singer index theorem. This gives a for-
mula for the index of an elliptic operator D on a compact manifold M, defined by

@) Index D = dim ker D — dim ker D*.

We establish this formula, which is an integral over M of a certain differential
form defined by a pair of “curvatures,” when D is a first order differential oper-
ator of “Dirac type,” a class that contains many important operators arising from
differential geometry and complex analysis. Special cases of such a formula in-
clude the Chern—Gauss—Bonnet formula and the Riemann—Roch formula. We also
discuss the significance of the latter formula in the study of Riemann surfaces.

In Chap. 11 we study Brownian motion, described mathematically by Wiener
measure on the space of continuous paths in R”. This provides a probabilistic
approach to diffusion and it both uses and provides new tools for the analysis of
the heat equation and variants, such as
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where V' is a real-valued function. There is an integral formula for solutions to (8),
known as the Feynman—Kac formula; it is an integral over path space with respect
to Wiener measure, of a fairly explicit integrand. We also derive an analogous
integral formula for solutions to
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where X is a vector field. In this case, another tool is involved in constructing the
integrand, the stochastic integral. We also study stochastic differential equations
and applications to more general diffusion equations.

In Chap. 12 we tackle the d-Neumann problem, a boundary problem for an el-
liptic operator (essentially the Laplace operator) on a domain £2 C C”, which
is very important in the theory of functions of several complex variables. From a
technical point of view, it is of particular interest that this boundary problem does
not satisfy the regularity criteria investigated in Chap. 5. If §2 is “strongly pseu-
doconvex,” one has instead certain “subelliptic estimates,” which are established
in Chap. 12.

The third and final volume of this work contains Chaps. 13—18. It is here that
we study nonlinear PDE.

We prepare the way in Chap. 13 with a further development of function space
and operator theory, for use in nonlinear analysis. This includes the theory of
LP-Sobolev spaces and Holder spaces. We derive estimates in these spaces on
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nonlinear functions F(u), known as “Moser estimates,” which are very useful.
We extend the theory of pseudodifferential operators to cases where the symbols
have limited smoothness, and also develop a variant of DO theory, the theory
of “paradifferential operators,” which has had a significant impact on nonlinear
PDE since about 1980. We also estimate these operators, acting on the function
spaces mentioned above. Other topics treated in Chap. 13 include Hardy spaces,
compensated compactness, and “fuzzy functions.”

Chapter 14 is devoted to nonlinear elliptic PDE, with an emphasis on second
order equations. There are three successive degrees of nonlinearity: semilinear
equations, such as

(10) Au = F(x,u, Vu),
quasi-linear equations, such as

(1D Zajk(x,u, Vu)d;oru = F(x,u, Vu),
and completely nonlinear equations, of the form

(12) G(x, D*u) = 0.

Differential geometry provides a rich source of such PDE, and Chap. 14 contains a
number of geometrical applications. For example, to deform conformally a metric
on a surface so its Gauss curvature changes from k (x) to K (x), one needs to solve
the semilinear equation

(13) Au = k(x) — K(x)e®".

As another example, the graph of a function y = u(x) is a minimal submanifold
of Euclidean space provided u solves the quasilinear equation

(14) (1 + [Vul®)Au+ (Vu) - H(u)(Vu) = 0,

called the minimal surface equation. Here, H (1) = (9 0xu) is the Hessian matrix
of u. On the other hand, this graph has Gauss curvature K(x) provided u solves
the completely nonlinear equation

(15) det H(u) = K(x)(1 + [Vu]?) "2/,

a Monge-Ampere equation. Equations (13)—(15) are all scalar, and the maximum
principle plays a useful role in the analysis, together with a number of other tools.
Chapter 14 also treats nonlinear systems. Important physical examples arise in
studies of elastic bodies, as well as in other areas, such as the theory of liquid crys-
tals. Geometric examples of systems considered in Chap. 14 include equations for
harmonic maps and equations for isometric imbeddings of a Riemannian manifold
in Euclidean space.



xviii Preface

In Chap. 15, we treat nonlinear parabolic equations. Partly echoing Chap. 14,
we progress from a treatment of semilinear equations,

(16) ?)_I: = Lu+ F(x,u,Vu),

where L is a linear operator, such as L = A, to a treatment of quasi-linear equa-
tions, such as

du
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= Z ajajk (t,x,u)dru + X(u).

(We do very little with completely nonlinear equations in this chapter.) We study
systems as well as scalar equations. The first application of (16) we consider is
to the parabolic equation method of constructing harmonic maps. We also con-
sider “reaction-diffusion” equations, £ x £ systems of the form (16), in which
F(x,u,Vu) = X(u), where X is a vector field on ]RE, and L is a diagonal opera-
tor, with diagonal elements a; A, a; > 0. These equations arise in mathematical
models in biology and in chemistry. For example, u = (uy, ..., ug) might repre-
sent the population densities of each of £ species of living creatures, distributed
over an area of land, interacting in a manner described by X and diffusing in a
manner described by a; A. If there is a nonlinear (density-dependent) diffusion,
one might have a system of the form (17).

Another problem considered in Chap. 15 models the melting of ice; one has
a linear heat equation in a region (filled with water) whose boundary (where the
water touches the ice) is moving (as the ice melts). The nonlinearity in the problem
involves the description of the boundary. We confine our analysis to a relatively
simple one-dimensional case.

Nonlinear hyperbolic equations are studied in Chap. 16. Here continuum me-
chanics is the major source of examples, and most of them are systems, rather
than scalar equations. We establish local existence for solutions to first order hy-
perbolic systems, which are either “symmetric” or “symmetrizable.” An example
of the latter class is the following system describing compressible fluid flow:

v
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+Vvv+%gradp =0, g—f—i-vvp—i—pdivv =0,

for a fluid with velocity v, density p, and pressure p, assumed to satisfy a relation
p = p(p), called an “equation of state.” Solutions to such nonlinear systems tend
to break down, due to shock formation. We devote a bit of attention to the study
of weak solutions to nonlinear hyperbolic systems, with shocks.

We also study second-order hyperbolic systems, such as systems for a k-
dimensional membrane vibrating in R”, derived in Chap. 2. Another topic covered
in Chap. 16 is the Cauchy—Kowalewsky theorem, in the nonlinear case. We use a
method introduced by P. Garabedian to transform the Cauchy problem for an an-
alytic equation into a symmetric hyperbolic system.
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In Chap. 17 we study incompressible fluid flow. This is governed by the Euler
equation

ad
(19) a—l; + Vyv = — grad p, divv =0,

in the absence of viscosity, and by the Navier—Stokes equation

ad
(20) a—z; + Vyv = vLv — grad p, divv =0,

in the presence of viscosity. Here £ is a second-order operator, the Laplace oper-
ator for a flow on flat space; the “viscosity” v is a positive quantity. The equation
(19) shares some features with quasilinear hyperbolic systems, though there are
also significant differences. Similarly, (20) has a lot in common with semilinear
parabolic systems.

Chapter 18, the last chapter in this work, is devoted to Einstein’s gravitational
equations:

(21) ij = SJTKT/'k.

Here G j is the Einstein tensor, given by G jx = Ricjx —(1/2)Sg jx, where Ric jx
is the Ricci tensor and S the scalar curvature, of a Lorentz manifold (or “space-
time”) with metric tensor g ;5. On the right side of (21), Tk is the stress-energy
tensor of the matter in the spacetime, and « is a positive constant, which can be
identified with the gravitational constant of the Newtonian theory of gravity. In
local coordinates, G i has a nonlinear expression in terms of g and its second
order derivatives. In the empty-space case, where T = 0, (21) is a quasilin-
ear second order system for g ;. The freedom to change coordinates provides an
obstruction to this equation being hyperbolic, but one can impose the use of “har-
monic” coordinates as a constraint and transform (21) into a hyperbolic system.
In the presence of matter one couples (21) to other systems, obtaining more elab-
orate PDE. We treat this in two cases, in the presence of an electromagnetic field,
and in the presence of a relativistic fluid.

In addition to the 18 chapters just described, there are three appendices, al-
ready mentioned above. Appendix A gives definitions and basic properties of
Banach and Hilbert spaces (of which L?-spaces and Sobolev spaces are exam-
ples), Fréchet spaces (such as C°°(R")), and other locally convex spaces (such as
spaces of distributions). It discusses some basic facts about bounded linear oper-
ators, including some special properties of compact operators, and also considers
certain classes of unbounded linear operators. This functional analytic material
plays a major role in the development of PDE from Chap. 3 onward.

Appendix B gives definitions and basic properties of manifolds and vector
bundles. It also discusses some elementary properties of Lie groups, including
a little representation theory, useful in Chap. 8, on spectral theory, as well as in
the Chern—Weil construction.
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Appendix C, Connections and Curvature, contains material of a differential
geometric nature, crucial for understanding many things done in Chaps. 10-18.
We consider connections on general vector bundles, and their curvature. We dis-
cuss in detail special properties of the primary case: the Levi—Civita connection
and Riemann curvature tensor on a Riemannian manifold. We discuss basic prop-
erties of the geometry of submanifolds, relating the second fundamental form to
curvature via the Gauss—Codazzi equations. We describe how vector bundles arise
from principal bundles, which themselves carry various connections and curvature
forms. We then discuss the Chern—Weil construction, yielding certain closed dif-
ferential forms associated to curvatures of connections on principal bundles. We
give several proofs of the classical Gauss—Bonnet theorem and some related re-
sults on two-dimensional surfaces, which are useful particularly in Chaps. 10 and
14. We also give a geometrical proof of the Chern—Gauss—Bonnet theorem, which
can be contrasted with the proof in Chap. 10, as a consequence of the Atiyah—
Singer index theorem.

We mention that, in addition to these “global” appendices, there are appendices
to some chapters. For example, Chap. 3 has an appendix on the gamma function.
Chapter 6 has two appendices; Appendix A has some results on Banach spaces of
harmonic functions useful for the proof of the linear Cauchy—Kowalewsky theo-
rem, and Appendix B deals with the stationary phase formula, useful for the study
of geometrical optics in Chap. 6 and also for results later, in Chap.9. There are
other chapters with such “local” appendices. Furthermore, there are two sections,
both in Chap. 14, with appendices. Section 6, on minimal surfaces, has a com-
panion, Sect. 6B, on the second variation of area and consequences, and Sect. 12,
on nonlinear elliptic systems, has a companion, Sect. 12B, with complementary
material.

Having described the scope of this work, we find it necessary to mention a
number of topics in PDE that are not covered here, or are touched on only very
briefly.

For example, we devote little attention to the real analytic theory of PDE. We
note that harmonic functions on domains in R” are real analytic, but we do not
discuss analyticity of solutions to more general elliptic equations. We do prove
the Cauchy—Kowalewsky theorem, on analytic PDE with analytic Cauchy data.
We derive some simple results on unique continuation from these few analyticity
results, but there is a large body of lore on unique continuation, for solutions to
nonanalytic PDE, neglected here.

There is little material on numerical methods. There are a few references to
applications of the FFT and of “splitting methods.” Difference schemes for PDE
are mentioned just once, in a set of exercises on scalar conservation laws. Finite
element methods are neglected, as are many other numerical techiques.

There is a large body of work on free boundary problems, but the only one
considered here is a simple one space dimensional problem, in Chap. 15.

While we have considered a variety of equations arising from classical
physics and from relativity, we have devoted relatively little attention to quan-
tum mechanics. We have considered one quantum mechanical operator, given
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in formula (6) above. Also, there are some exercises on potential scattering
mentioned in Chap.9. However, the physical theories behind these equations are
not discussed here.

There are a number of nonlinear evolution equations, such as the Korteweg—
deVries equation, that have been perceived to provide infinite dimensional ana-
logues of completely integrable Hamiltonian systems, and to arise “universally”
in asymptotic analyses of solutions to various nonlinear wave equations. They are
not here. Nor is there a treatment of the Yang—Mills equations for gauge fields,
with their wonderful applications to the geometry and topology of four dimen-
sional manifolds.

Of course, this is not a complete list of omitted material. One can go on and on
listing important topics in this vast subject. The author can at best hope that the
reader will find it easier to understand many of these topics with this book, than
without it.
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Introduction to the Second Edition

In addition to making numerous small corrections to this work, collected over
the past dozen years, I have taken the opportunity to make some very significant
changes, some of which broaden the scope of the work, some of which clarify
previous presentations, and a few of which correct errors that have come to my
attention.

There are seven additional sections in this edition, two in Volume 1, two in
Volume 2, and three in Volume 3. Chapter 4 has a new section, “Sobolev spaces
on rough domains,” which serves to clarify the treatment of the Dirichlet prob-
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lem on rough domains in Chap. 5. Chapter 6 has a new section, “Boundary layer
phenomena for the heat equation,” which will prove useful in one of the new sec-
tions in Chap. 17. Chapter 7 has a new section, “Operators of harmonic oscillator
type,” and Chap. 10 has a section that presents an index formula for elliptic sys-
tems of operators of harmonic oscillator type. Chapter 13 has a new appendix,
“Variations on complex interpolation,” which has material that is useful in the
study of Zygmund spaces. Finally, Chap. 17 has two new sections, “Vanishing
viscosity limits” and “From velocity convergence to flow convergence.”

In addition, several other sections have been substantially rewritten, and nu-
merous others polished to reflect insights gained through the use of these books
over time.
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