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Spectral Theory

Introduction

This chapter is devoted to the spectral theory of self-adjoint, differential opera-
tors. We cover a number of different topics, beginning in §1 with a proof of the
spectral theorem. It was an arbitrary choice to put that material here, rather than in
Appendix A, on functional analysis. The main motivation for putting it here is to
begin a line of reasoning that will be continued in subsequent sections, using the
great power of studying unitary groups as a tool in spectral theory. After we show
how easily this study leads to a proof of the spectral theorem in §1, in later sec-
tions we use it in various ways: as a tool to establish self-adjointness, as a tool for
obtaining specific formulas, including basic identities among special functions,
and in other capacities.

Sections 2 and 3 deal with some general questions in spectral theory, such as
when does a differential operator define a self-adjoint operator, when does it have
a compact resolvent, and what asymptotic properties does its spectrum have? We
tackle the latter question, for the Laplace operator A, by examining the asymptotic
behavior of the trace of the solution operator e*2 for the heat equation, showing
that

(0.1) Tre'® = (4nt) ™2 vol Q + o(t™?), 1t \ 0,

when 2 is either a compact Riemannian manifold or a bounded domain in R”
(and has the Dirichlet boundary condition). Using techniques developed in §13
of Chap. 7, we could extend (0.1) to general compact Riemannian manifolds with
smooth boundary and to other boundary conditions, such as the Neumann bound-
ary condition. We use instead a different method here in §3, one that works without
any regularity hypotheses on 2. In such generality, (0.1) does not necessarily
hold for the Neumann boundary problem.

The study of (0.1) and refinements got a big push from [Kac]. As pursued in
[MS], it led to developments that we will discuss in Chap. 10. The problem of to
what extent a Riemannian manifold is determined by the spectrum of its Laplace
operator has led to much work, which we do not include here. Some is discussed
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92 8. Spectral Theory

in [Ber, Br, BGM], and [Cha]. We mention particularly some distinct regions in
R? whose Laplace operators have the same spectra, given in [GWW].

We have not included general results on the spectral behavior of A obtained
via geometrical optics and its refinement, the theory of Fourier integral operators.
Results of this nature can be found in Volume 3 of [Ho], in [Shu], and in Chap. 12
of [T1].

Sections 47 are devoted to specific examples. In §4 we study the Laplace
operator on the unit spheres S”. We specify precisely the spectrum of A and
discuss explicit formulas for certain functions of A, particularly

K 1/2
0.2) A VsintA, A:GA+ZM—N).

with K = 1, the sectional curvature of S”. In §5 we obtain an explicit formula
for (0.2), with K = —1, on hyperbolic space. In §6 we study the spectral theory
of the harmonic oscillator

(0.3) H =—A + x|
We obtain an explicit formula for e ~*#

Chap. 10. In §8 we study the operator

, an analogue of which will be useful in

(0.4) H=-A—-K|x|"!

on R3, obtaining in particular all the eigenvalues of this operator. This operator
arises in the simplest quantum mechanical model of the hydrogen atom. In §9 we
study the Laplace operator on a cone. Studies done in these sections bring in a
number of special functions, including Legendre functions, Bessel functions, and
hypergeometric functions. We have included two auxiliary problem sets, one on
confluent hypergeometric functions and one on hypergeometric functions.

1. The spectral theorem

Appendix A contains a proof of the spectral theorem for a compact, self-adjoint
operator A on a Hilbert space H. In that case, H has an orthonormal basis {u}
such that Au; = Aju;, A; being real numbers having only 0 as an accumulation
point. The vectors u; are eigenvectors.

A general bounded, self-adjoint operator A may not have any eigenvectors, and
the statement of the spectral theorem is somewhat more subtle. The following is
a useful version.

Theorem 1.1. If A is a bounded, self-adjoint operator on a separable Hilbert
space H, then there is a o-compact space 2, a Borel measure |, a unitary map

(1.1) W L*(Q,dwn) — H,
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and a real-valued function a € L°*° (2, dw) such that
(1.2) WHAWS(x) = a(x) f(x). [ € L*(Q.dp).

Note that when A is compact, the eigenvector decomposition above yields (1.1)
and (1.2) with (2, ) a purely atomic measure space. Later in this section we will
extend Theorem 1.1 to the case of unbounded, self-adjoint operators.

In order to prove Theorem 1.1, we will work with the operators

(1.3) U(t) = ™,

defined by the power-series expansion
o0 .
. H"
(1.4) e = (WiyT

This is a special case of a construction made in §4 of Chap. 1. U(¢) is uniquely
characterized as the solution to the differential equation

d
(1.5) EU(t) =iAU(t), U(0) = 1.
We have the group property

(1.6) Ui +1)=Uls)U@),

which follows since both sides satisfy the ODE (d/ds)Z(s) = iAZ(s), Z(0) =
U(t). If A = A*, then applying the adjoint to (1.4) gives

(1.7) U(t)* = U(-1),

which is the inverse of U(¢) in view of (1.6). Thus {U(¢) : ¢t € R} is a group of
unitary operators.

For a given v € H, let H, be the closed linear span of {U(¢)v : t € R}; we
say H, is the cyclic space generated by v. We say v is a cyclic vector for H if
H = H,.If H, is not all of H, note that HUJ- is invariant under U(¢), that is,
U (t)HvJ- - HUJ- for all 7, since for a linear subspace V' of H, generally

(1.8) Ut)V c V= U@)*Vtcvt
Using this observation, we can prove the next result.

Lemma 1.2. If U(¢) is a unitary group on a separable Hilbert space H, then H
is an orthogonal direct sum of cyclic subspaces.



94 8. Spectral Theory

Proof. Let {w;} be a countable, dense subset of H. Take vi = w; and H; =
Hy, .If Hy # H, let v, be the first nonzero element Pyw;, j > 2, where P is
the orthogonal projection of H onto Hi, and let H, = H v, - Continue.

In view of this, Theorem 1.1 is a consequence of the following:

Proposition 1.3. If U(¢) is a strongly continuous, unitary group on H, having a
cyclic vector v, then we can take Q = R, and there exists a positive Borel measure
won R and a unitary map W : L>(R,du) — H such that

(1.9) WUOW f(x) =e™f(x), [ eL*R.dp).

The measure i on R will be the Fourier transform

(1.10) w=_<
where
(1.11) c(t) = 2r) V2 (e, v).

It is not clear a priori that (1.10) defines a measure; since { € L>*°(R), we see that
W is a tempered distribution. We will show that u is indeed a positive measure
during the course of our argument. As for the map W, we first define

(1.12) W:SR)— H,

where S(R) is the Schwartz space of rapidly decreasing functions, by

(1.13) W(f) = f(Av,

where we define the operator f(A) by the formula

(1.14) F(A) = 2m)~V/? /oo F)e'™ dr.

The reason for this notation will become apparent shortly; see (1.20). Making use
of (1.10), we have

(f(Av, g(A)) = n)™! (/ f(s)eiSAv ds, / g(0)e'y dt)

= (Q2n)7! // f(s)m(ei(s_’)“‘v, v) ds dt
(1.15) A .
= 02 / £ - $)t(0) dsdo
= ((f2).¢)
= (fZ. 1.
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Now, if g = f, the left side of (1.15) is || £ (4)v]||?, which is > 0. Hence

(1.16) (If?. ) =0, forall f e SR).

With this, we can establish:

Lemma 1.4. The tempered distribution [, defined by (1.10)—(1.11), is a positive
measure on R.

Proof. Apply (1.16) with f = |/ Fs o, where
Fso(7) = (471s)_1/ze—(’_”)2/4s, s>0,0€eR.

Note that this is a fundamental solution to the heat equation. For each
s >0, Fgo* u is a positive function. We saw in Chap.3 that Fyo * pu con-
verges to i in 8’(R) as s — 0, so this implies that u is a positive measure.

Now we can finish the proof of Proposition 1.3. From (1.15) we see that W has
a unique continuous extension

(1.17) W :L*(R,du) — H,

and W is an isometry. Since v is assumed to be cyclic, the range of W must be
dense in H, so W must be unitary. From (1.14) it follows that if f € S(R), then

(1.18) e f(A) = fi(A), with fy(r) = € f(7).

Hence, for f € S(R),

(1.19) Wl AW f =W fi(A) = 7 f(2).

Since S(R) is dense in L2(R, d), this gives (1.9). Thus the spectral theorem for

bounded, self-adjoint operators is proved.
Given (1.9), we have from (1.14) that

(1200 W' (AW g(x) = f(x)g(x). [ €SR), ge L*R,dp),

which justifies the notation f(A) in (1.14).
Note that (1.9) implies

(1.21) WYAW f(x) =x f(x), f e L*R,duw),

since (d/dt)U(¢t) = i AU(t). The essential supremum of x on (R, ) is equal to
|A|l. Thus p has compact support in R if A is bounded. If a self-adjoint operator
A has the representation (1.21), one says A has simple spectrum. It follows from
Proposition 1.3 that A has simple spectrum if and only if it has a cyclic vector.
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One can generalize the results above to a k-tuple of commuting, bounded,

self-adjoint operators A = (Aj, ..., Ag). In that case, fort = (t1,...,t) € R¥,
set
(1.22) Uity =e"4, - A=1,41 + -+ tr A.

The hypothesis that the A; all commute implies U(¢) = U, (t1) - - - Ug (#x ), where
U;(s) = e’s4; U(t) in (1.22) continues to satisfy the properties (1.6) and (1.7);
we have a k-parameter unitary group. As above, for v € H, we set H, equal to the
closed linear span of {U(t)v : t € R¥}, and we say v is a cyclic vector provided
H, = H.Lemma 1.2 goes through in this case. Furthermore, for f € S(R¥), we
can define

(1.23) fi) = @t [ foers ar

and if H has a cyclic vector v, the proof of Proposition 1.3 generalizes, giving a
unitary map W : L2(R¥,du) — H such that

(1.24) WlUOWF(x) = " f(x), f e L*[R*,dn), teRF.
Therefore, Theorem 1.1 has the following extension

Proposition 1.5. If A = (Ai,..., Ax) is a k-tuple of commuting, bounded,
self-adjoint operators on H, there is a measure space (2, ), a unitary map
W:L?(Q,dw) — H, and real-valued a; € L™ (2, d) such that

(1.25) WA WE(x) =a;(x)f(x), feL*(Q,dp),1<j <k

A bounded operator B € L(H) is said to be normal provided B and B* com-
mute. Equivalently, if we set

1 1
(1.26) Ay = E(B+B*), Ay = T(B—B*),
i
then B = A; + iA;, and (A1, A2) is a 2-tuple of commuting, self-adjoint
operators. Applying Proposition 1.5 and setting b(x) = a;(x) +iaz(x), we have:

Corollary 1.6. If B € L(H) is a normal operator, there is a unitary map W
L%(Q,dp) — H and a (complex-valued) b € L*™(Q2, d) such that

(1.27) WTIBWF(x) = b(x) f(x), f € L*(Q.du).
In particular, Corollary 1.6 holds when B = U is unitary. We next extend

the spectral theorem to an unbounded, self-adjoint operator A on a Hilbert space
H, whose domain D(A) is a dense linear subspace of H. This extension, due to
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von Neumann, uses von Neumann’s unitary trick, described in (8.18)—(8.19) of
Appendix A. We recall that, for such A, the following three properties hold:

A +i:D(A) — H bijectively,
(1.28) U= (A—i)(A+i)"!is unitary on H,
A=i(I+U)I-U)"",

where the range of I — U = 2i(A + i)~! is D(A). Applying Corollary 1.6 to
B = U, we have the following theorem:

Theorem 1.7. If A is an unbounded, self-adjoint operator on a separable Hilbert

space H, there is a measure space (2, |t), a unitary map W : L*>(Q,du) — H,
and a real-valued measurable function a on 2 such that

(1.29) W AW f(x) = a(x) f(x), W[ € D(A).

In this situation, given f € L*(,du), WF belongs to D(A) if and only if the
right side of (1.29) belongs to L*(, du).

The formula (1.29) is called the “spectral representation” of a self-adjoint op-
erator A. Using it, we can extend the functional calculus defined by (1.14) as
follows. For a Borel function f : R — C, define f(A) by

(1.30) W f(A)Wg(x) = fla(x))g(x).

If f is a bounded Borel function, this is defined for all g € L?(Q2,du) and
provides a bounded operator f(A) on H. More generally,

(1.31) D(f(A)) ={Wge H:geL*(Q.du)and f(a(x))g € L*(Q.dp)}.
In particular, we can define ¢4 for unbounded, self-adjoint A4, by
W—leitAWg — eita(x)g(x)

Then e/*4 is a strongly continuous unitary group, and we have the following result,
known as Stone’s theorem (stated as Proposition 9.5 in Appendix A):

Proposition 1.8. If A is self-adjoint, then iA generates a strongly continuous,
unitary group, U(t) = e'*4.

Note that Lemma 1.2 and Proposition 1.3 are proved for a strongly continuous,
unitary group U(¢) = e'*4, without the hypothesis that 4 be bounded. This yields
the following analogue of (1.2):

(1.32) WIU@OWS (x) = ™™ f(x),  f e L*(Q.dp).
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for this more general class of unitary groups. Sometimes a direct construction,
such as by PDE methods, of U(t) is fairly easy. In such a case, the use of U(¢)
can be a more convenient tool than the unitary trick involving (1.28).

We say a self-adjoint operator A is positive, A > 0, provided (Au, u) > 0, for
all u € D(A). In terms of the spectral representation, this says we have (1.29)
with a(x) > 0 on Q. In such a case, ¢4 is bounded for r > 0, even for complex
t with Re ¢t > 0, and also defines a strongly continuous semigroup. This proves
Proposition 9.4 of Appendix A.

Given a self-adjoint operator A and a Borel set S C R, define P(S) = ys(A),
that is, using (1.29),

(1.33) WIP(S)Wg = rs(a(x)g(x), g € L*(Q.dp).
where yg is the characteristic function of S. Then each P(S) is an orthogonal

projection. Also, if S = ;. S; is a countable union of disjoint Borel sets S,
then, foreachu € H,

Jj=1

n
(1.34) lim > P(S)u=P(S)u,
j=1
with convergence in the H -norm. This is equivalent to the statement that

n
Z 1s;(a(x))g — xs(a(x))g in L?-norm, foreach g € L*(R,dp),
j=1

which in turn follows from Lebesgue’s dominated convergence theorem. By
(1.34), P(-) is a strongly countably additive, projection-valued measure. Then
(1.30) yields

(1.35) £(4) = / F(4) (D),

P(.) is called the spectral measure of A.
One useful formula for the spectral measure is given in terms of the jump of
the resolvent R; = (A — A)™', across the real axis. We have the following

Proposition 1.9. For bounded, continuous f : R — C,

(o]

(136) f(A = lim ﬁ B f(x)[(x e A (A tie— A)_l]udk.

Proof. Since W~! f(A)W is multiplication by f(a(x)), (1.36) follows from the
fact that
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o0 A
-/ SNy s ),

(1.37) 7)o A —a(x))? + &2

pointwise and boundedly, as & \ 0.

An important class of operators f(A) are the fractional powers f(A4) =
A%, a € (0,00), defined by (1.30)—(1.31), with f(A) = A%, provided A > 0.
Note that if g € C([0, 00)) satisfies g(0) = 1, g(1) = O(A™%) as A — oo, then,
foru e H,

(1.38) u € D(A%) < ||A%g(¢A)ul| g is bounded, fore € (0, 1],

as follows easily from the characterization (1.31) and Fatou’s lemma. We note
that Proposition 2.2 of Chap. 4 applies to D(A%), describing it as an interpolation
space.

We particularly want to identify D(A'/2), when 4 is a positive, self-adjoint
operator on a Hilbert space H constructed by the Friedrichs method, as described
in Proposition 8.7 of Appendix A. Recall that this arises as follows. One has a
Hilbert space H1, a continuous injection J : H; — H with dense range, and one
defines A by

(1.39) (AUu). Jv) yy = (u, v)ay
with

D(A) = {Jue JH, C H :v > (u,0)p, is

(1.40) . . .
continuous in Jv, in the H -norm}.

We establish the following.

Proposition 1.10. If A is obtained by the Friedrichs extension method (1.39)—
(1.40), then

(1.41) D(AY?) = J(H,) C H.

Proof. D(A'/?) consists of elements of H that are limits of sequences in D(A),
in the norm ||AY2u||yz + |ulz. As shown in the proof of Proposition 8.7 in
Appendix A, D(A) = R(JJ*). Now

(1.42) IAY2IT* fll3 = (AJT* £.0T* fg = I1T* £,

Thus a sequence (JJ* f,,) converges in the D(A4'/?)-norm (to an element g) if
and only if (J* f,;) converges in the Hj-norm (to an element «), in which case
g = Ju. Since J* : H — H; has dense range, precisely all u € H; arise as limits
of such (J* f,), so the proposition is proved.
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Exercises

1. The definition (1.33) of the spectral measure P(-) of a self-adjoint operator A depends
a priori on a choice of the spectral representation of A. Show that any two spectral
representations of A yield the same spectral measure.

(Hint: For f € S(R), f(A) is well defined by (1.14), or alternatively by (1.36).)

2. Self-adjoint differential operators

In this section we present some examples of differential operators on a manifold
2 which, with appropriately specified domains, give unbounded, self-adjoint op-
erators on L2(2,dV), dV typically being the volume element determined by a
Riemannian metric on £2.

We begin with self-adjoint operators arising from the Laplacian, making use of
material developed in Chap. 5. Let  be a smooth, compact Riemannian manifold
with boundary, or more generally the closure of an open subset 2 of a compact
manifold M without boundary. Then, as shown in Chap. 5,

Q.1 I—A:H(Q) — H(Q)*
is bijective, with inverse we denote T'; if we restrict 7" to L2(),
(2.2) T : L*(Q) — L%(Q) is compact and self-adjoint.

Denote by R(T) the image of L2(2) under 7. We can apply Proposition 8.2 of
Appendix A to deduce the following

Proposition 2.1. If Q is a region in a compact Riemannian manifold M, then
A is self-adjoint on L*(), with domain D(A) = R(T) C HJ}(RQ) described

above.

For a further description of D(A), note that

(2.3) D(A) ={uec H} (Q) : Aue L*(Q)}.

If 92 is smooth, we can apply the regularity theory of Chap. 5 to obtain
(2.4) D(A) = Hy () N H*(Q).

Instead of relying on Proposition 8.2, we could use the Friedrichs construction,
given in Proposition 8.7 of Appendix A. This construction can be applied more
generally. Let €2 be any Riemannian manifold, with Laplace operator A. We can
define H{ () to be the closure of C{°(2) in the space {u € L?(Q) : du €
L2(2, A1)}. The inner product on H/ () is

(25) (M, U)l = (M, U)LZ + (dl/l, dU)LZ.
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We have a natural inclusion HOl () < L?(R), and the Friedrichs method gives
a self-adjoint operator 4 on L?(2) such that

(2.6) (Au,v) ;> = (u,v)1, foru € D(A), v e HY(Q),

with

@7 D(A) = {u € HO1 () : v = (u,v); extends from Ho1 ()—>Ctoa
continuous linear functional L?(Q2) — C},

that is,

28) D(A) = {u € Hy(Q) : 3f € L*(Q) such that

. v)1 = (fiv)r2. Vv € HJ(Q)}.

Integrating (2.5) by parts for v € C§°(2), we see that A = [ — A on D(4), so
we have a self-adjoint extension of A in this general setting, with domain again
described by (2.3).

The process above gives one self-adjoint extension of A, initially defined on
Cy°(R2). It is not always the only self-adjoint extension. For example, suppose Q
is compact with smooth boundary; consider H ! (), with inner product (2.5), and
apply the Friedrichs extension procedure. Again we have a self-adjoint operator
A, extending I — A, with (2.8) replaced by

D(A) = {ue H'(Q):3f € L*(Q) such that

2.9
9) (w.v)1 = (fiv)p2.Yv € H'(Q)}.

In this case, Proposition 7.2 of Chap. 5 yields the following

Proposition 2.2. If Q is a smooth, compact manifold with boundary and A the
self-adjoint extension just described, then

(2.10) D(A) = {ue H*(Q) : dyu = 0 0n IQ}.

In case (2.10), we say D(A) is given by the Neumann boundary condition,
while in case (2.4) we say D(A) is given by the Dirichlet boundary condition.

In both cases covered by Propositions 2.1 and 2.2, (—A)'/2 is defined as a
self-adjoint operator. We can specify its domain using Proposition 1.10, obtaining
the next result:

Proposition 2.3. In case (2.3), D((-A)Y?) = H}(Q); in case (2.10),
D((-A)'?) = HY(Q).

Though A on C§°(£2) has several self-adjoint extensions when €2 has a bound-
ary, it has only one when €2 is a complete Riemannian manifold. This is a classical
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result, due to Roelcke; we present an elegant proof due to Chernoff [Chn]. When
an unbounded operator Ag on a Hilbert space H, with domain Dy, has exactly
one self-adjoint extension, namely the closure of Ay, we say Ay is essentially
self-adjoint on Dy.

Proposition 2.4. If Q2 is a complete Riemannian manifold, then A is essentially
self-adjoint on C§°(2). Thus the self-adjoint extension with domain given by (2.3)
is the closure of A on C§°(2).

Proof. We will obtain this as a consequence of Proposition 9.6 of Appendix A,
which states the following. Let U(t) = ¢'*4 be a unitary group on a Hilbert space
H which leaves invariant a dense linear space D; U(¢)D C D.If A is an extension
of Ap and Agp : D — D, then Ay and all its powers are essentially self-adjoint
onD.

In this case, U(t) will be the solution operator for a wave equation, and we will
exploit finite propagation speed. Set

2.11) idg = (A (i / é) . D(Ao) = (57 (R2) & C57(R2).

The group U(¢) will be the solution operator for the wave equation

2.12) v (;) - (IZ((?)) ’

where u(z, x) is determined by

P
012

It was shown in §2 of Chap. 6 that U(¢) is a unitary group on H = HJ}(Q) &
L?(Q); its generator is an extension of (2.11), and finite propagation speed im-
plies that U(¢) preserves Cg°(2) @ C§°(2) for all ¢, provided 2 is complete.
Thus each Alg is essentially self-adjoint on this space. Since

o (A-1 0
(2.13) AO—( 0 A_1)

—(A=Du=0; uO,x)=/f u(0,x)=¢g

we have the proof of Proposition 2.3. Considering A%k, we deduce furthermore
that each power A¥ is essentially self-adjoint on C§°(2), when € is complete.

Though A is not essentially self-adjoint on C§°(£2) when € is compact, we do
have such results as the following:

Proposition 2.5. If Q is a smooth, compact manifold with boundary, then A is
essentially self-adjoint on

(2.14) {ue C®(Q):u=00ndQ},
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its closure having domain described by (2.3). Also, A is essentially self-adjoint on
(2.15) {ue C®(Q): dyu=00ndQ},
its closure having domain described by (2.10).

Proof. It suffices to note the simple facts that the closure of (2.14) in H2(R) is
(2.3) and the closure of (2.15) in H?(R) is (2.10).

We note that when € is a smooth, compact Riemannian manifold with bound-
ary, and D(A) is given by the Dirichlet boundary condition, then
g .
2.16) (D) ={ueC®Q): Afu=00n0Q, k =0,1.2,...},
ji=1
and when D(A) is given by the Neumann boundary condition, then
[e )

(2.17) () D(AY) = {ue C®Q): 0,(AFu) = 00n dQ. k > 0}.

ji=1

We now derive a result that to some degree amalgamates Propositions 2.4 and
2.5. Let 2 be a smooth Riemannian manifold with boundary, and set

(2.18) CX(RQ) = {u € C>®°(Q) : supp u is compact in Q};

we do not require elements of this space to vanish on d$2. We say that Q is com-
plete if it is complete as a metric space.

Proposition 2.6. If Q is a smooth Riemannian manifold with boundary which is
complete, then A is essentially self-adjoint on

(2.19) {ue CX(Q):u=0o0n0Q}.
In this case, the closure has domain given by (2.3).

Proof. Consider the following linear subspace of (2.19):
(2.20) Do ={ueC>®Q): Au=00n0dQforj =0,1,2,...}.

Let U(¢) be the unitary group on Hy () & L?(R2) defined as in (2.12), with u
also satisfying the Dirichlet boundary condition, u(¢, x) = 0 for x € d2. Then,
by finite propagation speed, U(t) preserves Dy @ Dy, provided Q is complete, so
as in the proof of Proposition 2.4, we deduce that A is essentially self-adjoint on
Do; a fortiori it is essentially self-adjoint on the space (2.19).
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By similar reasoning, we can show that if Q is complete, then A is essentially
self-adjoint on

(2.21) {ue CX(Q):dyu=00n03Q}.

The results of this section so far have involved only the Laplace operator A. It
is also of interest to look at Schrodinger operators, of the form —A + V', where the
“potential” V' (x) is a real-valued function. In this section we will restrict attention
to the case V' € C*°(£2) and we will also suppose that ' is bounded from below.
By adding a constant to —A + V', we may as well suppose

(2.22) V(x) > 1 on Q.

We can define a Hilbert space H&O(Q) to be the closure of C§°(£2) in the space
(2.23) HY(Q) = {ue L3(Q) :du e LA, AY), VV2ue L2(Q)},

with inner product

(2.24) (u,v)1,y = (du,dv)i2 + (Vu,v) 2.

Then there is a natural injection H Il/o(Q) < L?(Q), and the Friedrichs extension
method provides a self-adjoint operator A. Integration by parts in (2.24), with
v € C§°(£2), shows that such A is an extension of —A + V. For this self-adjoint
extension, we have

(2.25) D(AY?) = H} ().

In case Q is a smooth, compact Riemannian manifold with boundary and
V € C*®(Q), one clearly has H},,(Q) = H{ (). In such a case, we have an
immediate extension of Proposition 2.1, including the characterization (2.4) of
D(—A + V). One can also easily extend Proposition 2.2 to —A + V in this case.
It is of substantial interest that Proposition 2.4 also extends, as follows:

Proposition 2.7. If Q is a complete Riemannian manifold and the function V €
C®(Q) satisfies V > 1, then —A + V is essentially self-adjoint on C§°(2).

Proof. We can modify the proof of Proposition 2.4; replace A — 1 by A — V in
(2.11) and (2.12). Then U(¢) gives a unitary group on H‘I,O(Q) ® L%(Q), and the
finite propagation speed argument given there goes through. As before, all powers
of —A + V are essentially self-adjoint on C5°(£2).

Some important classes of potentials I have singularities and are not bounded
below. In §7 we return to this, in a study of the quantum mechanical Coulomb
problem.
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We record here an important compactness property when V' € C°°($2) tends
to 400 at infinity in

Proposition 2.8. If the Friedrichs extension method described above is used to
construct the self-adjoint operator —A + V for smooth V' > 1, as above, and if
V — 400 at infinity (i.e., foreach N < oo, Qny = {x € Q : V(x) < N} is
compact), then —A + V' has compact resolvent.

Proof. Given (2.25), it suffices to prove that the injection H‘l,0 (Q) - L32(Q)
is compact, under the current hypotheses on V. Indeed, if {u,} is bounded in
H} (), with inner product (2.24), then {du,} and {V'2u,} are bounded in
L?(Q). By Rellich’s theorem and a diagonal argument, one has a subsequence
{un, } whose restriction to each Qy converges in L?(Q2y)-norm. The bound-
edness of {V'/2u,} in L?(Q) then gives convergence of this subsequence in
L?(Q)-norm, proving the proposition.

The following result extends Proposition 2.4 of Chap. 5

Proposition 2.9. Assume that Q is connected and that either 2 is compact or
V. — 400 at infinity. Denote by Ao the first eigenvalue of —A + V. Then
a Ag-eigenfunction of —A + V is nowhere vanishing on Q2. Consequently, the
Ao-eigenspace is one-dimensional.

Proof. Letu bea Ap-eigenfunction of —A + V. As in the proof of Proposition 2.4
of Chap.5, we can write u = u™ + u~, where u™(x) = u(x) for u(x) > 0
and u~(x) = u(x) for u(x) < 0, and the variational characterization of the
Ao-eigenspace implies that u* are eigenfunctions (if nonzero). Hence it suffices
to prove that if u is a Ag-eigenfunction and u(x) > 0 on €2, then u(x) > 0 on .
To this end, write

u(x) = MOV HA0y (1) = / pee () dV(y)
Q

We see that this forces p;(x, y) = 0 forall ¢t > 0, when
xeX={x:u(x)=0}, yeO, O={x:u(x)>0}

since p;(x, y) is smooth and > 0. The strong maximum principle (see Exercise 3
in §1 of Chap. 6 forces £ = 0.

Exercises

1. Let H‘l, (2) be the space (2.23). If V > 1 belongs to C°°(2), show that the Friedrichs

extension also defines a self-adjoint operator A1, equal to —A 4 V on C§°(2), such

that D(A}/ 2) = H‘l, (2). If Q is complete, show that this operator coincides with the

extension A defined in (2.25). Conclude that, in this case, Hll, (Q) = H‘I,O(Q).
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2. Let Q2 be complete, V' > 1 smooth. Show that if A4 is the self-adjoint extension of
—A + V described in Proposition 2.7, then

(2.26) D(A) ={u e L*(Q): —Au+ Vu e L>(Q)}.
where a priori we regard —Au + Vu as an element of D'(S2).

3. Define T : L2(Q) — L2(Q,AY) ® L2(Q) by D(T) = H}((Q). Tu = (du. V'/?u).
Show that

(227) D(T*)={(v1.v2)eL?(Q. A") & L2(Q) : §v; e L2(Q), V% e L2(Q)}.

Show that T*T is equal to the self-adjoint extension 4 of —A + V defined by the
Friedrichs extension, as in (2.25).

4. If Q is complete, show that the self-adjoint extension A of —A + V in Proposition 2.7
satisfies

(2.28) D(A) = {ue L*(Q): Aue L3(Q), Vu e L*(Q)}.

(Hint: Denote the right side by W. Use Exercise 3 and A = T*T to show that
D(A) C W. Use Exercise 2 to show that W C D(A4).)

5. Let D = —id/dx on C*®°(R), and let B(x) € C®(R) be real-valued. Define the
unbounded operator L on L?(R) by

(2290 D(L)={ue L?R): Due L?>(R), Buec L>(R)}, Lu= Du+iB(x)u

Show that L* = D —iB, with

D(L*) = {u e L*(R) : Du—iBu € L*(R)}

Deduce that Ag = L* L is given by Agu = D%u + B2u + B’(x)u on

D(Ag) = {u € L>(R) : Du € L*>(R), Bu € L*>(R), D?u+ B?u+ B’ (x)u € L*>(R)}
6. Suppose that |B’(x)| < 9B(x)? + C, for some ¥ < 1, C < 0o. Show that

D(Ag) = {u € L>(R) : D?u+ (B? 4+ B')u € L2(R)}
(Hint: Apply Exercise 2 to D? 4+ (B% 4+ B’) = A, and show that D(Al/z) is given by

D(L), defined in (2.29).)
7. In the setting of Exercise 6, show that the operator L of Exercise 5 is closed.

(Hint: L¥*L = A is a self-adjoint extension of D2 + (B2 + B’). Show that D(A}/z)
= D(L) and also = D(L).) Also show that D(L*) = D(L) in this case.

3. Heat asymptotics and eigenvalue asymptotics

In this section we will study the asymptotic behavior of the eigenvalues of the
Laplace operator on a compact Riemannian manifold, with or without boundary.
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We begin with the boundaryless case. Let M be a compact Riemannian man-

ifold without boundary, of dimension n. In §13 of Chap.7 we have constructed a
parametrix for the solution operator e’ of the heat equation

3.1) (% —A)u=00onR* x M, u(0,x)= f(x)
and deduced that

(3.2) TretA~t_”/2(ao+a1t—i—azlz—i-———), t\,0,

for certain constants a ;. In particular,

(3.3) ao = (4)™2 vol M.

This is related to the behavior of the eigenvalues of A as follows. Let the eigen-

values of —Abe 0 = Ag < A; < Ay < --- /" oo. Then (3.2) is equivalent to

o0
Ga P e~ P ag b at t @ ) N0,
j=0

We will relate this to the counting function
(3.5 NQ) ~#AjAj <AL,

establishing the following:

Theorem 3.1. The eigenvalues {A ;} of —A on the compact Riemannian manifold
M have the behavior

(3.6) N ~ C(M)A"?, L — +oo,
with

IM
(3.7) cM) = 20 Yo

TE+ 1) TE+ D@2

That (3.6) follows from (3.4) is a special case of a result known as Karamata’s
Tauberian theorem. The following neat proof follows one in [Si3]. Let u be
a positive (locally finite) Borel measure on [0,00); in the example above,

u([0.2]) = N(»).

Proposition 3.2. If i is a positive measure on [0, 00), o € (0, 00), then

(3.8) / e du\) ~ar™, 1\, 0,
0
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implies
X
(3.9) / du(d) ~ bx*, x /J oo,
0
with
a
A ="
(3.10) b IMNoe+1)

Proof. Let dji; be the measure given by u,(A) = t*u(t~'A), and let dv(})
= aA% " 1dA; then v, = v. The hypothesis (3.8) becomes

(3.11) thi%/e—* du:(A) = b/e—A dv(}),

with b given by (3.10), and the desired conclusion becomes

(3.12) g%/ﬂmmmm=b/ﬂmwa>

when y is the characteristic function of [0, 1]. It would suffice to show that (3.12)
holds for all continuous y(A) with compact support in [0, 00).

From (3.11) we deduce that the measures e ~*d; are uniformly bounded, for
t € (0, 1]. Thus (3.12) follows if we can establish

(3.13) gg/gak*dmuozb/gak*dwm,

for g in a dense subspace of Co(R ™), the space of continuous functions on [0, co)
that vanish at infinity. Indeed, the hypothesis implies that (3.13) holds for all g
in 2, the space of finite, linear combinations of functions of A € [0, co0) of the
form ¢s(1) = e™*, s € (0,00), as can be seen by dilating the variables in
(3.11). By the Stone-Weierstrass theorem, 2 is dense in C,(R™), so the proof is
complete.

We next want to establish similar results on N(A) for the Laplace operator A
on a compact manifold © with boundary, with Dirichlet boundary condition. At
the end of §13 in Chap. 7 we sketched a construction of a parametrix for ¢’2 in
this case which, when carried out, would yield an expansion

(3.14) Tre'® ~ 7% (ag + ayjat'/? +art +---), 1 \0,
extending (3.2). However, we will be able to verify the hypothesis of Proposition

3.2 with less effort than it would take to carry out the details of this construction,
and for a much larger class of domains.
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For simplicity, we will restrict attention to bounded domains in R” and to the
flat Laplacian, though more general cases can be handled similarly. Now, let €2 be
an arbitrary bounded, open subset of R”, with closure ©2. The Laplace operator
on £2, with Dirichlet boundary condition, was studied in §5 of Chap. 5

Lemma 3.3. For any bounded, open 2 C R”", A with Dirichlet boundary con-
dition, e'® is trace class for all t > 0.

Proof. Let @ C B, a large open ball. Then the variational characterization of
eigenvalues shows that the eigenvalues A ; (2) of —AonQ and A ;(B)of L = —A
on B, both arranged in increasing order, have the relation

(3.15) Aj(R2) = A;(B).

But we know that e % has integral kernel in C*°(B x B) for each ¢ > 0, hence is
trace class. Since e 74/ () < 714/ (B) this implies that the positive self-adjoint
operator e’2 is also trace class.

Limiting arguments, which we leave to the reader, allow one to show that, even in
this generality, if H (¢, x,y) € C*®(Q2 x Q) is, for fixed ¢ > 0, the integral kernel
of e!® on L2(Q), then

(3.16) Tref® = / H(t,x,x) dx.
Q

See Exercises 1-5 at the end of this section.

Proposition 3.4. If Q is a bounded, open subset of R™ and A has the Dirichlet
boundary condition, then

(3.17) Tre'® ~ (4nt) ™2 vol Q, 1\, 0.
Proof. We will compare H(¢, x, y) with Ho(¢, x,y) = (4nt)_"/ze‘x_Y|2/4’, the

free-space heat kernel. Let E(z, x,y) = Ho(¢,x,y) — H(t, x, y). Then, for fixed
y e,

JIE
(3.18) a—AxE:OOnR”LxQ, E,x,y) =0,
and
(3.19) E(t,x,y) = Ho(t,x,y), forx € 0Q.

To make simple sense out of (3.19), one might assume that every point of <2
is a regular boundary point, though a further limiting argument can be made to
lift such a restriction. The maximum principle for solutions to the heat equation
implies
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320) 0<E(f.x.y) < sup Ho(s.2.y) < sup (dms) /2 ¢80 /4s
( ) = (v vy)_ p O(svy)_ p( ) s

0<s<t,2€Q 0<s<t

where §(y) = dist(y, 9R2). Now the function
Ys(s) = (ds) ™26/

on (0, 00) vanishes at 0 and oo and has a unique maximum at s = §2/2n; we
have ¥(82/2n) = C,87". Thus

(3.21) 0<E(tx,y) < max((4m)—"/2e—8<y)2/4’, CnS(y)_").

Of course, E(t,x,y) < Ho(t, x, y) also.
Now, let O CC €2 be such that vol(2 \ O) < &. For ¢ small enough, namely
for s < 82/2n where §; = dist(O, 9$2), we have

(3.22) 0<E(t,x,x) < (47rl)_”/ze_8(x)2/4’, x €0,

while of course 0 < E(t, x,x) < (47”)‘”/2, for x € Q \ O. Therefore,

(3.23) lim sup (47tt)"/2/E(t,x,x) dx < &,
t—>0
Q

SO

vol @ — ¢ < lim inf (4m)"/2/H(z,x,x) dx
—
(3.24) @
< limsup (471)"/? / H(t,x,x) dx < vol Q.
Q

t—0

As ¢ can be taken arbitrarily small, we have a proof of (3.17).

Corollary 3.5. If Q2 is a bounded, open subset of R", N(A) the counting function
of the eigenvalues of —A, with Dirichlet boundary condition, then (3.6) holds.

Note that if O, is the set of points in € of distance > & from d<2 and we define
v(e) = vol(Q \ O), then the estimate (3.24) can be given the more precise
reformulation

(3.25) 0 < vol Q2 — (4mt)"? Tre'® < w(v2n1),

where

(3.26) w(e) =v(e) + /00 o?/26? dv(s).

&
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The fact that such a crude argument works, and works so generally, is a special
property of the Dirichlet problem. If one uses the Neumann boundary condition,
then for bounded 2 C R” with nasty boundary, A need not even have compact
resolvent. However, Theorem 3.1 does extend to the Neumann boundary condition
provided 92 is smooth. One can do this via the sort of parametrix for boundary
problems sketched in §13 of Chap. 7.

We now look at the heat kernel H(z, x, y) on the complement of a smooth,
bounded region K C R”. We impose the Dirichlet boundary condition on 0K .
As before,0 < H(t,x,y) < Ho(t, x,y), where Hy(¢, x, y) is the free-space heat
kernel. We can extend H (¢, x, y) to be Lipschitz continuous on (0, co) x R” x R"
by setting H(t,x,y) = 0 when either x € K or y € K. We now estimate
E(t,x,y) = Ho(t,x,y) — H(t,x,y). Suppose K is contained in the open ball
of radius R centered at the origin.

Lemma 3.6. For |x — y| < |y| — R, we have

(3.27) E(t,x,y) < Ci~V2e~01=R?/41.

Proof. With y € Q = R" \ K, write

o0
(3.28) H(t,x,y) = (4m)—1/2/ ¢4 cossA ds,

—0o0

where A = +/—A and A is the Laplace operator on €2, with the Dirichlet
boundary condition. We have a similar formula for Hy(z, x, y), using instead
Ao = /—Ap, with A the free-space Laplacian. Now, by finite propagation
speed,

cossA §y,(x) = cossAg §y(x),

provided
|s| =d = dist(y,0K), and |x —y| <d

Thus, as long as |x — y| < d, we have

(3.29) E(t,x,y) = (4mr)~"/? / e /41 [cos sAg 8, (x) — cossA 8y (x)]ds.

Is|=d

Then the estimate (3.27) follows easily, along the same lines as estimates on heat
kernels discussed in Chap. 6, §2.

When we combine (3.27) with the obvious inequality
(3.30) 0 < E(t,x,y) < Ho(t,x, y) = (dmt) ™/ 2e~l—17/41

we see that, for each t > 0, E(z,x, y) is rapidly decreasing as |x| + |y| — oo.
Using this and appropriate estimates on derivatives, we can show that E(t, x, y)
is the integral kernel of a trace class operator on L2(IR"). We can write
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(3.31) Tr (e"20 — e’ P) =/E(Z,x,x) dx,

R”7

where P is the projection of L2(R") onto L2(£2) defined by restriction to 2. Now,
ast \, 0, (4t)"/2E(t, x, x) approaches 1 on K and 0 on R” \ K. Together with
the estimates (3.27) and (3.30), this implies

(3.32) (4nt)"/2/E(t,x,x) dx — vol K,

R~7
as t \ 0. This establishes the following:

Proposition 3.7. If K is a closed, bounded set in R", A is the Laplacian on
L%(R™ \ K), with Dirichlet boundary condition, and Ay is the Laplacian on
L2(R™), then e'20 — ' P is trace class for eacht > 0 and

(3.33) Tr (e’AO — etAP) ~ (47t)™? vol K,

ast N\ 0.

This result will be of use in the study of scattering by an obstacle K, in Chap. 9.
It is also valid for the Neumann boundary condition if 0K is smooth.

Exercises

In Exercises 14, let 2 C R” be a bounded, open set and let O be open with smooth
boundary such that

0Oy CCOyCcC---CCO;CC--- Q.

Let L; be —A on L, with Dirichlet boundary condition; the corresponding operator
on Qi 1s simply denoted —A.
1. Using material developed in §5 of Chap. 5, show that, for any 7 > 0, f € L2(),

o—tLj P f— ¢! f strongly in L2(R),

as j — oo, where P; is multiplication by the characteristic function of O;.
Don’t peek at Lemma 3.4 in Chap. 11!
2. If 1,(O;) are the eigenvalues of L ;, arranged in increasing order for each j, show
that, for each v,
A(O)) (A (), as j — oo.

3. Show that, for each t > 0,
Tre —le /{ Tr etA

4. Let H;(t,x, y) be the heat kernel on R x O X O Extend H; to Rt xQ x Qso
as to Vamsh if x or y belongs to 2 \ O;. Show that, for each x € Q yeQ, t>0,

Hjt,x,y) /" H(t,x,y), as j — oo.
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Deduce that, for each ¢t > 0,

/Hj(t,x,x)dx/’/H(t,x,x)dx
i Q

b

Using Exercises 1-4, give a detailed proof of (3.16) for general bounded 2 C R”.
6. Give an example of a bounded, open, connected set & C R? (with rough boundary)
such that A, with Neumann boundary condition, does not have compact resolvent.

4. The Laplace operator on S”

A key tool in the analysis of the Laplace operator As on S” is the formula for the
Laplace operator on R”*! in polar coordinates:
2 na 1

4.1 A= — —Ag.
“.1) 8r2+r8r+2 §

In fact, this formula is simultaneously the main source of interest in Ag and the
best source of information about it.

To begin, we consider the Dirichlet problem for the unit ball in Euclidean
space, B = {x e R"*!: |x| < 1}:

4.2) Au=0inB, u= fonS"=20B,

given f € D'(S™). In Chap.5 we obtained the Poisson integral formula for the
solution:

1— 2
(43) u(r) = 1= / - / (yliH S(y).

where A, is the volume of S”. Equivalently, if we set x = rw withr = |x|, w € S,

f (@)

!/
2ra) . C()/ + r2)(ﬂ+1)/2 dS((l) )

1— 2
4.4) u(rw) = ) ! / =
S'l

Now we can derive an alternative formula for the solution of (4.2) if we use
(4.1) and regard Au = 0 as an operator-valued ODE in r; it is an Euler equation,
with solution

4.5) u(rw) = rA_("_l)/zf(a)), r<l,

where A is an operator on D’(S™), defined by

(n— 1)2)1/2.

(4.6) a=(-bs+ .
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If we set r = e~ and compare (4.5) and (4.4), we obtain a formula for the

semigroup e *4 as follows. Let §(w, ') denote the geodesic distance on S” from
w to ', s0 cos O(w, w’) = w - . We can rewrite (4.4) as

2
u(rw) = i sinh(log r ") r~("—1/2
n

@) Y f@)

— dS (o).
[2 cosh(logr—1) — 2 cos 6 (w, a)’)] (n+1)/2

Sll
In other words, by (4.5),

f(@')

dS (o).
(2 cosht —2cosf(w,w’)

4.8) e f(w) = 2 Ginht f

A )(n+1)/2

Sll
Identifying an operator on D’(S™) with its Schwartz kernel in D/(S" x S™), we
write

A 2 sinh ¢

4.9 _ ’
“ ¢ Apn (2 cosht —2cos §)nt1)/2

t > 0.

Note that the integration of (4.9) from ¢ to oo produces the formula
(4.10) A7'e™ =2C, (2 cosht —2cos0)~"V/2 1 50,
provided n > 2, where

1 1 n—1
C. — — L ~m+n/2p
" —DAa, 4" ( 2 )

With the exact formula (4.9) for the semigroup e *4, we can proceed to give

formulas for fundamental solutions to various important PDE, particularly

9%u .
4.11) — — Lu=0 (wave equation)

012
and

du .
4.12) Fri Lu =0 (heat equation),
where

—1?

4.13) L=as-" . Y _

If we prescribe Cauchy data u(0) = f, u;(0) = g for (4.11), the solution is

(4.14) u(t) = (costA) f + A (sintA)g.
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Assume n > 2. We obtain formulas for these terms by analytic continuation of
the formulas (4.9) and (4.10) to Re ¢+ > 0 and then passing to the limit 7 € iR.
This is parallel to the derivation of the fundamental solution to the wave equation
on Euclidean space in §5 of Chap. 3. We have

A lel—04 — >, [2 cosh(it — &) — 2 cos 9]_("_1)/2,

(4.15) , ’ B

el=e)4 — - sinh(it — &)[2 cosh(it — €) — 2 cos 6 | (/2

n
Letting & \ 0, we have
A7lsintA =
(4.16) li\r‘% —2Cp, Im (2 cosh e cost — 2i sinh esint — 2 cos 9)_(”_1)/2
&
and
costA =

(4.17)

-2
lim — Im(sin#)(2 coshecost — 2i sinhesint — 2 cos 9)_("+1)/2.
e\o0 Ay

For example, on S2 we have, for0 <t < 7,

A7 'sintA = —2C,(2cos @ — 2cost) V2, 0 < 1],

4.18
(415) 0, 0> t],

with an analogous expression for general 7, determined by the identity
(4.19) A7 Vsin(t +27)4A = —A7'sintA  on D' (§%),

plus the fact that sinfA4 is odd in ¢. The last line on the right in (4.18) re-
flects the well-known finite propagation speed for solutions to the hyperbolic
equation (4.11).

To understand how the sign is determined in (4.19), note that, in (4.15),
with ¢ > 0, for t = 0 we have a real kernel, produced by taking the —(n —
1)/2 = —k + 1/2 power of a positive quantity. As ¢ runs from O to 27w, the
quantity 2 cosh(it — &) = 2 cosh e cost — 2i sinh e sint moves once clockwise
around a circle of radius 2(cosh2 &+ sinh? 8)1/ 2 centered at 0, so 2 cosh & cos t —
2i sinh e sint — 2 cos @ describes a curve winding once clockwise about the ori-
gin in C. Thus taking a half-integral power of this gives one the negative sign
in (4.14).

On the other hand, when n is odd, the exponents on the right side of (4.15)—
(4.17) are integers. Thus

(4.20) A7'sin(r +27)A = A 'sintA  on D'(SH1).
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Also, in this case, the distributional kernel for A~! sin t A must vanish for |¢| # 6.
In other words, the kernel is supported on the shell & = |¢|. This is the general-
ization to spheres of the strict Huygens principle.

In case n = 2k + 1 is odd, we obtain from (4.16) and (4.17) that

(421) A7 lsintA f(x) = ! i)k_l(sinZk_lsf(x,s))Ft

S
2k — ) \sin s ds

and

1 1 0\k —
(4.22) costA f(x) = - sin s (Eg) (sin2k_1s f(x,s))s=t,

where, as in (5.66) of Chap.3, 2k — )!! =3-5---(2k — 1) and
(4.23)  f(x,s) = mean value of f on Zs(x) = {y € S" : O(x,y) = |s|}.

We can examine general functions of the operator A by the functional calculus

(4.24)  g(A) = @2n)"V/? / ~ g(n)e™ dt = 2m)~V/? / - &(1) cos A dt,

—00

where the last identity holds provided g is an even function. We can rewrite this,
using the fact that cos A has period 27 in ¢ on D’(S™) for n odd, period 47 for
n even. In concert with (4.22), we have the following formula for the Schwartz
kernel of g(A) on D’/ (S%*+1), for g even:

oo

1 1 0
(4.25) g(A)=(27r)_1/2<—Z®—9) Z 2(0 + 2kn).

As an example, we compute the heat kernel on odd-dimensional spheres. Take
g(k) = e—t/lz_ Then gr(s) = (2;)—1/26—32/4t and

(4.26) (2n)~V/? ng(s +2kn) = (4mr)~Y/? Ze_(s+2k”)2/4’ = 9(s,1),
k k

. . 2 . .
where 9 (s, ) is a “theta function.” Thus the kernel of e 74" on §2¥*1 is given by

—az 1 1 0
(4:27) = (2o ae) B(.0)-

A similar analysis on S2¥ gives an integral, with the theta function appearing in
the integrand.
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The operator 4 has a compact resolvent on L2(S™), and hence a discrete set
of eigenvalues, corresponding to an orthonormal basis of eigenfunctions. Indeed,
the spectrum of A has the following description

Proposition 4.1. The spectrum of the self-adjoint operator A on L>(S™) is
1
(4.28) specA={E(n—l)—i—k:k:O,l,Z,...}.

Proof. Since 0 is the smallest eigenvalue of —A g, the definition (4.6) shows that
(n — 1)/2 is the smallest eigenvalue of A. Also, (4.20) shows that all eigenvalues
of A are integers if n is odd, while (4.19) implies that all eigenvalues of A are
(nonintegral) half-integers if 7 is even. Thus spec A is certainly contained in the
right side of (4.28).

Another way to see this containment is to note that since the function u(x)
given by (4.5) must be smooth at x = 0, the exponent of r in that formula can
take only integer values.

Let Vi denote the eigenspace of A with eigenvalue vy = (n — 1)/2 + k. We
want to show that V # 0 fork =0, 1,2,.... Moreover, we want to identify V.
Now if f € Vg, it follows that u(x) = u(ro) = rA=®=D/2 f(w) = rk f(w)
is a harmonic function defined on all of R**1 which, being homogeneous and
smooth at x = 0, must be a harmonic polynomial, homogeneous of degree k in
x. If Hy, denotes the space of harmonic polynomials, homogeneous of degree k,
restriction to §” C R”*! produces an isomorphism:

(4~29) P Hk — Vk.

To show that each Vi # 0, it suffices to show that each Hy # 0.
Indeed, for ¢ = (¢1,...,¢n+1) € C"*1 consider

pe(x) = (c1x1 + - + eng1xnt1)".
A computation gives

Ape(x) = k(k — D){c,¢)(crxt + - + cexp) 2,

2 2
(c,c) =ci 4+ +cp.

Hence Ap, = 0 whenever (c, ¢) = 0, so the proposition is proved.
We now want to specify the orthogonal projections Ej of L2(S™) on V}.. We

can attack this via (4.10), which implies

oo
(4.30) Z vile "k Eg(x,y) = 2Cy(2 cosh t — 2 cos g)~(—1/2,
k=0
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where 6 = 6(x, y) is the geodesic distance from x to y in S™. [f we set r = e

and use vy = (n — 1)/2 + k, we get the generating function identity

[e )
Z rkvlzlEk(x, y) = 2C,(1 —2rcos § + r2)~=D/2

(4.31) k=0 .

= Z ¥ pr(cos 6);
in particular,
(4.32) Ex(x,y) = vk pr(cosb).

These functions are polynomials in cos 8. To see this, set # = cos 6 and write

o0
(4.33) (I=2r+7r3)™* =" Cr0) r*,
thus defining coefficients C (7). To compute these, use
o0 .
_ +a—1)\ ;
(1-9=) (’ . )zf,
=0\ /

with z = r(2t — r), to write the left side of (4.33) as

Z (?)rj(Zt — r)j =

Jj=0

Hence
[k/2]
o _ _ Vi k—€+(x—1 k—@ k—24
(4.34) Cy(t) = ZEZO( 1) ( k—¢ )( ¢ )(2t) .

These are called Gegenbauer polynomials. Therefore, we have the following:

Proposition 4.2. The orthogonal projection of L*>(S™) onto Vi has kernel

1
(4.35) Er(x,y) =2Cuvx C(cosh), a= E(n -1,

with Cy, as in (4.10).

Z (] —|—;X 1) (2)(—1)£r]+£(2l)]_£

>
oo [k/2]
=X ) 1)4(" T 1) (kze)(zok—”rk.

—t
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In the special case n = 2, we have C; = 1/4x, and vy = k + 1/2; hence

2k + 1 2k + 1
e+l Cl/z(cos 0) = +

4.36 Ex(x,y) =
( ) k(x, ) 4 k 4

Py (cos6),

where C kl / 2(t) = Py (t) are the Legendre polynomials.
The trace of Ej is easily obtained by integrating (4.35) over the diagonal, to
yield

_ 2 _
(4.37) Tr Ex = 2C, Ao C7V/2(1) = L"l V2,
n J—

Setting ¢ = 11in (4.33), s0 (1 —2r + r?)™® = (1 — r)2%, we obtain

k+20—1

(4.38) c(1) = ( .

), e.g., Pr(1) = 1.

Thus we have the dimensions of the eigenspaces V% :

Corollary 4.3. The eigenspace Vi of —As on S™, with eigenvalue
1
)Lkzv,%—z(n—l)zzk2+(n—l)k,

satisfies

) 2k4+n—-1(k+n-2 k+n-2 k+n-1

In particular, on S2 we have dim Vi =2k + 1.

Another natural approach to Ey is via the wave equation. We have

T
Ek _ e—tvktettA dt
2T |1
(4.40)

1 (T
= —/ cost(A —vg) dt,
2T J_7
where T = m or 2 depending on whether 7 is odd or even. (In either case, one

can take 7 = 2m.) In the special case of S 2 when (4.18) is used, comparison of
(4.36) with the formula produced by this method produces the identity

)

1 [? cos(k + 1)t
441 P 0) = — 2
(441) k(cos6) /4 /_9 (2cost —2cosf)1/2

for the Legendre polynomials, known as the Mehler-Dirichlet formula.
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Exercises

Exercises 1-5 deal with results that follow from symmetries of the sphere. The group
SO(n + 1) acts as a group of isometries of S C R”*1, hence as a group of unitary
operators on L2(S™). Each eigenspace Vj of the Laplace operator is preserved by this
action. Fix p = (0,...,0,1) € S", regarded as the “north pole.” The subgroup of
SO(n + 1) fixing p is a copy of SO(n).

1. Show that each eigenspace Vj has an element u such that u(p) # 0. Conclude by
forming

u(gx) dg
SO(n)

that each eigenspace Vj, of Ag has an element z; # 0 such that zz (x) = z; (gx), for
all g € SO(n). Such a function is called a spherical function.

2. Suppose Vi has a proper subspace W invariant under SO(n + 1). (Hence wt c Vi
is also invariant.) Show that W must contain a nonzero spherical function.

3. Suppose zj; and y are two nonzero spherical functions in V. Show that they must be
multiples of each other. Hence the unique spherical functions (up to constant multiples)
are given by (4.35), with y = p. (Hint: z; and yj are eigenfunctions of —Ag, with
eigenvalue A = k2 4 (n — 1)k. Pick a sequence of surfaces

Y ={xeS8":0(x,p)=¢;} CS",

with &j — 0, on which z; = & # 0. With B; = y |y, it follows that Bjzx — ajyk
is an eigenfunction of —Ag that vanishes on X ;. Show that, for j large, this forces
Bjzk — ajyx to be identically zero.)

4. Using Exercises 2 and 3, show that the action of SO(n + 1) on each eigenspace V} is
irreducible, that is, Vj has no proper invariant subspaces.

5. Show that each V} is equal to the linear span of the set of polynomials of the form
Pe(x) = (c1x1 + -+ + cng1Xn41)K, with {c.c) = 0.
(Hint: Show that this linear span is invariant under SO(n + 1).)

6. Using (4.9), show that

2 sinh ¢

4.42 Tre 4 = }
“42) (2 cosh t —2)(n+1)/2

Find the asymptotic behavior as ¢ \ 0. Use Karamata’s Tauberian theorem to deter-
mine the asymptotic behavior of the eigenvalues of 4, hence of —Ag. Compare this
with the general results of §3 and also with the explicit results of Corollary 4.3.

7. Using (4.27), show that, for A on S” withn = 2k + 1,

Tp o142 _ A2kt (_L 1 i)ke—92/4t‘
(4.43) 4t

o
27 sin6 00 0 +06™)
= (47'[[)_"/2 A2k+1 + O(I_n/2+1),

6=

as t \( 0. Compare the general results of §3.
8. Show that

(4.44) e TIA=(=D/2) £y = f(—w), f e L2(S™).
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(Hint: Check it for f € Vj, the restriction to S” of a homogeneous harmonic
polynomial of degree k.)
Exercises 9-13 deal with analysis on S” when n = 2. When doing them, look for
generalizations to other values of 7.

9. If E(A) has integral kernel Kz (x, y), show that whenn = 2,

1 & 1
(4.45) Kz(x,y) = EZ;)(ZZ + l)n(i + E)Pg(cos ),

where cos § = x - y and Py(¢) are the Legendre polynomials.
10. Demonstrate the Rodrigues formula for the Legendre polynomials:

1 dy\k
(4.46) Pi(t) = 50 (E) (-1,

(Hint: Use Cauchy’s formula to get
1 —1/2 —k—
Pr(t) = —,/(1—2zt+z2) 12, =k=1 g,
2ri Jy

from (4.33); then use the change of variable 1 —uz = (1 — 2tz + 22)1/2. Then appeal
to Cauchy’s formula again, to analyze the resulting integral.)

11. If f € L%(S?) has the form f(x) = g(x - y) = > @gPe(x - y), for some y € 52,
show that

ZZ—i—l

1 1
@4 g = / Py ds@ = (t+3) [ ewri ar

(Hint: Use [¢2 Eg(x,2)Eq(z,y) dS(z) = 8¢ E¢(x,y).) Conclude that g(x - y) is the
integral kernel of ¢ (A4 — 1/2), where

4 1
(4.48) v() = Y @ =27 /_1 g(t)Py(2) dr.

This result is known as the Funk-Hecke theorem.
12. Show that, for x, y € SZ,

(4.49) etkxy = Z(ZZH)I Je(k) Pg(x - y).
=0
where
) \1/2 iz
aso i =(5) " rp0 =15 G) [La-rtea

(Hint: Take g(r) = ¢ in Exercise 11, apply the Rodrigues formula, and integrate by
parts.) Thus e’**"Y is the integral kernel of the operator
(1/2)mi(A-1/2)

4 e Ja-172(k)
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For another approach, see Exercises 10 and 11 in §9 of Chap. 9.
13. Demonstrate the identities

d
@51) [(1 —1)2 Zt]Pg(t) — (P4 (0)
and
4.52) i[(1—t2)i P (t)] F L+ D)Py(t) =0
' dt ar ¢ ¢ '

Relate (4.52) to the statement that, for fixed y € S2, ¢(x) = P;(x - y) belongs to the
L(£ + 1)-eigenspace of —Ag.

Exercises 14-19 deal with formulas for an orthogonal basis of V}, (for S 2y, We will
make use of the structure of irreducible representations of SO(3), obtained in §9 of
Appendix B, Manifolds, Vector Bundles, and Lie Groups.

14. Show that the representation of SO(3) on V} is equivalent to the representation Dy,
foreachk =0,1,2,....

15. Show that if we use coordinates (6, 1) on S2, where 0 is the geodesic distance from
(1,0,0) and v is the angular coordinate about the x1-axis in R3, then

9 oyl 0 d
(4.53) Li=g,. Le=ie [£55 +icotd aw].
16. Set
(4.54) Wi (x) = (x2 + ix3)k = sink 6 ¥V

Show that wy € V and that it is the highest-weight vector for the representation, so
Liwg =ik wy
17. Show that an orthogonal basis of V} is given by
wy, L—wg, ..., szwk

18. Show that the functions ij = Lli_jwk, jel{-k,—k+1,....k—1,k}, listed in
Exercise 17 coincide, up to nonzero constant factors, with z ;, given by

ko = Zk>

the spherical function considered in Exercises 1-3, and, for 1 < j <k,
_7J _gJ
Tk,—j = LY 7, zxj = Lz
19. Show that the functions zj y coincide, up to nonzero constant factors, with

(4.55) eV Pl(cosh), —k<j <k

where Plg (1), called associated Legendre functions, are defined by

i ; i d\lJl
; — (1) (1=l
(4.56) Pk/ @) =D/ -5V (dt) Pr(2).
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5. The Laplace operator on hyperbolic space

The hyperbolic space H" shares with the sphere S” the property of having
constant sectional curvature, but for H” it is —1. One way to describe H" is as a
set of vectors with square length 1 in R”*!, not for a Euclidean metric, but rather
for a Lorentz metric

(5.1) (v,v) = —vf —---—vp +vpy,
namely,
(5.2) H' ={v e R (v,v) =1, v,q1 > 0},

with metric tensor induced from (5.1). The connected component G of the identity
of the group O(n, 1) of linear transformations preserving the quadratic form (5.1)
acts transitively on ", as a group of isometries. In fact, SO(n), acting on R"” C
R"*1 leaves invariant p = (0,...,0,1) € H" and acts transitively on the unit
sphere in T, H". Also, if A(uy, ..., un,tn+1)" = (U1, ..., unt1,Uy)", then e is
a one-parameter subgroup of SO(#, 1) taking p to the curve

y = {(O,...,O,xn,xn+1):x,%_H—x,% =1,xp41 > 0}

Together these facts imply that H" is a homogeneous space.
There is a map of " onto the unit ball in R”, defined in a fashion similar to
the stereographic projection of S”. The map

(5.3) s:H'"— B"={xeR":|x| <1}
is defined by
(5.4) 5(xX, Xpt1) = (1 + x041) 7' x.

The metric on H" defined above then yields the following metric tensor on B”:
(5.5) ds?* = 4(1 - |x]?) Z dx3.

Another useful representation of hyperbolic space is as the upper half space
= {x € R" : x, > 0}, with a metric we will specify shortly. In fact, with
en =(0,...,0,1),

(5.6) T(x) = |x + en|_2(x +en) — zen

defines a map of the unit ball B” onto R’ , taking the metric (5.5) to

n
(5.7) ds® = x,;2 ) " dx3.
j=1
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The Laplace operator for the metric (5.7) has the form

n
Au = Zx,’: 9; (xﬁ_" aju)
(5.8) =
= x,% Z 8514 + (2 —n)x, dpu.

Jj=1

which is convenient for a number of computations, such as (5.9) in the following:

Proposition 5.1. If A is the Laplace operator on H", then A is essentially self-
adjoint on C§°(H"), and its natural self-adjoint extension has the property

(5.9) spec(—A) C [%(n —1)2, oo).

Proof. Since H” is a complete Riemannian manifold, the essential self-adjoint-
ness on C§°(H") follows from Proposition 2.4. To establish (5.9), it suffices to
show that

> 2
el

(—AM,M)Lz(Hn) > L2(H")’

(n—1)
4

for all u € C§°(H"). Now the volume element on ", identified with the upper
half-space with the metric (5.7), is x,;” dx; - - - dxp, so for such u we have

((—A — %(n — 1)2)u,u)L2

_ 2_ M)Z] 251 Gy
5.10) - /[(anu) ( . X2 dxy - doxy
n—1
+ Z /(3ju)2x,%_” dxy--dxy.
ji=1
Now, by an integration by parts, the first integral on the right is equal to

(5.11) /[an(x;(n—l)/zu)]Z Xp dxy - dxy.

R}

Thus the expression (5.10) is > 0, and (5.9) is proved.

We next describe how to obtain the fundamental solution to the wave equation
on H". This will be obtained from the formula for S”, via an analytic continuation
in the metric tensor. Let p be a fixed point (e.g., the north pole) in S”, taken to be
the origin in geodesic normal coordinates. Consider the one-parameter family of
metrics given by dilating the sphere, which has constant curvature K = 1. Spheres
dilated to have radius > 1 have constant curvature K € (0, 1). On such a space,
the fundamental kernel A~! sinzA §,(x), with
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K 1/2
(5.12) A= (—A + 5= 1)2) ,
can be obtained explicitly from that on the unit sphere by a change of scale. The

explicit representation so obtained continues analytically to all real values of K
and at K = —1 gives a formula for the wave kernel,

o B A T 1/2
(5.13) A7 sintA $y(x) = R(t,p,x), A=(-A 4(11 1) .

We have
. . —(n—-1)/2
(5.14) R(t,p,x) = 11\r4n —2C, Im [2 cos(it — &) — 2 cosh r] ,
&\0
where r = r(p,x) is the geodesic distance from p to x. Here, as in (4.10),

C, = 1/(n — 1)A,. This exhibits several properties similar to those in the case
of §” discussed in §4. Of course, for r > |t], the limit vanishes, exhibiting the
finite propagation speed phenomenon. Also, if n is odd, the exponent (n — 1) /2 is
an integer, which implies that (5.14) is supported on the shell r = |¢|.

In analogy with (4.25), we have the following formula for g(A4)8,(x), for g €
S(R), when acting on L2(H"), with n = 2k + 1:

1 1 d\k
5.15 A= m) V2 (—— 2N 500,
( ) g(4) = (2m) ( 27 sinhrar) &(r)
If n = 2k, we have
g(A) =
5.16 1 0 1 1 0\k _
( : —1/2/ (_Z_Sinh g) g(s)(coshs— coshr) Y2 Ginh s ds.
b4 - F11 s
Exercises

1. Ifn = 2k + 1, show that the Schwartz kernel of (=A — (1 —1)2/4—z2) " on H", for
7€ C\[0,00),is

1 1 1 0\k;
G0 = 5 (5-amrar) ¢

where r = r(x, y) is geodesic distance, and the integral kernel of e’(A+(”_1)2/ 4), for

t>0,is
1 1 1 9\k _.2
Hi(x,y) = (————) e /4
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6. The harmonic oscillator

We consider the differential operator H = —A + |x|? on L2(R"). By Proposition
2.7, H is essentially self-adjoint on C§°(R"). Furthermore, as a special case of
Proposition 2.8, we know that H has compact resolvent, so L?(R") has an or-
thonormal basis of eigenfunctions of H. To work out the spectrum, it suffices to
work with the case n = 1, so we consider H = D? 4+ x2, where D = —i d/dx.

The spectral analysis follows by some simple algebraic relations, involving the
operators

d
(6.1) a:D_lx:T<E+x)’
1,d
at =D +ix= l—<a—x)
Note that on D' (R),
(6.2) H=aat—1=a"a+1,
and
(6.3) [H,a) = —2a, [H,a']=2a".

Suppose that u; € C*°(R) is an eigenfunction of H, that is,
(6.4) uj€ D(H), Huj = Aju;.
Now, by material developed in §2,
D(H'Y?) = {ue L>(R) : Du € L*(R), xu € L>(R)},
© D(H) = {u € L*(R) : D%u+ x2u € LA(R)}.

Since certainly each u; belongs to D(H /2), it follows that au; and a ¥ u; belong
to L2(R). By (6.3), we have

(6.6) H(auj) = (A; —2)au;, H(a%u) = (; +2)aty;
It follows that au; and a™ u; belong to D(H ) and are eigenfunctions. Hence, if

6.7) Eigen(A, H) = {u e D(H) : Hu = Au},
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we have, forall A € R,

6.8) a™ : Eigen(A, H) — Eigen(A + 2, H),

) a : Eigen(A + 2, H) — Eigen(A, H).
From (6.2) it follows that (Hu, u) > ”””2L2’ for all u € C§°(R); hence, in view
of essential self-adjointness,

(6.9) spec H C [1,00), forn =1.

Now each space Eigen(A, H) is a finite-dimensional subspace of C*°(R), and,
by (6.2), we conclude that, in (6.8), at is an isomorphism of Eigen(A;, H)
onto Eigen(4; + 2, H), for each A; € spec H. Also, a is an isomorphism of
Eigen(A;, H) onto Eigen(A; — 2, H), for all A; > 1. On the other hand, @ must
annihilate Eigen(A¢, H) when A is the smallest element of spec H, so

uo € Eigen(Lo, H) = ug(x) = —xup(x)

(10 = up(x) = K 22,

Thus

6.11) Ao =1, Eigen(l, H) = span(e™*"/?).

Since e=*"/2 spans the null space of a, acting on C *°(RR), and since each nonzero

space Eigen(A;, H) is mapped by some power of a to this null space, it follows
that, forn =1,

(6.12) spec H ={2k+1:k=0,1,2,...}
and
d k 2
(6.13) Eigen(2k + 1, H) = span (8_ —x) e¥/2).
X

One also writes

k
(6.14) (% - x) 12 = Hy (x) e¥12,

where Hy (x) are the Hermite polynomials, given by

Hi(x) = (_1)kex2 (%)ke_xz

(6.15) k/2]
—Z( —,(k 2),( 2x)F72
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We define eigenfunctions of H:

0 k
(6.16) () = ek (5= —x) e = e Hi(oe 2,

where ci is the unique positive number such that || || L2(g) = 1. To evaluate c,
note that

(6.17) la®hill72 = (@a*hy, hi) 2 = 2(k + 1) hg |72

Thus, if ||ig |2 = 1, in order for hxy; = yra™hy to have unit norm, we need
Yk = 2k +2)~'/2 Hence

(6.18) o = [x"/22k k)]

Of course, given the analysis above of H on L?(R), then for H = —A + |x|?
on L2(R™), we have

(6.19) spec H ={2k +n:k=0,1,2,...}.
In this case, an orthonormal basis of Eigen(2k + n, H) is given by
(6.20) ek Hig (1) -+ H, (en)e P20 ky ook =k,
where ky, € {0, ..., k}, the Hy (x,) are the Hermite polynomials, and the ¢, are
given by (6.18). The dimension of this eigenspace is the same as the dimension of
the space of homogeneous polynomials of degree k in n variables.

We now want to derive a formula for the semigroup e 7", t > 0, called the
Hermite semigroup. Again it suffices to treat the case n = 1. To some degree

paralleling the analysis of the eigenfunctions above, we can produce this formula
via some commutator identities, involving the operators

(6.21) X=D*=-9%, Y =x% Z=x0y+0xx=2x0y+ 1.
Note that H = X + Y. The commutator identities are

(6.22) [X,Y]|=-2Z, [X,Z]=4X, [Y,Z]=—4Y.

Thus, X, Y, and Z span a three-dimensional, real Lie algebra. This is isomor-

phic to sl(2,R), the Lie algebra consisting of 2 x 2 real matrices of trace zero,
spanned by

0 1 0 O 1 0
(6.23) n+=(0 0), n_=(1 0), az(o _1).
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‘We have

(6.24) ny.n_]=a, [n4y,a]l=-2ny, [n_,a]=2n_.

The isomorphism is implemented by

(6.25) X < 2ny, Y ©2n_., Z < 2.

Now we will be able to write

(626) e—t(2n++2n7) — e—201(t)n+ e—20’3(t)0[ e—202(t)n7’

129

as we will see shortly, and, once this is accomplished, we will be motivated to

suspect that also
(627) e—tH — e—o'l(t)X eU3(t)Z e—O’z(t)Y.

To achieve (6.26), write

250 0
628 —20'3(1 — e — y ,
e (00 2)=(

o202m— _ 1 0 _ 1 0

—202 1 Z 1)’

and
h 2¢ — sinh 2¢ u v
) —2t(ny+n-) — Ccos — )

(6.29) ¢ — sinh 2¢ cosh 2t v u

Then (6.26) holds if and only if

1 1

y:—:

6.30 _
( ) u cosh 2t

v

X =z = — = — tanh 21,
u

so the quantities o (¢) are given by

1
(6.31) 01(t) = 0x(t) = 3 tanh 2¢, €293® = cosh 21.
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Now we can compute the right side of (6.27). Note that

e Xut) = (o) 2 [0 o) dy,

(6.32) e 2 y(x) = e_ozxzu(x),
e?3Zu(x) = e u(e?*3x).

Upon composing these operators we find that, forn = 1,
(6.33) e M y(x) = /Kt (x, y)u(y) dy,
with

exp{[—%(cosh 2t)(x? + y?) + xy]/sinh 2t}

(27 sinh 2t)1/2

(6.34) Ki(x.y) =

This is known as Mehler’s formula for the Hermite semigroup. Clearly, for gen-
eral n, we have

(6.35) M) = [ Kaltx () dy,
with
(6.36) Ky(t,x,y) = Ki(x1,y1) - Ki (Xn, yn).

The idea behind passing from (6.26) to (6.27) is that the Lie algebra homo-
morphism defined by (6.25) should give rise to a Lie group homomorphism from
(perhaps a covering group G of) SL(2,R) into a group of operators. Since this
involves an infinite-dimensional representation of G (not necessarily by bounded
operators here, since e *# is bounded only for ¢ > 0), there are analytical prob-
lems that must be overcome to justify this reasoning. Rather than take the space
to develop such analysis here, we will instead just give a direct justification of
(6.33)—(6.34).

Indeed, let v(z, x) denote the right side of (6.33), with u € L?(R) given. The
rapid decrease of K;(x,y) as |x| + |y| — oo, for t > 0, makes it easy to show
that

(6.37) u€ L*(R) = v € C®((0,00), S(R)).

Also, it is routine to verify that

(6.38) = _Hv.
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Simple estimates yielding uniqueness then imply that, for each s > 0,
(6.39) v(t +5,-) = e Huy(s, ).

Indeed, if w(z, -) denotes the difference between the two sides of (6.39), then we
have w(0) = 0, w € C(RT, D(H)), dw/dr € C(R*, L?(R)), and

d
- lw@®)3> = —2(Hw,w) <0,

sow(t) =0, forall r > 0.
Finally, as t \( 0, we see from (6.31) that each o (¢) \, 0. Since v(t, x) is
also given by the right side of (6.27), we conclude that

(6.40) v(t,) = uin L2(R), ast \,O.
Thus we can let s \ 0 in (6.39), obtaining a complete proof that e ¥
by (6.33) whenn = 1.

It is useful to write down the formula for e™** using the Weyl calculus, in-
troduced in §14 of Chap.7. We recall that it associates to a(x, £) the operator

u is given

tH

a(X, Dyu = (2m)™" / a(q. p)e' @XTrPy(x) dg dp
(6.41)
= @mn™ / a3 )¢ O uy) dy e

In other words, the operator a(X, D) has integral kernel K, (x, y), for which

a(X. Dyux) = [ Kt yuty) dy

given by

Katxo) = @0 [ a(F526)e 0 ag
Recovery of a(x, &) from K,(x, y) is an exercise in Fourier analysis. When it is
applied to the formulas (6.33)—(6.36), this exercise involves computing a Gaussian
integral, and we obtain the formula
(6.42) e = h,(X, D)
on L2(R"), with

(6.43) he(x, &) = (cosht)™ o~ (tanh t)(lX|2+|E\2).



132 8. Spectral Theory

It is interesting that this formula, while equivalent to (6.33)—(6.36), has a simpler
and more symmetrical appearance.

In fact, the formula (6.43) was derived in §15 of Chap. 7, by a different method,
which we briefly recall here. For reasons of symmetry, involving the identity
(14.19), one can write

(6.44) he(x.6) = g(t,Q), 0Q(x.§) = |x]* + [E]%.

Note that (6.42) gives d; h(X, D) = —Hh,(X, D). Now the composition for-
mula for the Weyl calculus implies that %, (x, £) satisfies the following evolution
equation:

d

ght(x,é) =—(Qoh)(x,§)

00 e (x.6) — (0. i (x. )

(el + IV (e, 8) + S0+ 92, e, ).

k

(6.45)

Given (6.44), we have for g(¢, Q) the equation

2 ag

Q2 "0

It is easy to verify that (6.43) solves this evolution equation, with fg(x, &) = 1.
We can obtain a formula for

(6.46) a =—Q +Qa

(6.47) e719XD) — 2 (X, D),

for a general positive-definite quadratic form Q(x, £). First, in the case

(6.48) Q(x. &)=Y uj(x?+&). ;>0

j=1
it follows easily from (6.43) and multiplicativity, as in (6.36), that

n n
-1
6.49) h2(x.£) = l_[ (coshrpj) - expq— Z(tanh tuj)(x? + EJZ)
ji=1 j=1
Now any positive quadratic form Q(x,§) can be put in the form (6.48) via a
linear symplectic transformation, so to get the general formula we need only

rewrite (6.49) in a symplectically invariant fashion. This is accomplished using
the “Hamilton map” Fg, a skew-symmetric transformation on R?" defined by

(6.50) Q(u,v) = o(u, Fouv), u,v € R,
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where Q (u, v) is the bilinear form polarizing Q, and o is the symplectic form on
R?"; o(u,v) = x-& —x' - Eifu= (x,§), v = (x',&). When Q has the form

(6.48), Fop is a sum of 2 x 2 blocks ( 0 ’Lt)j), and we have
—Hj

n _ —-1/2
(6.51) H(cosh ) = (det cosh itFQ) .
j=1

Passing from Fgp to
(6.52) Ao = (-F3)"?,
the unique positive-definite square root, means passing to blocks
(Mj 0 )
0wy

and when Q has the form (6.48), then

(6.53) > (anh 1)) (xF +67) = 10 ((140)8. ).

Jj=1

where { = (x,£) and

tanh ¢
(6.54) 9(t) = a“t ,
Thus the general formula for (6.47) is
Q -1/2 B(tA
(6.55) h(x.£) = (cosh 1A Q) 10400

Exercises

1. Define an unbounded operator A on L?(R) by
D(A) = {u e L>(R) : Du e L>(R), xu € L>(R)}, Au= Du—ixu.
Show that A is closed and that the self-adjoint operator H satisfies
H=A"A+1=A44% -1

(Hint: Note Exercises 5-7 of §2.)
2. If Hy(x) are the Hermite polynomials, show that there is the generating function
identity
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1 2
Z FHk (x)sk — p2Xs—s
k=0
(Hint: Use the first identity in (6.15).)
3. Show that Mehler’s formula (6.34) is equivalent to the identity

0 .
Y hi(hj(y)s! =
Jj=0
21 —s2)71/2 exp{(l - sz)_l[nys —(x2+ yz)sz]} -e_(x2+y2)/2,

for 0 < s < 1. Deduce that

o0 Sj
> Hj(x)?-—

’ 2J j!
Jj=0

=(1 _Sz)—1/262sx2/(1+s), Is] < 1.

4. Using
o0
H™S = L/ etHH =1 g Res >0,
r'(s) Jo

find the integral kernel Ag(x, y) such that
Hu) = [ Astr () dy.

Writing Tr H ™S = f Ags(x,x)dx,Res > 1, n = 1, show that

_ 1 ooys—l
“S)—m/o .

See [Ing], pp. 4144, for a derivation of the functional equation for the Riemann zeta
function, using this formula.
5. Let Hy = —d?/dx? + »%x2. Show that e *Ho has integral kernel

K®(x.y) = (4m)—1/2 y(2wt)1/2 o~V 2w0)[(cosh 2wt)(x2+y2)—2xy]/4t’

where

6. Consider the operator

O(X,D) = —(% - ia)xz)z - (% + iwx1)2

ad ad
A 21,12 .
&l 2 ( 28x1 18x2)'

Note that Q(x, £) is nonnegative, but not definite. Study the integral kernel K,Q (x,y)
of e12(X:D) ‘Show that

K2 (x.0) = (4n1)™! y(2wr) eTT@ODIXP /41,
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where
7(z) = zcoth z.
7. Let (wjx) be an invertible, n x n, skew-symmetric matrix of real numbers (so 7 must

be even). Suppose
2

L:—Z E_izw‘jkxk
Jj=1 - k
Evaluate the integral kernel K,L (x, y), particularly at y = 0.

8. In terms of the operators a,a™ given by (6.1) and the basis of L2(R) given by (6.16)—
(6.18), show that

a+hk = \/2k +2hk+l? ahk = \/zk hk—l'

7. The quantum Coulomb problem
In this section we examine the operator
(7.1) Hu = —Au— K|x|tu,

acting on functions on R3. Here, K is a positive constant.

This provides a quantum mechanical description of the Coulomb force between
two charged particles. It is the first step toward a quantum mechanical description
of the hydrogen atom, and it provides a decent approximation to the observed
behavior of such an atom, though it leaves out a number of features. The most im-
portant omitted feature is the spin of the electron (and of the nucleus). Giving rise
to further small corrections are the nonzero size of the proton, and relativistic ef-
fects, which confront one with great subtleties since relativity forces one to treat
the electromagnetic field quantum mechanically. We refer to texts on quantum
physics, such as [Mes], [Ser], [BLP], and [IZ], for work on these more sophisti-
cated models of the hydrogen atom.

We want to define a self-adjoint operator via the Friedrichs method. Thus we
want to work with a Hilbert space

(7.2) H=1ue L*(R®:Vue L*(R?), / x| 7 u(x)|? dx < oo},
with inner product
(7.3) (u, V) = (Vu,Vo)r2 + A(u,v) 12 — K/ lx| " u(x)v(x) dx,

where A is a sufficiently large, positive constant. We must first show that A can be
picked to make this inner product positive-definite. In fact, we have the following:
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Lemma 7.1. Forall ¢ € (0, 1], there exists C(g) < oo such that
a4 [ W P dx < elVal?, + ol

forallu e H'(R3).

Proof. Here and below we will use the inclusion

2
(1.5) HS(R™) C LP(R"), V pe [2, " ) 0<s<2
n—2s 2

from (2.42) of Chap.4. In Chap. 13 we will establish the sharper result that
H*(R™) c L*/®=25)(R"); for example, H ' (R3) c L(R?). We will also cite
this stronger result in some arguments below, though that could be avoided.
We also use the fact that (if B = {|x| < 1} and yp(x) is its characteristic
function),
BV € LI(R?), forallg <3

Here and below we will use V(x) = |x|~!. Thus the left side of (7.4) is
bounded by
1.6) sV e - ulZag + 22 < Clullyo s, + lul32gs):

where we can take any ¢’ > 3/2; take ¢’ € (3/2,3). Then (7.6) holds for some
o < 1, for which L2'(R?) > H° (R?). From this, (7.4) follows immediately.

Thus the Hilbert space H in (7.2) is simply H!(R3), and we see that indeed,
for some A > 0, (7.3) defines an inner product equivalent to the standard one
on H'(R3). The Friedrichs method then defines a positive, self-adjoint operator
H + Al, for which

(1.7) D((H + AI)'/?) = H'(R).
Then
(7.8) D(H) ={ue H'(R?) : —Au— K|x|"'u € L2(R3)},

where —Au — K|x|™'u is a priori regarded as an element of H~1(R?) if u €
H(R3). Since H?(R3) C L*(R3), we have

(7.9) ue H*(R?*) = |x|"'u € L32(R?),
SO
(7.10) D(H) D H*(R?).

Indeed, we have:
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Proposition 7.2. For the self-adjoint extension H of —A— K |x|~! defined above,
(7.11) D(H) = H*(R?).

Proof. Pick A in the resolvent set of H; for instance, A € C \ R. If u € D(H)
and (H — M)u = f € L?>(R3), we have

(7.12) u— KR;Vu=R, f =g,

where V(x) = |x|7! and R} = (—A — 1)~!. Now the operator of multiplication
by V(x) = |x|~! has the property
(7.13) My : HY(R?) — L?7%(R?),
for all ¢ > 0, since H!(R3) ¢ LS(R3®) N L2(R3) and V € L3¢ on |x| < 1.
Hence

My : H'(R®) — H™(R3),
for all & > 0. Let us apply this to (7.12). We know that u € D(H) C D(H'/?) =

H'(R?),s0 KRy Vu € H*¢(R3). Thus u € H>"¢(R?), for all ¢ > 0. But, for
& > 0 small enough,

(7.14) My : H**(R%) — L*(R?),

sothen u = KRy (Vu) + Ry f € H?(R3). This proves that D(H) C H?*(R?)
and gives (7.11).

Since H is self-adjoint, its spectrum is a subset of the real axis, (—oo, 00). We
next show that there is only point spectrum in (—oo, 0)

Proposition 7.3. The part of spec H lying in C \ [0, 00) is a bounded, discrete
subset of (—00,0), consisting of eigenvalues of finite multiplicity and having at
most {0} as an accumulation point.

Proof. Consider the equation (H — A)u = f € L?(R3), that s,
(7.15) (A —Nu—KVu=f,

with V(x) = |x|! as before. Applying R; = (—A — 1)™! to both sides, we
again obtain (7.12):

(7.16) (I —KRyMy)u =g, = R, f.

Note that R, is a holomorphic function of A € C \ [0, 0c0), with values in
L(L*(R3), H2(R?)). A key result in the analysis of (7.16) is the following:

Lemma 7.4. For A € C \ [0, 00),
(7.17) RyMy € K(L*(R?)),

where K is the space of compact operators.
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We will establish this via the following basic tool. For A € C \ [0,00), ¢ €
Co(R3), the space of continuous functions vanishing at infinity, we have

(7.18) MyR; € K(L?) and RyM, € K(L?).

To see this, note that, for ¢ € Cg° (]R3), the first inclusion in (7.18) follows from
Rellich’s theorem. Then this inclusion holds for uniform limits of such ¢, hence
for ¢ € Co(R?). Taking adjoints yields the rest of (7.18).

Now, to establish (7.17), write

(7.19) V=V +V,

where Vi = ¢V, ¥ € CP(R?), ¥(x) = 1 for |x| < 1. Then V> € Co(R?), so
R)My, € K. We have V| € L1(R?), for all ¢ € [1, 3), so, taking ¢ = 2, we have

(7.20) My, : L*(R®) — LY (R?*) ¢ H73/275(R?),
for all ¢ > 0, hence
(7.21) R;My, : L2(R®) — HY?>*(R%) c L2(R®).

Given V; supported on a ball Bg, the operator norm in (7.21) is bounded by
a constant times ||V;] 2. You can approximate V; in L?-norm by a sequence
w; € C{(R3). It follows that Ry My, is a norm limit of a sequence of compact
operators on LZ(]R3), so it is also compact, and (7.17) is established.

The proof of Proposition 7.4 is finished by the following result, which can be
found as Proposition 7.4 in Chap. 9

Proposition 7.5. Let O be a connected, open set in C. Suppose C(A) is a
compact-operator-valued holomorphic function of A € O. If I — C(Q) is invert-
ible at one point p € O, then it is invertible except at most on a discrete set in O,
and (I — C(L))~Y is meromorphic on O.

This applies to our situation, with C(1) = KRy My; we know that I — C(1)
is invertible for all A € C \ R in this case.

One approach to analyzing the negative eigenvalues of H is to use polar co-
ordinates. If —K|x|™! is replaced by any radial potential V(|x|), the eigenvalue
equation Hu = — Eu becomes

%u 2 0u 1
(7.22) 2 Asu—V(r)u= Eu
or ror r2

We can use separation of variables, writing u(r8) = v(r)p(0), where ¢ is an
eigenfunction of A, the Laplace operator on S2,

1, 1
(7.23) Asp=—dp. A= (k+ 5)2 -1 = k% + k.
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Then we obtain for v(r) the ODE

A
(7.24) v (r) + %v’(r) + f(rv(@r) =0, f(r)=-E-— 2 V(r).

One can eliminate the term involving v’ by setting

(7.25) w(r) = rv(r).
Then
(7.26) w’(r) + f(Hw(r) = 0.

For the Coulomb problem, this becomes
K A

(7.27) W (r) + [—E +=- —z]w(r) —0.
r r

If we set W(r) = w(Br), B = 1/2/E, we get a form of Whittaker’s ODE:

1 2
7 M

1 x
1 _ - —
(7.28) W@+ [+ T+ e =0
with
K 1 1\2
) e M 1 2

This in turn can be converted to the confluent hypergeometric equation

(7.30) W' @)+ (b —2V¥' () —ay(z) =0

upon setting

(731) W(Z) — ZM-‘FI/Z e—Z/Z W(Z),
with
1 K
a=p—x+-=k+1-—=,
(7.32) 2 2VE

b=2u+1=2k+2.

Note that ¥ and v are related by

(7.33) v(r) = QVE)FT! ke 2VEr 4 0 Er).
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Looking at (7.28), we see that there are two independent solutions, one behav-
ing roughly like e~/2 and the other like ¢/, as z — +oc. Equivalently, (7.30)
has two linearly independent solutions, a “good” one growing more slowly than
exponentially and a “bad” one growing like e, as z — —+o00. Of course, for a
solution to give rise to an eigenfunction, we need v € L2(R*,r2dr), that is,
w € L*(R*,dr). We need to have simultaneously w(z) ~ ce™%/? (roughly) as
z — 400 and w square integrable near z = 0. In view of (7.8), we also need
v e L2(RT,r2dr).

To examine the behavior near z = 0, note that the Euler equation associated
with (7.28) is

(7.34) 2W"(2) + G — MZ)W(Z) =0,

with solutions z!/27# and z!/27#, i, X and 7%, k = 0,1,2,....Ifk = 0,
both are square integrable near 0, but for k > 1 only one is. Going to the confluent
hypergeometric equation (7.30), we see that two linearly independent solutions
behave respectively like z° and 772 = 772k~ as 7 — 0.

As a further comment on the case k = 0, note that a solution W behaving like
22 at z = 0 gives rise to v(r) ~ C/r asr — 0, with ¢ # 0, hence v/'(r) ~
—C/r2. This is not square integrable near r = 0, with respect to 72 dr, so also
this case does not produce an eigenfunction of H.

Ifb ¢ {0,—1,-2,...}, which certainly holds here, the solution to (7.30) that
is “good” near z = 0 is given by the confluent hypergeometric function

(@)n "

(7.35) 1Fi(a:b;z) = ;
n; (b)n n!

an entire function of z. Here, (a), = a(a + 1)---(a + n —1); (a)o = 1. If also
a ¢ {0,—1,-2,...}, it can be shown that

r (b) s Z—(b—a)

(7.36) 1Fi(a;b;z2) ~ @)

, Z—> to0.

See the exercises below for a proof of this. Thus the “good” solution near z = 0 is
“bad” as z — 400, unless a is a nonpositive integer, say a = —j. In that case, as
is clear from (7.35), 1 F1(—J; b; z) is a polynomial in z, thus “good” as z — +o0.
Thus the negative eigenvalues of H are given by —FE, with

(7.37) K i+ k+1
. — = =n,
2VE !
that is, by
KZ
(7.38) F=— n=1273....

4n2’
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Note that, for each value of n, one can write n = j + k 4 1 using n choices
of k € {0,1,2,...,n — 1}. For each such k, the (k? + k)-eigenspace of Ag has
dimension 2k + 1, as established in Corollary 4.3. Thus the eigenvalue —F =
—K?/4n? of H has multiplicity

n—1
(7.39) > @k + 1) =n?
k=0

Let us denote by V;, the n2-dimensional eigenspace of H , associated to the eigen-
value A, = —K?2/4n>.
The rotation group SO(3) acts on each V;,, via

p(g) f(x) = f(g7'x). g€SOB). x R’

By the analysis leading to (7.39), this action on V}, is not irreducible, but rather
has n irreducible components. This suggests that there is an extra symmetry, and
indeed, as W. Pauli discovered early in the history of quantum mechanics, there is
one, arising via the Lenz vector (briefly introduced in §16 of Chap. 1), which we
proceed to define.

The angular momentum vector L = x x p, with p replaced by the vector oper-
ator (d/dxy, 0/dxz, d/dx3), commutes with H as a consequence of the rotational
invariance of H. The components of L are

0 0

Xi—— — Xy ——
Jaxk

(7.40) L= kT
8x,-

where (j, k, £) is a cyclic permutation of (1, 2, 3). Then the Lenz vector is defined
by

(7.41) B:%(pr—pr)—’r—(,

with components Bj, 1 < j < 3, each of which is a second-order differential
operator, given explicitly by

1 X
(7.42) B; = E(Lkag + gLy — L¢dg — 0 Lyg) — 7’

where (J, k, £) is a cyclic permutation of (1,2, 3). A calculation gives
(7.43) [H,B;] =0,

in the sense that these operators commute on C ®(R3 \ 0).

It follows that if u € V;,, then B;u is annihilated by H — A,, on R3\ 0. Now,
we have just gone through an argument designed to glean from all functions that
are so annihilated, those that are actually eigenfunctions of H. In view of that, it
is important to establish the next lemma
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Lemma 7.6. We have
(7.44) Bj:Vy — V.

Proof. Let u € V,,. We know that u € D(H) = H?(R3). Also, from the anal-
ysis of the ODE (7.28), we know that u(x) decays as |x| — oo, roughly like

e 1nl"21x] 1t follows from (7.42) that Bju € L2(R3). It will be useful to obtain
a bit more regularity, using V,, C D(H?) together with the following.

Proposition 7.7. If u € D(H?), then, for all ¢ > 0,

(7.45) ue H>* 5 (R3).
Furthermore,
(7.46) g € S(R?), g(0) =0 = gue H"/**R>).

Proof. We proceed along the lines of the proof of Proposition 7.2, using
(7.12), i.e.,

(7.47) u=KR)Vu+ R, f,
where f = (H — A)u, with A chosen in C \ R. We know that f = (H — A)u

belongs to D(H), so Ry f € H*(R?®). We know that u € H?(R3). Parallel to
(7.13), we can show that, for all ¢ > 0,

(7.48) My : H*(R?) — HY?75(R?),

so KRy Vu € H5/?7¢(R3). This gives (7.45).
Now, multiply (7.47) by g and write

(7.49) gu=KRygVu+ K[Mg,R)]Vu+ gR, f.
This time we have
Mgy : H*(R?) — H>7¢(R?),
so RygVu e H7/27¢(R?). Furthermore,
(7.50) [Mg,R;] = Ry [A, Mg] Ry : HS(R®) — HST3(R?),

so [Mg, Ry]Vu e H7/27¢(R3). This establishes (7.46).
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We can now finish the proof of Lemma 7.6. Note that the second-order deriva-

tives in B; have a coefficient vanishing at 0. Keep in mind the known exponential
decay of u € Vy. Also note that My /, : H2(R3) — H?3/27¢(R3). Therefore,

(7.51) ueV, = Bjue H¥?*(R3).
Consequently,
(7.52) A(Bju) € H™Y275(R3), and V(B,u) € L'(R?) 4+ L?(R?).
Thus (H —A,)(B;u), which we know vanishes on R\ 0, must vanish completely,
since (7.52) does not allow for a nonzero quantity supported on {0}. Using (7.8),
we conclude that B;u € D(H ), and the lemma is proved.

With Lemma 7.6 established, we can proceed to study the action of B; and L ;
on V,,. When (J, k, £) is a cyclic permutation of (1, 2, 3), we have
(7.53) [Lj. Lkl = Ly,

and, after a computation,
4
(7.54) [Lj,Bx]l = By, [Bj,Bx]= —?HLE-

Of course, (7.52) is the statement that L ; span the Lie algebra so(3) of SO(3).
The identities (7.54), when L ; and B; act on V, can be rewritten as

K

(7.55) [Lj, Akl = Ag, [Aj, Akl = Ay, A = ST B
—/n

If we set

1 1

(7.56) M= §(L+A), N= E(L_A)’

we get, for cyclic permutations (7, k, £) of (1,2, 3),

(7.57) (M;, My] =My, [N;,N¢]= Ny, [Mj,Njy]=0,

which is clearly the set of commutation relations for the Lie algebra so(3) @so(3).
We next aim to show that this produces an irreducible representation of SO(4) on
Vi, and to identify this representation. A priori, of course, one certainly has a
representation of SU(2) x SU(2) on V.

We now examine the behavior on V;, of the Casimir operators M? = M2 +
M3 + M} and N2. A calculation using the definitions gives B - L = 0, hence
A-L =0,s0,0nV,,
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(7.58)

1 K?
=-(L*>- —B?
4 ( 4A, )
We also have the following key identity:
(7.59) K*(B>—1)=4H(L*> + 1),

which follows from the definitions by a straightforward computation. If we com-
pare (7.58) and (7.59) on V,,, where H = A,,, we get

2

K
(7.60) 4M? = 4N? = _(1 +

4)tn)1 on V.

Now the representation o, we get of SU(2) x SU(2) on V,, is a direct sum
(possibly with only one summand) of representations D j;» ® D j/», where D j/»
is the standard irreducible representation of SU(2) on C/T!, defined in §9 of
Appendix B. The computation (7.60) implies that all the copies in this sum are
isomorphic, that is, for some j = j(n),

w
(7.61) On = @ Djwmyj2 ® D jm/2-
=1

A dimension count gives /L(j(l’l) + 1)2 = n?. Note that on D, ® D /2, we have
M? = N? = (j/2)(j/2 + 1). Thus (7.60) implies j(j +2) = —1 + K?/4A,, or

K? ..
(7.62) Ap = TESIE J=Jjn).

Comparing (7.38), we have (j + 1)? = n?, that is,
(7.63) ) =n—1.

Since we know that dim Vj, = n?, this implies that there is just one summand in
(7.61), so

(7.64) on = Du—1)/2 ® Dn-1)/2-

This is an irreducible representation of SU(2) x SU(2), which is a double cover
of SO(4),
k : SU(2) x SU(2) — SO(4).

It is clear that o, is the identity operator on both elements in ker «, and so o,
actually produces an irreducible representation of SO(4).
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Let py, denote the restriction to V;, of the representation p of SO(3) on L3(R3),
described above. If we regard this as a representation of SU(2), it is clear that p,
is the composition of o, with the diagonal map SU(2) — SU(2) x SU(2). Results
established in §9 of Appendix B imply that such a tensor-product representation
of SU(2) has the decomposition into irreducible representations:

n—1

(7.65) on A @ Dk.

This is also precisely the description of p, given by the analysis leading to (7.39).

There are a number of other group-theoretic perspectives on the quantum
Coulomb problem, which can be found in [Eng] and [GS2]. See also [Ad] and
[Cor], Vol. 2.

Exercises

1. For H = —A — K|x|~! with domain given by (7.8), show that
(7.66) D(H) = {ue L>(R®) : —Au— K|x|"'u e L2(R3)},

where a priori, if u € L2(R3), then Au € H?(R3) and |x|™'u € LIR3) +
L%2(R3) c H2(R3).
(Hint: Parallel the proof of Proposition 7.2. If u belongs to the right side of (7.66), and
if you pick A € C \ R, then, as in (7.12),

(7.67) u—KR;Vu= R, f e H*(R?))
Complement (7.13) with

My : L2R3) — (| H3/27*(®3),
&>0
My o () HY?#(®R3) — () H/4(R3).
>0 >0

(7.68)

(Indeed, sharper results can be obtained.) Then deduce from (7.67) first that u €
H/2-¢(R3) and then that u € H¥/48(R3) c H1(R3).)
2. As a variant of (7.4), show that, for u € H!(R3),

(7.69) / x| 72 |u(x)|? dx < 4/ |Vu(x)|? dx.

Show that 4 is the best possible constant on the right. (Hint: Use the Mellin transform
to show that the spectrum of r d/dr — 1/2 on L2(R*, r~1dr) (which coincides with
the spectrum of r d/dr on L2(Rt, dr))is {is —1/2 : s € R}, hence

(7.70) / ") Pr < 4 / TR ar
0 0

This is sometimes called an “uncertainty principle” estimate. Why might that be?
(Cf. [RS], Vol. 2, p. 169.)
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3. Show that H = —A — K/|x| has no non-negative eigenvalues, i.e., only continuous
spectrum in [0, co). (Hint: Study the behavior as r — 400 of solutions to the ODE
(7.28), when —FE is replaced by +E € [0, 0o). Consult [Olv] for techniques. See also
[RS], Vol. 4, for general results.)

4. Generalize the propositions of this section, with modifications as needed, to other
classes of potentials V(x), such as

Vel?+el™®,

the set of functions V' such that, for each ¢ > 0, one can write V = V| + V5, V] €
L2, |VallLeo < €. Consult [RS], Vols. 24, for further generalizations.

Exercises on the confluent hypergeometric function
1. Taking (7.35) as the definition of 1 F (a; b; z), show that

F(b) ! zt .a—1 b—a—1
—l"(a)l"(b—a)/o et (1-1) dt,

(7.71) Reb > Rea > 0.

1Fi(a;b;z) =

(Hint: Use the beta function identity, (A.23)—(A.24) of Chap.3.) Show that (7.71)
implies the asymptotic behavior (7.36), provided Re b > Rea > 0, but that this is
insufficient for making the deduction (7.37).

Exercises 2-5 deal with the analytic continuation of (7.71) in @ and b, and a com-
plete justification of (7.36). To begin, write

L®) Ayl(a,—z) + lb)A(g(b —a,z)e’,

(1.72) 1Fi(aibig) = ¢ T(a)

(b—a)

where, for Re ¢ > 0, ¥ € C*([0, 1/2]), we set

1 1/2
(1.73) Ay(e.2) = %/0 e~y dr,

and, in (7.72),
y()=(1-0b"71 @) =1 -1,

2. Given Re ¢ > 0, show that

(7.74) Ay(c.2) ~¥(0)z ¢, z— 4oo,
and
1
(7.75) Ay(c,—2) ~ %z_lez/z, 7z — +o0.

3. Forj =0,1,2,...,set

1 1/2 ‘i 1
(7.76) Ai(e,t) = —/ e el dt,
i I'(c) Jo
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s0 Aj(c,z) = Ay (c,z), with yr(¢) = t/. Show that

(c+ j)z—c—j 1 *© ot yeti—1 g
L(c) () Ji/2

for Re z > 0. Deduce that A4 (c, t) is an entire function of ¢, for Re z > 0, and that

Aj(c,2) =

Clc+Jj) ——j
AJ(C,Z)’V WZ =) 7 o0,
ifc ¢ {0,—1,-2,...}.
4. Givenk = 1,2,3, ..., write
_ 1
V() =ao+art + - +ap_ K+ k. yy e Coo([o’ 5])
Thus
k-1 L
(777) Aw(C,Z) = Z ajAj(C,Z) + m/ e—ztwk(z)tk-l-c—l dt.
L C 0
Jj=0

Deduce that Ay (c, z) can be analytically continued to Re ¢ > —k when Re z > 0 and
that (7.74) continues to hold if ¢ ¢ {0,—1,—-2,...}, ag # 0.
5. Using t¢~! = ¢~1(d/d1t)t¢ and integrating by parts, show that

(7.78) Ao(c,z) = zAo(c +1,2) — /2

1
2T +1)°
for Re ¢ > 0, all z € C. Show that this provides an entire analytic continuation of
Ao(c, z) and that (7.74)—(7.75) hold, for ¥ (¢) = 1. Using

I'(c+J)

Aj(C,Z) = TC)

Ao(c + J.2)
and (7.77), verify (7.75) for all ¥ € C°([0, 1/2]). (Also again verify (7.74)). Hence,
verify the asymptotic expansion (7.36).

The approach given above to (7.36) is one the author learned from conversations
with A. N. Varchenko. In Exercises 6—15 below, we introduce another solution to the
confluent hypergeometric equation and follow a path to the expansion (7.36) similar
to one described in [Leb] and in [Olv].

6. Show that a solution to the ODE (7.30) is also given by

2P R+ a—b2-bi2),
in addition to 1 F1(a; b; z), defined by (7.35). Assume b # 0, —1,—2,.... Set

oy Lad=b) .
V(a;b;z) = T +a—b) 1F1(a;b;2)
re-1
(7.79) +% b 1Fi(l+a—5b;2-b;72).

Show that the Wronskian is given by

lb) ~b,z,

W (1Fi(a;b;2), ¥(a:b;z)) = _F(a)z
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7. Show that
(7.80) 1Fi(a;b;z) =e* 1F1(b—a;b;—z), b ¢{0,—1,-2,...}

(Hint: Use the integral in Exercise 1, and set s = 1—¢, for the case Re b > Re a > 0.)
8. Show that

1 o0
(7.81) W(a:b;z) = m/ e ¥ V(1 + )P 1 gt, Rea >0, Rez> 0.
a 0

(Hint: First show that the right side solves (7.30). Then check the behavior as z — 0.)
9. Show that

(7.82) W(a;b;z) =z @+ 1;b+ L)+ (1 —a—b)¥(a+ 1;b;z2).
(Hint: To get this when Re a > 0, use the integral expression (7.81) for W(a + 1;b +

1;z), write ze~% = —(d/dt)e™?, and integrate by parts.)
10. Show that

L)  +rai
Fi(a;b;z) = —————e>" " W(a; b;
1F1(a;b;2) l"(b—a)e (a;b;z)
(7.83) +LO) i Wb —a;b;—z).

T'(a)

where —z = eT7iz b #0,—1,-2,.... (Hint: Make use of (7.80) as well as (7.79).)
11. Using the integral representation (7.81), show that under the hypotheses § > 0, b ¢
{0,—1,-2,...},and Re a > 0, we have

(7.84) W(a;biz) ~2%, |z = oo,
in the sector

(7.85) |Arg 2| < % 3

12. Extend (7.84) to the sector |Arg z| < 7 —§. (Hint: Replace (7.81) by an integral along
the ray y = {e!%s : 0 < 5 < oo}, given |a| < 7/2.)

13. Further extend (7.84) to the case where no restriction is placed on Re a.
(Hint: Use (7.82).)

14. Extend (7.84) still further, to be valid for

3n
(7.86) |Arg z| < - = 8.
(Hint: See Theorem 2.2 on p. 235 of [Olv], and its application to this problem on

p- 256 of [Olv].)
15. Use (7.83)—(7.86) to prove (7.36), that is,

(7.87) 1F1(a;b;2) ~ 0] R T N ST

T'(b
I'(a)

provided a, b ¢ {0,—1,-2,...}.
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Remarks: For the analysis of V(b — a; b; —z) as 7 — 400, the result of Exercise
14 suffices, but the result of Exercise 13 does not. This point appears to have been
neglected in the discussion of (7.87) on p. 271 of [Leb].

8. The Laplace operator on cones

Generally, if N is any compact Riemannian manifold of dimension m, possibly
with boundary, the cone over N, C(N), is the space Rt x N together with the
Riemannian metric

(8.1) dr? + r2g,

where g is the metric tensor on N. In particular, a cone with vertex at the origin
in R™*! can be described as the cone over a subdomain  of the unit sphere
S™ in R™*1, Our purpose is to understand the behavior of the Laplace operator
A, a negative, self-adjoint operator, on C(N). If dN # @, we impose Dirichlet
boundary conditions on dC (N ), though many other boundary conditions could be
equally easily treated. The analysis here follows [CT].

The initial step is to use the method of separation of variables, writing A on
C(N) in the form

7?2 ma 1

(8.2) or? rar—i_r2 N

where Ay is the Laplace operator on the base N. Let 1, ¢;(x) denote the
eigenvalues and eigenfunctions of —A y (with Dirichlet boundary condition on
dN if ON # @), and set

—1
(8.3) v =, +a?)? o= —mT.

If
grx) =) g;(Ng;(x),
J

with g; (r) well behaved, and if we define the second-order operator L, by

02 0
(8.4) L,g(r)= (m"‘%g—%)g(’”),

then we have

8.5) Ag(r.x) =) Ly, g;(r)g;(x).
J

In particular,

(8.6) Agjp;) = —A2g;p;
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provided
(8.7) gi(r)=r=m D2 (r).

Here J, (z) is the Bessel function, introduced in §6 of Chap. 3; there in (6.6) it is
defined to be

2 v 1 .

(88) Jv (Z) — 1(Z/ ) : / (1 _ ZZ)U_I/Zeth dl,
rHre+3) Ja
forRe v > —1/2;1in (6.11) we establish Bessel’s equation
d? 1d p2
8.9 —_—+ —— 1-— J; =0,
89 |:dz2 NPT ( Zz):| v@
which justifies (8.6); and in (6.19) we produced the formula
( 1)k 2k

8.10 J = .
(8.10) v(2) () Zkll"(k+v+1)<)

We also recall, from (6.56) of Chap. 3, the asymptotic behavior

2 \1/2 bRV 4 ~3/2
(8.11) Jy(r) ~ (;) cos(r -5 - Z) + O(r ), r — 4oo.

This suggests making use of the Hankel transform, defined for v € R™ by
[e )
(8.12) H,(g)(A) = / g(r)Jy(Ar)r dr.
0

Clearly, H, : C§° ((0 oo)) — L% (R™). We will establish the following:
Proposition 8.1. Forv > 0, H, extends uniquely from Cé’o((O, oo)) to
(8.13) H, : L>(RY,rdr) — L?>(R*, A dA), unitary.
Furthermore, for each g € L*>(R™,r dr),

(8.14) H,oH,g =g

To prove this, it is convenient to consider first

Jy(Ar) F2vHl
(Ar)Y

since, by (8.10), (Ar)™" Jy,(Ar) is a smooth function of Ar. Set

(8.15) Hof(h) = / Fry 2D vt g,

(8.16) SRY) = {f|g+ : f € S(R) is even}.
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Lemma 8.2. Ifv > —1/2, then

(8.17) H,:SRT) — SRT).

Proof. By (8.10), Jy,(Ar)/(Ar)” is a smooth function of Ar. The formula (8.8)
yields

Jy(Ar)

(8.18) Gy

<C, < o0,

for Ar € [0,00), v > —1/2, aresult that, by the identity
2\1/2

(8.19) J_15() = (—) cosz,
Tz

established in (6.35) of Chap. 3, also holds for v = —1/2. This readily yields
(8.20) H,:SRT) — L®[R"),

whenever v > —1/2. Now consider the differential operator ZU, given by

~ i D If
__—2v=1 9 (2419

Pf  2v+10df

ar2 rooor

(8.21)

Using Bessel’s equation (8.9), we have

»va ( J,,()Lr)) _ 2 Jy(Ar)

(8.22) Gy Gy

and, for f € S(RT),

Hy(L, f)(X) = A2 H, f (1),

(8.23) ~ ~ ~
Hy(r? fYR) = LvHy fQ).

Since f € L*®(R™) belongs to S(R™) if and only if arbitrary iterated applica-
tions of L, and multiplication by r2 to f yield elements of L (R™), the result
(8.17) follows. We also have that this map is continuous with respect to the natural
Frechet space structure on S(R™).

Lemma 8.3. Consider the elements E, € S(R™T), given for b > 0 by

2

(8.24) Ep(r) = e b7,



152 8. Spectral Theory
We have

(8.25) HyE1(0) = E1pa(h),
and more generally

(8.26) HyEp() = 2b) """ Evjap(A).

Proof. To establish (8.25), plug the power series (8.10) for J,(z) into (8.15) and
integrate term by term, to get

(—l)k 2—v—2k

s o
8.27 HyE () = ,\Zk/ 2k+20+1,-1%/2 4,
(8.27) 1/2(4) ;k!r‘(k+v+1) ; r e r

This last integral is seen to equal 2T T'(k + v + 1), so we have

)LZ

k 12
2) =12 = E ().

~ — 1
(8.28) HyE )2(A) = Z F(
k=0

Having (8.25), we get (8.26) by an easy change of variable argument.
In more detail, set 72/2 = bs?, or s = r/~/2b. Then set u = +/2bA, so
Ar = pus. Then (8.28), which we can write as

[e.e]
(8.29) / e_rz/sz()u’)r”'H dr = A”e‘kz/z’
0

translates to

o0
(8.30) / e 257 1, (us)(2b) D2 L 2p) 2 g5 = (2b) VY e 14D

0
or, changing notation back,

oo 2 5
(8.31) f eI T, (As)sV T ds = (2b) TV IAYe A4,
0

which gives (8.26).
From (8.26) we have, for each b > 0,
(8.32) H,H,Ey, = (2b)"""'H,E1/3p = Ep.

which verifies our stated Hankel inversion formula for f = Ejp, b > 0. To get the
inversion formula for general f € S(R™), it suffices to establish the following.
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Lemma 8.4. The space
(8.33) V = Span{E, : b > 0}

is dense in S(R™T).

Proof. Let V denote the closure of V in S(R*). From

(8.34) l(e_b'2 — e_(b“)rz) — 2ot
&

we deduce that r2e~? r? eV, and inductively, we get
(8.35) r2let? eV Vet
From here, one has

(8.36) (cosér)e™ eV, VEeR.

Now each even w € S’(R) annihilating (8.36) for all £ € R has the property that
¢~ has Fourier transform zero, which implies w = 0. The assertion (8.33)
then follows by the Hahn-Banach theorem.

Putting the results of Lemmas 8.2-8.4 together, we have
Proposition 8.5. Given v > —1/2, we have
(8.37) HH,f =,
forall f € S(RT).
We promote this to
Proposition 8.6. Ifv > —1/2, we have a unique extension ofﬁv from S(RT) to
(8.38) H,: L*RY, r2 Tl dr) — L2R*, 2211 40,
as a unitary operator, and (8.37) holds for all f € L2(R*,r?"*t1dr).

Proof. Take f,g € S(R™), and use the inner product

(8.39) (f.g) = /0 g dr,

Using Fubini’s theorem and the fact that J,, (Ar)/(Ar)" is real valued and sym-
metric in (4, r), we get the first identity in

(8.40) (H,f Hy,g) = (H,H, f.g) = (f.2),
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the second identity following by Proposition 8.5. From here, given that the linear
space S(RT) C L2(R™, r2"*1 dr) is dense, the assertions of Proposition 8.6 are
apparent.

We return to the Hankel transform (8.12). Note that
(8.41) Hy(r [)(A) = A"H, f(3),
and that M,, f(r) = r” f(r) has the property that
(8.42) M, : L>(R™, r?*1 dr) — L?>(R™", rdr) is unitary.

Thus Proposition 8.6 yields Proposition 8.1.

Another proof is sketched in the exercises. An elaboration of Hankel’s original
proof is given on pp. 456464 of [Wat].

In view of (8.23) and (8.41), we have

Hv(r_"‘LMg):/ Lo, (Ar)g r™ dr
0

(8.43) = —12/ gr®Jy(Ar)r™ dr
0

=—A2H,(r %g).

Now from (8.5)—(8.13), it follows that the map H given by
(8.44) Hg = (Huy(rg0). Hy (1), )

provides an isometry of L2(C(N)) onto L2(R™, A d A, £?), such that A is carried
into multiplication by —A2. Thus (8.44) provides a spectral representation of A.
Consequently, for well-behaved functions f, we have

S (=D)g(r.x)

B45)  _ ey T 10 0ma [ s (g (s) ds dX ) ().
-, /

Now we can interpret (8.45) in the following fashion. Define the operator v on
N by

(8.46) v = (—Ay +a?)"%

Thus vp; = v;¢;. Identifying operators with their distributional kernels, we can
describe the kernel of f(—A) as a function on RT xR taking values in operators
on N, by the formula
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F-B) = (rira)* f FO2) Ty ) J(hr)h dA
0
= K(r1,r2,v),

(8.47)

since the volume element on C(N) is ¥ dr dS(x) if the m-dimensional area
element of N is dS(x).

At this point it is convenient to have in hand some calculations of Hankel
transforms, including some examples of the form (8.47). We establish some
here; many more can be found in [Wat]. Generalizing (8.31), we can compute
Jetr ? J,(Ar)r**1 dr in a similar fashion, replacing the integral in (8.27) by

o0

(8.48) / PRIVt gy = b Thowfamviae 1r( + 5 +k+1)
0 2

We get

e br? Jy(Ar)rttl gr
(8.49)

rg+s+k+1 k
__ qvA—v—1lgp—u/2—v/2—1
=472 b Z kK'T(k+v+1) ( 4b) ’

We can express the infinite series in terms of the confluent hypergeometric func-
tion, introduced in §7. A formula equivalent to (7.35) is

T'(b) i [(a+ k)

(8.50) 1Fi(a;b;2) = rw & TO+h) &

since (@) =a(a+1)---(a+k—1) =T(a+k)/ T (a). We obtain, forRe b > 0,
Re(u +v) > =2,
(8.51)

o 2
/ e br Jy(Ar)yr*tl dr
0
rg+s+1 A2
— sz—v—lb—u/z—v/z 1 2 F 1 1
RS 1<2+2+ V=)

—br2 —br

We can apply a similar attack when e is replaced by ™", obtaining

(o]

e_er,,()Lr)r“_1 dr
C(w+v+2k), A2 \k
( ) a UZ:k'r(v+k+1)( W) ’

at least provided Re b > |A|, v > 0, and i + v > 0; here we use

(8.52)
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o0
(8.53) / e brp2ktutv=l gy — p=2k=HV (1 v 4 2K).
0

The duplication formula for the gamma function (see (A.22) of Chap. 3) implies

— o —1/252k+ptv—1p (L Y Hov l
(8.54) Tk +p+v) =722 F(2+2+k)r(2+2+k+2),

so the right side of (8.52) can be rewritten as

ST+ L +0TG+5+5+k) A%k
855 —I/ZA’V2[L—1b—;,L—v 2 2 2 2 2 . .
(8.55) = k; KIT(v + 1+ k) bZ)

This infinite series can be expressed in terms of the hypergeometric function,
defined by

— (a)i(a2)i 2
2F1(ay,az:b;z) = kZ: %F
(8.56) =0 N
) [(ay + k)T (a2 + k) 2+
"~ T(a1)T(a2) = L+ k) K’

foray,a, ¢ {0,—1,-2,...}, |z| < 1.If we put the sum in (8.55) into this form,
and use the duplication formula, to write

= KoY KoY l _ - 1/2h—p—v+1
()T (az) = r(2 n 2)F<2 +3+ 2) ) T(+v),

we obtain

/ e P LAy dr
8.57) “°

A)vb_u_v Pty (u

2 T(v+1)

LT B
y = = =V ; .
2 )

2 b2
This identity, established so far for [A| < Re b (and v > 0, u+ v > 0), continues
analytically to A in a complex neighborhood of (0, o).

To evaluate the integral (8.47) with f(A2%) = e‘“z, we can use the power
series (8.10) for J,,(Arq) and for J, (Ary) and integrate the resulting double series
term by term using (8.48). We get

(8.58)

f e (1 A) Ty (P X)X d A
0
2. 2

Ly Frwv+j+k+1) 1 FENT o raNK
- Z(T) Xj_;or(wj+1)r(u+k+1)j!k!(_ﬂ) (_4_21) ’
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for any #,r;, 7, > 0, v > 0. This can be written in terms of the modified Bessel
function 7, (z), given by

v X k
®59) 0= ()X arorrrn ()

One obtains the following, known as the Weber identity.

Proposition 8.7. Fort,ry,r; > 0,

o 1 2.0 rir
(8.60) /0 I (T2 dh = o e T (22,

Proof. The left side of (8.60) is given by (8.58). Meanwhile, by (8.59), the right
side of (8.60) is equal to (1/2¢)(r1r2/4t)” times

1 P2\t r2m & 1 rirp\2n
8.61 —(=L) (-2 _(—) .
(8.61) Z @!m!( 4t) ( 4t) Zn!F(v+n+1)(4t )
£,m=>0 n=0
If wesety; = —r]z /4t, we see that the asserted identity (8.60) is equivalent to
the identity
Z FTw+j+k+1) 1 ok
Y~ Tw+j+DIw+k+1) k7172
Jk=0
(8.62) | |
— Z y{f+ny;n+n
m! n!
i Lm'nT(v+n+1)

We compare coefficients of y{ y’z‘ in (8.62). Since both sides of (8.62) are sym-
metric in (y1, y2), it suffices to treat the case

(8.63) J <k,

which we assume henceforth. Then we take £ +n = j, m +n = k and sum over
n € {0,...,j}, tosee that (8.62) is equivalent to the validity of

(8.64)

Z’: 1 B Tw+j+k+1) 1
= (j =m)!(k —n)nIT(v +n + 1) S Tw+j+DPw+k+1) 1k

whenever 0 < j < k. Using the identity

rv+j+H)=@w+j)--(v+n+H'v+n+1)
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and its analogues for the other I'-factors in (8.64), we see that (8.64) is equivalent
to the validity of

/ i1k
(8.65) Z_%(j _n)j!(k_n)!n!(v—i-j)---(v—i-n—i-l) = (Wt j4k) - (kA1)

for 0 < j < k. Note that the right side of (8.65) is a polynomial of degree j in v,

and the general term on the left side of (8.65) is a polynomial of degree j —n in v.
In order to establish (8.65), it is convenient to set

(8.66) w=v+j

and consider the associated polynomial identity in . With

po(w) =1, pi(w)=p, p2(pn)=pp-1),...

8.67
(8.7 pi() =pu(p—=1)---(u—j+1),

we see that {po. p1,..., p;} is a basis of the space P; of polynomials of degree
j in wu, and our task is to write

(8.68) pilu+k)=@p+)p+k=1)-(n+k—j+1)
as a linear combination of py, ..., p;. To this end, define

(8.69) T:P;j—Pj, Tp(p)=pp+1).

By explicit calculation,

pi(p+1) = pr(n) + po(u),

(8.70)
palp+ 1) =(u+Du=pp—1+2u=pa(p) +2p1(n),

and an inductive argument gives

(8.71) Tp; = pi +ipi-1.

By convention we set p; = 0 fori < 0. Our goal is to compute 7% p ;. Note that
(8.72) T=1+N, Np;=ipi,

and

s
(8.73) Th=>3" ( )N”,
n=0 n



8. The Laplace operator on cones 159

if j < k.By (8.72),

(8.74) N'pi=i(i—1)---(i —n+ 1)pi_p,
so we have
! (k
T*pi=3" (n)j(j — D (f =+ 1Dpjn
(8.75) =0

/ k! j!
= Z (k —n)n! ( _n)lpj_"'
o In! (j !
This verifies (8.65) and completes the proof of (8.60).

Similarly we can evaluate (8.47) with f(A12) = e~**/A, as an infinite series,
using (8.53) to integrate each term of the double series. We get

(8.76)

/ eI, (A Jy (ra)) d A
0

_Lyriryy FrQv+2j+2k+1) 1 r2NJ /s rZ.\k
- ?(7) j;ol"(v—i-j + DI +k + 1)/!k!(‘ﬁ) <__2) ’

provided¢ > r; > 0.Itis possible to express this integral in terms of the Legendre
function Q,_1/2(2).

Proposition 8.8. One has, forall y,ri,r» >0, v >0,
(8.77)

% - 1 - ri+r+y?
/ e yk]v("lk)]v("z)ﬁ)dlz;(rlrz) I/ZQV—I/Z(I 2 y )
0

27‘11‘2

The Legendre functions P,_1/2(z) and O, _1/2(z) are solutions to

(8.78) diz[(l - zz)dizu(z)] + <v2 — i)u(z) - 0;

Compare with (4.52). Extending (4.41), we can set

0

2 _
(8.79) P,_1/2(cosf) = — / (2 coss — 2 cos 9) 172 cosvs ds,
T Jo

and Q,_1/2(z) can be defined by the integral formula

o0

(8.80) Qv—1/2(cosh n) = / (2 cosh s — 2 cosh ;7)_1/2 eV ds.
n

The identity (8.77) is known as the Lipschitz-Hankel integral formula.
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Proof of Proposition 8.8. We derive (8.77) from the Weber identity (8.60).
Recall

(8.81) L(y) = e ™2 I(iy). y>0.
To work with (8.60), we use the subordination identity

(8.82) e = % /°° oyt 13212 .
T Jo

cf. Chap. 3, (5.31) for a proof. Plugging this into the left side of (8.77), and using
(8.60), we see that the left side of (8.77) is equal to

1 % Pr2ey? rirzy _
8.83 — (ri+ra+y)/ae p (C172Y,=3/2 40
(659 Zﬁ/o ¢ v( 2t )

The change of variable s = ryr,/2t gives

(8.84) lzi(rlrz)—l/zf oS3ty /2rir2 L(s)s~/2 ds.
us 0

Thus the asserted identity (8.77) follows from the identity

% [2
(8.85) / e, (s)s V2 ds = \[ = 0yo1)2(2), 7> 0.
0 T

As for the validity of (8.85), we mention two identities. Recall from (8.57) that

(8.86)
o _ _ A" T +v)
SZJ)L /le: - nw—v
/Oe v(As)s" ds (2)Z T+ 1)
u | VA A2
o S R STIE Ppnaiy
21(2+2+22+2 + ZZ)

Next, there is the classical representation of the Legendre function Q,_;,2(z) as
a hypergeometric function:

(8.87)

rr
Qu—l/z(Z) — M

rv+1

-Iklw

1 1
(22)7""V2,F L + v+ L=,
4 2

[\®]
<

cf. [Leb], (7.3.7) If we apply (8.86) with A = i, u = 1/2 (keeping (8.81) in
mind), then (8.85) follows.

Remark: Formulas (8.77) and (8.60) are proven in the opposite order in [W].
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By analytic continuation, we can treat f(12) = e **1~!sin Az for any & > 0.
We apply this to (8.47). Letting ¢ \ 0, we get for the fundamental solution to the
wave equation:

(=A) "2 sinr(—A)Y/?

(8.88) = —Sli\% (r1r2)% Im /0 e~ CFOL g (Ar)Jy(Ary) dA

i+ (8+it)2)

1 a—1/2 1:
= —— Iim Im O, _ (
n(”lrz) 81\0 Ov_1/2 i

Using the integral formula (8.80), where the path of integration is a suitable path
from 7 to 400 in the complex plane, one obtains the following alternative integral
representation of (—A)~'/2 sin¢(—A)'/2. The Schwartz kernel is equal to

(8.89) 0, ifr< |r1 —r2|,

1 A _
(8.90) —(r1r)”* / [tz — (rl2 + r22 —2r1ry cos s)] 1/2 cosvs ds,
T 0

if |[ry —ra| <t <ry 4+ rp,and

1 0 B
(891)  —(r1r2)* COS”V/ [r? +r3 +2r1r2 cosh s — 7] V2 o=sv g,
d B>
ift > ry + rp, where
2442 42 2_ 2 _ 2
-t 1% — _
(92 pr=cos (T2 T0) gy = coht (S
2rira 2ryra

Recall that = —(m — 1)/2, where m = dim N.

We next show how formulas (8.89)—(8.91) lead to an analysis of the classical
problem of diffraction of waves by a slit along the positive x-axis in the plane R2.
In fact, if waves propagate in R? with this ray removed, on which Dirichlet bound-
ary conditions are placed, we can regard the space as the cone over an interval of
length 27, with Dirichlet boundary conditions at the endpoints. By the method of
images, it suffices to analyze the case of the cone over a circle of circumference
47 (twice the circumference of the standard unit circle). Thus C (/) is a double
cover of R? \ 0 in this case. We divide up the spacetime into regions I, II, and
I1I, respectively, as described by (8.89), (8.90), and (8.91). Region I contains only
points on C(N) too far away from the source point to be influenced by time ¢;
that the fundamental solution is O here is consistent with finite propagation speed.

Since the circle has dimension m = 1, we see that

B d? )1/2

(8.93) b= (—AN)2 = ( i
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in this case if 8 € R/(4wZ) is the parameter on the circle of circumference 4.
On the line, we have

1
(8.94) cos sv 8g, (62) = 5[8(01 — 6 +5)+ 861 — 02— ).

To get cossv on R/(4wZ), we simply make (8.94) periodic by the method of
images. Consequently, from (8.90), the wave kernel (—A)~"/2sinr(—A)Y/2 is
equal to

(5.95) Q@) [12 =12 = r2 + 2riracos(6y — 0)] 7 if |61 — 6a] < 7,
0 if |6 — 02| > m,

in region II. Of course, for |6; — 62| < m this coincides with the free space

fundamental solution, so (8.95) also follows by finite propagation speed.

We turn now to an analysis of region III. In order to make this analysis, it is
convenient to make simultaneous use both of (8.91) and of another formula for
the wave kernel in this region, obtained by choosing another path from 7 to oo
in the integral representation (8.80). The formula (8.91) is obtained by taking a
horizontal line segment; see Fig. 8.1.

If instead we take the path indicated in Fig. 8.2, we obtain the following for-
mula for (—A)~/2sint(—A)'/? in region III:

T
7 (ryrp) /2 { / (t2 — ”12 — r22 + 2ryrp cos s)_l/2 cossv ds
0
(8.96)
: P2 2_.2_ .2 -1/2 s
—sinmv | (1> —rf —r3 —2riracoshs) "7 eV dsp .
0

The operator v on R/ (47 Z) given by (8.93) has spectrum consisting of

1,3,2,...},
2

1
(8.97) Specv = {0, ok

i ¢

FIGURE 8.1 Integration Contour
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b143 | e
n

FIGURE 8.2 Alternative Contour

all the eigenvalues except for 0 occurring with multiplicity 2. The formula (8.91)

shows the contribution coming from the half-integers in Spec v vanishes, since
cos %nn = 0 if n is an odd integer. Thus we can use formula (8.96) and compose

with the projection onto the sum of the eigenspaces of v with integer spectrum.
This projection is given by

(8.98) P = cos®* v
on R/(4xZ). Since sintn = 0, in the case N = R/(4wZ) we can rewrite
(8.96) as
T
(8.99) n_l(rlrz)_(m_l)/Z/ (t2 — rl2 — r22 + 2rqir cos s)_l/2 P cossv ds.
0

In view of the formulas (8.94) and (8.96), we have

P cos sv &g, (62)
1
(8.100) = Z[8(61 62 +5) + 861 =62 —)
+8(601 — 02 + 27 +5) + 8(61 — 62 + 27 —5)|  mod 4.

Thus, in region III, we have for the wave kernel (—A)~/2sinz(—A)'/? the
formula

(8.101) (4m) 7 (2 = rf =} + 2r1rs cos(6r — 62) 7.

Thus, in region III, the value of the wave kernel at points (rq, 61), (r2, 62) of the
double cover of R? \ 0 is given by half the value of the wave kernel on R? at
the image points. The jump in behavior from (8.95) to (8.101) gives rise to a
diffracted wave.

We depict the singularities of the fundamental solution to the wave equation
for R? minus a slit in Figs. 8.3 and 8.4. In Fig. 8.3 we have the situation |¢| < 7y,
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0
I
FIGURE 8.3 Reflected Wave Front
D
0
I 11

FIGURE 8.4 Reflected and Diffracted Wave Fronts

where no diffraction has occurred, and region III is empty. In Fig. 8.4 we have a
typical situation for |¢| > rq, with the diffracted wave labeled by a “D.”

This diffraction problem was first treated by Sommerfeld [Som] and was the
first diffraction problem to be rigorously analyzed. For other approaches to the
diffraction problem presented above, see [BSU] and[Stk].

Generally, the solution (8.89)—(8.91) contains a diffracted wave on the bound-
ary between regions II and III. In Fig. 8.5 we illustrate the diffraction of a
wave by a wedge; here N is an interval of length £ < 27. We now want to
provide, for general N, a description of the behavior of the distribution v =
(—A)"Y25sint(—=A)Y/2 §,, x,) near this diffracted wave, that is, a study of the
limiting behavioras r; \(t —rp, andasr; /'t — r;.

We begin with region II. From (8.90), we have v equal to

1
(8.102) E(rlrz)"‘_l/2 Py_1/2(cos B1) 8y, inregionII,

where P,_j, is the Legendre function defined by (8.79) and B is given by (8.92).
Note thatasr; \(t —r2, B1 7 7.
To analyze (8.102), replace s by = — s in (8.79), and, with §; = & — B, write

g

%Pu_l/z(cosﬁl) = cosnv/ (200881 — 2coss)_1/2 cossv ds

(8.103) 51

g
+ sin m)/ (2 cosd; — 2coss)_1/2 sinsv ds.
)

1
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(ra %)

FIGURE 8.5 Diffraction by a Wedge

As 61 N\ 0, the second term on the right tends in the limit to

.
(8.104) sinrrv/ "2 ds,
o singzs

Write the first term on the right side of (8.103) as

g

COS TV (2coséy — 2coss) "2 (cossv — 1) ds
81

4
+cosm)/ (2cos8y —2coss) V2 ds.
81

(8.105)

As §1 \{ 0, the first term here tends in the limit to

sin g

b4
-1
(8.106) cosnv/ %ds.
0 2

165

The second integral in (8.105) is a scalar, independent of v, and it is easily seen

to have a logarithmic singularity. More precisely,

4
/ (2cosé; — 2coss)_% ds
5

2\ X . X .
~ (logg);AjS{ +> B8], Ag=1.

Jj=1

(8.107)

Consequently, one derives the following.
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Proposition 8.9. Fix (r3,x3) andt. Then, asry \(t — 12,
(=8)7"2sint(=8)"? 8 1)

1 2
(5.108) = ;(rlrz)"‘_l/2 {log E COS TV x,

2cosis 45 8xy + R Oxa

/” COSSV — COS TV
0 2

where, for s > (m +1)/2,

1
(8.109) IRy Bl p-s-1 < 1 log . as 81\ 0.
1

The following result analyzes the second term on the right in (8.108).

Proposition 8.10. We have

k4 1 \—1
/ (2 cos —s) (cossv —cosmv)ds
0 2

(8.110) K .
= —1 WL 4 i Sk (v),
COS TV ogv—i—jz:;)a]v + > sintv + Sg(v)

where Sg(v) : DS — Ds1t2K for all s.

The spaces D* are spaces of generalized functions on N, introduced in Chap. 5,
Appendix A.
We turn to the analysis of v in region III. Using (8.91), we can write v as

1
(8.111) —(r1r)* Y2 cos v Qy—1/2(cosh B2) 8x,,  inregion III,
7

where 0,15 is the Legendre function given by (8.80) and B, is given by (8.92).
It is more convenient to use (8.96) instead; this yields for v the formula

1 g
—(rlrz)"‘_l/z% / (2 cosh B + 2coss) V2 cossv ds
T 0

(8.112) 5

—sinmy (2 cosh B> — 2 cosh s) /2™ ds! .
0

Note thatas r; 7t —ra2, B2 \( 0.
The first integral in (8.112) has an analysis similar to that arising in (8.103);
first replace s by = — s to rewrite the integral as
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T
cos nv/ (2 cosh B, — ZCOSS)_l/Z cossv ds
(8.113) 0 .
+ sinzv / (2 cosh By — 2 coss) ™1/ 2 sinsv ds.
0

As B2 N\ 0, the second term in (8.113) tends to the limit (8.104), and the first
term also has an analysis similar to (8.105)—(8.107), with (8.107) replaced by

4
/ (2 cosh B — 2 coss) ™2 ds
0

(log )ZA/,B2+ZB ,32, Ay = 1.

Jj=0 Jjz1

(8.114)

It is the second term in (8.112) that leads to the jump across r; = ¢ — 3, hence to
the diffracted wave. We have

B2 B2
(8.115) (2 cosh B — 2 cosh )" V/2e™5" ds ~ /
0

J*

Thus we have the following:
Proposition 8.11. Forr; /'t —ra,
(=A) V2 sint (=A)Y? 8¢, 1)

1 2
= ;(rlrz)“_l/z% log /3— Cos TV by,

(8.116) 2

/2
COSSV —COos TV T ~
+/ —dsé’xZ—Esmnvc?xZ—FRleZ .
0

1
2cos 58

where, for s > (m +1)/2,

1
(8.117) | R18x, | p—s—1 < CB2log B as f2 ™\ 0.
2

Note that (8.116) differs from (8.108) by the term 7~ (r1r2)*~"/2 times
(8.118) —%sinnv 8.

This contribution represents a jump in the fundamental solution across the
diffracted wave D. There is also the logarithmic singularity, (r;72)%~ /2 times

1 2
(8.119) —log < cosmv 8y,,
b4 1]
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where § = §; in (8.108) and § = B, in (8.116). In the special case where N is
an interval [0, L], so dim C(N) = 2, cosmv 8y, is a sum of two delta functions.
Thus its manifestation in such a case is subtle.

We also remark that if N is a subdomain of the unit sphere S%* (of even di-
mension), then cos wv §x, vanishes on the set N \ Ny, where

(8.120) Ny = {x; € N : forsome y € dN, dist(xz, y) + dist(y, x1) < w}.

Thus the log blow-up disappears on N \ Np. This follows from the fact that
cos mvg = 0, where vy is the operator (8.46) on S2¥, together with a finite prop-
agation speed argument.

While Propositions 8.9-8.11 contain substantial information about the nature
of the diffracted wave, this information can be sharpened in a number of respects.
A much more detailed analysis is given in [CT].

Exercises

1. Using (7.36) and (7.80), work out the asymptotic behavior of 1 Fj(a;b;—z) as
z — +oo, given b,b —a ¢ {0,—1,-2,...}. Deduce from (8.51) that whenever
v>0, s €R,

00 ) T +1-i
(8.121) tim | e P 1) dr = 2—”M.
N0 Jo L(z(v+1+is))

2. Define operators
(8.122) M f(r) =rf(r). T f(r)=fGrh),
Show that

M, L?RT,rdr) — L?@®RT,r7Ydr), J:L°®R* . r 'dr)
(8.123) — L’®RT,r Ydr)

are unitary. Show that

(8.124) Hf = FM, HyM,!
is given by
(8.125) HYf() = (f » o)),

where * denotes the natural convolution on R, with Haar measure r ~1dr:

(8.126) (e = [ rose o ar
and

(8.127) 6, =r Y.
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3. Consider the Mellin transform:

(8.128) M f(s) = /0 = fryrsldr.,
As shown in (A.17)-(A.20) of Chap. 3, we have

(8.129) (271)_1/2./\/1# cL2(RT, 77V dr) — L?(R.ds). unitary.
Show that

(8.130) M(f % g)(s) = M* f(5)- MPg(s).

and deduce that
(8.131) MPHE f(s) = W(s)MP £(s),
where
(8.132)
W(s) = / L2 dr = / Jo(ryr dr =277
0 0

169

r(3(v+1—is))
I(3(v+1+is)

4. From (8.126)—(8.132), give another proof of the unitarity (8.13) of H). Using sym-
metry, deduce that spec H,, = {—1, 1}, and hence deduce again the inversion formula

(8.14).

5. Verify the asymptotic expansion (8.107). (Hint: Write 2cos§ —2coss = (s — §2)
F(s,8) with F smooth and positive, F(0,0) = 1. Then, with G(s,8) = F(s, 8)_1/2,

ds

1 1
(8.133) / 2cos8 —2coss) /2 ds:/ G(s,8) —.
;s ¢ : Ve

Write G(s,8) = g(s)+6H(s,8), g(0) = 1, and verify that (8.133) is equal to A1 + A2,

where

T ds 1 1
A :/5 G(s.8) = = g(0)log 5 + 0(810g g)’

k4 1 1
Az = /8 g(s)[m =] @+ 00 = 52+ 06)

Show that
/8
B, = g(O)/ [; - 1] dt + 0(8) = Cs + 0(8),
1 V2 -1

G = /100[ ,21_1 a ;] dt

Use the substitution # = cosh u to do this integral and get C; = log2.)
Next, verify the expansion (8.114).

with
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Exercises on the hypergeometric function

1. Show that 5 F1(ay,as; b; z), defined by (8.56), satisfies

che o) — I'(b) ! ar>—1 b—ar—1 —ay
(.134) 2Fi(ananibio) = g [ la— et a -,

forRe b > Reas > 0, |z| < 1. (Hint: Use the beta function identity, (A.23)—(A.24) of
Chap. 3, to write

(@) _ I'(b)
O T(@)T®

and substitute this into (8.39). Then use

1
/ ta2—1+k(1 _ t)b—az—l dt, k=0,12,...,
—az) Jo

Z (al)k( DE=(1 -7, 0<i<1, |g<1)

2. Show that, given Re b > Reap > 0, (8.134) analytically continues in zto z € C \
[1,00).
3. Show that the function (8.134) satisfies the ODE

d? d
z(1 —z)d—; +{b—(a1 +az+ l)z}d—z —ajaou=0

Note that u(0) = 1, ¥’ (0) = ayaz/b, but zero is a singular point for this ODE. Show
that another solution is

u(z) = P 2F1(ay—b+1,a—b+1;2—b;2).
4. Show that
2Fi(ay,az;b;2) = (1 —z)~4! 2F1(a1,b —az;b;(z— 1)_1Z).

(Hint: Make a change of variable s = 1 — ¢ in (8.134).)
For many other important transformation formulas, see [Leb] or [WW].
5. Show that
1Fi(a;b;z) = lim ,Fi(a,c;b; c_lz).
c /o0

‘We mention the generalized hypergeometric function, defined by

L K
qu(a,b,z)—];)Wk—!,

where p < g +1, a = (a1....,ap), b = (b1....,bg), b; € C\{0,—-1,-2,...},
|z] <1, and

@k = (@i @pl, B = (b1 -+ (bg)k

and where, as before, for c € C, (¢); = c(c + 1) (c + k — 1). For more on this
class of functions, see [Bai].
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6. The Legendre function Q,,_1/,(z) satisfies the identity (8.87), for v > 0, |z| > 1, and
|Arg z| < m; cf. (7.3.7) of [Leb]. Take z = (rl2 + r22 +1%)/2r1 13, and compare the
resulting power series for the right side of (8.77) with the power series in (8.76).
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