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Spectral Theory

Introduction

This chapter is devoted to the spectral theory of self-adjoint, differential opera-
tors. We cover a number of different topics, beginning in �1 with a proof of the
spectral theorem. It was an arbitrary choice to put that material here, rather than in
Appendix A, on functional analysis. The main motivation for putting it here is to
begin a line of reasoning that will be continued in subsequent sections, using the
great power of studying unitary groups as a tool in spectral theory. After we show
how easily this study leads to a proof of the spectral theorem in �1, in later sec-
tions we use it in various ways: as a tool to establish self-adjointness, as a tool for
obtaining specific formulas, including basic identities among special functions,
and in other capacities.

Sections 2 and 3 deal with some general questions in spectral theory, such as
when does a differential operator define a self-adjoint operator, when does it have
a compact resolvent, and what asymptotic properties does its spectrum have? We
tackle the latter question, for the Laplace operator�, by examining the asymptotic
behavior of the trace of the solution operator et� for the heat equation, showing
that

(0.1) Tr et� D .4�t/�n=2 vol �C o.t�n=2/; t & 0;

when � is either a compact Riemannian manifold or a bounded domain in Rn

(and has the Dirichlet boundary condition). Using techniques developed in �13
of Chap. 7, we could extend (0.1) to general compact Riemannian manifolds with
smooth boundary and to other boundary conditions, such as the Neumann bound-
ary condition. We use instead a different method here in �3, one that works without
any regularity hypotheses on @�. In such generality, (0.1) does not necessarily
hold for the Neumann boundary problem.

The study of (0.1) and refinements got a big push from [Kac]. As pursued in
[MS], it led to developments that we will discuss in Chap. 10. The problem of to
what extent a Riemannian manifold is determined by the spectrum of its Laplace
operator has led to much work, which we do not include here. Some is discussed
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92 8. Spectral Theory

in [Ber, Br, BGM], and [Cha]. We mention particularly some distinct regions in
R2 whose Laplace operators have the same spectra, given in [GWW].

We have not included general results on the spectral behavior of � obtained
via geometrical optics and its refinement, the theory of Fourier integral operators.
Results of this nature can be found in Volume 3 of [Ho], in [Shu], and in Chap. 12
of [T1].

Sections 4–7 are devoted to specific examples. In �4 we study the Laplace
operator on the unit spheres Sn. We specify precisely the spectrum of � and
discuss explicit formulas for certain functions of �, particularly

(0.2) A�1 sin tA; A D
�
��C K

4
.n� 1/2

�1=2
:

with K D 1, the sectional curvature of Sn. In �5 we obtain an explicit formula
for (0.2), with K D �1, on hyperbolic space. In �6 we study the spectral theory
of the harmonic oscillator

(0.3) H D ��C jxj2:
We obtain an explicit formula for e�tH , an analogue of which will be useful in
Chap. 10. In �8 we study the operator

(0.4) H D �� �Kjxj�1

on R3, obtaining in particular all the eigenvalues of this operator. This operator
arises in the simplest quantum mechanical model of the hydrogen atom. In �9 we
study the Laplace operator on a cone. Studies done in these sections bring in a
number of special functions, including Legendre functions, Bessel functions, and
hypergeometric functions. We have included two auxiliary problem sets, one on
confluent hypergeometric functions and one on hypergeometric functions.

1. The spectral theorem

Appendix A contains a proof of the spectral theorem for a compact, self-adjoint
operator A on a Hilbert space H . In that case, H has an orthonormal basis fuj g
such that Auj D �j uj ; �j being real numbers having only 0 as an accumulation
point. The vectors uj are eigenvectors.

A general bounded, self-adjoint operatorAmay not have any eigenvectors, and
the statement of the spectral theorem is somewhat more subtle. The following is
a useful version.

Theorem 1.1. If A is a bounded, self-adjoint operator on a separable Hilbert
space H , then there is a �-compact space �, a Borel measure �, a unitary map

(1.1) W W L2.�; d�/ �! H;



1. The spectral theorem 93

and a real-valued function a 2 L1.�; d�/ such that

(1.2) W �1AWf.x/ D a.x/f .x/; f 2 L2.�; d�/:

Note that when A is compact, the eigenvector decomposition above yields (1.1)
and (1.2) with .�;�/ a purely atomic measure space. Later in this section we will
extend Theorem 1.1 to the case of unbounded, self-adjoint operators.

In order to prove Theorem 1.1, we will work with the operators

(1.3) U.t/ D eitA;

defined by the power-series expansion

(1.4) eitA D
1X
nD0

.it/n

nŠ
An:

This is a special case of a construction made in �4 of Chap. 1. U.t/ is uniquely
characterized as the solution to the differential equation

(1.5)
d

dt
U.t/ D iAU.t/; U.0/ D I:

We have the group property

(1.6) U.s C t/ D U.s/U.t/;

which follows since both sides satisfy the ODE .d=ds/Z.s/ D iAZ.s/;Z.0/ D
U.t/. If A D A�, then applying the adjoint to (1.4) gives

(1.7) U.t/� D U.�t/;

which is the inverse of U.t/ in view of (1.6). Thus fU.t/ W t 2 Rg is a group of
unitary operators.

For a given v 2 H , let Hv be the closed linear span of fU.t/v W t 2 Rg; we
say Hv is the cyclic space generated by v. We say v is a cyclic vector for H if
H D Hv . If Hv is not all of H , note that H?

v is invariant under U.t/, that is,
U.t/H?

v � H?
v for all t , since for a linear subspace V of H , generally

(1.8) U.t/V � V H) U.t/�V ? � V ?:

Using this observation, we can prove the next result.

Lemma 1.2. If U.t/ is a unitary group on a separable Hilbert space H , then H
is an orthogonal direct sum of cyclic subspaces.
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Proof. Let fwj g be a countable, dense subset of H . Take v1 D w1 and H1 D
Hv1

. If H1 ¤ H , let v2 be the first nonzero element P1wj ; j � 2, where P1 is
the orthogonal projection of H ontoH?

1 , and let H2 D Hv2
. Continue.

In view of this, Theorem 1.1 is a consequence of the following:

Proposition 1.3. If U.t/ is a strongly continuous, unitary group on H , having a
cyclic vector v, then we can take� D R, and there exists a positive Borel measure
� on R and a unitary map W W L2.R; d�/ ! H such that

(1.9) W �1U.t/W f .x/ D eitxf .x/; f 2 L2.R; d�/:

The measure � on R will be the Fourier transform

(1.10) � D O	;

where

(1.11) 	.t/ D .2�/�1=2 .ei tAv; v/:

It is not clear a priori that (1.10) defines a measure; since 	 2 L1.R/, we see that
� is a tempered distribution. We will show that � is indeed a positive measure
during the course of our argument. As for the mapW , we first define

(1.12) W W S.R/ �! H;

where S.R/ is the Schwartz space of rapidly decreasing functions, by

(1.13) W.f / D f .A/v;

where we define the operator f .A/ by the formula

(1.14) f .A/ D .2�/�1=2
Z 1

�1
Of .t/ei tA dt:

The reason for this notation will become apparent shortly; see (1.20). Making use
of (1.10), we have

(1.15)

�
f .A/v; g.A/v

� D .2�/�1
�Z Of .s/eisAv ds;

Z
Og.t/ei tAv dt

�

D .2�/�1
“

Of .s/ Og.t/�ei.s�t/Av; v� ds dt

D .2�/�1=2
“

Of .s/ Og.� � s/	.�/ ds d�

D h1.f g/; 	i
D hf g;�i:
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Now, if g D f , the left side of (1.15) is kf .A/vk2, which is � 0. Hence

(1.16)
˝jf j2; �˛ � 0; for all f 2 S.R/:

With this, we can establish:

Lemma 1.4. The tempered distribution �, defined by (1.10)–(1.11), is a positive
measure on R.

Proof. Apply (1.16) with f D p
Fs;� , where

Fs;�.
/ D .4�s/�1=2e�.���/2=4s ; s > 0; � 2 R:

Note that this is a fundamental solution to the heat equation. For each
s > 0; Fs;0 � � is a positive function. We saw in Chap. 3 that Fs;0 � � con-
verges to � in S 0.R/ as s ! 0, so this implies that � is a positive measure.

Now we can finish the proof of Proposition 1.3. From (1.15) we see thatW has
a unique continuous extension

(1.17) W W L2.R; d�/ �! H;

and W is an isometry. Since v is assumed to be cyclic, the range of W must be
dense in H , so W must be unitary. From (1.14) it follows that if f 2 S.R/, then

(1.18) eisAf .A/ D fs.A/; with fs.
/ D eis�f .
/:

Hence, for f 2 S.R/,

(1.19) W �1eisAW f D W �1fs.A/v D eis�f .
/:

Since S.R/ is dense in L2.R; d�/, this gives (1.9). Thus the spectral theorem for
bounded, self-adjoint operators is proved.

Given (1.9), we have from (1.14) that

(1.20) W �1f .A/W g.x/ D f .x/g.x/; f 2 S.R/; g 2 L2.R; d�/;

which justifies the notation f .A/ in (1.14).
Note that (1.9) implies

(1.21) W �1AW f.x/ D x f .x/; f 2 L2.R; d�/;

since .d=dt/U.t/ D iAU.t/. The essential supremum of x on .R; �/ is equal to
kAk. Thus � has compact support in R if A is bounded. If a self-adjoint operator
A has the representation (1.21), one says A has simple spectrum. It follows from
Proposition 1.3 that A has simple spectrum if and only if it has a cyclic vector.
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One can generalize the results above to a k-tuple of commuting, bounded,
self-adjoint operators A D .A1; : : : ; Ak/. In that case, for t D .t1; : : : ; tk/ 2 Rk ,
set

(1.22) U.t/ D ei t �A; t � A D t1A1 C � � � C tkAk :

The hypothesis that the Aj all commute implies U.t/ D U1.t1/ � � �Uk.tk/, where
Uj .s/ D eisAj . U.t/ in (1.22) continues to satisfy the properties (1.6) and (1.7);
we have a k-parameter unitary group. As above, for v 2 H , we setHv equal to the
closed linear span of fU.t/v W t 2 Rkg, and we say v is a cyclic vector provided
Hv D H . Lemma 1.2 goes through in this case. Furthermore, for f 2 S.Rk/, we
can define

(1.23) f .A/ D .2�/�k=2
Z

Of .t/eit�A dt;

and if H has a cyclic vector v, the proof of Proposition 1.3 generalizes, giving a
unitary map W W L2.Rk ; d�/ ! H such that

(1.24) W �1U.t/Wf .x/ D ei t �xf .x/; f 2 L2.Rk; d�/; t 2 Rk :

Therefore, Theorem 1.1 has the following extension

Proposition 1.5. If A D .A1; : : : ; Ak/ is a k-tuple of commuting, bounded,
self-adjoint operators on H , there is a measure space .�;�/, a unitary map
W WL2.�; d�/ ! H , and real-valued aj 2 L1.�; d�/ such that

(1.25) W �1AjWf.x/ D aj .x/f .x/; f 2 L2.�; d�/; 1 � j � k:

A bounded operator B 2 L.H/ is said to be normal provided B and B� com-
mute. Equivalently, if we set

(1.26) A1 D 1

2

�
B C B��; A2 D 1

2i

�
B � B��;

then B D A1 C iA2, and .A1; A2/ is a 2-tuple of commuting, self-adjoint
operators. Applying Proposition 1.5 and setting b.x/ D a1.x/C ia2.x/, we have:

Corollary 1.6. If B 2 L.H/ is a normal operator, there is a unitary map W W
L2.�; d�/ ! H and a (complex-valued) b 2 L1.�; d�/ such that

(1.27) W �1BWf .x/ D b.x/f .x/; f 2 L2.�; d�/:

In particular, Corollary 1.6 holds when B D U is unitary. We next extend
the spectral theorem to an unbounded, self-adjoint operator A on a Hilbert space
H , whose domain D.A/ is a dense linear subspace of H . This extension, due to
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von Neumann, uses von Neumann’s unitary trick, described in (8.18)–(8.19) of
Appendix A. We recall that, for such A, the following three properties hold:

(1.28)

A˙ i W D.A/ �! H bijectively,

U D .A � i/.AC i/�1 is unitary onH;

A D i.I C U /.I � U /�1;

where the range of I � U D 2i.A C i/�1 is D.A/. Applying Corollary 1.6 to
B D U , we have the following theorem:

Theorem 1.7. If A is an unbounded, self-adjoint operator on a separable Hilbert
space H , there is a measure space .�;�/, a unitary map W W L2.�; d�/ ! H ,
and a real-valued measurable function a on� such that

(1.29) W �1AWf.x/ D a.x/f .x/; Wf 2 D.A/:

In this situation, given f 2 L2.�; d�/; Wf belongs to D.A/ if and only if the
right side of (1.29) belongs to L2.�; d�/.

The formula (1.29) is called the “spectral representation” of a self-adjoint op-
erator A. Using it, we can extend the functional calculus defined by (1.14) as
follows. For a Borel function f W R ! C, define f .A/ by

(1.30) W �1f .A/Wg.x/ D f .a.x//g.x/:

If f is a bounded Borel function, this is defined for all g 2 L2.�; d�/ and
provides a bounded operator f .A/ on H . More generally,

(1.31) D�f .A/� D ˚
Wg 2 H W g 2 L2.�; d�/ and f .a.x//g 2 L2.�; d�/�:

In particular, we can define ei tA, for unbounded, self-adjointA, by

W �1ei tAWg D ei ta.x/g.x/

Then ei tA is a strongly continuous unitary group, and we have the following result,
known as Stone’s theorem (stated as Proposition 9.5 in Appendix A):

Proposition 1.8. If A is self-adjoint, then iA generates a strongly continuous,
unitary group, U.t/ D ei tA.

Note that Lemma 1.2 and Proposition 1.3 are proved for a strongly continuous,
unitary groupU.t/ D ei tA, without the hypothesis thatA be bounded. This yields
the following analogue of (1.2):

(1.32) W �1U.t/Wf .x/ D eita.x/f .x/; f 2 L2.�; d�/;
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for this more general class of unitary groups. Sometimes a direct construction,
such as by PDE methods, of U.t/ is fairly easy. In such a case, the use of U.t/
can be a more convenient tool than the unitary trick involving (1.28).

We say a self-adjoint operator A is positive, A � 0, provided .Au; u/ � 0, for
all u 2 D.A/. In terms of the spectral representation, this says we have (1.29)
with a.x/ � 0 on �. In such a case, e�tA is bounded for t � 0, even for complex
t with Re t � 0, and also defines a strongly continuous semigroup. This proves
Proposition 9.4 of Appendix A.

Given a self-adjoint operatorA and a Borel set S � R, define P.S/ D �S .A/,
that is, using (1.29),

(1.33) W �1P.S/Wg D �S .a.x//g.x/; g 2 L2.�; d�/;

where �S is the characteristic function of S . Then each P.S/ is an orthogonal
projection. Also, if S D S

j�1 Sj is a countable union of disjoint Borel sets Sj ,
then, for each u 2 H ,

(1.34) lim
n!1

nX
jD1

P.Sj /u D P.S/u;

with convergence in the H -norm. This is equivalent to the statement that

nX
jD1

�Sj
.a.x//g ! �S .a.x//g in L2-norm; for each g 2 L2.�; d�/;

which in turn follows from Lebesgue’s dominated convergence theorem. By
(1.34), P.�/ is a strongly countably additive, projection-valued measure. Then
(1.30) yields

(1.35) f .A/ D
Z
f .�/ P.d�/:

P.�/ is called the spectral measure of A.
One useful formula for the spectral measure is given in terms of the jump of

the resolvent R� D .� � A/�1, across the real axis. We have the following

Proposition 1.9. For bounded, continuous f W R ! C,

(1.36) f .A/u D lim
"&0

1

2�i

Z 1

�1
f .�/

h
.� � i" � A/�1 � .�C i" � A/�1

i
u d�:

Proof. Since W �1f .A/W is multiplication by f .a.x//, (1.36) follows from the
fact that
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(1.37)
1

�

Z 1

�1
"f .�/

.� � a.x//2 C "2
d� �! f .a.x//;

pointwise and boundedly, as " & 0.

An important class of operators f .A/ are the fractional powers f .A/ D
A˛; ˛ 2 .0;1/, defined by (1.30)–(1.31), with f .�/ D �˛, provided A � 0.
Note that if g 2 C.Œ0;1// satisfies g.0/ D 1; g.�/ D O.��˛/ as � ! 1, then,
for u 2 H ,

(1.38) u 2 D.A˛/ ” kA˛g."A/ukH is bounded; for " 2 .0; 1�;

as follows easily from the characterization (1.31) and Fatou’s lemma. We note
that Proposition 2.2 of Chap. 4 applies to D.A˛/, describing it as an interpolation
space.

We particularly want to identify D.A1=2/, when A is a positive, self-adjoint
operator on a Hilbert spaceH constructed by the Friedrichs method, as described
in Proposition 8.7 of Appendix A. Recall that this arises as follows. One has a
Hilbert space H1, a continuous injection J W H1 ! H with dense range, and one
defines A by

(1.39)
�
A.Ju/; Jv

�
H

D .u; v/H1
;

with

(1.40)
D.A/ D ˚

J u 2 JH1 � H W v 7! .u; v/H1
is

continuous in Jv; in the H -norm
�
:

We establish the following.

Proposition 1.10. If A is obtained by the Friedrichs extension method (1.39)–
(1.40), then

(1.41) D.A1=2/ D J.H1/ � H:

Proof. D.A1=2/ consists of elements of H that are limits of sequences in D.A/,
in the norm kA1=2ukH C kukH . As shown in the proof of Proposition 8.7 in
Appendix A, D.A/ D R.JJ �/. Now

(1.42) kA1=2JJ �f k2H D .AJJ �f; JJ �f /H D kJ �f k2H1
:

Thus a sequence .JJ �fn/ converges in the D.A1=2/-norm (to an element g) if
and only if .J �fn/ converges in the H1-norm (to an element u), in which case
g D Ju. Since J � W H ! H1 has dense range, precisely all u 2 H1 arise as limits
of such .J �fn/, so the proposition is proved.
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Exercises

1. The definition (1.33) of the spectral measure P.�/ of a self-adjoint operator A depends
a priori on a choice of the spectral representation of A. Show that any two spectral
representations of A yield the same spectral measure.
(Hint: For f 2 S.R/; f .A/ is well defined by (1.14), or alternatively by (1.36).)

2. Self-adjoint differential operators

In this section we present some examples of differential operators on a manifold
� which, with appropriately specified domains, give unbounded, self-adjoint op-
erators on L2.�; dV/; dV typically being the volume element determined by a
Riemannian metric on �.

We begin with self-adjoint operators arising from the Laplacian, making use of
material developed in Chap. 5. Let� be a smooth, compact Riemannian manifold
with boundary, or more generally the closure of an open subset � of a compact
manifoldM without boundary. Then, as shown in Chap. 5,

(2.1) I �� W H 1
0 .�/ �! H 1

0 .�/
�

is bijective, with inverse we denote T ; if we restrict T to L2.�/,

(2.2) T W L2.�/ �! L2.�/ is compact and self-adjoint.

Denote by R.T / the image of L2.�/ under T . We can apply Proposition 8.2 of
Appendix A to deduce the following

Proposition 2.1. If � is a region in a compact Riemannian manifold M , then
� is self-adjoint on L2.�/, with domain D.�/ D R.T / � H 1

0 .�/ described
above.

For a further description of D.�/, note that

(2.3) D.�/ D fu 2 H 1
0 .�/ W �u 2 L2.�/g:

If @� is smooth, we can apply the regularity theory of Chap. 5 to obtain

(2.4) D.�/ D H 1
0 .�/\H 2.�/:

Instead of relying on Proposition 8.2, we could use the Friedrichs construction,
given in Proposition 8.7 of Appendix A. This construction can be applied more
generally. Let � be any Riemannian manifold, with Laplace operator �. We can
define H 1

0 .�/ to be the closure of C1
0 .�/ in the space fu 2 L2.�/ W du 2

L2.�;ƒ1/g. The inner product on H 1
0 .�/ is

(2.5) .u; v/1 D .u; v/L2 C .du; dv/L2 :
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We have a natural inclusion H 1
0 .�/ ,! L2.�/, and the Friedrichs method gives

a self-adjoint operator A on L2.�/ such that

(2.6) .Au; v/L2 D .u; v/1; for u 2 D.A/; v 2 H 1
0 .�/;

with

(2.7)
D.A/ D ˚

u 2 H 1
0 .�/ W v 7! .u; v/1 extends from H 1

0 .�/ ! C to a

continuous linear functionalL2.�/ ! C
�
;

that is,

(2.8)
D.A/ D ˚

u 2 H 1
0 .�/ W 9f 2 L2.�/ such that

.u; v/1 D .f; v/L2 ;8v 2 H 1
0 .�/

�
:

Integrating (2.5) by parts for v 2 C1
0 .�/, we see that A D I � � on D.A/, so

we have a self-adjoint extension of � in this general setting, with domain again
described by (2.3).

The process above gives one self-adjoint extension of �, initially defined on
C1
0 .�/. It is not always the only self-adjoint extension. For example, suppose�

is compact with smooth boundary; considerH 1.�/, with inner product (2.5), and
apply the Friedrichs extension procedure. Again we have a self-adjoint operator
A, extending I ��, with (2.8) replaced by

(2.9)
D.A/ D ˚

u 2 H 1.�/ W 9f 2 L2.�/ such that

.u; v/1 D .f; v/L2 ;8v 2 H 1.�/
�
:

In this case, Proposition 7.2 of Chap. 5 yields the following

Proposition 2.2. If � is a smooth, compact manifold with boundary and � the
self-adjoint extension just described, then

(2.10) D.�/ D fu 2 H 2.�/ W @�u D 0 on @�g:

In case (2.10), we say D.�/ is given by the Neumann boundary condition,
while in case (2.4) we say D.�/ is given by the Dirichlet boundary condition.

In both cases covered by Propositions 2.1 and 2.2, .��/1=2 is defined as a
self-adjoint operator. We can specify its domain using Proposition 1.10, obtaining
the next result:

Proposition 2.3. In case (2.3), D..��/1=2/ D H 1
0 .�/; in case (2.10),

D..��/1=2/ D H 1.�/.

Though� on C1
0 .�/ has several self-adjoint extensions when� has a bound-

ary, it has only one when� is a complete Riemannian manifold. This is a classical
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result, due to Roelcke; we present an elegant proof due to Chernoff [Chn]. When
an unbounded operator A0 on a Hilbert space H , with domain D0, has exactly
one self-adjoint extension, namely the closure of A0, we say A0 is essentially
self-adjoint on D0.

Proposition 2.4. If � is a complete Riemannian manifold, then � is essentially
self-adjoint onC1

0 .�/. Thus the self-adjoint extension with domain given by (2.3)
is the closure of � on C1

0 .�/.

Proof. We will obtain this as a consequence of Proposition 9.6 of Appendix A,
which states the following. Let U.t/ D ei tA be a unitary group on a Hilbert space
H which leaves invariant a dense linear space DI U.t/D � D. IfA is an extension
of A0 and A0 W D ! D, then A0 and all its powers are essentially self-adjoint
on D.

In this case, U.t/ will be the solution operator for a wave equation, and we will
exploit finite propagation speed. Set

(2.11) iA0 D
�

0 I

� � I 0

�
; D.A0/ D C1

0 .�/˚ C1
0 .�/:

The group U.t/ will be the solution operator for the wave equation

(2.12) U.t/

�
f

g

�
D
�

u.t/
ut .t/

�
;

where u.t; x/ is determined by

@2u

@t2
� .� � 1/u D 0I u.0; x/ D f; ut .0; x/ D g

It was shown in �2 of Chap. 6 that U.t/ is a unitary group on H D H 1
0 .�/ ˚

L2.�/; its generator is an extension of (2.11), and finite propagation speed im-
plies that U.t/ preserves C1

0 .�/ ˚ C1
0 .�/ for all t , provided � is complete.

Thus each Ak0 is essentially self-adjoint on this space. Since

(2.13) �A20 D
�
� � I 0

0 � � I

�
;

we have the proof of Proposition 2.3. Considering A2k0 , we deduce furthermore
that each power�k is essentially self-adjoint on C1

0 .�/, when� is complete.

Though� is not essentially self-adjoint on C1
0 .�/ when� is compact, we do

have such results as the following:

Proposition 2.5. If � is a smooth, compact manifold with boundary, then � is
essentially self-adjoint on

(2.14) fu 2 C1.�/ W u D 0 on @�g;
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its closure having domain described by (2.3). Also,� is essentially self-adjoint on

(2.15) fu 2 C1.�/ W @�u D 0 on @�g;

its closure having domain described by (2.10).

Proof. It suffices to note the simple facts that the closure of (2.14) in H 2.�/ is
(2.3) and the closure of (2.15) in H 2.�/ is (2.10).

We note that when � is a smooth, compact Riemannian manifold with bound-
ary, and D.�/ is given by the Dirichlet boundary condition, then

(2.16)
1\
jD1

D.�j / D fu 2 C1.�/ W �ku D 0 on @�; k D 0; 1; 2; : : : g;

and when D.�/ is given by the Neumann boundary condition, then

(2.17)
1\
jD1

D.�j / D fu 2 C1.�/ W @�.�ku/ D 0 on @�; k � 0g:

We now derive a result that to some degree amalgamates Propositions 2.4 and
2.5. Let � be a smooth Riemannian manifold with boundary, and set

(2.18) C1
c .�/ D fu 2 C1.�/ W supp u is compact in �gI

we do not require elements of this space to vanish on @�. We say that � is com-
plete if it is complete as a metric space.

Proposition 2.6. If � is a smooth Riemannian manifold with boundary which is
complete, then � is essentially self-adjoint on

(2.19) fu 2 C1
c .�/ W u D 0 on @�g:

In this case, the closure has domain given by (2.3).

Proof. Consider the following linear subspace of (2.19):

(2.20) D0 D fu 2 C1
c .�/ W �j u D 0 on @� for j D 0; 1; 2; : : : g:

Let U.t/ be the unitary group on H 1
0 .�/ ˚ L2.�/ defined as in (2.12), with u

also satisfying the Dirichlet boundary condition, u.t; x/ D 0 for x 2 @�. Then,
by finite propagation speed, U.t/ preserves D0 ˚D0, provided� is complete, so
as in the proof of Proposition 2.4, we deduce that � is essentially self-adjoint on
D0; a fortiori it is essentially self-adjoint on the space (2.19).
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By similar reasoning, we can show that if � is complete, then � is essentially
self-adjoint on

(2.21) fu 2 C1
c .�/ W @�u D 0 on @�g:

The results of this section so far have involved only the Laplace operator�. It
is also of interest to look at Schrödinger operators, of the form ��CV , where the
“potential” V.x/ is a real-valued function. In this section we will restrict attention
to the case V 2 C1.�/ and we will also suppose that V is bounded from below.
By adding a constant to ��C V , we may as well suppose

(2.22) V.x/ � 1 on�:

We can define a Hilbert space H 1
V 0.�/ to be the closure of C1

0 .�/ in the space

(2.23) H 1
V .�/ D fu 2 L2.�/ W du 2 L2.�;ƒ1/; V 1=2u 2 L2.�/g;

with inner product

(2.24) .u; v/1;V D .du; dv/L2 C .V u; v/L2 :

Then there is a natural injectionH 1
V 0.�/ ,! L2.�/, and the Friedrichs extension

method provides a self-adjoint operator A. Integration by parts in (2.24), with
v 2 C1

0 .�/, shows that such A is an extension of ��C V . For this self-adjoint
extension, we have

(2.25) D.A1=2/ D H 1
V 0.�/:

In case � is a smooth, compact Riemannian manifold with boundary and
V 2 C1.�/, one clearly has H 1

V 0.�/ D H 1
0 .�/. In such a case, we have an

immediate extension of Proposition 2.1, including the characterization (2.4) of
D.��C V /. One can also easily extend Proposition 2.2 to ��C V in this case.
It is of substantial interest that Proposition 2.4 also extends, as follows:

Proposition 2.7. If � is a complete Riemannian manifold and the function V 2
C1.�/ satisfies V � 1, then ��C V is essentially self-adjoint on C1

0 .�/.

Proof. We can modify the proof of Proposition 2.4; replace � � 1 by � � V in
(2.11) and (2.12). Then U.t/ gives a unitary group onH 1

V 0.�/˚L2.�/, and the
finite propagation speed argument given there goes through. As before, all powers
of ��C V are essentially self-adjoint on C1

0 .�/.

Some important classes of potentials V have singularities and are not bounded
below. In �7 we return to this, in a study of the quantum mechanical Coulomb
problem.
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We record here an important compactness property when V 2 C1.�/ tends
to C1 at infinity in �

Proposition 2.8. If the Friedrichs extension method described above is used to
construct the self-adjoint operator �� C V for smooth V � 1, as above, and if
V ! C1 at infinity (i.e., for each N < 1; �N D fx 2 � W V.x/ � N g is
compact), then ��C V has compact resolvent.

Proof. Given (2.25), it suffices to prove that the injection H 1
V 0.�/ ! L2.�/

is compact, under the current hypotheses on V . Indeed, if fung is bounded in
H 1
V 0.�/, with inner product (2.24), then fdung and fV 1=2ung are bounded in

L2.�/. By Rellich’s theorem and a diagonal argument, one has a subsequence
funk

g whose restriction to each �N converges in L2.�N /-norm. The bound-
edness of fV 1=2ung in L2.�/ then gives convergence of this subsequence in
L2.�/-norm, proving the proposition.

The following result extends Proposition 2.4 of Chap. 5

Proposition 2.9. Assume that � is connected and that either � is compact or
V ! C1 at infinity. Denote by �0 the first eigenvalue of �� C V . Then
a �0-eigenfunction of �� C V is nowhere vanishing on �. Consequently, the
�0-eigenspace is one-dimensional.

Proof. Let u be a �0-eigenfunction of ��CV . As in the proof of Proposition 2.4
of Chap. 5, we can write u D uC C u�, where uC.x/ D u.x/ for u.x/ > 0

and u�.x/ D u.x/ for u.x/ � 0, and the variational characterization of the
�0-eigenspace implies that u˙ are eigenfunctions (if nonzero). Hence it suffices
to prove that if u is a �0-eigenfunction and u.x/ � 0 on �, then u.x/ > 0 on �.
To this end, write

u.x/ D et.��VC�0/u.x/ D
Z

�

pt .x; y/u.y/ dV.y/

We see that this forces pt .x; y/ D 0 for all t > 0, when

x 2 † D fx W u.x/ D 0g; y 2 O; O D fx W u.x/ > 0g;

since pt .x; y/ is smooth and � 0. The strong maximum principle (see Exercise 3
in �1 of Chap. 6 forces † D ;.

Exercises

1. Let H1
V
.�/ be the space (2.23). If V � 1 belongs to C1.�/, show that the Friedrichs

extension also defines a self-adjoint operator A1, equal to �� C V on C1
0 .�/, such

that D.A1=21 / D H1
V
.�/. If � is complete, show that this operator coincides with the

extension A defined in (2.25). Conclude that, in this case, H1
V
.�/ D H1

V 0
.�/.
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2. Let � be complete, V � 1 smooth. Show that if A is the self-adjoint extension of
��C V described in Proposition 2.7, then

(2.26) D.A/ D fu 2 L2.�/ W ��u C V u 2 L2.�/g;
where a priori we regard ��u C V u as an element of D0.�/.

3. Define T W L2.�/ ! L2.�;ƒ1/˚L2.�/ by D.T / D H1
V 0
.�/; T u D .du; V 1=2u/.

Show that

(2.27) D.T �/D f.v1; v2/2L2.�;ƒ1/˚ L2.�/ W ıv1 2L2.�/; V 1=2v2 2L2.�/g:
Show that T �T is equal to the self-adjoint extension A of �� C V defined by the
Friedrichs extension, as in (2.25).

4. If � is complete, show that the self-adjoint extension A of ��C V in Proposition 2.7
satisfies

(2.28) D.A/ D fu 2 L2.�/ W �u 2 L2.�/; V u 2 L2.�/g:
(Hint: Denote the right side by W . Use Exercise 3 and A D T �T to show that
D.A/ � W . Use Exercise 2 to show that W � D.A/:)

5. Let D D �i d=dx on C1.R/, and let B.x/ 2 C1.R/ be real-valued. Define the
unbounded operator L on L2.R/ by

(2.29) D.L/ D fu 2 L2.R/ W Du 2 L2.R/; Bu 2 L2.R/g; Lu D Du C iB.x/u:

Show that L� D D � iB , with

D.L�/ D fu 2 L2.R/ W Du � iBu 2 L2.R/g
Deduce that A0 D L�L is given by A0u D D2u C B2u C B 0.x/u on

D.A0/ D fu 2 L2.R/ W Du 2 L2.R/; Bu 2 L2.R/; D2uCB2uCB 0.x/u 2 L2.R/g
6. Suppose that jB 0.x/j � #B.x/2 C C , for some # < 1; C < 1. Show that

D.A0/ D fu 2 L2.R/ W D2u C .B2 C B 0/u 2 L2.R/g
(Hint: Apply Exercise 2 to D2 C .B2 C B 0/ D A, and show that D.A1=2/ is given by
D.L/, defined in (2.29).)

7. In the setting of Exercise 6, show that the operator L of Exercise 5 is closed.

(Hint: L�L D A is a self-adjoint extension of D2 C .B2 C B 0/. Show that D.A1=21 /

D D.L/ and also D D.L/:) Also show that D.L�/ D D.L/ in this case.

3. Heat asymptotics and eigenvalue asymptotics

In this section we will study the asymptotic behavior of the eigenvalues of the
Laplace operator on a compact Riemannian manifold, with or without boundary.
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We begin with the boundaryless case. Let M be a compact Riemannian man-
ifold without boundary, of dimension n. In �13 of Chap. 7 we have constructed a
parametrix for the solution operator et� of the heat equation

(3.1)
� @
@t

��
�

u D 0 on RC �M; u.0; x/ D f .x/

and deduced that

(3.2) Tr et� 	 t�n=2
�
a0 C a1t C a2t

2 C � � � /; t & 0;

for certain constants aj . In particular,

(3.3) a0 D .4�/�n=2 vol M:

This is related to the behavior of the eigenvalues of � as follows. Let the eigen-
values of �� be 0 D �0 � �1 � �2 � � � � % 1. Then (3.2) is equivalent to

(3.4)
1X
jD0

e�t�j 	 t�n=2
�
a0 C a1t C a2t

2 C � � � /; t & 0:

We will relate this to the counting function

(3.5) N.�/ 	 #f�j W �j � �g;

establishing the following:

Theorem 3.1. The eigenvalues f�j g of �� on the compact Riemannian manifold
M have the behavior

(3.6) N.�/ 	 C.M/�n=2; � ! C1;

with

(3.7) C.M/ D a0


.n
2

C 1/
D vol M


.n
2

C 1/.4�/n=2
:

That (3.6) follows from (3.4) is a special case of a result known as Karamata’s
Tauberian theorem. The following neat proof follows one in [Si3]. Let � be
a positive (locally finite) Borel measure on Œ0;1/; in the example above,
�
�
Œ0; ��

� D N.�/.

Proposition 3.2. If � is a positive measure on Œ0;1/; ˛ 2 .0;1/, then

(3.8)
Z 1

0

e�t� d�.�/ 	 at�˛ ; t & 0;
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implies

(3.9)
Z x

0

d�.�/ 	 bx˛ ; x % 1;

with

(3.10) b D a


.˛ C 1/
:

Proof. Let d�t be the measure given by �t .A/ D t˛�.t�1A/, and let d�.�/
D ˛�˛�1d�; then �t D �. The hypothesis (3.8) becomes

(3.11) lim
t!0

Z
e�� d�t .�/ D b

Z
e�� d�.�/;

with b given by (3.10), and the desired conclusion becomes

(3.12) lim
t!0

Z
�.�/ d�t .�/ D b

Z
�.�/ d�.�/

when � is the characteristic function of Œ0; 1�. It would suffice to show that (3.12)
holds for all continuous �.�/ with compact support in Œ0;1/.

From (3.11) we deduce that the measures e��d�t are uniformly bounded, for
t 2 .0; 1�. Thus (3.12) follows if we can establish

(3.13) lim
t!0

Z
g.�/e�� d�t .�/ D b

Z
g.�/e�� d�.�/;

for g in a dense subspace of C0.RC/, the space of continuous functions on Œ0;1/

that vanish at infinity. Indeed, the hypothesis implies that (3.13) holds for all g
in A, the space of finite, linear combinations of functions of � 2 Œ0;1/ of the
form 's.�/ D e�s�; s 2 .0;1/, as can be seen by dilating the variables in
(3.11). By the Stone-Weierstrass theorem, A is dense in Co.RC/, so the proof is
complete.

We next want to establish similar results on N.�/ for the Laplace operator �
on a compact manifold � with boundary, with Dirichlet boundary condition. At
the end of �13 in Chap. 7 we sketched a construction of a parametrix for et� in
this case which, when carried out, would yield an expansion

(3.14) Tr et� 	 t�n=2
�
a0 C a1=2t

1=2 C a1t C � � � �; t & 0;

extending (3.2). However, we will be able to verify the hypothesis of Proposition
3.2 with less effort than it would take to carry out the details of this construction,
and for a much larger class of domains.
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For simplicity, we will restrict attention to bounded domains in Rn and to the
flat Laplacian, though more general cases can be handled similarly. Now, let� be
an arbitrary bounded, open subset of Rn, with closure �. The Laplace operator
on �, with Dirichlet boundary condition, was studied in �5 of Chap. 5

Lemma 3.3. For any bounded, open � � Rn; � with Dirichlet boundary con-
dition, et� is trace class for all t > 0.

Proof. Let � � B , a large open ball. Then the variational characterization of
eigenvalues shows that the eigenvalues�j .�/ of �� on� and �j .B/ ofL D ��
on B , both arranged in increasing order, have the relation

(3.15) �j .�/ � �j .B/:

But we know that e�tL has integral kernel in C1.B �B/ for each t > 0, hence is
trace class. Since e�t�j .�/ � e�t�j .B/, this implies that the positive self-adjoint
operator et� is also trace class.

Limiting arguments, which we leave to the reader, allow one to show that, even in
this generality, if H.t; x; y/ 2 C1.���/ is, for fixed t > 0, the integral kernel
of et� on L2.�/, then

(3.16) Tr et� D
Z

�

H.t; x; x/ dx:

See Exercises 1–5 at the end of this section.

Proposition 3.4. If � is a bounded, open subset of Rn and � has the Dirichlet
boundary condition, then

(3.17) Tr et� 	 .4�t/�n=2 vol �; t & 0:

Proof. We will compareH.t; x; y/ with H0.t; x; y/ D .4�t/�n=2ejx�yj2=4t , the
free-space heat kernel. Let E.t; x; y/ D H0.t; x; y/�H.t; x; y/. Then, for fixed
y 2 �,

(3.18)
@E

@t
��xE D 0 on RC ��; E.0; x; y/ D 0;

and

(3.19) E.t; x; y/ D H0.t; x; y/; for x 2 @�:

To make simple sense out of (3.19), one might assume that every point of @�
is a regular boundary point, though a further limiting argument can be made to
lift such a restriction. The maximum principle for solutions to the heat equation
implies
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(3.20) 0 � E.t; x; y/ � sup
0�s�t;z2�

H0.s; z; y/ � sup
0�s�t

.4�s/�n=2 e�ı.y/2=4s;

where ı.y/ D dist.y; @�/. Now the function

 ı .s/ D .4�s/�n=2e�ı2=4s

on .0;1/ vanishes at 0 and 1 and has a unique maximum at s D ı2=2n; we
have  ı.ı2=2n/ D Cnı

�n. Thus

(3.21) 0 � E.t; x; y/ � max
�
.4�t/�n=2e�ı.y/2=4t ; Cnı.y/�n

�
:

Of course, E.t; x; y/ � H0.t; x; y/ also.
Now, let O �� � be such that vol.� n O/ < ". For t small enough, namely

for t � ı21=2n where ı1 D dist.O; @�/, we have

(3.22) 0 � E.t; x; x/ � .4�t/�n=2e�ı.x/2=4t ; x 2 O;
while of course 0 � E.t; x; x/ � .4�t/�n=2, for x 2 � n O. Therefore,

(3.23) lim sup
t!0

.4�t/n=2
Z

�

E.t; x; x/ dx � ";

so

(3.24)

vol � � " � lim inf
t!0

.4�t/n=2
Z

�

H.t; x; x/ dx

� lim sup
t!0

.4�t/n=2
Z

�

H.t; x; x/ dx � vol �:

As " can be taken arbitrarily small, we have a proof of (3.17).

Corollary 3.5. If� is a bounded, open subset of Rn; N.�/ the counting function
of the eigenvalues of ��, with Dirichlet boundary condition, then (3.6) holds.

Note that if O" is the set of points in � of distance � " from @� and we define
v."/ D vol.� n O"/, then the estimate (3.24) can be given the more precise
reformulation

(3.25) 0 � vol � � .4�t/n=2 Tr et� � !.
p
2nt/;

where

(3.26) !."/ D v."/C
Z 1

"

e�ns2=2"2

dv.s/:
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The fact that such a crude argument works, and works so generally, is a special
property of the Dirichlet problem. If one uses the Neumann boundary condition,
then for bounded � � Rn with nasty boundary, � need not even have compact
resolvent. However, Theorem 3.1 does extend to the Neumann boundary condition
provided @� is smooth. One can do this via the sort of parametrix for boundary
problems sketched in �13 of Chap. 7.

We now look at the heat kernel H.t; x; y/ on the complement of a smooth,
bounded region K � Rn. We impose the Dirichlet boundary condition on @K .
As before, 0 � H.t; x; y/ � H0.t; x; y/, whereH0.t; x; y/ is the free-space heat
kernel. We can extendH.t; x; y/ to be Lipschitz continuous on .0;1/�Rn�Rn

by setting H.t; x; y/ D 0 when either x 2 K or y 2 K . We now estimate
E.t; x; y/ D H0.t; x; y/ � H.t; x; y/. Suppose K is contained in the open ball
of radiusR centered at the origin.

Lemma 3.6. For jx � yj � jyj �R, we have

(3.27) E.t; x; y/ � C t�1=2e�.jyj�R/2=4t :

Proof. With y 2 � D Rn nK , write

(3.28) H.t; x; y/ D .4�t/�1=2
Z 1

�1
e�s2=4t cos sƒ ds;

where ƒ D p�� and � is the Laplace operator on �, with the Dirichlet
boundary condition. We have a similar formula for H0.t; x; y/, using instead
ƒ0 D p��0, with �0 the free-space Laplacian. Now, by finite propagation
speed,

cos sƒ ıy.x/ D cos sƒ0 ıy.x/;

provided
jsj � d D dist.y; @K/; and jx � yj � d

Thus, as long as jx � yj � d , we have

(3.29) E.t; x; y/ D .4�t/�1=2
Z

jsj�d
e�s2=4t

	
cos sƒ0 ıy.x/� cos sƒ ıy.x/



ds:

Then the estimate (3.27) follows easily, along the same lines as estimates on heat
kernels discussed in Chap. 6, �2.

When we combine (3.27) with the obvious inequality

(3.30) 0 � E.t; x; y/ � H0.t; x; y/ D .4�t/�n=2e�jx�yj2=4t ;

we see that, for each t > 0; E.t; x; y/ is rapidly decreasing as jxj C jyj ! 1.
Using this and appropriate estimates on derivatives, we can show that E.t; x; y/
is the integral kernel of a trace class operator on L2.Rn/. We can write
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(3.31) Tr
�
et�0 � et�P

� D
Z

Rn

E.t; x; x/ dx;

whereP is the projection ofL2.Rn/ ontoL2.�/ defined by restriction to�. Now,
as t & 0; .4�t/n=2E.t; x; x/ approaches 1 onK and 0 on Rn nK . Together with
the estimates (3.27) and (3.30), this implies

(3.32) .4�t/n=2
Z

Rn

E.t; x; x/ dx �! vol K;

as t & 0. This establishes the following:

Proposition 3.7. If K is a closed, bounded set in Rn; � is the Laplacian on
L2.Rn n K/; with Dirichlet boundary condition, and �0 is the Laplacian on
L2.Rn/, then et�0 � et�P is trace class for each t > 0 and

(3.33) Tr
�
et�0 � et�P

� 	 .4�t/�n=2 vol K;

as t & 0.

This result will be of use in the study of scattering by an obstacle K , in Chap. 9.
It is also valid for the Neumann boundary condition if @K is smooth.

Exercises

In Exercises 1–4, let � � Rn be a bounded, open set and let Oj be open with smooth
boundary such that

O1 �� O2 �� � � � �� Oj �� � � � % �:

Let Lj be �� on Lj , with Dirichlet boundary condition; the corresponding operator
on � is simply denoted ��.

1. Using material developed in �5 of Chap. 5, show that, for any t > 0; f 2 L2.�/,
e�tLj Pj f �! et�f strongly in L2.�/;

as j ! 1, where Pj is multiplication by the characteristic function of Oj .
Don’t peek at Lemma 3.4 in Chap. 11!

2. If ��.Oj / are the eigenvalues of Lj , arranged in increasing order for each j , show
that, for each �,

��.Oj / & ��.�/; as j ! 1:

3. Show that, for each t > 0,
Tr e�tLj % Tr et�:

4. Let Hj .t; x; y/ be the heat kernel on RC � Oj � Oj . Extend Hj to RC �� �� so
as to vanish if x or y belongs to� n Oj . Show that, for each x 2 �; y 2 �; t > 0,

Hj .t; x; y/ % H.t; x; y/; as j ! 1:
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Deduce that, for each t > 0,
Z

Oj

Hj .t; x; x/ dx %
Z

�

H.t; x; x/ dx

5. Using Exercises 1–4, give a detailed proof of (3.16) for general bounded � � Rn.
6. Give an example of a bounded, open, connected set � � R2 (with rough boundary)

such that �, with Neumann boundary condition, does not have compact resolvent.

4. The Laplace operator on Sn

A key tool in the analysis of the Laplace operator�S on Sn is the formula for the
Laplace operator on RnC1 in polar coordinates:

(4.1) � D @2

@r2
C n

r

@

@r
C 1

r2
�S :

In fact, this formula is simultaneously the main source of interest in �S and the
best source of information about it.

To begin, we consider the Dirichlet problem for the unit ball in Euclidean
space, B D fx 2 RnC1 W jxj < 1g:

(4.2) �u D 0 in B; u D f on Sn D @B;

given f 2 D0.Sn/. In Chap. 5 we obtained the Poisson integral formula for the
solution:

(4.3) u.x/ D 1� jxj2
An

Z

Sn

f .y/

jx � yjnC1 dS.y/;

whereAn is the volume of Sn. Equivalently, if we set xD r! with r D jxj; ! 2Sn;

(4.4) u.r!/ D 1 � r2

An

Z

Sn

f .!0/
.1 � 2r! � !0 C r2/.nC1/=2 dS.!0/:

Now we can derive an alternative formula for the solution of (4.2) if we use
(4.1) and regard�u D 0 as an operator-valued ODE in r ; it is an Euler equation,
with solution

(4.5) u.r!/ D rA�.n�1/=2f .!/; r � 1;

where A is an operator on D0.Sn/, defined by

(4.6) A D
�
��S C .n � 1/2

4

�1=2
:



114 8. Spectral Theory

If we set r D e�t and compare (4.5) and (4.4), we obtain a formula for the
semigroup e�tA as follows. Let �.!; !0/ denote the geodesic distance on Sn from
! to !0, so cos �.!; !0/ D ! � !0. We can rewrite (4.4) as

(4.7)

u.r!/ D 2

An
sinh.log r�1/ r�.n�1/=2

�
Z

Sn

f .!0/
	
2 cosh.log r�1/ � 2 cos �.!; !0/


�.nC1/=2 dS.!
0/:

In other words, by (4.5),

(4.8) e�tAf .!/ D 2

An
sinh t

Z

Sn

f .!0/
�
2 cosh t � 2 cos�.!; !0/

�.nC1/=2 dS.!
0/:

Identifying an operator on D0.Sn/ with its Schwartz kernel in D0.Sn � Sn/, we
write

(4.9) e�tA D 2

An

sinh t

.2 cosh t � 2 cos �/.nC1/=2 ; t > 0:

Note that the integration of (4.9) from t to 1 produces the formula

(4.10) A�1e�tA D 2Cn.2 cosh t � 2 cos �/�.n�1/=2; t > 0;

provided n � 2, where

Cn D 1

.n � 1/An D 1

4
��.nC1/=2


�n � 1
2

�

With the exact formula (4.9) for the semigroup e�tA, we can proceed to give
formulas for fundamental solutions to various important PDE, particularly

(4.11)
@2u

@t2
�Lu D 0 (wave equation)

and

(4.12)
@u

@t
�Lu D 0 (heat equation),

where

(4.13) L D �S � .n � 1/2

4
D �A2:

If we prescribe Cauchy data u.0/ D f; ut .0/ D g for (4.11), the solution is

(4.14) u.t/ D .cos tA/f C A�1.sin tA/g:
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Assume n � 2. We obtain formulas for these terms by analytic continuation of
the formulas (4.9) and (4.10) to Re t > 0 and then passing to the limit t 2 iR.
This is parallel to the derivation of the fundamental solution to the wave equation
on Euclidean space in �5 of Chap. 3. We have

(4.15)
A�1e.it�"/A D �2Cn

	
2 cosh.it � "/� 2 cos �


�.n�1/=2
;

e.it�"/A D 2

An
sinh.it � "/	2 cosh.it � "/� 2 cos �


�.nC1/=2
:

Letting " & 0, we have

(4.16)
A�1 sin tA D

lim
"&0

�2Cn Im .2 cosh " cos t � 2i sinh " sin t � 2 cos �/�.n�1/=2

and

(4.17)
cos tA D

lim
"&0

�2
An

Im.sin t/.2 cosh " cos t � 2i sinh " sin t � 2 cos �/�.nC1/=2:

For example, on S2 we have, for 0 � t � � ,

(4.18)
A�1 sin tA D �2C2.2 cos � � 2 cos t/�1=2; � < jt j;

0; � > jt j;

with an analogous expression for general t , determined by the identity

(4.19) A�1 sin.t C 2�/A D �A�1 sin tA on D0.S2k/;

plus the fact that sin tA is odd in t . The last line on the right in (4.18) re-
flects the well-known finite propagation speed for solutions to the hyperbolic
equation (4.11).

To understand how the sign is determined in (4.19), note that, in (4.15),
with " > 0, for t D 0 we have a real kernel, produced by taking the �.n �
1/=2 D �k C 1=2 power of a positive quantity. As t runs from 0 to 2� , the
quantity 2 cosh.i t � "/ D 2 cosh " cos t � 2i sinh " sin t moves once clockwise
around a circle of radius 2.cosh2 "C sinh2 "/1=2, centered at 0, so 2 cosh " cos t �
2i sinh " sin t � 2 cos � describes a curve winding once clockwise about the ori-
gin in C. Thus taking a half-integral power of this gives one the negative sign
in (4.14).

On the other hand, when n is odd, the exponents on the right side of (4.15)–
(4.17) are integers. Thus

(4.20) A�1 sin.t C 2�/A D A�1 sin tA on D0.S2kC1/:



116 8. Spectral Theory

Also, in this case, the distributional kernel for A�1 sin tAmust vanish for jt j ¤ � .
In other words, the kernel is supported on the shell � D jt j. This is the general-
ization to spheres of the strict Huygens principle.

In case n D 2k C 1 is odd, we obtain from (4.16) and (4.17) that

(4.21) A�1 sin tA f .x/ D 1

.2k � 1/ŠŠ
� 1

sin s

@

@s

�k�1�
sin2k�1 s f .x; s/

�
sDt

and

(4.22) cos tA f .x/ D 1

.2k � 1/ŠŠ
sin s

� 1

sin s

@

@s

�k�
sin2k�1 s f .x; s/

�
sDt ;

where, as in (5.66) of Chap. 3, .2k � 1/ŠŠ D 3 � 5 � � � .2k � 1/ and

(4.23) f .x; s/ D mean value of f on †s.x/ D fy 2 Sn W �.x; y/ D jsjg:

We can examine general functions of the operatorA by the functional calculus

(4.24) g.A/ D .2�/�1=2
Z 1

�1
Og.t/eitA dt D .2�/�1=2

Z 1

�1
Og.t/ cos tA dt;

where the last identity holds provided g is an even function. We can rewrite this,
using the fact that cos tA has period 2� in t on D0.Sn/ for n odd, period 4� for
n even. In concert with (4.22), we have the following formula for the Schwartz
kernel of g.A/ on D0.S2kC1/, for g even:

(4.25) g.A/ D .2�/�1=2
�
� 1

2�

1

sin �

@

@�

�k 1X
kD�1

Og.� C 2k�/:

As an example, we compute the heat kernel on odd-dimensional spheres. Take
g.�/ D e�t�2

. Then Og.s/ D .2t/�1=2e�s2=4t and

(4.26) .2�/�1=2
X
k

Og.s C 2k�/ D .4�t/�1=2
X
k

e�.sC2k�/2=4t D #.s; t/;

where #.s; t/ is a “theta function.” Thus the kernel of e�tA2

on S2kC1 is given by

(4.27) e�tA2 D
�
� 1

2�

1

sin �

@

@�

�k
#.�; t/:

A similar analysis on S2k gives an integral, with the theta function appearing in
the integrand.
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The operator A has a compact resolvent on L2.Sn/, and hence a discrete set
of eigenvalues, corresponding to an orthonormal basis of eigenfunctions. Indeed,
the spectrum of A has the following description

Proposition 4.1. The spectrum of the self-adjoint operator A on L2.Sn/ is

(4.28) spec A D
n1
2
.n � 1/C k W k D 0; 1; 2; : : :

o
:

Proof. Since 0 is the smallest eigenvalue of ��S , the definition (4.6) shows that
.n � 1/=2 is the smallest eigenvalue of A. Also, (4.20) shows that all eigenvalues
of A are integers if n is odd, while (4.19) implies that all eigenvalues of A are
(nonintegral) half-integers if n is even. Thus spec A is certainly contained in the
right side of (4.28).

Another way to see this containment is to note that since the function u.x/
given by (4.5) must be smooth at x D 0, the exponent of r in that formula can
take only integer values.

Let Vk denote the eigenspace of A with eigenvalue �k D .n � 1/=2C k. We
want to show that Vk ¤ 0 for k D 0; 1; 2; : : : . Moreover, we want to identify Vk .
Now if f 2 Vk , it follows that u.x/ D u.r!/ D rA�.n�1/=2f .!/ D rkf .!/

is a harmonic function defined on all of RnC1, which, being homogeneous and
smooth at x D 0, must be a harmonic polynomial, homogeneous of degree k in
x. If Hk denotes the space of harmonic polynomials, homogeneous of degree k,
restriction to Sn � RnC1 produces an isomorphism:

(4.29) � W Hk

��! Vk:

To show that each Vk ¤ 0, it suffices to show that each Hk ¤ 0.
Indeed, for c D .c1; : : : ; cnC1/ 2 CnC1, consider

pc.x/ D .c1x1 C � � � C cnC1xnC1/k:

A computation gives

�pc.x/ D k.k � 1/hc; ci.c1x1 C � � � C ckxk/
k�2;

hc; ci D c21 C � � � C c2k:

Hence �pc D 0 whenever hc; ci D 0, so the proposition is proved.

We now want to specify the orthogonal projections Ek of L2.Sn/ on Vk . We
can attack this via (4.10), which implies

(4.30)
1X
kD0

��1
k e�t�kEk.x; y/ D 2Cn.2 cosh t � 2 cos �/�.n�1/=2;
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where � D �.x; y/ is the geodesic distance from x to y in Sn. If we set r D e�t
and use �k D .n � 1/=2C k, we get the generating function identity

(4.31)

1X
kD0

rk��1
k Ek.x; y/ D 2Cn.1 � 2r cos � C r2/�.n�1/=2

D
1X
kD0

rkpk.cos �/I

in particular,

(4.32) Ek.x; y/ D �k pk.cos �/:

These functions are polynomials in cos � . To see this, set t D cos � and write

(4.33) .1 � 2tr C r2/�˛ D
1X
kD0

C ˛k .t/ r
k;

thus defining coefficients C ˛
k
.t/. To compute these, use

.1 � z/�˛ D
1X
jD0

 
j C ˛ � 1

j

!
zj ;

with z D r.2t � r/, to write the left side of (4.33) as

1X
jD0

 
˛

j

!
rj .2t � r/j D

1X
jD0

jX
`D0

 
j C ˛ � 1

j

! 
j

`

!
.�1/`rjC`.2t/j�`

D
1X
kD0

Œk=2	X
`D0

.�1/`
 
k � `C ˛ � 1

k � `

! 
k � `

`

!
.2t/k�2`rk :

Hence

(4.34) C ˛k .t/ D
Œk=2	X
`D0

.�1/`
 
k � `C ˛ � 1

k � `

! 
k � `

`

!
.2t/k�2`:

These are called Gegenbauer polynomials. Therefore, we have the following:

Proposition 4.2. The orthogonal projection of L2.Sn/ onto Vk has kernel

(4.35) Ek.x; y/ D 2Cn�k C
˛
k .cos �/; ˛ D 1

2
.n � 1/;

with Cn as in (4.10).
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In the special case n D 2, we have C2 D 1=4� , and �k D k C 1=2; hence

(4.36) Ek.x; y/ D 2k C 1

4�
C
1=2

k
.cos �/ D 2k C 1

4�
Pk.cos �/;

where C 1=2
k
.t/ D Pk.t/ are the Legendre polynomials.

The trace of Ek is easily obtained by integrating (4.35) over the diagonal, to
yield

(4.37) Tr Ek D 2CnAn�k C
.n�1/=2
k

.1/ D 2�k

n � 1 C
.n�1/=2
k

.1/:

Setting t D 1 in (4.33), so .1 � 2r C r2/�˛ D .1 � r/�2˛ , we obtain

(4.38) C ˛k .1/ D
 
k C 2˛ � 1

k

!
; e.g., Pk.1/ D 1:

Thus we have the dimensions of the eigenspaces Vk :

Corollary 4.3. The eigenspace Vk of ��S on Sn, with eigenvalue

�k D �2k � 1

4
.n � 1/2 D k2 C .n � 1/k;

satisfies

(4.39) dim Vk D 2k C n � 1

n � 1

 
k C n � 2

k

!
D
 
k C n � 2

k � 1

!
C
 
k C n � 1

k

!
:

In particular, on S2 we have dim Vk D 2k C 1.

Another natural approach to Ek is via the wave equation. We have

(4.40)

Ek D 1

2T

Z T

�T
e�i�k teitA dt

D 1

2T

Z T

�T
cos t.A � �k/ dt;

where T D � or 2� depending on whether n is odd or even. (In either case, one
can take T D 2� .) In the special case of S2, when (4.18) is used, comparison of
(4.36) with the formula produced by this method produces the identity

(4.41) Pk.cos �/ D 1

�

Z 


�

cos.k C 1

2
/t

.2 cos t � 2 cos �/1=2
dt;

for the Legendre polynomials, known as the Mehler-Dirichlet formula.
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Exercises

Exercises 1–5 deal with results that follow from symmetries of the sphere. The group
SO.nC 1/ acts as a group of isometries of Sn � RnC1, hence as a group of unitary
operators on L2.Sn/. Each eigenspace Vk of the Laplace operator is preserved by this
action. Fix p D .0; : : : ; 0; 1/ 2 Sn, regarded as the “north pole.” The subgroup of
SO.nC 1/ fixing p is a copy of SO.n/.

1. Show that each eigenspace Vk has an element u such that u.p/ ¤ 0. Conclude by
forming Z

SO.n/

u.gx/ dg

that each eigenspace Vk of �S has an element zk ¤ 0 such that zk.x/ D zk.gx/, for
all g 2 SO.n/. Such a function is called a spherical function.

2. Suppose Vk has a proper subspace W invariant under SO.nC 1/. (Hence W ? � Vk
is also invariant.) Show that W must contain a nonzero spherical function.

3. Suppose zk and yk are two nonzero spherical functions in Vk . Show that they must be
multiples of each other. Hence the unique spherical functions (up to constant multiples)
are given by (4.35), with y D p. (Hint: zk and yk are eigenfunctions of ��S , with
eigenvalue �k D k2 C .n� 1/k. Pick a sequence of surfaces

†j D fx 2 Sn W �.x; p/ D "j g � Sn;

with "j ! 0, on which zk D ˛j ¤ 0. With ˇj D yk j†j , it follows that ˇjzk � ˛jyk

is an eigenfunction of ��S that vanishes on †j . Show that, for j large, this forces
ˇjzk � ˛jyk to be identically zero.)

4. Using Exercises 2 and 3, show that the action of SO.nC 1/ on each eigenspace Vk is
irreducible, that is, Vk has no proper invariant subspaces.

5. Show that each Vk is equal to the linear span of the set of polynomials of the form
pc.x/ D .c1x1 C � � � C cnC1xnC1/k , with hc; ci D 0.
(Hint: Show that this linear span is invariant under SO.nC 1/:)

6. Using (4.9), show that

(4.42) Tr e�tA D 2 sinh t

.2 cosh t � 2/.nC1/=2 :

Find the asymptotic behavior as t & 0. Use Karamata’s Tauberian theorem to deter-
mine the asymptotic behavior of the eigenvalues of A, hence of ��S . Compare this
with the general results of �3 and also with the explicit results of Corollary 4.3.

7. Using (4.27), show that, for A on Sn with n D 2k C 1,

(4.43)
Tr e�tA2 D A2kC1p

4�t

�
� 1

2�

1

sin �

@

@�

�k
e�
2=4t

ˇ̌
ˇ

D0 CO.t1/

D .4�t/�n=2 A2kC1 CO
�
t�n=2C1�;

as t & 0. Compare the general results of �3.
8. Show that

(4.44) e��i.A�.n�1/=2/f .!/ D f .�!/; f 2 L2.Sn/:
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(Hint: Check it for f 2 Vk , the restriction to Sn of a homogeneous harmonic
polynomial of degree k:)
Exercises 9–13 deal with analysis on Sn when n D 2. When doing them, look for
generalizations to other values of n.

9. If „.A/ has integral kernel K„.x; y/, show that when n D 2,

(4.45) K„.x; y/ D 1

4�

1X

`D0
.2`C 1/„

�
`C 1

2

�
P`.cos �/;

where cos � D x � y and P`.t/ are the Legendre polynomials.
10. Demonstrate the Rodrigues formula for the Legendre polynomials:

(4.46) Pk.t/ D 1

2kkŠ

� d
dt

�k�
t2 � 1�k :

(Hint: Use Cauchy’s formula to get

Pk.t/ D 1

2�i

Z

�
.1 � 2zt C z2/�1=2z�k�1 d z

from (4.33); then use the change of variable 1� uz D .1� 2tz C z2/1=2. Then appeal
to Cauchy’s formula again, to analyze the resulting integral.)

11. If f 2 L2.S2/ has the form f .x/ D g.x � y/ D P
'`P`.x � y/, for some y 2 S2,

show that

(4.47) '` D 2`C 1

4�

Z

S2

f .z/P`.y � z/ dS.z/ D
�
`C 1

2

� Z 1

�1
g.t/P`.t/ dt:

(Hint: Use
R
S2 Ek.x; z/E`.z; y/ dS.z/ D ık` E`.x; y/:) Conclude that g.x � y/ is the

integral kernel of  .A� 1=2/, where

(4.48)  .`/ D 4�

2`C 1
'` D 2�

Z 1

�1
g.t/P`.t/ dt:

This result is known as the Funk-Hecke theorem.
12. Show that, for x; y 2 S2,

(4.49) eikx�y D
1X

`D0
.2`C 1/ i` j`.k/ P`.x � y/;

where

(4.50) j`.z/ D
� �
2z

�1=2
J`C1=2.z/ D 1

2

1

`Š

� z

2

�` Z 1

�1
.1� t2/` eizt dt:

(Hint: Take g.t/ D eikt in Exercise 11, apply the Rodrigues formula, and integrate by
parts.) Thus eikx�y is the integral kernel of the operator

4� e.1=2/�i.A�1=2/ jA�1=2.k/
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For another approach, see Exercises 10 and 11 in �9 of Chap. 9.
13. Demonstrate the identities

(4.51)
h
.1� t2/

d

dt
C `t

i
P`.t/ D `P`�1.t/

and

(4.52)
d

dt

h
.1 � t2/

d

dt
P`.t/

i
C `.`C 1/P`.t/ D 0:

Relate (4.52) to the statement that, for fixed y 2 S2, '.x/ D P`.x � y/ belongs to the
`.`C 1/-eigenspace of ��S .

Exercises 14–19 deal with formulas for an orthogonal basis of Vk (for S2). We will
make use of the structure of irreducible representations of SO(3), obtained in �9 of
Appendix B, Manifolds, Vector Bundles, and Lie Groups.

14. Show that the representation of SO(3) on Vk is equivalent to the representation Dk ,
for each k D 0; 1; 2; : : : .

15. Show that if we use coordinates .�;  / on S2, where � is the geodesic distance from
.1; 0; 0/ and  is the angular coordinate about the x1-axis in R3, then

(4.53) L1 D @

@ 
; L˙ D i e˙i h˙ @

@�
C i cot �

@

@ 

i
:

16. Set

(4.54) wk.x/ D .x2 C ix3/
k D sink � eik :

Show that wk 2 Vk and that it is the highest-weight vector for the representation, so

L1wk D ik wk

17. Show that an orthogonal basis of Vk is given by

wk ; L�wk ; : : : ; L2k� wk

18. Show that the functions 	kj D Lk�j� wk ; j 2 f�k;�k C 1; : : : ; k � 1; kg, listed in
Exercise 17 coincide, up to nonzero constant factors, with zkj , given by

zk0 D zk ;

the spherical function considered in Exercises 1–3, and, for 1 � j � k,

zk;�j D Lj�zk ; zkj D L
j
Czk

19. Show that the functions zkj coincide, up to nonzero constant factors, with

(4.55) eij P
j
k
.cos �/; �k � j � k;

where P j
k
.t/, called associated Legendre functions, are defined by

(4.56) P
j

k
.t/ D .�1/j .1 � t2/jj j=2� d

dt

�jj j
Pk.t/:
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5. The Laplace operator on hyperbolic space

The hyperbolic space Hn shares with the sphere Sn the property of having
constant sectional curvature, but for Hn it is �1. One way to describe Hn is as a
set of vectors with square length 1 in RnC1, not for a Euclidean metric, but rather
for a Lorentz metric

(5.1) hv; vi D �v21 � � � � � v2n C v2nC1;

namely,

(5.2) Hn D fv 2 RnC1 W hv; vi D 1; vnC1 > 0g;
with metric tensor induced from (5.1). The connected componentG of the identity
of the group O.n; 1/ of linear transformations preserving the quadratic form (5.1)
acts transitively on Hn, as a group of isometries. In fact, SO.n/, acting on Rn �
RnC1, leaves invariant p D .0; : : : ; 0; 1/ 2 Hn and acts transitively on the unit
sphere in TpHn. Also, if A.u1; : : : ; un; unC1/t D .u1; : : : ; unC1; un/t , then etA is
a one-parameter subgroup of SO.n; 1/ taking p to the curve

� D f.0; : : : ; 0; xn; xnC1/ W x2nC1 � x2n D 1; xnC1 > 0g
Together these facts imply that Hn is a homogeneous space.

There is a map of Hn onto the unit ball in Rn, defined in a fashion similar to
the stereographic projection of Sn. The map

(5.3) s W Hn �! Bn D fx 2 Rn W jxj < 1g
is defined by

(5.4) s.x; xnC1/ D .1C xnC1/�1x:

The metric on Hn defined above then yields the following metric tensor on Bn:

(5.5) ds2 D 4
�
1 � jxj2��2

nX
jD1

dx2j :

Another useful representation of hyperbolic space is as the upper half space
RnC D fx 2 Rn W xn > 0g, with a metric we will specify shortly. In fact, with
en D .0; : : : ; 0; 1/,

(5.6) 
.x/ D jx C enj�2.x C en/� 1

2
en

defines a map of the unit ball Bn onto RnC, taking the metric (5.5) to

(5.7) ds2 D x�2
n

nX
jD1

dx2j :
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The Laplace operator for the metric (5.7) has the form

(5.8)

�u D
nX
jD1

xnn @j
�
x2�n
n @j u

�

D x2n

nX
jD1

@2j u C .2 � n/xn @nu:

which is convenient for a number of computations, such as (5.9) in the following:

Proposition 5.1. If � is the Laplace operator on Hn, then � is essentially self-
adjoint on C1

0 .Hn/, and its natural self-adjoint extension has the property

(5.9) spec.��/ �
h1
4
.n � 1/2;1

�
:

Proof. Since Hn is a complete Riemannian manifold, the essential self-adjoint-
ness on C1

0 .Hn/ follows from Proposition 2.4. To establish (5.9), it suffices to
show that

.��u; u/L2.Hn/ � .n � 1/2
4

kuk2
L2.Hn/

;

for all u 2 C1
0 .Hn/. Now the volume element on Hn, identified with the upper

half-space with the metric (5.7), is x�n
n dx1 � � �dxn, so for such u we have

(5.10)

��
�� � 1

4
.n � 1/2

�
u; u

�
L2

D
Z h

.@nu/2 �
� .n � 1/u

2xn

�2i
x2�n
n dx1 � � �dxn

C
n�1X
jD1

Z
.@j u/2x2�n

n dx1 � � �dxn:

Now, by an integration by parts, the first integral on the right is equal to

(5.11)
Z

Rn
C

h
@n
�
x�.n�1/=2
n u

�i2
xn dx1 � � �dxn:

Thus the expression (5.10) is � 0, and (5.9) is proved.

We next describe how to obtain the fundamental solution to the wave equation
on Hn. This will be obtained from the formula for Sn, via an analytic continuation
in the metric tensor. Let p be a fixed point (e.g., the north pole) in Sn, taken to be
the origin in geodesic normal coordinates. Consider the one-parameter family of
metrics given by dilating the sphere, which has constant curvatureKD 1. Spheres
dilated to have radius > 1 have constant curvature K 2 .0; 1/. On such a space,
the fundamental kernel A�1 sin tA ıp.x/, with
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(5.12) A D
�
��C K

4
.n � 1/2

�1=2
;

can be obtained explicitly from that on the unit sphere by a change of scale. The
explicit representation so obtained continues analytically to all real values of K
and at K D �1 gives a formula for the wave kernel,

(5.13) A�1 sin tA ıp.x/ D R.t; p; x/; A D
�
�� � 1

4
.n � 1/2

�1=2
:

We have

(5.14) R.t; p; x/ D lim
"&0

�2Cn Im
	
2 cos.it � "/� 2 cosh r


�.n�1/=2
;

where r D r.p; x/ is the geodesic distance from p to x. Here, as in (4.10),
Cn D 1=.n� 1/An. This exhibits several properties similar to those in the case
of Sn discussed in �4. Of course, for r > jt j, the limit vanishes, exhibiting the
finite propagation speed phenomenon. Also, if n is odd, the exponent .n� 1/=2 is
an integer, which implies that (5.14) is supported on the shell r D jt j.

In analogy with (4.25), we have the following formula for g.A/ıp.x/, for g 2
S.R/, when acting on L2.Hn/, with n D 2k C 1:

(5.15) g.A/ D .2�/�1=2
�
� 1

2�

1

sinh r

@

@r

�k Og.r/:

If n D 2k, we have

(5.16)
g.A/ D

1

�1=2

Z 1

r

�
� 1

2�

1

sinh s

@

@s

�k Og.s/�cosh s � cosh r
��1=2

sinh s ds:

Exercises

1. If n D 2kC 1, show that the Schwartz kernel of
���� .n� 1/2=4� z2

��1 on Hn, for
z 2 C n Œ0;1/, is

Gz.x; y/ D � 1

2iz

�
� 1

2�

1

sinh r

@

@r

�k
eizr;

where r D r.x; y/ is geodesic distance, and the integral kernel of et.�C.n�1/2=4/, for
t > 0, is

Ht .x; y/ D 1p
4�t

�
� 1

2�

1

sinh r

@

@r

�k
e�r2=4t
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6. The harmonic oscillator

We consider the differential operatorH D ��C jxj2 onL2.Rn/. By Proposition
2.7, H is essentially self-adjoint on C1

0 .R
n/. Furthermore, as a special case of

Proposition 2.8, we know that H has compact resolvent, so L2.Rn/ has an or-
thonormal basis of eigenfunctions of H . To work out the spectrum, it suffices to
work with the case n D 1, so we considerH D D2 C x2, whereD D �i d=dx.

The spectral analysis follows by some simple algebraic relations, involving the
operators

(6.1)

a D D � ix D 1

i

� d
dx

C x
�
;

aC D D C ix D 1

i

� d
dx

� x
�
:

Note that on D0.R/,

(6.2) H D aaC � I D aCa C I;

and

(6.3) ŒH; a� D �2a; ŒH; aC� D 2aC:

Suppose that uj 2 C1.R/ is an eigenfunction of H , that is,

(6.4) uj 2 D.H/; Huj D �j uj:

Now, by material developed in �2,

(6.5)
D.H 1=2/ D fu 2 L2.R/ W Du 2 L2.R/; xu 2 L2.R/g;

D.H/ D fu 2 L2.R/ W D2u C x2u 2 L2.R/g:

Since certainly each uj belongs to D.H 1=2/, it follows that auj and aCuj belong
to L2.R/. By (6.3), we have

(6.6) H.auj/ D .�j � 2/auj; H.aCuj/ D .�j C 2/aCuj:

It follows that auj and aCuj belong to D.H/ and are eigenfunctions. Hence, if

(6.7) Eigen.�;H/ D fu 2 D.H/ W Hu D �ug;
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we have, for all � 2 R,

(6.8)
aC W Eigen.�;H/ ! Eigen.�C 2;H/;

a W Eigen.�C 2;H/ ! Eigen.�;H/:

From (6.2) it follows that .Hu; u/ � kuk2
L2 , for all u 2 C1

0 .R/; hence, in view
of essential self-adjointness,

(6.9) spec H � Œ1;1/; for n D 1:

Now each space Eigen.�;H/ is a finite-dimensional subspace of C1.R/, and,
by (6.2), we conclude that, in (6.8), aC is an isomorphism of Eigen.�j;H/

onto Eigen.�j C 2;H/, for each �j 2 spec H . Also, a is an isomorphism of
Eigen.�j;H/ onto Eigen.�j � 2;H/, for all �j > 1. On the other hand, a must
annihilate Eigen.�0;H/ when �0 is the smallest element of spec H , so

(6.10)
u0 2 Eigen.�0;H/ H) u0

0.x/ D �xu0.x/

H) u0.x/ D K e�x2=2:

Thus

(6.11) �0 D 1; Eigen.1;H/ D span
�
e�x2=2

�
:

Since e�x2=2 spans the null space of a, acting on C1.R/, and since each nonzero
space Eigen.�j;H/ is mapped by some power of a to this null space, it follows
that, for n D 1,

(6.12) spec H D f2k C 1 W k D 0; 1; 2; : : : g

and

(6.13) Eigen.2k C 1;H/ D span

 �
@

@x
� x

�k
e�x2=2

!
:

One also writes

(6.14)
� @
@x

� x
�k
e�x2=2 D Hk.x/ e

�x2=2;

whereHk.x/ are the Hermite polynomials, given by

(6.15)

Hk.x/ D .�1/kex2
� d

dx

�k
e�x2

D
Œk=2	X
jD0

.�1/j kŠ

j Š.k � 2j /Š .2x/
k�2j :
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We define eigenfunctions ofH :

(6.16) hk.x/ D ck

� @
@x

� x
�k
e�x2=2 D ckHk.x/e

�x2=2;

where ck is the unique positive number such that khkkL2.R/ D 1. To evaluate ck ,
note that

(6.17) kaChkk2
L2 D .aaChk; hk/L2 D 2.k C 1/khkk2

L2 :

Thus, if khkkL2 D 1, in order for hkC1 D �ka
Chk to have unit norm, we need

�k D .2k C 2/�1=2. Hence

(6.18) ck D 	
�1=22k.kŠ/


�1=2
:

Of course, given the analysis above ofH on L2.R/, then forH D ��C jxj2
on L2.Rn/, we have

(6.19) spec H D f2k C n W k D 0; 1; 2; : : : g:

In this case, an orthonormal basis of Eigen.2k C n;H/ is given by

(6.20) ck1
� � � ckn

Hk1
.x1/ � � �Hkn

.xn/e
�jxj2=2; k1 C � � � C kn D k;

where k� 2 f0; : : : ; kg, theHk�
.x�/ are the Hermite polynomials, and the ck�

are
given by (6.18). The dimension of this eigenspace is the same as the dimension of
the space of homogeneous polynomials of degree k in n variables.

We now want to derive a formula for the semigroup e�tH ; t > 0, called the
Hermite semigroup. Again it suffices to treat the case n D 1. To some degree
paralleling the analysis of the eigenfunctions above, we can produce this formula
via some commutator identities, involving the operators

(6.21) X D D2 D �@2x ; Y D x2; Z D x@x C @xx D 2x @x C 1:

Note that H D X C Y . The commutator identities are

(6.22) ŒX; Y � D �2Z; ŒX;Z� D 4X; ŒY;Z� D �4Y:

Thus, X; Y , and Z span a three-dimensional, real Lie algebra. This is isomor-
phic to sl.2;R/, the Lie algebra consisting of 2 � 2 real matrices of trace zero,
spanned by

(6.23) nC D
�
0 1

0 0

�
; n� D

�
0 0

1 0

�
; ˛ D

�
1 0

0 �1
�
:
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We have

(6.24) ŒnC; n�� D ˛; ŒnC; ˛� D �2nC; Œn�; ˛� D 2n�:

The isomorphism is implemented by

(6.25) X $ 2nC; Y $ 2n�; Z $ �2˛:

Now we will be able to write

(6.26) e�t.2nCC2n�/ D e�2�1.t/nC e�2�3.t/˛ e�2�2.t/n� ;

as we will see shortly, and, once this is accomplished, we will be motivated to
suspect that also

(6.27) e�tH D e��1.t/X e�3.t/Z e��2.t/Y :

To achieve (6.26), write

e�2�1nC D
�
1 �2�1
0 1

�
D
�
1 x

0 1

�
;

e�2�3˛ D
�
e�2�3 0

0 e2�3

�
D
�
y 0

0 1=y

�
;

e�2�2n� D
�

1 0

�2�2 1

�
D
�
1 0

z 1

�
;

(6.28)

and

(6.29) e�2t.nCCn�/ D
�

cosh 2t � sinh 2t
� sinh 2t cosh 2t

�
D
�

u v

v u

�
:

Then (6.26) holds if and only if

(6.30) y D 1

u
D 1

cosh 2t
; x D z D v

u
D � tanh 2t;

so the quantities �j .t/ are given by

(6.31) �1.t/ D �2.t/ D 1

2
tanh 2t; e2�3.t/ D cosh 2t:
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Now we can compute the right side of (6.27). Note that

(6.32)

e��1Xu.x/ D .4��1/
�1=2

Z
e�.x�y/2=4�1u.y/ dy;

e��2Y u.x/ D e��2x
2

u.x/;

e�3Zu.x/ D e�3 u.e2�3x/:

Upon composing these operators we find that, for n D 1,

(6.33) e�tHu.x/ D
Z
Kt .x; y/u.y/ dy;

with

(6.34) Kt .x; y/ D
exp

n	�1
2
.cosh 2t/.x2 C y2/C xy


ı
sinh 2t

o

�
2� sinh 2t

�1=2 :

This is known as Mehler’s formula for the Hermite semigroup. Clearly, for gen-
eral n, we have

(6.35) e�tHu.x/ D
Z
Kn.t; x; y/u.y/ dy;

with

(6.36) Kn.t; x; y/ D Kt .x1; y1/ � � �Kt .xn; yn/:

The idea behind passing from (6.26) to (6.27) is that the Lie algebra homo-
morphism defined by (6.25) should give rise to a Lie group homomorphism from
(perhaps a covering group G of) SL.2;R/ into a group of operators. Since this
involves an infinite-dimensional representation of G (not necessarily by bounded
operators here, since e�tH is bounded only for t � 0), there are analytical prob-
lems that must be overcome to justify this reasoning. Rather than take the space
to develop such analysis here, we will instead just give a direct justification of
(6.33)–(6.34).

Indeed, let v.t; x/ denote the right side of (6.33), with u 2 L2.R/ given. The
rapid decrease of Kt .x; y/ as jxj C jyj ! 1, for t > 0, makes it easy to show
that

(6.37) u 2 L2.R/ H) v 2 C1�.0;1/;S.R/�:

Also, it is routine to verify that

(6.38)
@v

@t
D �Hv:
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Simple estimates yielding uniqueness then imply that, for each s > 0,

(6.39) v.t C s; �/ D e�tHv.s; �/:

Indeed, if w.t; �/ denotes the difference between the two sides of (6.39), then we
have w.0/ D 0, w 2 C.RC;D.H//, @w=@t 2 C.RC; L2.R//, and

d

dt
kw.t/k2

L2 D �2.Hw;w/ � 0;

so w.t/ D 0, for all t � 0.
Finally, as t & 0, we see from (6.31) that each �j .t/ & 0. Since v.t; x/ is

also given by the right side of (6.27), we conclude that

(6.40) v.t; �/ ! u in L2.R/; as t & 0:

Thus we can let s & 0 in (6.39), obtaining a complete proof that e�tHu is given
by (6.33) when n D 1.

It is useful to write down the formula for e�tH using the Weyl calculus, in-
troduced in �14 of Chap. 7. We recall that it associates to a.x; �/ the operator

(6.41)
a.X;D/u D .2�/�n

Z
Oa.q; p/ei.q�XCp�D/u.x/ dq dp

D .2�/�n
Z
a
�x C y

2
; �
�
ei.x�y/��u.y/ dy d�:

In other words, the operator a.X;D/ has integral kernelKa.x; y/, for which

a.X;D/u.x/ D
Z
Ka.x; y/u.y/ dy;

given by

Ka.x; y/ D .2�/�n
Z
a
�x C y

2
; �
�
ei.x�y/�� d�

Recovery of a.x; �/ from Ka.x; y/ is an exercise in Fourier analysis. When it is
applied to the formulas (6.33)–(6.36), this exercise involves computing a Gaussian
integral, and we obtain the formula

(6.42) e�tH D ht .X;D/

on L2.Rn/, with

(6.43) ht .x; �/ D .cosh t/�n e�.tanh t/.jxj2Cj�j2/:
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It is interesting that this formula, while equivalent to (6.33)–(6.36), has a simpler
and more symmetrical appearance.

In fact, the formula (6.43) was derived in �15 of Chap. 7, by a different method,
which we briefly recall here. For reasons of symmetry, involving the identity
(14.19), one can write

(6.44) ht .x; �/ D g.t;Q/; Q.x; �/ D jxj2 C j�j2:
Note that (6.42) gives @t ht .X;D/ D �Hht .X;D/. Now the composition for-
mula for the Weyl calculus implies that ht .x; �/ satisfies the following evolution
equation:

(6.45)

@

@t
ht .x; �/ D �.Q ı ht /.x; �/

D �Q.x; �/ht .x; �/ � 1

2
fQ;htg2.x; �/

D �.jxj2 C j�j2/ht .x; �/C 1

4

X
k

�
@2xk

C @2�k

�
ht .x; �/:

Given (6.44), we have for g.t;Q/ the equation

(6.46)
@g

@t
D �Qg CQ

@2g

@Q2
C n

@g

@Q
:

It is easy to verify that (6.43) solves this evolution equation, with h0.x; �/ D 1.
We can obtain a formula for

(6.47) e�tQ.X;D/ D h
Q
t .X;D/;

for a general positive-definite quadratic formQ.x; �/. First, in the case

(6.48) Q.x; �/ D
nX
jD1

�j .x
2
j C �2j /; �j > 0;

it follows easily from (6.43) and multiplicativity, as in (6.36), that

(6.49) h
Q
t .x; �/ D

nY
jD1

�
cosh t�j

��1 � exp

8
<
:�

nX
jD1

.tanh t�j /
�
x2j C �2j

�
9
=
; :

Now any positive quadratic form Q.x; �/ can be put in the form (6.48) via a
linear symplectic transformation, so to get the general formula we need only
rewrite (6.49) in a symplectically invariant fashion. This is accomplished using
the “Hamilton map” FQ, a skew-symmetric transformation on R2n defined by

(6.50) Q.u; v/ D �.u; FQv/; u; v 2 R2n;
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where Q.u; v/ is the bilinear form polarizingQ, and � is the symplectic form on
R2nI �.u; v/ D x � � 0 � x0 � � if u D .x; �/; v D .x0; � 0/. When Q has the form

(6.48), FQ is a sum of 2 � 2 blocks

�
0 �j

��j 0

�
, and we have

(6.51)
nY
jD1

�
cosh t�j

��1 D
�

det cosh itFQ
��1=2

:

Passing from FQ to

(6.52) AQ D ��F 2Q
�1=2

;

the unique positive-definite square root, means passing to blocks

�
�j 0

0 �j

�
;

and whenQ has the form (6.48), then

(6.53)
nX
jD1

.tanh t�j /.x2j C �2j / D tQ
�
#.tAQ/	; 	

�
;

where 	 D .x; �/ and

(6.54) #.t/ D tanh t

t
:

Thus the general formula for (6.47) is

(6.55) h
Q
t .x; �/ D

�
cosh tAQ

��1=2
e�tQ.#.tAQ/
;
/:

Exercises

1. Define an unbounded operator A on L2.R/ by

D.A/ D fu 2 L2.R/ W Du 2 L2.R/; xu 2 L2.R/g; Au D Du � ixu:

Show that A is closed and that the self-adjoint operator H satisfies

H D A�AC I D AA� � I
(Hint: Note Exercises 5–7 of �2.)

2. If Hk.x/ are the Hermite polynomials, show that there is the generating function
identity
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1X

kD0

1

kŠ
Hk.x/s

k D e2xs�s2

(Hint: Use the first identity in (6.15).)
3. Show that Mehler’s formula (6.34) is equivalent to the identity

1X
jD0

hj .x/hj .y/s
j D

��1=2.1 � s2/�1=2 exp
n
.1 � s2/�1

	
2xys � .x2 C y2/s2


o � e�.x2Cy2/=2;

for 0 � s < 1. Deduce that

1X
jD0

Hj .x/
2 sj

2j j Š
D .1� s2/�1=2e2sx2=.1Cs/; jsj < 1:

4. Using

H�s D 1


.s/

Z 1

0
e�tH ts�1 dt; Re s > 0;

find the integral kernel As.x; y/ such that

H�su.x/ D
Z
As.x; y/u.y/ dy:

Writing Tr H�s D R
As.x; x/ dx, Re s > 1; n D 1, show that

	.s/ D 1


.s/

Z 1

0

ys�1
ey � 1 dy

See [Ing], pp. 41–44, for a derivation of the functional equation for the Riemann zeta
function, using this formula.

5. Let H! D �d2=dx2 C !2x2. Show that e�tH! has integral kernel

K!t .x; y/ D .4�t/�1=2 �.2!t/1=2 e��.2!t/Œ.cosh 2!t/.x2Cy2/�2xy	=4t ;

where
�.z/ D z

sinh z
:

6. Consider the operator

Q.X;D/ D �
� @

@x1
� i!x2

�2 �
� @

@x2
C i!x1

�2

D ��C !2jxj2 C 2i!
�
x2

@

@x1
� x1

@

@x2

�
:

Note that Q.x; �/ is nonnegative, but not definite. Study the integral kernel KQt .x; y/
of e�tQ.X;D/. Show that

K
Q
t .x; 0/ D .4�t/�1 �.2!t/ e��.2!t/jxj2=4t ;
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where

.z/ D z coth z:

7. Let .!jk/ be an invertible, n � n, skew-symmetric matrix of real numbers (so n must
be even). Suppose

L D �
nX
jD1

0
@ @

@xj
� i

X

k

!jkxk

1
A
2

:

Evaluate the integral kernel KLt .x; y/, particularly at y D 0.
8. In terms of the operators a; aC given by (6.1) and the basis of L2.R/ given by (6.16)–

(6.18), show that

aChk D
p
2k C 2 hkC1; ahk D

p
2k hk�1:

7. The quantum Coulomb problem

In this section we examine the operator

(7.1) Hu D ��u �Kjxj�1u;

acting on functions on R3. Here, K is a positive constant.
This provides a quantum mechanical description of the Coulomb force between

two charged particles. It is the first step toward a quantum mechanical description
of the hydrogen atom, and it provides a decent approximation to the observed
behavior of such an atom, though it leaves out a number of features. The most im-
portant omitted feature is the spin of the electron (and of the nucleus). Giving rise
to further small corrections are the nonzero size of the proton, and relativistic ef-
fects, which confront one with great subtleties since relativity forces one to treat
the electromagnetic field quantum mechanically. We refer to texts on quantum
physics, such as [Mes], [Ser], [BLP], and [IZ], for work on these more sophisti-
cated models of the hydrogen atom.

We want to define a self-adjoint operator via the Friedrichs method. Thus we
want to work with a Hilbert space

(7.2) H D
�

u 2 L2.R3/ W ru 2 L2.R3/;
Z

jxj�1ju.x/j2 dx < 1
�
;

with inner product

(7.3) .u; v/H D .ru;rv/L2 CA.u; v/L2 �K

Z
jxj�1u.x/v.x/ dx;

whereA is a sufficiently large, positive constant. We must first show thatA can be
picked to make this inner product positive-definite. In fact, we have the following:
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Lemma 7.1. For all " 2 .0; 1�, there exists C."/ < 1 such that

(7.4)
Z

jxj�1ju.x/j2 dx � "kruk2
L2 C C."/kuk2

L2 ;

for all u 2 H 1.R3/.

Proof. Here and below we will use the inclusion

(7.5) H s.Rn/ � Lp.Rn/; 8 p 2
h
2;

2n

n � 2s

�
; 0 � s <

n

2
;

from (2.42) of Chap. 4. In Chap. 13 we will establish the sharper result that
H s.Rn/ � L2n=.n�2s/.Rn/; for example, H 1.R3/ � L6.R3/. We will also cite
this stronger result in some arguments below, though that could be avoided.

We also use the fact that (if B D fjxj < 1g and �B .x/ is its characteristic
function),

�BV 2 Lq.R3/; for all q < 3

Here and below we will use V.x/ D jxj�1. Thus the left side of (7.4) is
bounded by

(7.6) k�BV kLq � kuk2
L2q0 C kuk2

L2 � Ckuk2
H� .R3/

C kuk2
L2.R3/

;

where we can take any q0 > 3=2; take q0 2 .3=2; 3/. Then (7.6) holds for some
� < 1, for which L2q

0

.R3/ 
 H � .R3/. From this, (7.4) follows immediately.

Thus the Hilbert space H in (7.2) is simply H 1.R3/, and we see that indeed,
for some A > 0, (7.3) defines an inner product equivalent to the standard one
on H 1.R3/. The Friedrichs method then defines a positive, self-adjoint operator
H C AI , for which

(7.7) D�.H C AI/1=2
� D H 1.R3/:

Then

(7.8) D.H/ D fu 2 H 1.R3/ W ��u �Kjxj�1u 2 L2.R3/g;

where ��u � Kjxj�1u is a priori regarded as an element of H�1.R3/ if u 2
H 1.R3/. Since H 2.R3/ � L1.R3/, we have

(7.9) u 2 H 2.R3/ H) jxj�1u 2 L2.R3/;

so

(7.10) D.H/ 
 H 2.R3/:

Indeed, we have:
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Proposition 7.2. For the self-adjoint extensionH of ���Kjxj�1 defined above,

(7.11) D.H/ D H 2.R3/:

Proof. Pick � in the resolvent set of H ; for instance, � 2 C n R. If u 2 D.H/
and .H � �/u D f 2 L2.R3/, we have

(7.12) u �KR�V u D R�f D g�;

where V.x/ D jxj�1 and R� D .�� � �/�1. Now the operator of multiplication
by V.x/ D jxj�1 has the property

(7.13) MV W H 1.R3/ �! L2�".R3/;

for all " > 0, since H 1.R3/ � L6.R3/ \ L2.R3/ and V 2 L3�" on jxj < 1.
Hence

MV W H 1.R3/ �! H�".R3/;
for all " > 0. Let us apply this to (7.12). We know that u 2 D.H/ � D.H 1=2/ D
H 1.R3/, so KR�V u 2 H 2�".R3/. Thus u 2 H 2�".R3/, for all " > 0. But, for
" > 0 small enough,

(7.14) MV W H 2�".R3/ �! L2.R3/;

so then u D KR�.V u/ C R�f 2 H 2.R3/. This proves that D.H/ � H 2.R3/
and gives (7.11).

SinceH is self-adjoint, its spectrum is a subset of the real axis, .�1;1/. We
next show that there is only point spectrum in .�1; 0/

Proposition 7.3. The part of spec H lying in C n Œ0;1/ is a bounded, discrete
subset of .�1; 0/, consisting of eigenvalues of finite multiplicity and having at
most f0g as an accumulation point.

Proof. Consider the equation .H � �/u D f 2 L2.R3/, that is,

(7.15) .�� � �/u �KV u D f;

with V.x/ D jxj�1 as before. Applying R� D .�� � �/�1 to both sides, we
again obtain (7.12):

(7.16) .I �KR�MV /u D g� D R�f:

Note that R� is a holomorphic function of � 2 C n Œ0;1/, with values in
L.L2.R3/;H 2.R3//. A key result in the analysis of (7.16) is the following:

Lemma 7.4. For � 2 C n Œ0;1/,

(7.17) R�MV 2 K.L2.R3//;
where K is the space of compact operators.
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We will establish this via the following basic tool. For � 2 C n Œ0;1/; ' 2
C0.R3/, the space of continuous functions vanishing at infinity, we have

(7.18) M'R� 2 K.L2/ and R�M' 2 K.L2/:

To see this, note that, for ' 2 C1
0 .R

3/, the first inclusion in (7.18) follows from
Rellich’s theorem. Then this inclusion holds for uniform limits of such ', hence
for ' 2 C0.R3/. Taking adjoints yields the rest of (7.18).

Now, to establish (7.17), write

(7.19) V D V1 C V2;

where V1 D  V;  2 C1
0 .R

3/;  .x/ D 1 for jxj � 1. Then V2 2 C0.R3/, so
R�MV2

2 K. We have V1 2 Lq.R3/, for all q 2 Œ1; 3/, so, taking q D 2, we have

(7.20) MV1
W L2.R3/ �! L1.R3/ � H�3=2�".R3/;

for all " > 0, hence

(7.21) R�MV1
W L2.R3/ �! H 1=2�".R3/ � L2.R3/:

Given V1 supported on a ball BR, the operator norm in (7.21) is bounded by
a constant times kV1kL2 . You can approximate V1 in L2-norm by a sequence
wj 2 C1

0 .R
3/. It follows that R�MV1

is a norm limit of a sequence of compact
operators on L2.R3/, so it is also compact, and (7.17) is established.

The proof of Proposition 7.4 is finished by the following result, which can be
found as Proposition 7.4 in Chap. 9

Proposition 7.5. Let O be a connected, open set in C. Suppose C.�/ is a
compact-operator-valued holomorphic function of � 2 O. If I � C.�/ is invert-
ible at one point p 2 O, then it is invertible except at most on a discrete set in O,
and .I � C.�//�1 is meromorphic on O.

This applies to our situation, with C.�/ D KR�MV ; we know that I � C.�/

is invertible for all � 2 C n R in this case.
One approach to analyzing the negative eigenvalues of H is to use polar co-

ordinates. If �Kjxj�1 is replaced by any radial potential V.jxj/, the eigenvalue
equationHu D �Eu becomes

(7.22)
@2u

@r
C 2

r

@u

@r
C 1

r2
�Su � V.r/u D Eu:

We can use separation of variables, writing u.r�/ D v.r/'.�/, where ' is an
eigenfunction of �S , the Laplace operator on S2,

(7.23) �S' D ��'; � D �
k C 1

2

�2 � 1

4
D k2 C k:
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Then we obtain for v.r/ the ODE

(7.24) v00.r/C 2

r
v0.r/C f .r/v.r/ D 0; f .r/ D �E � �

r2
� V.r/:

One can eliminate the term involving v0 by setting

(7.25) w.r/ D rv.r/:

Then

(7.26) w00.r/C f .r/w.r/ D 0:

For the Coulomb problem, this becomes

(7.27) w00.r/C
h
�E C K

r
� �

r2

i
w.r/ D 0:

If we set W.r/ D w.ˇr/; ˇ D 1=2
p
E , we get a form of Whittaker’s ODE:

(7.28) W 00.z/C
h
�1
4

C ~

z
C

1
4

� �2

z2

i
W.z/ D 0;

with

(7.29) ~ D K

2
p
E
; �2 D �C 1

4
D
�
k C 1

2

�2
:

This in turn can be converted to the confluent hypergeometric equation

(7.30) z 00.z/C .b � z/ 0.z/ � a .z/ D 0

upon setting

(7.31) W.z/ D z�C1=2 e�z=2  .z/;

with

(7.32)
a D � � ~ C 1

2
D k C 1 � K

2
p
E
;

b D 2�C 1 D 2k C 2:

Note that  and v are related by

(7.33) v.r/ D .2
p
E/kC1 rke�2p

Er .2
p
Er/:



140 8. Spectral Theory

Looking at (7.28), we see that there are two independent solutions, one behav-
ing roughly like e�z=2 and the other like ez=2, as z ! C1. Equivalently, (7.30)
has two linearly independent solutions, a “good” one growing more slowly than
exponentially and a “bad” one growing like ez, as z ! C1. Of course, for a
solution to give rise to an eigenfunction, we need v 2 L2.RC; r2 dr/, that is,
w 2 L2.RC; dr/. We need to have simultaneously w.z/ 	 ce�z=2 (roughly) as
z ! C1 and w square integrable near z D 0. In view of (7.8), we also need
v0 2 L2.RC; r2 dr/.

To examine the behavior near z D 0, note that the Euler equation associated
with (7.28) is

(7.34) z2W 00.z/C
�1
4

� �2
�
W.z/ D 0;

with solutions z1=2C� and z1=2��, i.e., zkC1 and z�k ; k D 0; 1; 2; : : : . If k D 0,
both are square integrable near 0, but for k � 1 only one is. Going to the confluent
hypergeometric equation (7.30), we see that two linearly independent solutions
behave respectively like z0 and z�2� D z�2k�1 as z ! 0.

As a further comment on the case k D 0, note that a solutionW behaving like
z0 at z D 0 gives rise to v.r/ 	 C=r as r ! 0, with c ¤ 0, hence v0.r/ 	
�C=r2. This is not square integrable near r D 0, with respect to r2 dr , so also
this case does not produce an eigenfunction of H .

If b … f0;�1;�2; : : : g, which certainly holds here, the solution to (7.30) that
is “good” near z D 0 is given by the confluent hypergeometric function

(7.35) 1F1.aI bI z/ D
1X
nD0

.a/n

.b/n

zn

nŠ
;

an entire function of z. Here, .a/n D a.a C 1/ � � � .a C n � 1/I .a/0 D 1. If also
a … f0;�1;�2; : : : g, it can be shown that

(7.36) 1F1.aI bI z/ 	 
.b/


.a/
ez z�.b�a/; z ! C1:

See the exercises below for a proof of this. Thus the “good” solution near z D 0 is
“bad” as z ! C1, unless a is a nonpositive integer, say a D �j . In that case, as
is clear from (7.35), 1F1.�j I bI z/ is a polynomial in z, thus “good” as z ! C1.
Thus the negative eigenvalues of H are given by �E , with

(7.37)
K

2
p
E

D j C k C 1 D n;

that is, by

(7.38) E D K2

4n2
; n D 1; 2; 3 : : : :
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Note that, for each value of n, one can write n D j C k C 1 using n choices
of k 2 f0; 1; 2; : : : ; n � 1g. For each such k, the .k2 C k/-eigenspace of �S has
dimension 2k C 1, as established in Corollary 4.3. Thus the eigenvalue �E D
�K2=4n2 of H has multiplicity

(7.39)
n�1X
kD0

.2k C 1/ D n2:

Let us denote by Vn the n2-dimensional eigenspace ofH , associated to the eigen-
value �n D �K2=4n2.

The rotation group SO.3/ acts on each Vn, via

�.g/f .x/ D f .g�1x/; g 2 SO.3/; x 2 R3

By the analysis leading to (7.39), this action on Vn is not irreducible, but rather
has n irreducible components. This suggests that there is an extra symmetry, and
indeed, as W. Pauli discovered early in the history of quantum mechanics, there is
one, arising via the Lenz vector (briefly introduced in �16 of Chap. 1), which we
proceed to define.

The angular momentum vector L D x � p, with p replaced by the vector oper-
ator .@=@x1; @=@x2; @=@x3/, commutes with H as a consequence of the rotational
invariance of H . The components of L are

(7.40) L` D xj
@

@xk
� xk @

@xj
;

where .j; k; `/ is a cyclic permutation of .1; 2; 3/. Then the Lenz vector is defined
by

(7.41) B D 1

K

�
L � p � p � L

�
� x
r
;

with components Bj ; 1 � j � 3, each of which is a second-order differential
operator, given explicitly by

(7.42) Bj D 1

K
.Lk@` C @`Lk �L`@k � @kL`/� xj

r
;

where .j; k; `/ is a cyclic permutation of .1; 2; 3/. A calculation gives

(7.43) ŒH;Bj � D 0;

in the sense that these operators commute on C1.R3 n 0/.
It follows that if u 2 Vn, then Bj u is annihilated by H � �n, on R3 n 0. Now,

we have just gone through an argument designed to glean from all functions that
are so annihilated, those that are actually eigenfunctions of H . In view of that, it
is important to establish the next lemma
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Lemma 7.6. We have

(7.44) Bj W Vn �! Vn:

Proof. Let u 2 Vn. We know that u 2 D.H/ D H 2.R3/. Also, from the anal-
ysis of the ODE (7.28), we know that u.x/ decays as jxj ! 1, roughly like
e�j�nj1=2jxj. It follows from (7.42) that Bj u 2 L2.R3/. It will be useful to obtain
a bit more regularity, using Vn � D.H 2/ together with the following.

Proposition 7.7. If u 2 D.H 2/, then, for all " > 0,

(7.45) u 2 H 5=2�".R3/:

Furthermore,

(7.46) g 2 S.R3/; g.0/ D 0 H) gu 2 H 7=2�".R3/:

Proof. We proceed along the lines of the proof of Proposition 7.2, using
(7.12), i.e.,

(7.47) u D KR�V u CR�f;

where f D .H � �/u, with � chosen in C n R. We know that f D .H � �/u
belongs to D.H/, so R�f 2 H 4.R3/. We know that u 2 H 2.R3/. Parallel to
(7.13), we can show that, for all " > 0,

(7.48) MV W H 2.R3/ �! H 1=2�".R3/;

so KR�V u 2 H 5=2�".R3/. This gives (7.45).
Now, multiply (7.47) by g and write

(7.49) gu D KR�gV u CKŒMg ; R��V u C gR�f:

This time we have

MgV W H 2.R3/ �! H 3=2�".R3/;

so R�gV u 2 H 7=2�".R3/. Furthermore,

(7.50) ŒMg ; R�� D R� Œ�;Mg � R� W H s.R3/ �! H sC3.R3/;

so ŒMg ; R��V u 2 H 7=2�".R3/. This establishes (7.46).
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We can now finish the proof of Lemma 7.6. Note that the second-order deriva-
tives in Bj have a coefficient vanishing at 0. Keep in mind the known exponential
decay of u 2 Vn. Also note that Mxj =r W H 2.R3/ ! H 3=2�".R3/. Therefore,

(7.51) u 2 Vn H) Bj u 2 H 3=2�".R3/:

Consequently,

(7.52) �.Bj u/ 2 H�1=2�".R3/; and V.Bj u/ 2 L1.R3/C L2.R3/:

Thus .H��n/.Bj u/, which we know vanishes on R3n0, must vanish completely,
since (7.52) does not allow for a nonzero quantity supported on f0g. Using (7.8),
we conclude that Bj u 2 D.H/, and the lemma is proved.

With Lemma 7.6 established, we can proceed to study the action of Bj and Lj
on Vn. When .j; k; `/ is a cyclic permutation of .1; 2; 3/, we have

(7.53) ŒLj ; Lk � D L`;

and, after a computation,

(7.54) ŒLj ; Bk� D B`; ŒBj ; Bk � D � 4

K
HL`:

Of course, (7.52) is the statement that Lj span the Lie algebra so.3/ of SO.3/.
The identities (7.54), when Lj and Bj act on Vn, can be rewritten as

(7.55) ŒLj ; Ak � D A`; ŒAj ; Ak� D A`; Aj D K

2
p��n

Bj :

If we set

(7.56) M D 1

2
.L C A/; N D 1

2
.L � A/;

we get, for cyclic permutations .j; k; `/ of .1; 2; 3/,

(7.57) ŒMj ;Mk� D M`; ŒNj ; Nk� D N`; ŒMj ; Nj 0 � D 0;

which is clearly the set of commutation relations for the Lie algebra so.3/˚so.3/.
We next aim to show that this produces an irreducible representation of SO.4/ on
Vn, and to identify this representation. A priori, of course, one certainly has a
representation of SU.2/ � SU.2/ on Vn.

We now examine the behavior on Vn of the Casimir operators M 2 D M 2
1 C

M 2
2 C M 2

3 and N 2. A calculation using the definitions gives B � L D 0, hence
A � L D 0, so, on Vn,
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(7.58)
M 2 D N 2 D 1

4
.A2 C L2/

D 1

4

�
L2 � K2

4�n
B2
�
:

We also have the following key identity:

(7.59) K2.B2 � I / D 4H.L2 C I /;

which follows from the definitions by a straightforward computation. If we com-
pare (7.58) and (7.59) on Vn, where H D �n, we get

(7.60) 4M 2 D 4N 2 D �
�
1C K2

4�n

�
I on Vn:

Now the representation �n we get of SU.2/ � SU.2/ on Vn is a direct sum
(possibly with only one summand) of representations Dj=2 ˝ Dj=2, where Dj=2
is the standard irreducible representation of SU.2/ on CjC1, defined in �9 of
Appendix B. The computation (7.60) implies that all the copies in this sum are
isomorphic, that is, for some j D j.n/,

(7.61) �n D
�M
`D1

Dj.n/=2 ˝Dj.n/=2:

A dimension count gives �
�
j.n/C1

�2 D n2. Note that onDj=2˝Dj=2, we have
M 2 D N 2 D .j=2/.j=2C 1/. Thus (7.60) implies j.j C 2/ D �1CK2=4�n, or

(7.62) �n D � K2

4.j C 1/2
; j D j.n/:

Comparing (7.38), we have .j C 1/2 D n2, that is,

(7.63) j.n/ D n � 1:

Since we know that dim Vn D n2, this implies that there is just one summand in
(7.61), so

(7.64) �n D D.n�1/=2 ˝D.n�1/=2:

This is an irreducible representation of SU.2/ � SU.2/, which is a double cover
of SO.4/,

� W SU.2/� SU.2/ �! SO.4/:

It is clear that �n is the identity operator on both elements in ker �, and so �n
actually produces an irreducible representation of SO.4/.
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Let �n denote the restriction to Vn of the representation � of SO.3/ onL3.R3/,
described above. If we regard this as a representation of SU.2/, it is clear that �n
is the composition of �n with the diagonal map SU.2/ ! SU.2/�SU.2/. Results
established in �9 of Appendix B imply that such a tensor-product representation
of SU.2/ has the decomposition into irreducible representations:

(7.65) �n �
n�1M
kD0

Dk :

This is also precisely the description of �n given by the analysis leading to (7.39).
There are a number of other group-theoretic perspectives on the quantum

Coulomb problem, which can be found in [Eng] and [GS2]. See also [Ad] and
[Cor], Vol. 2.

Exercises

1. For H D �� �Kjxj�1 with domain given by (7.8), show that

(7.66) D.H/ D fu 2 L2.R3/ W ��u �Kjxj�1u 2 L2.R3/g;
where a priori, if u 2 L2.R3/, then �u 2 H�2.R3/ and jxj�1u 2 L1.R3/ C
L2.R3/ � H�2.R3/.
(Hint: Parallel the proof of Proposition 7.2. If u belongs to the right side of (7.66), and
if you pick � 2 C n R, then, as in (7.12),

(7.67) u �KR�V u D R�f 2 H2.R3/:/

Complement (7.13) with

(7.68)

MV W L2.R3/ �!
\
">0

H�3=2�".R3/;

MV W
\
">0

H1=2�".R3/ �!
\

ı>0

H�3=4�ı .R3/:

(Indeed, sharper results can be obtained.) Then deduce from (7.67) first that u 2
H1=2�".R3/ and then that u 2 H5=4�ı .R3/ � H1.R3/:)

2. As a variant of (7.4), show that, for u 2 H1.R3/,

(7.69)
Z

jxj�2ju.x/j2 dx � 4

Z
jru.x/j2 dx:

Show that 4 is the best possible constant on the right. (Hint: Use the Mellin transform
to show that the spectrum of r d=dr � 1=2 on L2.RC; r�1dr/ (which coincides with
the spectrum of r d=dr on L2.RC; dr/) is fis � 1=2 W s 2 Rg, hence

(7.70)
Z 1

0
ju.r/j2dr � 4

Z 1

0
ju0.r/j2r2 dr:

This is sometimes called an “uncertainty principle” estimate. Why might that be?
(Cf. [RS], Vol. 2, p. 169.)
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3. Show that H D �� � K=jxj has no non-negative eigenvalues, i.e., only continuous
spectrum in Œ0;1/. (Hint: Study the behavior as r ! C1 of solutions to the ODE
(7.28), when �E is replaced by CE 2 Œ0;1/. Consult [Olv] for techniques. See also
[RS], Vol. 4, for general results.)

4. Generalize the propositions of this section, with modifications as needed, to other
classes of potentials V.x/, such as

V 2 L2 C "L1;

the set of functions V such that, for each " > 0, one can write V D V1 C V2; V1 2
L2; kV2kL1 � ". Consult [RS], Vols. 2–4, for further generalizations.

Exercises on the confluent hypergeometric function

1. Taking (7.35) as the definition of 1F1.aI bI z/, show that

1F1.aI bI z/ D 
.b/


.a/
.b � a/

Z 1

0
ezt ta�1.1� t/b�a�1 dt;

Re b > Re a > 0:(7.71)

(Hint: Use the beta function identity, (A.23)–(A.24) of Chap. 3.) Show that (7.71)
implies the asymptotic behavior (7.36), provided Re b > Re a > 0, but that this is
insufficient for making the deduction (7.37).

Exercises 2–5 deal with the analytic continuation of (7.71) in a and b, and a com-
plete justification of (7.36). To begin, write

(7.72) 1F1.aI bI z/ D 
.b/


.b � a/A .a;�z/C 
.b/


.a/
A'.b � a; z/ez;

where, for Re c > 0;  2 C1�
Œ0; 1=2�

�
, we set

(7.73) A .c; z/ D 1


.c/

Z 1=2

0
e�zt .t/tc�1 dt;

and, in (7.72),

 .t/ D .1 � t/b�a�1; '.t/ D .1 � t/a�1:

2. Given Re c > 0, show that

(7.74) A .c; z/ 	  .0/z�c ; z ! C1;

and

(7.75) A .c;�z/ 	  .12 /


.c/
z�1ez=2; z ! C1:

3. For j D 0; 1; 2; : : : , set

(7.76) Aj .c; t/ D 1


.c/

Z 1=2

0
e�zt tj tc�1 dt;
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so Aj .c; z/ D A .c; z/, with  .t/ D tj . Show that

Aj .c; z/ D 
.c C j /


.c/
z�c�j � 1


.c/

Z 1

1=2
e�zt tcCj�1 dt;

for Re z > 0. Deduce that Aj .c; t/ is an entire function of c, for Re z > 0, and that

Aj .c; z/ 	 
.c C j /


.c/
z�c�j ; z ! C1;

if c … f0;�1;�2; : : : g.
4. Given k D 1; 2; 3; : : : , write

 .t/ D a0 C a1t C � � � C ak�1tk�1 C  k.t/t
k ;  k 2 C1�h

0;
1

2

i�

Thus

(7.77) A .c; z/ D
k�1X
jD0

ajAj .c; z/C 1


.c/

Z 1=2

0
e�zt k.t/t

kCc�1 dt:

Deduce that A .c; z/ can be analytically continued to Re c > �k when Re z > 0 and
that (7.74) continues to hold if c … f0;�1;�2; : : : g; a0 ¤ 0.

5. Using tc�1 D c�1.d=dt/tc and integrating by parts, show that

(7.78) A0.c; z/ D zA0.c C 1; z/� 1

2c
.c C 1/
e�z=2;

for Re c > 0, all z 2 C. Show that this provides an entire analytic continuation of
A0.c; z/ and that (7.74)–(7.75) hold, for  .t/ D 1. Using

Aj .c; z/ D 
.c C j /


.c/
A0.c C j; z/

and (7.77), verify (7.75) for all  2 C1�
Œ0; 1=2�

�
. (Also again verify (7.74)). Hence,

verify the asymptotic expansion (7.36).
The approach given above to (7.36) is one the author learned from conversations

with A. N. Varchenko. In Exercises 6–15 below, we introduce another solution to the
confluent hypergeometric equation and follow a path to the expansion (7.36) similar
to one described in [Leb] and in [Olv].

6. Show that a solution to the ODE (7.30) is also given by

z1�b
1F1.1C a � bI 2 � bI z/;

in addition to 1F1.aI bI z/, defined by (7.35). Assume b ¤ 0;�1;�2; : : : . Set

‰.aI bI z/ D 
.1 � b/


.1C a � b/ 1F1.aI bI z/

C
.b � 1/


.a/
z1�b

1F1.1C a � bI 2 � bI z/:(7.79)

Show that the Wronskian is given by

W
�
1F1.aI bI z/; ‰.aI bI z/

� D �
.b/

.a/

z�bez:
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7. Show that

(7.80) 1F1.aI bI z/ D ez
1F1.b � aI bI �z/; b … f0;�1;�2; : : : g

(Hint: Use the integral in Exercise 1, and set s D 1� t , for the case Re b > Re a > 0:)
8. Show that

(7.81) ‰.aI bI z/ D 1


.a/

Z 1

0
e�zt ta�1.1C t/b�a�1 dt; Re a > 0; Re z > 0:

(Hint: First show that the right side solves (7.30). Then check the behavior as z ! 0:)
9. Show that

(7.82) ‰.aI bI z/ D z‰.aC 1I b C 1I z/C .1� a � b/‰.aC 1I bI z/:

(Hint: To get this when Re a > 0, use the integral expression (7.81) for ‰.aC 1I b C
1I z/, write ze�zt D �.d=dt/e�zt , and integrate by parts.)

10. Show that

1F1.aI bI z/ D 
.b/


.b � a/
e˙�ai‰.aI bI z/

C
.b/


.a/
e˙�.a�b/i ez ‰.b � aI bI �z/;(7.83)

where �z D e	�i z; b ¤ 0;�1;�2; : : : . (Hint: Make use of (7.80) as well as (7.79).)
11. Using the integral representation (7.81), show that under the hypotheses ı > 0; b …

f0;�1;�2; : : : g, and Re a > 0, we have

(7.84) ‰.aI bI z/ 	 z�˛ ; jzj ! 1;

in the sector

(7.85) jArg zj � �

2
� ı:

12. Extend (7.84) to the sector jArg zj � � � ı. (Hint: Replace (7.81) by an integral along
the ray � D fei˛s W 0 � s < 1g, given j˛j < �=2:)

13. Further extend (7.84) to the case where no restriction is placed on Re a.
(Hint: Use (7.82).)

14. Extend (7.84) still further, to be valid for

(7.86) jArg zj � 3�

2
� ı:

(Hint: See Theorem 2.2 on p. 235 of [Olv], and its application to this problem on
p. 256 of [Olv].)

15. Use (7.83)–(7.86) to prove (7.36), that is,

(7.87) 1F1.aI bI z/ 	 
.b/


.a/
ez z�.b�a/; z ! C1;

provided a; b … f0;�1;�2; : : : g.
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Remarks: For the analysis of ‰.b � aI bI �z/ as z ! C1, the result of Exercise
14 suffices, but the result of Exercise 13 does not. This point appears to have been
neglected in the discussion of (7.87) on p. 271 of [Leb].

8. The Laplace operator on cones

Generally, if N is any compact Riemannian manifold of dimension m, possibly
with boundary, the cone over N; C.N /, is the space RC � N together with the
Riemannian metric

(8.1) dr2 C r2g;

where g is the metric tensor on N . In particular, a cone with vertex at the origin
in RmC1 can be described as the cone over a subdomain � of the unit sphere
Sm in RmC1. Our purpose is to understand the behavior of the Laplace operator
�, a negative, self-adjoint operator, on C.N/. If @N ¤ ;, we impose Dirichlet
boundary conditions on @C.N /, though many other boundary conditions could be
equally easily treated. The analysis here follows [CT].

The initial step is to use the method of separation of variables, writing � on
C.N/ in the form

(8.2) � D @2

@r2
C m

r

@

@r
C 1

r2
�N ;

where �N is the Laplace operator on the base N . Let �j ; 'j .x/ denote the
eigenvalues and eigenfunctions of ��N (with Dirichlet boundary condition on
@N if @N ¤ ;), and set

(8.3) �j D .�j C ˛2/1=2; ˛ D �m � 1

2
:

If
g.r; x/ D

X
j

gj .r/'j .x/;

with gj .r/ well behaved, and if we define the second-order operator L� by

(8.4) L�g.r/ D
�
@2

@r2
C m

r

@

@r
� �

r2

�
g.r/;

then we have

(8.5) �g.r; x/ D
X
j

L�j
gj .r/'j .x/:

In particular,

(8.6) �.gj'j / D ��2gj'j
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provided

(8.7) gj .r/ D r�.m�1/=2J�j
.�r/:

Here J�.z/ is the Bessel function, introduced in �6 of Chap. 3; there in (6.6) it is
defined to be

(8.8) J�.z/ D .z=2/�


.1
2
/
.� C 1

2
/

Z 1

�1
.1 � t2/��1=2eizt dt;

for Re � > �1=2; in (6.11) we establish Bessel’s equation

(8.9)



d 2

d z2
C 1

z

d

d z
C
�
1 � �2

z2

��
J�.z/ D 0;

which justifies (8.6); and in (6.19) we produced the formula

(8.10) J�.z/ D
� z

2

�� 1X
kD0

.�1/k
kŠ
.k C � C 1/

� z

2

�2k
:

We also recall, from (6.56) of Chap. 3, the asymptotic behavior

(8.11) J�.r/ 	
� 2
�r

�1=2
cos
�
r � ��

2
� �

4

�
CO.r�3=2/; r ! C1:

This suggests making use of the Hankel transform, defined for � 2 RC by

(8.12) H�.g/.�/ D
Z 1

0

g.r/J�.�r/r dr:

Clearly,H� W C1
0

�
.0;1/

� ! L1.RC/. We will establish the following:

Proposition 8.1. For � � 0; H� extends uniquely from C1
0

�
.0;1/

�
to

(8.13) H� W L2.RC; r dr/ �! L2.RC; � d�/; unitary.

Furthermore, for each g 2 L2.RC; r dr/,

(8.14) H� ıH�g D g:

To prove this, it is convenient to consider first

(8.15) eH �f .�/ D
Z 1

0

f .r/
J�.�r/

.�r/�
r2�C1 dr;

since, by (8.10), .�r/��J�.�r/ is a smooth function of �r . Set

(8.16) S.RC/ D ff jRC W f 2 S.R/ is eveng:
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Lemma 8.2. If � � �1=2, then

(8.17) eH � W S.RC/ �! S.RC/:

Proof. By (8.10), J�.�r/=.�r/� is a smooth function of �r . The formula (8.8)
yields

(8.18)
ˇ̌
ˇJ�.�r/
.�r/�

ˇ̌
ˇ � C� < 1;

for �r 2 Œ0;1/; � > �1=2, a result that, by the identity

(8.19) J�1=2.z/ D
� 2
�z

�1=2
cos z;

established in (6.35) of Chap. 3, also holds for � D �1=2. This readily yields

(8.20) eH � W S.RC/ �! L1.RC/;

whenever � � �1=2. Now consider the differential operatoreL� , given by

(8.21)

eL�f .r/ D �r�2��1 @
@r

�
r2�C1 @f

@r

�

D �@
2f

@r2
� 2� C 1

r

@f

@r
:

Using Bessel’s equation (8.9), we have

(8.22) eL�
�J�.�r/
.�r/�

�
D �2

J�.�r/

.�r/�
;

and, for f 2 S.RC/,

(8.23)
eH �.eL�f /.�/ D �2eH �f .�/;

eH �.r
2f /.�/ D eL�eH �f .�/:

Since f 2 L1.RC/ belongs to S.RC/ if and only if arbitrary iterated applica-
tions of eL� and multiplication by r2 to f yield elements of L1.RC/, the result
(8.17) follows. We also have that this map is continuous with respect to the natural
Frechet space structure on S.RC/.

Lemma 8.3. Consider the elements Eb 2 S.RC/, given for b > 0 by

(8.24) Eb.r/ D e�br2

:
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We have

(8.25) eH �E1=2.�/ D E1=2.�/;

and more generally

(8.26) eH �Eb.�/ D .2b/���1E1=4b.�/:

Proof. To establish (8.25), plug the power series (8.10) for J�.z/ into (8.15) and
integrate term by term, to get

(8.27) eH �E1=2.�/ D
1X
kD0

.�1/k2���2k

kŠ
.k C � C 1/
�2k

Z 1

0

r2kC2�C1e�r2=2 dr:

This last integral is seen to equal 2kC�
.k C � C 1/, so we have

(8.28) eH �E1=2.�/ D
1X
kD0

1

kŠ

�
��

2

2

�k D e��2=2 D E1=2.�/:

Having (8.25), we get (8.26) by an easy change of variable argument.
In more detail, set r2=2 D bs2, or s D r=

p
2b. Then set � D p

2b�, so
�r D �s. Then (8.28), which we can write as

(8.29)
Z 1

0

e�r2=2J�.�r/r
�C1 dr D ��e��2=2;

translates to

(8.30)
Z 1

0

e�bs2

J�.�s/.2b/
.�C1/=2s�C1.2b/1=2 ds D .2b/��=2��e��2=4b;

or, changing notation back,

(8.31)
Z 1

0

e�bs2

J�.�s/s
�C1 ds D .2b/���1��e��2=4b;

which gives (8.26).

From (8.26) we have, for each b > 0,

(8.32) eH �
eH �Eb D .2b/���1eH �E1=4b D Eb;

which verifies our stated Hankel inversion formula for f D Eb; b > 0. To get the
inversion formula for general f 2 S.RC/, it suffices to establish the following.
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Lemma 8.4. The space

(8.33) V D Span fEb W b > 0g

is dense in S.RC/.

Proof. Let V denote the closure of V in S.RC/. From

(8.34)
1

"

�
e�br2 � e�.bC"/r2� ! r2e�br2

;

we deduce that r2e�br2 2 V , and inductively, we get

(8.35) r2j e�br2 2 V ; 8 j 2 ZC:

From here, one has

(8.36) .cos �r/e�r2 2 V; 8 � 2 R:

Now each even ! 2 S 0.R/ annihilating (8.36) for all � 2 R has the property that
e�r2

! has Fourier transform zero, which implies ! D 0. The assertion (8.33)
then follows by the Hahn-Banach theorem.

Putting the results of Lemmas 8.2–8.4 together, we have

Proposition 8.5. Given � � �1=2, we have

(8.37) eH �
eH �f D f;

for all f 2 S.RC/.

We promote this to

Proposition 8.6. If � � �1=2, we have a unique extension of eH � from S.RC/ to

(8.38) eH � W L2.RC; r2�C1 dr/ �! L2.RC; �2�C1 d�/;

as a unitary operator, and (8.37) holds for all f 2 L2.RC; r2�C1 dr/.

Proof. Take f; g 2 S.RC/, and use the inner product

(8.39) .f; g/ D
Z 1

0

f .r/g.r/r2�C1 dr:

Using Fubini’s theorem and the fact that J�.�r/=.�r/� is real valued and sym-
metric in .�; r/, we get the first identity in

(8.40) .eH �f; eH �g/ D .eH �
eH �f; g/ D .f; g/;
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the second identity following by Proposition 8.5. From here, given that the linear
space S.RC/ � L2.RC; r2�C1 dr/ is dense, the assertions of Proposition 8.6 are
apparent.

We return to the Hankel transform (8.12). Note that

(8.41) H�.r
�f /.�/ D ��eH �f .�/;

and that M�f .r/ D r�f .r/ has the property that

(8.42) M� W L2.RC; r2�C1 dr/ �! L2.RC; r dr/ is unitary.

Thus Proposition 8.6 yields Proposition 8.1.
Another proof is sketched in the exercises. An elaboration of Hankel’s original

proof is given on pp. 456–464 of [Wat].
In view of (8.23) and (8.41), we have

(8.43)

H�.r
�˛L�g/ D

Z 1

0

L�.r
˛J�.�r//g r

m dr

D ��2
Z 1

0

gr˛J�.�r/r
m dr

D ��2H�.r�˛g/:

Now from (8.5)–(8.13), it follows that the map H given by

(8.44) Hg D
�
H�0

.r�˛g0/;H�1
.r�˛g1/; : : :

�

provides an isometry of L2.C.N // ontoL2.RC; � d�; `2/, such that� is carried
into multiplication by ��2. Thus (8.44) provides a spectral representation of �.
Consequently, for well-behaved functions f , we have

(8.45)

f .��/g.r; x/
D r˛

X
j

Z 1

0

f .�2/J�j
.�r/�

Z 1

0

s1�˛J�j
.�s/gj .s/ ds d� 'j .x/:

Now we can interpret (8.45) in the following fashion. Define the operator � on
N by

(8.46) � D ���N C ˛2
�1=2

:

Thus �'j D �j'j . Identifying operators with their distributional kernels, we can
describe the kernel of f .��/ as a function on RC �RC taking values in operators
on N , by the formula
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(8.47)
f .��/ D .r1r2/

˛

Z 1

0

f .�2/J�.�r1/J�.�r2/� d�

D K.r1; r2; �/;

since the volume element on C.N/ is rm dr dS.x/ if the m-dimensional area
element of N is dS.x/.

At this point it is convenient to have in hand some calculations of Hankel
transforms, including some examples of the form (8.47). We establish some
here; many more can be found in [Wat]. Generalizing (8.31), we can computeR1
0
e�br2

J�.�r/r
�C1 dr in a similar fashion, replacing the integral in (8.27) by

(8.48)
Z 1

0

r2kC�C�C1e�br2

dr D 1

2
b�k��=2��=2�1


��
2

C �

2
C k C 1

�
:

We get

(8.49)

Z 1

0

e�br2

J�.�r/r
�C1 dr

D ��2���1b��=2��=2�1
1X
kD0


.�
2

C �
2

C k C 1/

kŠ
.k C � C 1/

�
��

2

4b

�k
:

We can express the infinite series in terms of the confluent hypergeometric func-
tion, introduced in �7. A formula equivalent to (7.35) is

(8.50) 1F1.aI bI z/ D 
.b/


.a/

1X
kD0


.aC k/


.b C k/

zk

kŠ
;

since .a/k D a.aC1/ � � � .aCk�1/ D 
.aCk/=
.a/. We obtain, for Re b > 0,
Re.�C �/ > �2,

(8.51)
Z 1

0

e�br2

J�.�r/r
�C1 dr

D ��2���1b��=2��=2�1
.
�
2

C �
2

C 1/


.� C 1/
1F1

��
2

C �

2
C 1I � C 1I ��

2

4b

�
:

We can apply a similar attack when e�br2
is replaced by e�br , obtaining

(8.52)

Z 1

0

e�brJ�.�r/r��1 dr

D
��
2

��
b����

1X
kD0


.�C � C 2k/

kŠ
.� C k C 1/

�
� �2

2b2

�k
;

at least provided Re b > j�j; � � 0, and �C � > 0; here we use
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(8.53)
Z 1

0

e�brr2kC�C��1 dr D b�2k����
.�C � C 2k/:

The duplication formula for the gamma function (see (A.22) of Chap. 3) implies

(8.54) 
.2kC�C�/ D ��1=222kC�C��1

��
2

C �

2
Ck

�


��
2

C �

2
CkC 1

2

�
;

so the right side of (8.52) can be rewritten as

(8.55) ��1=2��2��1b����
1X
kD0


.�
2

C �
2

C k/
.�
2

C �
2

C 1
2

C k/

kŠ
.� C 1C k/

�
��

2

b2

�k
:

This infinite series can be expressed in terms of the hypergeometric function,
defined by

(8.56)

2F1.a1; a2I bI z/ D
1X
kD0

.a1/k.a2/k

.b/k

zk

kŠ

D 
.b/


.a1/
.a2/

1X
kD0


.a1 C k/
.a2 C k/


.b C k/

zk

kŠ
;

for a1; a2 … f0;�1;�2; : : : g; jzj < 1. If we put the sum in (8.55) into this form,
and use the duplication formula, to write


.a1/
.a2/ D 

��
2

C �

2

�


��
2

C �

2
C 1

2

�
D �1=22����C1
.�C �/;

we obtain

(8.57)

Z 1

0

e�brJ�.�r/r��1 dr

D
��
2

��
b���� 
.�C �/


.� C 1/
� 2F1

�
�

2
C �

2
;
�

2
C �

2
C 1

2
I � C 1I ��

2

b2

�
:

This identity, established so far for j�j < Re b (and � � 0; �C� > 0), continues
analytically to � in a complex neighborhood of .0;1/.

To evaluate the integral (8.47) with f .�2/ D e�t�2
, we can use the power

series (8.10) for J�.�r1/ and for J�.�r2/ and integrate the resulting double series
term by term using (8.48). We get

(8.58)
Z 1

0

e�t�2

J�.r1�/J�.r2�/� d�

D 1

2t

�r1r2
4t

�� �
X
j;k�0


.� C j C k C 1/


.� C j C 1/
.� C k C 1/

1

j ŠkŠ

�
�r

2
1

4t

�j��r
2
2

4t

�k
;
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for any t; r1; r2 > 0; � � 0. This can be written in terms of the modified Bessel
function I�.z/, given by

(8.59) I�.z/ D
� z

2

�� 1X
kD0

1

kŠ
.� C k C 1/

� z

2

�2k
:

One obtains the following, known as the Weber identity.

Proposition 8.7. For t; r1; r2 > 0,

(8.60)
Z 1

0

e�t�2

J�.r1�/J�.r2�/� d� D 1

2t
e�.r2

1
Cr2

2
/=4t I�

�r1r2
2t

�
:

Proof. The left side of (8.60) is given by (8.58). Meanwhile, by (8.59), the right
side of (8.60) is equal to .1=2t/.r1r2=4t/� times

(8.61)
X
`;m�0

1

`ŠmŠ

�
�r

2
1

4t

�`��r
2
2

4t

�m 1X
nD0

1

nŠ
.� C nC 1/

�r1r2
4t

�2n
:

If we set yj D �r2j =4t , we see that the asserted identity (8.60) is equivalent to
the identity

(8.62)

X
j;k�0


.� C j C k C 1/


.� C j C 1/
.� C k C 1/

1

j ŠkŠ
y
j
1y

k
2

D
X

`;m;n�0

1

`ŠmŠ

1

nŠ
.� C nC 1/
y`Cn1 ymCn

2 :

We compare coefficients of yj1y
k
2 in (8.62). Since both sides of (8.62) are sym-

metric in .y1; y2/, it suffices to treat the case

(8.63) j � k;

which we assume henceforth. Then we take `Cn D j; mCn D k and sum over
n 2 f0; : : : ; j g, to see that (8.62) is equivalent to the validity of

(8.64)

jX
nD0

1

.j � n/Š.k � n/ŠnŠ
.� C nC 1/
D 
.� C j C k C 1/


.� C j C 1/
.� C k C 1/

1

j ŠkŠ
;

whenever 0 � j � k. Using the identity


.� C j C 1/ D .� C j / � � � .� C nC 1/
.� C nC 1/
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and its analogues for the other 
-factors in (8.64), we see that (8.64) is equivalent
to the validity of

(8.65)
jX
nD0

j ŠkŠ

.j � n/Š.k � n/ŠnŠ .�Cj / � � � .�CnC1/ D .�CjCk/ � � � .�CkC1/;

for 0 � j � k. Note that the right side of (8.65) is a polynomial of degree j in �,
and the general term on the left side of (8.65) is a polynomial of degree j �n in �.

In order to establish (8.65), it is convenient to set

(8.66) � D � C j

and consider the associated polynomial identity in �. With

(8.67)
p0.�/ D 1; p1.�/ D �; p2.�/ D �.�� 1/; : : :

pj .�/ D �.� � 1/ � � � .� � j C 1/;

we see that fp0; p1; : : : ; pj g is a basis of the space Pj of polynomials of degree
j in �, and our task is to write

(8.68) pj .�C k/ D .�C k/.�C k � 1/ � � � .�C k � j C 1/

as a linear combination of p0; : : : ; pj . To this end, define

(8.69) T W Pj �! Pj ; Tp.�/ D p.�C 1/:

By explicit calculation,

(8.70)
p1.�C 1/ D p1.�/C p0.�/;

p2.�C 1/ D .�C 1/� D �.� � 1/C 2� D p2.�/C 2p1.�/;

and an inductive argument gives

(8.71) Tpi D pi C ipi�1:

By convention we set pi D 0 for i < 0. Our goal is to compute T kpj . Note that

(8.72) T D I CN; Npi D ipi�1;

and

(8.73) T k D
jX
nD0

 
k

n

!
N n;
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if j � k. By (8.72),

(8.74) N npi D i.i � 1/ � � � .i � nC 1/pi�n;

so we have

(8.75)

T kpj D
jX
nD0

 
k

n

!
j.j � 1/ � � � .j � nC 1/pj�n

D
jX
nD0

kŠ

.k � n/ŠnŠ
j Š

.j � n/Špj�n:

This verifies (8.65) and completes the proof of (8.60).

Similarly we can evaluate (8.47) with f .�2/ D e�t�=�, as an infinite series,
using (8.53) to integrate each term of the double series. We get

(8.76)
Z 1

0

e�t�J�.r1�/J�.r2�/ d�

D 1

t

� r1r2
t2

�� X
j;k�0


.2� C 2j C 2k C 1/


.� C j C 1/
.� C k C 1/

1

j ŠkŠ

�
� r21
4t2

�j�� r22
4t2

�k
;

provided t > rj > 0. It is possible to express this integral in terms of the Legendre
functionQ��1=2.z/.

Proposition 8.8. One has, for all y; r1; r2 > 0; � � 0,
(8.77)Z 1

0

e�y�J�.r1�/J�.r2�/ d� D 1

�
.r1r2/

�1=2Q��1=2
�
r21 C r22 C y2

2r1r2

�
:

The Legendre functions P��1=2.z/ andQ��1=2.z/ are solutions to

(8.78)
d

d z

h
.1 � z2/

d

d z
u.z/

i
C
�
�2 � 1

4

�
u.z/ D 0I

Compare with (4.52). Extending (4.41), we can set

(8.79) P��1=2.cos �/ D 2

�

Z 


0

�
2 cos s � 2 cos �

��1=2
cos �s ds;

and Q��1=2.z/ can be defined by the integral formula

(8.80) Q��1=2.cosh �/ D
Z 1

�

�
2 cosh s � 2 cosh �

��1=2
e�s� ds:

The identity (8.77) is known as the Lipschitz-Hankel integral formula.



160 8. Spectral Theory

Proof of Proposition 8.8. We derive (8.77) from the Weber identity (8.60).
Recall

(8.81) I�.y/ D e��i�=2 J�.iy/; y > 0:

To work with (8.60), we use the subordination identity

(8.82) e�y� D �p
�

Z 1

0

e�y2=4te�t�2

t�1=2 dt I

cf. Chap. 3, (5.31) for a proof. Plugging this into the left side of (8.77), and using
(8.60), we see that the left side of (8.77) is equal to

(8.83)
1

2
p
�

Z 1

0

e�.r2
1

Cr2
2

Cy2/=4t I�

�r1r2
2t

�
t�3=2 dt:

The change of variable s D r1r2=2t gives

(8.84)

r
1

2�
.r1r2/

�1=2
Z 1

0

e�s.r2
1

Cr2
2

Cy2/=2r1r2 I�.s/s
�1=2 ds:

Thus the asserted identity (8.77) follows from the identity

(8.85)
Z 1

0

e�szI�.s/s
�1=2 ds D

r
2

�
Q��1=2.z/; z > 0:

As for the validity of (8.85), we mention two identities. Recall from (8.57) that

(8.86)Z 1

0

e�szJ�.�s/s
��1 ds D

�
�

2

��
z���� 
.�C �/


.� C 1/

� 2F1
�
�

2
C �

2
C 1

2
;
�

2
C �

2
I � C 1I ��

2

z2

�
:

Next, there is the classical representation of the Legendre function Q��1=2.z/ as
a hypergeometric function:

(8.87)

Q��1=2.z/ D 

�
1
2

�


�
� C 1

2

�


 .� C 1/
.2z/���1=2

2F1

�
�

2
C 3

4
;
�

2
C 1

4
I � C 1I 1

z2

�
I

cf. [Leb], (7.3.7) If we apply (8.86) with � D i; � D 1=2 (keeping (8.81) in
mind), then (8.85) follows.

Remark: Formulas (8.77) and (8.60) are proven in the opposite order in [W].
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By analytic continuation, we can treat f .�2/ D e�"���1 sin�t for any " > 0.
We apply this to (8.47). Letting " & 0, we get for the fundamental solution to the
wave equation:

(8.88)

.��/�1=2 sin t.��/1=2

D � lim
"&0

.r1r2/
˛ Im

Z 1

0

e�."Ci t/� J�.�r1/J�.�r2/ d�

D � 1
�
.r1r2/

˛�1=2 lim
"&0

Im Q��1=2
� r21 C r22 C ."C i t/2

2r1r2

�
:

Using the integral formula (8.80), where the path of integration is a suitable path
from � to C1 in the complex plane, one obtains the following alternative integral
representation of .��/�1=2 sin t.��/1=2. The Schwartz kernel is equal to

0; if t < jr1 � r2j;(8.89)

1

�
.r1r2/

˛

Z ˇ1

0

	
t2 � .r21 C r22 � 2r1r2 cos s/


�1=2
cos �s ds;(8.90)

if jr1 � r2j < t < r1 C r2, and

(8.91)
1

�
.r1r2/

˛ cos��
Z 1

ˇ2

	
r21 C r22 C 2r1r2 cosh s � t2


�1=2
e�s� ds;

if t > r1 C r2, where

(8.92) ˇ1 D cos�1
�r21 C r22 � t2

2r1r2

�
; ˇ2 D cosh�1

� t2 � r21 � r22
2r1r2

�
:

Recall that ˛ D �.m � 1/=2, wherem D dim N .
We next show how formulas (8.89)–(8.91) lead to an analysis of the classical

problem of diffraction of waves by a slit along the positive x-axis in the plane R2.
In fact, if waves propagate in R2 with this ray removed, on which Dirichlet bound-
ary conditions are placed, we can regard the space as the cone over an interval of
length 2� , with Dirichlet boundary conditions at the endpoints. By the method of
images, it suffices to analyze the case of the cone over a circle of circumference
4� (twice the circumference of the standard unit circle). Thus C.N/ is a double
cover of R2 n 0 in this case. We divide up the spacetime into regions I, II, and
III, respectively, as described by (8.89), (8.90), and (8.91). Region I contains only
points on C.N/ too far away from the source point to be influenced by time t ;
that the fundamental solution is 0 here is consistent with finite propagation speed.

Since the circle has dimensionm D 1, we see that

(8.93) � D .��N /1=2 D
�
� d 2

d�2

�1=2
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in this case if � 2 R=.4�Z/ is the parameter on the circle of circumference 4� .
On the line, we have

(8.94) cos s� ı
1
.�2/ D 1

2

	
ı.�1 � �2 C s/C ı.�1 � �2 � s/
:

To get cos s� on R=.4�Z/, we simply make (8.94) periodic by the method of
images. Consequently, from (8.90), the wave kernel .��/�1=2 sin t.��/1=2 is
equal to

(8.95)
.2�/�1

	
t2 � r21 � r22 C 2r1r2 cos.�1 � �2/


�1=2
if j�1 � �2j � �;

0 if j�1 � �2j > �;

in region II. Of course, for j�1 � �2j < � this coincides with the free space
fundamental solution, so (8.95) also follows by finite propagation speed.

We turn now to an analysis of region III. In order to make this analysis, it is
convenient to make simultaneous use both of (8.91) and of another formula for
the wave kernel in this region, obtained by choosing another path from � to 1
in the integral representation (8.80). The formula (8.91) is obtained by taking a
horizontal line segment; see Fig. 8.1.

If instead we take the path indicated in Fig. 8.2, we obtain the following for-
mula for .��/�1=2 sin t.��/1=2 in region III:

(8.96)

��1.r1r2/�.m�1/=2
(Z �

0

�
t2 � r21 � r22 C 2r1r2 cos s

��1=2
cos s� ds

� sin��
Z ˇ2

0

�
t2 � r21 � r22 � 2r1r2 cosh s

��1=2
e�s� ds

)
:

The operator � on R=.4�Z/ given by (8.93) has spectrum consisting of

(8.97) Spec � D
n
0;
1

2
; 1;

3

2
; 2; : : :

o
;

FIGURE 8.1 Integration Contour
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FIGURE 8.2 Alternative Contour

all the eigenvalues except for 0 occurring with multiplicity 2. The formula (8.91)
shows the contribution coming from the half-integers in Spec � vanishes, since
cos 1

2
�n D 0 if n is an odd integer. Thus we can use formula (8.96) and compose

with the projection onto the sum of the eigenspaces of � with integer spectrum.
This projection is given by

(8.98) P D cos2 ��

on R=.4�Z/. Since sin�n D 0, in the case N D R=.4�Z/ we can rewrite
(8.96) as

(8.99) ��1.r1r2/�.m�1/=2
Z �

0

�
t2 � r21 � r22 C 2r1r2 cos s

��1=2
P cos s� ds:

In view of the formulas (8.94) and (8.96), we have

P cos s� ı
1
.�2/

D 1

4

	
ı.�1 � �2 C s/C ı.�1 � �2 � s/(8.100)

Cı.�1 � �2 C 2� C s/C ı.�1 � �2 C 2� � s/



mod 4�:

Thus, in region III, we have for the wave kernel .��/�1=2 sin t.��/1=2 the
formula

(8.101) .4�/�1
�
t2 � r21 � r22 C 2r1r2 cos.�1 � �2/

��1=2
:

Thus, in region III, the value of the wave kernel at points .r1; �1/; .r2; �2/ of the
double cover of R2 n 0 is given by half the value of the wave kernel on R2 at
the image points. The jump in behavior from (8.95) to (8.101) gives rise to a
diffracted wave.

We depict the singularities of the fundamental solution to the wave equation
for R2 minus a slit in Figs. 8.3 and 8.4. In Fig. 8.3 we have the situation jt j < r1,
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FIGURE 8.3 Reflected Wave Front

FIGURE 8.4 Reflected and Diffracted Wave Fronts

where no diffraction has occurred, and region III is empty. In Fig. 8.4 we have a
typical situation for jt j > r1, with the diffracted wave labeled by a “D.”

This diffraction problem was first treated by Sommerfeld [Som] and was the
first diffraction problem to be rigorously analyzed. For other approaches to the
diffraction problem presented above, see [BSU] and[Stk].

Generally, the solution (8.89)–(8.91) contains a diffracted wave on the bound-
ary between regions II and III. In Fig. 8.5 we illustrate the diffraction of a
wave by a wedge; here N is an interval of length ` < 2� . We now want to
provide, for general N , a description of the behavior of the distribution v D
.��/�1=2 sin t.��/1=2 ı.r2;x2/ near this diffracted wave, that is, a study of the
limiting behavior as r1 & t � r2 and as r1 % t � r2.

We begin with region II. From (8.90), we have v equal to

(8.102)
1

2
.r1r2/

˛�1=2P��1=2.cosˇ1/ ıx2
in region II;

whereP��1=2 is the Legendre function defined by (8.79) and ˇ1 is given by (8.92).
Note that as r1 & t � r2; ˇ1 % � .

To analyze (8.102), replace s by � � s in (8.79), and, with ı1 D � � ˇ1, write

(8.103)

�

2
P��1=2.cosˇ1/ D cos��

Z �

ı1

�
2 cos ı1 � 2 cos s

��1=2
cos s� ds

C sin��
Z �

ı1

�
2 cos ı1 � 2 cos s

��1=2
sin s� ds:
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FIGURE 8.5 Diffraction by a Wedge

As ı1 & 0, the second term on the right tends in the limit to

(8.104) sin��
Z �

0

sin s�

sin 1
2
s
ds:

Write the first term on the right side of (8.103) as

(8.105)

cos��
Z �

ı1

.2 cos ı1 � 2 cos s/�1=2.cos s� � 1/ ds

C cos��
Z �

ı1

.2 cos ı1 � 2 cos s/�1=2 ds:

As ı1 & 0, the first term here tends in the limit to

(8.106) cos��
Z �

0

cos s� � 1

sin 1
2
s

ds:

The second integral in (8.105) is a scalar, independent of �, and it is easily seen
to have a logarithmic singularity. More precisely,

(8.107)

Z �

ı1

.2 cos ı1 � 2 cos s/� 1
2 ds

	
�

log
2

ı1

� 1X
jD0

Aj ı
j
1 C

1X
jD1

Bj ı
j
1 ; A0 D 1:

Consequently, one derives the following.
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Proposition 8.9. Fix .r2; x2/ and t . Then, as r1 & t � r2,

(8.108)

.��/�1=2 sin t.��/1=2 ı.r2;x2/

D 1

�
.r1r2/

˛�1=2
�

log
2

ı1
cos�� ıx2

C
Z �

0

cos s� � cos��

2 cos 1
2
s

ds ıx2
CR1 ıx2

)
;

where, for s > .mC 1/=2,

(8.109) kR1 ıx2
kD�s�1 � Cı1 log

1

ı1
; as ı1 & 0:

The following result analyzes the second term on the right in (8.108).

Proposition 8.10. We have

(8.110)

Z �

0

�
2 cos

1

2
s
��1

.cos s� � cos��/ ds

D cos��

8
<
:� log � C

KX
jD0

aj �
�2j

9
=
;C �

2
sin�� C SK.�/;

where SK.�/ W Ds ! DsC2K , for all s.

The spaces Ds are spaces of generalized functions onN , introduced in Chap. 5,
Appendix A.

We turn to the analysis of v in region III. Using (8.91), we can write v as

(8.111)
1

�
.r1r2/

˛�1=2 cos�� Q��1=2.cosh ˇ2/ ıx2
; in region III,

whereQ��1=2 is the Legendre function given by (8.80) and ˇ2 is given by (8.92).
It is more convenient to use (8.96) instead; this yields for v the formula

(8.112)

1

�
.r1r2/

˛�1=2
� Z �

0

.2 cosh ˇ2 C 2 cos s/�1=2 cos s� ds

� sin��
Z ˇ2

0

.2 cosh ˇ2 � 2 cosh s/�1=2e�s� ds
�
:

Note that as r1 % t � r2; ˇ2 & 0.
The first integral in (8.112) has an analysis similar to that arising in (8.103);

first replace s by � � s to rewrite the integral as
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(8.113)
cos ��

Z �

0

.2 cosh ˇ2 � 2 cos s/�1=2 cos s� ds

C sin��
Z �

0

.2 cosh ˇ2 � 2 cos s/�1=2 sin s� ds:

As ˇ2 & 0, the second term in (8.113) tends to the limit (8.104), and the first
term also has an analysis similar to (8.105)–(8.107), with (8.107) replaced by

(8.114)

Z �

0

.2 cosh ˇ2 � 2 cos s/�1=2 ds

	
�

log
2

ˇ2

�X
j�0

A0
jˇ

j
2 C

X
j�1

B 0
jˇ

j
2 ; A0

0 D 1:

It is the second term in (8.112) that leads to the jump across r1 D t � r2, hence to
the diffracted wave. We have

(8.115)
Z ˇ2

0

.2 cosh ˇ2 � 2 cosh s/�1=2e�s� ds 	
Z ˇ2

0

dsq
ˇ22 � s2

D �

2
:

Thus we have the following:

Proposition 8.11. For r1 % t � r2,

(8.116)

.��/�1=2 sin t.��/1=2 ı.r2;x2/

D 1

�
.r1r2/

˛�1=2
�

log
2

ˇ2
cos�� ıx2

C
Z �

0

cos s� � cos��

2 cos 1
2
s

ds ıx2
� �

2
sin�� ıx2

C eR1ıx2

�
;

where, for s > .mC 1/=2,

(8.117) kR1ıx2
kD�s�1 � Cˇ2 log

1

ˇ2
; as ˇ2 & 0:

Note that (8.116) differs from (8.108) by the term ��1.r1r2/˛�1=2 times

(8.118) ��
2

sin�� ıx2
:

This contribution represents a jump in the fundamental solution across the
diffracted wave D. There is also the logarithmic singularity, .r1r2/˛�1=2 times

(8.119)
1

�
log

2

ı
cos�� ıx2

;
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where ı D ı1 in (8.108) and ı D ˇ2 in (8.116). In the special case where N is
an interval Œ0; L�, so dim C.N/ D 2; cos�� ıx2

is a sum of two delta functions.
Thus its manifestation in such a case is subtle.

We also remark that if N is a subdomain of the unit sphere S2k (of even di-
mension), then cos�� ıx2

vanishes on the set N nN0, where

(8.120) N0 D fx1 2 N W for some y 2 @N; dist.x2; y/C dist.y; x1/ � �g:

Thus the log blow-up disappears on N n N0. This follows from the fact that
cos��0 D 0, where �0 is the operator (8.46) on S2k , together with a finite prop-
agation speed argument.

While Propositions 8.9–8.11 contain substantial information about the nature
of the diffracted wave, this information can be sharpened in a number of respects.
A much more detailed analysis is given in [CT].

Exercises

1. Using (7.36) and (7.80), work out the asymptotic behavior of 1F1.aI bI �z/ as
z ! C1, given b; b � a … f0;�1;�2; : : : g. Deduce from (8.51) that whenever
� � 0; s 2 R,

(8.121) lim
b&0

Z 1

0
e�br2

J�.r/r
�is dr D 2�is 


�
1
2 .� C 1 � is/

�



�
1
2 .� C 1C is/

� :

2. Define operators

(8.122) Mrf .r/ D rf .r/; J f .r/ D f .r�1/:

Show that

Mr W L2.RC; r dr/ �! L2.RC; r�1 dr/; J W L2.RC; r�1 dr/
�! L2.RC; r�1 dr/(8.123)

are unitary. Show that

(8.124) H #
� D JMrH�M�1

r

is given by

(8.125) H #
�f .�/ D .f ? `�/.�/;

where ? denotes the natural convolution on RC, with Haar measure r�1dr :

(8.126) .f ? g/.�/ D
Z 1

0
f .r/g.r�1�/r�1 dr;

and

(8.127) `�.r/ D r�1J�.r�1/:
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3. Consider the Mellin transform:

(8.128) M#f .s/ D
Z 1

0
f .r/r is�1 dr:

As shown in (A.17)–(A.20) of Chap. 3, we have

(8.129) .2�/�1=2M# W L2.RC; r�1 dr/ �! L2.R; ds/; unitary.

Show that

(8.130) M#.f ? g/.s/ D M#f .s/ � M#g.s/;

and deduce that

(8.131) M#H #
�f .s/ D ‰.s/M#f .s/;

where

(8.132)

‰.s/ D
Z 1

0
J�.r

�1/r is�2 dr D
Z 1

0
J�.r/r

�is dr D 2�is 

�
1
2 .� C 1 � is/

�



�
1
2 .� C 1C is/

� :

4. From (8.126)–(8.132), give another proof of the unitarity (8.13) of H� . Using sym-
metry, deduce that spec H� D f�1; 1g, and hence deduce again the inversion formula
(8.14).

5. Verify the asymptotic expansion (8.107). (Hint: Write 2 cos ı � 2 cos s D .s2 � ı2/

F .s; ı/ with F smooth and positive, F.0; 0/ D 1. Then, with G.s; ı/ D F.s; ı/�1=2,

(8.133)
Z �

ı
.2 cos ı � 2 cos s/�1=2 ds D

Z �

ı
G.s; ı/

dsp
s2 � ı2

:

WriteG.s; ı/ D g.s/CıH.s; ı/; g.0/ D 1, and verify that (8.133) is equal toA1CA2,
where

A1 D
Z �

ı
G.s; ı/

ds

s
D g.0/ log

1

ı
CO

�
ı log

1

ı

�
;

A2 D
Z �

ı
g.s/

h 1p
s2 � ı2

� 1

s

i
ds CO.ı/ D B2 CO.ı/:

Show that

B2 D g.0/

Z �=ı

1

h 1p
t2 � 1

� 1

t

i
dt CO.ı/ D C2 CO.ı/;

with

C2 D
Z 1

1

h 1p
t2 � 1

� 1

t

i
dt

Use the substitution t D cosh u to do this integral and get C2 D log 2:)
Next, verify the expansion (8.114).
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Exercises on the hypergeometric function

1. Show that 2F1.a1; a2I bI z/, defined by (8.56), satisfies

(8.134) 2F1.a1; a2I bI z/ D 
.b/


.a2/
.b � a2/

Z 1

0
ta2�1.1 � t/b�a2�1.1 � tz/�a1 dt;

for Re b > Re a2 > 0; jzj < 1. (Hint: Use the beta function identity, (A.23)–(A.24) of
Chap. 3, to write

.a2/k

.b/k
D 
.b/


.a2/
.b � a2/

Z 1

0
ta2�1Ck.1� t/b�a2�1 dt; k D 0; 1; 2; : : : ;

and substitute this into (8.39). Then use

1X

kD0

.a1/k

kŠ
.zt/k D .1 � tz/�a1 ; 0 � t � 1; jzj < 1:/

2. Show that, given Re b > Re a2 > 0, (8.134) analytically continues in z to z 2 C n
Œ1;1/.

3. Show that the function (8.134) satisfies the ODE

z.1 � z/
d2u

d z2
C ˚

b � .a1 C a2 C 1/z
�du

d z
� a1a2u D 0

Note that u.0/ D 1; u0.0/ D a1a2=b, but zero is a singular point for this ODE. Show
that another solution is

u.z/ D z1�b
2F1.a1 � b C 1; a2 � b C 1I 2 � bI z/:

4. Show that

2F1.a1; a2I bI z/ D .1 � z/�a1
2F1

�
a1; b � a2I bI .z � 1/�1z

�
:

(Hint: Make a change of variable s D 1 � t in (8.134).)
For many other important transformation formulas, see [Leb] or [WW].

5. Show that
1F1.aI bI z/ D lim

c%1 2F1.a; cI bI c�1z/:

We mention the generalized hypergeometric function, defined by

pFq.aI bI z/ D
1X

kD0

.a/k

.b/k

zk

kŠ
;

where p � q C 1; a D .a1; : : : ; ap/; b D .b1; : : : ; bq/; bj 2 C n f0;�1;�2; : : : g,
jzj < 1, and

.a/k D .a1/k � � � .ap/k ; .b/k D .b1/k � � � .bq/k ;
and where, as before, for c 2 C; .c/k D c.c C 1/ � � � .c C k � 1/. For more on this
class of functions, see [Bai].
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6. The Legendre function Q��1=2.z/ satisfies the identity (8.87), for � � 0; jzj > 1, and
jArg zj < �; cf. (7.3.7) of [Leb]. Take z D .r21 C r22 C t2/=2r1r2, and compare the
resulting power series for the right side of (8.77) with the power series in (8.76).
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