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The Principles of STEM Imaging

2.1 Introduction

The purpose of this chapter is to review the principles underlying
imaging in the scanning transmission electron microscope (STEM).
Consideration of interference between parts of the convergent illumi-
nating beam will be used to provide a common framework which
allows contrast in various modes to be considered, and serves to allow
the resolution limits of imaging to be determined. Several of the other
chapters in this volume deal with specific imaging modes, so we do not
seek to provide a detailed analysis of all those modes here, rather we
will point out how these imaging modes may be considered in similar
ways.

Figure 2-1 shows a schematic of the STEM optical configuration. A
series of lenses focuses a beam to form a small spot, or probe, incident
upon a thin, electron-transparent sample. Except for the final focusing
lens, which is referred to as the objective, the other pre-sample lenses
are referred to as condenser lenses. The aim of the lens system is to pro-
vide enough demagnification of the finite-sized electron source in order
to form an atomic-scale probe at the sample. The objective lens provides
the final, and largest, demagnification step. It is the aberrations of this
lens that dominate the optical system. An objective aperture is used
to restrict its numerical aperture to a size where the aberrations do not
lead to significant blurring of the probe. The requirement of an objective
aperture has two important consequences: (i) it imposes a diffraction
limit to the smallest probe diameter that may be formed and (ii) elec-
trons that do not pass through the aperture are lost, and therefore the
aperture restricts the amount of beam current available.

Scan coils are arranged to scan the probe over the sample in a raster,
and a variety of scattered signals can be detected and plotted as a func-
tion of probe position to form a magnified image. There is a wide range
of possible signals available in the STEM, but the commonly collected
ones are the following

(i) Transmitted electrons that leave the sample at relatively low angles
with respect to the optic axis (smaller than the incident beam
convergence angle). This mode is referred to as bright field (BF).
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Figure 2-1. A schematic diagram of a STEM instrument showing the elements
discussed in this chapter.

(ii) Transmitted electrons that leave the sample at relatively high
angles with respect to the optic axis (usually at an angle several
times the incident beam convergence angle). This mode is referred
to as annular dark field (ADF).

(iii) Transmitted electrons that have lost a measurable amount of
energy as they pass through the sample. Forming a spectrum of
these electrons as a function of the energy lost leads to electron
energy loss spectroscopy (EELS).

(iv) X-rays generated from electron excitations in the sample (EDX).

Post-specimen optics may also be present to control the angles sub-
tended by some of these detectors, but such optics play no part in the
image formation process and will not be considered here.

In this chapter we will mainly consider the first two detection modes
on the above list. Chapter 6 deals more extensively with quantitative
ADF imaging calculations and imaging using inelastically scattered
electrons and Chapter 7 deals with EDX mapping.

2.2 The Principle of Reciprocity

Before embarking on a discussion of the origins of contrast and resolu-
tion limits in STEM imaging, it is first important to consider the impli-
cations of the principle of reciprocity. Consider elastic scattering so that
all the electron waves in the microscope have the same energy. Under
these conditions, the propagation of the electrons is time reversible.
Points in the original detector plane could be replaced with electron
sources, and the original source replaced with a detector, and a similar
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Figure 2-2. A schematic diagram showing the equivalence between bright-
field STEM and HRTEM imaging making use of the principle of reciprocity.

intensity would be seen. Applying this concept to STEM (Cowley 1969,
Zeitler and Thomson 1970), it becomes clear that the STEM imaging
optics (before the sample) are equivalent to the imaging optics (after
the sample) in the conventional TEM (CTEM). Similarly, the detector
plane in STEM plays a similar role to the illumination configuration in
CTEM.

We will see later that many of the concepts relating to coherence
derived for CTEM can be transferred to STEM making use of the prin-
ciple of reciprocity. As an immediate illustration of reciprocity, consider
simple bright-field (BF) imaging. In the CTEM the ideal situation is that
the sample is illuminated by perfectly coherent plane-wave illumina-
tion, and post-specimen optics form a highly magnified image of the
wave that is transmitted by the sample. Now reverse this process to
reveal the BF configuration for STEM (Figure 2-2). The electron source
in the STEM plays an equivalent role to an image pixel in CTEM. The
STEM imaging optics form a highly demagnified image of the source
at the sample, and that can be scanned over the sample. Plane-wave
transmission is then detected, usually with a small detector placed on
the optic axis in the far field, and plotted as a function of probe position.
The principle of reciprocity suggests that the image contrast will have
the same form in both the CTEM and STEM cases, and this is observed
experimentally (Crewe and Wall 1970) (see Figure 1-5). In the rest of
this chapter, we will derive the imaging attributes from the STEM point
of view but make the connection to CTEM where appropriate.

2.3 Interference Between Overlapping Discs

The origins of contrast in STEM arise from the interference between
partial plane waves in the convergent beam that form the probe. Many
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such beams can interfere as they are scattered into the final beam that
propagates to the detector, leading to a change in the intensity of this
final beam as the probe is moved and hence image contrast (Spence and
Cowley 1978). To understand this process, it is instructive to first con-
sider lattice imaging of a simple sample that only scatters to reciprocal
lattice vectors g and —g in addition to transmitting an unscattered beam.
Plane-wave illumination of such a sample would lead to three spots: the
direct beam and the two scattered beams. In STEM we have a coherent
convergent beam illuminating the sample, and so the diffracted beams
broaden to form discs. Where these diffracted discs overlap, interfer-
ence features will be seen, and it is these interference features that lead
to image contrast in STEM (Figure 2-3). To explain the form of these
interference features, we need to follow the wavefunction through the
microscope.

We start by assuming that the front focal plane of the objective lens
is coherently illuminated. We assume that the effects of aberrations can
be treated as a phase shift x that has the form

1
x(K) = (ﬂC1,0MK|2 + §7TC3,0)»3 |1<|4) , 1)

where we have considered only defocus Ci9 and spherical aberra-
tion C3 as being present, and K is the transverse component of the
wavevector at that position in the front focal plane. In an aberration-
corrected microscope, the instrument will not be limited by C3 9, and the
general aberration phase surface is given in Chapters 3 and 7. To limit
the influence of aberrations, an aperture is used, allowing beams to con-
tribute up to a maximum transverse wavevector Kmax = A/«; thus the

sample

BF detector

Figure 2-3. Diffraction of the coherent convergent beam by a specimen leads
to diffracted discs. Where these discs overlap, interference will be seen. The
bright-field detector is sensitive to interference between the direct beam and
the two opposite diffracted beams.
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overall wave at the front focal plane is given by the lens transmission
function

T(K) =AK)exp[—ix K)], 2

where A is a function that describes the size of the objective aperture,
having a value of 1 for |K| < Kmax and 0 elsewhere.

The electron probe can now be calculated by simply taking the
inverse Fourier transform of the wave at the front focal plane, thus

P(R) = / T (K) exp (27K - R) dK. 6)

To express the ability of the STEM to move the probe over the sample,
we can include a shift term in Eq. (3) to give

PR —-Rp) = / T (K) exp (27K - R) exp (—i27K - Rp) dK, (4)

where Ry is the probe position. Moving the probe is therefore equiva-
lent to adding a linear ramp to the phase variation across the front focal
plane, which is exactly what the scan coils do.

Now consider diffraction by a sample. If we assume a thin sample
that can be treated as being a thin, multiplicative transmission function,
¢, then the wave exiting the sample can be written as

¥ (R,Ro) = P(R — Ro)¢(R). ©)

To calculate the wave at the detector plane, we take the Fourier trans-
form of Eq. (5). Because Eq. (5) is a product, its Fourier transform
becomes a convolution and can be written as

V(K Ro) = f $(Ks — K) T(K)exp(—i27K - Rp), (6)

where changes in the argument of a function to reciprocal space vectors
indicate that the Fourier transform has been taken. This equation has
a relatively simple interpretation. The detector is in diffraction space,
and the wave incident upon the detector at a position corresponding
to a transverse wavevector Ky, is the sum of all waves incident upon
the sample, with transverse wavevectors K, that are scattered by the
object to K¢. Now consider a sample that transmits a direct beam and
scatters into +g and —g beams, i.e. it contains only a simple sinusoidal
variation, either in amplitude or phase. The Fourier transform of the
sample transmission function will contain Dirac delta functions at 0, -g
and +g. Substituting this form into Eq. (6) gives

¥ (K, Rg) = T(K)exp [-127K - Ro] + qbgT(K —g)exp [—127'[ (K — g) . Ro]

+¢_gT(K + g)exp [—i27 (K+g) - Ro], (7)

where ¢g represent the complex amplitude (amplitude and phase) of
the beam scattered to +g. Because T has an amplitude that is disc shaped
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(being controlled by the shape and size of the objective aperture), the
form of the diffraction pattern will be three discs. If the objective aper-
ture is large enough, the discs will overlap, as shown for example in
Figure 2-3. Where the discs overlap, coherent interference can occur
(Cowley 1979 1981, Spence 1992). To examine the form of the interfer-
ence in the region where only the 0 and +g discs overlap, we need to
calculate the intensity in this region. Taking the modulus squared of
Eq. (7) and only considering the 0 and +g terms, which are the only
ones contributing in this region, gives

I(Kf, Ro) = 1+ |¢pg|* + 2l¢pglcos [~ x (Kp) + x (Ki — ) +27g - Ro + Zopg],
(8)

where Z¢g is the phase of the beam diffracted to +g.
Equation (8) reveals features of the interference that are important for
understanding STEM imaging:

(i) The intensity in the overlap region varies sinusoidally as the probe
is scanned. If a point detector was placed in this region and used
to form a STEM image, fringes would be seen in the image cor-
responding to the spacing of the sample, and their geometric
position is controlled by the phase relationship of the interfering
beams.

(ii) Lens aberration can also affect the form in this overlap region.
Consider just defocus (i.e. ignoring all other aberrations). Using Eq.
(2) it is possible to evaluate the quantity

—(KQ) + x(Ki = g) = w22 | K} + (K; — )| = w22 | -2K; - g + 1P
©)

This quantity is linear in K¢, and so substituting it into Eq. (8) reveals
that a uniform set of fringes will be seen running perpendicular to
the g vector. Such a set of interference fringes are seen in Figure 2—4.
Although these fringes exist in diffraction space, their spacing, as spec-
ified in diffraction angle, corresponds to the spacing in the sample
divided by the value of the defocus. Thus they can be thought of as
a shadow image of the lattice in the sample. This illustrates how the
detector plane in STEM, albeit nominally in diffraction space, can show
real-space information. Removing the aperture completely gives an
electron Ronchigram (see Chapter 3). As the defocus is reduced to zero,
the apparent magnification of the shadow increases until at zero defo-
cus the shadow has infinite magnification, and the disc overlap region
contains a uniform intensity.

If we now include higher order aberrations rather than just defocus,
such as spherical aberration, the form of the interference features will
become more complicated. The fringes will distort, and it will not be
possible to fill the overlap region with a uniform intensity.
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Figure 2-4. Overlapping diffracted discs in a coherent convergent-beam elec-
tron diffraction pattern. The probe has been defocused leading to relatively fine
interference features in the disc overlap regions.

2.4 Bright-Field Imaging

As mentioned previously, reciprocity shows that the STEM equivalent
of CTEM imaging is to use a small detector on the optic axis. From
Figure 2-3 it can be seen that such a detector makes use of the inten-
sity in a triple overlap region where the direct 0 beam and the +g and
—g beams overlap. The wavefunction at this point is given by

W(Kf =0,Rg) =1+ ¢gexp [—ix(—g) —i2ng- Ro] )
+¢_gexp [—ix(g) +i27g - Ro].

Taking the modulus squared of Eq. (10) and neglecting terms of
higher order than linear gives
I(K¢=0,Rq) = 1+ ¢gexp [—ix(—g) —i27g - Ro]
+¢_gexp [—ix(g) +i27g - Ro]

+¢;‘exp [ix(—g) +1i27g - Ro| (1)
+¢* gexp [ix(g) — i2ng - Ro].
Now consider a weak-phase object where we can write
pg =ioVg (12)

where Vg is the gth Fourier component of the specimen potential.
Because the potential is real,

Vi=V_g (13)
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and therefore
I(Kf = 0,Rp) = 1 +io Vgexpi[—x(~g) — 278 - Ro]
+Ho Viexpi[—x(g) +27g - Ro]

—ioViexpi[x(—g) +27g- Ro] (14)
—io Vgexpi[x(g) — 278 - Ro].
Collecting terms and assuming that x is a symmetric function,
Igr(Rp) =1 +1 (exp [~ix(8)] — exp[ix(g)])
x <0Vg exp [—i27g - Ro] + o Viexp [i27g - RO]) 15)
=1+ 20 sin (x(g)) [|Vg| exp (—i2ng - Ry + £Vy)
+|Vg|exp [i27g - Ro — £Vg]],
which simplifies to give
Igr (Ro) = 1+ 4|0 Vg|cos (2ng - Ry — £V sin x(g), (16)

which is the standard form of phase contrast imaging in the electron
microscope (Spence 1988), with the phase contrast transfer function
being given by sin(x).

Thus BF imaging in STEM shows the usual phase contrast imag-
ing, with a phase contrast transfer function that is controlled by the
lens aberrations, in a similar way to phase contrast imaging in CTEM.
The principle of reciprocity is thereby confirmed. It should be pointed
out, however, that BF imaging in STEM is much less efficient of elec-
trons than that in CTEM because the small detector does not collect the
majority of the electrons in the detector plane.

2.5 Resolution Limits

Figure 2-3 shows that triple overlap conditions can occur only if the
magnitude of g is less than the radius of the aperture. The aperture
itself is used to prevent highly aberrated rays contributing to the image
(which in the bright-field model would correspond to the oscillatory
region of the phase contrast transfer function). If the magnitude of g
has a value lying between the aperture radius and the aperture diam-
eter, there will still be interference in the single overlap regions (see
Figure 2-5). Thus information at this resolution can be recorded in a
STEM, but not using an axial detector. An off-axis detector needs to be
used to record this so-called single sideband interference. By reciprocity,
the equivalent approach in HRTEM is to use tilted illumination, which
has been shown to improve image resolution (Haigh et al. 2009).

Ideas for making use of this single sideband interference include
differential phase contrast detectors (Dekkers and de Lang 1974) and
annular bright-field detectors (Rose 1974). It can also be seen that an
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Figure 2-5. For smaller lattice spacings, the triple overlap regions necessary for
bright-field STEM may not exist and no contrast will be seen. Such spacings can
be resolved, however, using non-axial detector geometries including annular
dark field.

annular dark-field detector would also detect single overlap interfer-
ence, though at the angles usually detected, discrete discs are no longer
observable because of the effects of thermal diffuse scattering.

A broad statement for STEM resolution is that for a spatial frequency
Q to show up in the image, two beams incident on the sample sepa-
rated by Q must be scattered by the sample so that they end up in the
same final wavevector K¢ where they can interfere. This model of STEM
imaging is applicable to any imaging mode, even when TDS or inelas-
tic scattering is included. We can immediately conclude that STEM is
unable to resolve any spacing smaller than that allowed by the diameter
of the objective aperture, no matter which imaging mode is used.

2.6 Partial Coherence in STEM Imaging and the Need
for Brightness

The models so far presented have assumed that the illuminating elec-
tron beam emanates from a point source (has perfect spatial coherence),
is perfectly monochromatic (has perfect temporal coherence) and that
the BF detector is infinitesimal. Coherence is used to model the degree
to which different beams can interfere, therefore the effects of partial
coherence can strongly influence the form of STEM images. Let us
consider each in turn.

2.6.1 Source Spatial Coherence and Brightness

Any electron gun emits radiation from a finite-size source, which is
regarded to be self-luminous. Radiation emitted from one point is
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assumed to be unable to interfere with the radiation from any neigh-
bouring point. To model this coherence, we can treat each point in the
electron source as giving rise to its own illuminating probe at the sam-
ple. For each desired probe position, corresponding to a pixel in the
image, the detected image intensity arises from a range of actual probe
positions that are then added. This can be described by a convolution,
and it can be written as

ISI‘C(RO) = I(RO) ® S(Ro), (17)

where S is the source intensity distribution as measured at the sample
plane, i.e. after taking source demagnification into account.

It is immaterial how the nominally coherent image I(Rg) is formed,
the effects of partial source coherence can always be modelled as a sim-
ple convolution of the image with the effective source size. The purpose
of condenser lenses is to demagnify the electron source as much as pos-
sible to reduce the deleterious effects of partial source coherence. The
more the source is demagnified, the lower the current in the probe,
as shown in Figure 2-6. The crucial quantity is brightness B, which is
defined as the current per unit area per unit solid angle subtended by
the beam. Brightness is conserved in an optical system, and so knowl-
edge of the brightness of the electron source allows calculation of the
current available in the STEM probe. Given that the solid angle sub-
tended by the incident beam is controlled by the size of the objective
aperture, it is possible to write the current available in the probe J in
terms of the probe diameter d and the brightness B:

] = Br?a?d? /4. (18)

Thus the smaller the STEM probe, the lower the current available and
the higher the brightness needed to provide a reasonable current. It is
for this reason that the development of the modern STEM required the
development of a high-brightness gun (Crewe et al. 1968).

condenser lens

objective

aperture objective

lens

Figure 2-6. Increasing the strength of the condenser lens to provide greater
source demagnification leads to greater loss of current at the objective aperture
and less probe current.
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2.6.2 Partial Detector Spatial Coherence

It might be considered strange to think of the effects of finite detector
size as being regarded as a partial coherence. Clearly detectors do not
affect the beam. However, a finite-sized detector might not detect very
small interference features, and coherence refers to the ability to observe
interference effects. Furthermore, by reciprocity a finite-sized detector
in STEM is equivalent to a finite source in CTEM, and the latter would
be conventionally regarded as a source of partial coherence.

The effects of partial detector coherence depend very much on the
STEM imaging mode. For BF imaging, it leads to a coherence envelope
similar to that seen for partial source coherence in CTEM (Nellist and
Rodenburg 1994). It has a dependence on the slope of the aberration
function y and the reason for this becomes clear when one considers
the interference in disc overlap regions. Aberrations will lead to smaller
interference features in the overlap region and may therefore not be
detected by a finite-sized detector.

It might be assumed that as the detector becomes larger, the effects
of decreased coherence lead to weaker image contrast. Although it is
indeed the case that the imaging process does become incoherent, the
image contrast can be maintained, which brings us to the concept of
incoherent imaging using an annular dark-field detector.

2.6.3 Partial Temporal Coherence

One of the important advantages of STEM is that all the imaging optics
are placed before the sample, and optics after the sample do not influ-
ence the imaging process except for allowing the collection angles of
detectors to be varied (essentially by changing the camera length of
the post-specimen diffraction). The effects of temporal coherence arise
from the finite energy spread of the beam, and the chromatic aberra-
tions of the lenses. In CTEM, the energy spread can arise from inelastic
scattering in the sample and can be broad. In STEM, partial tempo-
ral coherence can arise only because of the spread in energies of the
illuminating beam, which is likely to be relatively low given that field
emission sources are used.

Again, the exact effect of partial temporal coherence depends on the
imaging mode being used. For BF imaging, the effect is similar to that
for CTEM by reciprocity (Nellist and Rodenburg 1994), but for incoher-
ent imaging modes, the effect of partial temporal coherence is not as
severe (Nellist and Pennycook 1998).

2.7 Annular Dark-Field Imaging

The use of an annular dark-field (ADF) detector gave rise to one of the
first detection modes used by Crewe and co-workers during the initial
development of the modern STEM (Crewe 1980). The detector consists
of an annular sensitive region that detects electrons scattered over an
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angular range with an inner radius that may be a few tens of millira-
dians up to perhaps 100 mrad and an outer radius of several hundred
milliradians. It has remained by far the most popular STEM imaging
mode. It was later proposed that high scattering angles (~100 mrad)
would enhance the compositional contrast (Treacy et al. 1978) and that
the coherent effects of elastic scattering could be neglected because the
scattering was almost entirely thermally diffuse (Howie 1979). This idea
led to the use of the high-angle annular dark-field detector (HAADF).
In this chapter, we will consider scattering over all angular ranges and
will refer to the technique generally as ADF STEM.

It is indeed the case that for typical ADF detector angles, the scat-
tering predominantly detected will be TDS. To understand the nature
of incoherent imaging, and the resolution limits that apply, it is useful
to first consider a lattice with no thermal vibrations so that the over-
lapping disc model used earlier applies. Figure 2-5 shows that an ADF
detector will not only sum the intensity over entire disc overlap regions
but also sum the intensity over many of such overlap regions. It might
be expected that such an approach would generally wash out most
of the available image contrast, but somewhat surprisingly this is not
the case. The approach we take below follows very closely previous
approaches (Jesson and Pennycook 1993, Loane et al. 1992, Nellist and
Pennycook 1998).

Consider a sample that is continuous in Fourier space. An equiva-
lent to Eq. (6) can be formed, the modulus squared taken to form an
intensity, and that intensity then integrated over a detector function:

Iapr(Ro) = [ Dapr(K¢)

. ) (19)
x | [ ¢(Ki—K)T(K)exp (—i27K - Ro) dK|" dK.

Taking the Fourier transform, after expanding the modulus squared,
gives
IapF(Q) = [ exp (—127Q - Ro) / Dapr(Kp)
x { [ ¢(K¢ — K)T(K)exp (—i27K - Ro) dK}
x { [ ¢*(K¢ — K)T*(K")exp (i27K’ - Ro) dK’} dK¢ dRy.

Performing the Ry integral first results in a Dirac § function: .
Iapr(Q) = [/f Dape(Kp)p(Ks — K)T(K)$* (K¢ — K') 1)
xT*(K)$(Q + K — K')dK dK dK’,
which allows simplification by performing the K’ integral:
Iapr(Q) = [ Dapr(K)T(K)T*(K + Q) )

x (K¢ — K)¢*(Kf — K — Q)dK; dK.

Equation (22) is straightforward to interpret in terms of interfer-
ence between diffracted discs (Figure 2-5). The integral over K is a
convolution so that Eq. (22) could be written as
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Iapr(Q) = [ Dapr(K) {[T(K)T*(K + Q)]

(23)
@k [¢(K)¢* (K — Q)]} dK.

The first bracket of the convolution is the overlap product of two
apertures, and this is then convolved with a term that encodes the
interference between scattered waves separated by the image spatial
frequency Q. For a crystalline sample, ¢(K) will only have values for
discrete K values corresponding to the diffracted spots. In this case Eq.
(23) is easily interpretable as the sum over many different disc overlap
features that are within the detector function.

We can expect that the aperture overlap region is small compared
with the physical size of the ADF detector. In terms of Eq. (22) we can
say the domain of the K integral (limited to the disc overlap region) is
small compared with the domain of the K¢ integral, and we can make
the approximation:

Iapr(Q) = [ TK)T*(K + Q)dK

24

x [ Dapr(Kp)p(Kp)¢* (K — Q)dK;. )

In making this approximation we have assumed that the contribution

of any overlap regions that are partially detected by the ADF detector

is small compared with the total signal detected. The integral contain-

ing the aperture functions is actually the autocorrelation of the aperture

function. The Fourier transform of the probe intensity is the autocorre-

lation of T, thus Fourier transforming Eq. (24) to give the image results
in

I(Ro) = [P(Ro)| ® O(Ro), (25)

where O(Ry) is the inverse Fourier transform with respect to Q of the
integral over Ky in Eq. (24).

Equation (25) is the definition of incoherent imaging. The image is
regarded as being formed from an object function that is then convolved
with a real-positive intensity point-spread function. The Fourier trans-
form of the image will therefore be a product of the Fourier transform of
the probe intensity and the Fourier transform of the object function. The
Fourier transform of the probe intensity is known as the optical transfer
function (OTF) and its typical form in shown in Figure 2-7. Unlike the
phase contrast transfer function for BF imaging, it shows no contrast
reversals and decays monotonically as a function of spatial frequency.

It is fair to say that the majority of imaging across all radiations can be
regarded as incoherent. Generally, an imaged object can be regarded as
being effectively self-luminous, which leads directly to an incoherent
imaging model (Rayleigh 1896). In this case, the object is not self-
luminous, and the illuminating probe is coherent. We noted earlier that
the detector geometry can control coherence, and that is exactly what is
happening here. Furthermore, by reciprocity, the large annular detector
is equivalent to a large (and therefore incoherent) illuminating source,
and large sources are another route to ensuring that an imaging process
is incoherent.
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Figure 2-7. A typical optical transfer function (OTF) for incoherent imaging
in STEM. This OTF has been calculated for a 300-kV STEM with spherical
aberration Cg = 1 mm.

Incoherent imaging leads to data that is much easier to interpret. The
contrast reversals and delocalization usually associated with HRTEM
images are absent, and generally bright features in an ADF image can
be associated with the presence of atoms or atomic columns in an
aligned crystal. Combined with the strong Z contrast that arises from
the high-angle scattering (see Chapter 1) this leads to a high-contrast,
chemically sensitive imaging mode. Optimising the conditions for inco-
herent imaging in STEM is simply a matter of getting the smallest, most
intense probe possible. Use of aberrations to generate contrast (as seen
in BF imaging) is not required.

As pointed out in Chapter 1, the early investigations suggested that
ADF imaging could be regarded as being incoherent only if the all the
electrons in the detector plane were summed over, but that this mode
would lead to no-image contrast (Ade 1977, Treacy and Gibson 1995).
The hole in the ADF detector is therefore crucial to generate contrast,
and it is useful to examine its influence on the detector function. By
assuming that the maximum image spatial frequency Q vector is small
compared to the geometry of the detector and noting that the detector
function is either unity or zero, we can write the Fourier transform of
the object function as

QQ=/MM®MMMMWFQW®—@Mﬂ (26)

This equation is just the autocorrelation of D(K)¢(K), and so the
object function is

O(Ro) = ID(Ro) ® $(Ro)I*. (27)

Neglecting the outer radius of the detector, where we can assume the
strength of the scattering has become negligible, D(K) can be thought
of as a sharp high-pass filter. The object function is therefore the mod-
ulus squared of the high-pass filtered specimen transmission function.
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Nellist and Pennycook (2000) have taken this analysis further by mak-
ing the weak-phase object approximation, under which condition the
object function becomes

O(Rg) = / ]1(27;I:;n|ri§1|‘ IRI)
half plane (28)

x [0 V(Rg +R/2) — o V(Rg — R/2]*dR,

where kinner is the spatial frequency corresponding to the inner radius
of the ADF detector, and |1 is a first-order Bessel function of the first
kind. This is essentially the result derived by Jesson and Pennycook
(1993). The coherence envelope expected from the Van Cittert—Zernicke
theorem is now seen in Eq. (28) as the Airy function involving the Bessel
function. If the potential is slowly varying within this coherence enve-
lope, the value of O(Rp) is small. For O(Ry) to have significant value, the
potential must vary quickly within the coherence envelope. A coher-
ence envelope that is broad enough to include more than one atom in
the sample (arising from a small hole in the ADF), however, will show
unwanted interference effects between the atoms. Making the coher-
ence envelope too narrow by increasing the inner radius, on the other
hand, will lead to too small a variation in the potential within the enve-
lope, and therefore no signal. If there is no hole in the ADF detector,
then D(K) = 1 everywhere, and its Fourier transform will be a delta
function. Equation (27) then becomes the modulus squared of ¢, and
there will be no contrast. To get signal in an ADF image, we require
a hole in the detector, leading to a coherence envelope that is nar-
row enough to destroy coherence from neighbouring atoms but broad
enough to allow enough interference in the scattering from a single
atom. In practice, there are further factors that can influence the choice
of inner radius, such as the presence of strain contrast. A typical choice
for incoherent imaging is that the ADF inner radius should be about
three times the objective aperture radius (Hartel et al. 1996), which
ensures that the coherence envelope is significantly narrower than the
probe.

2.7.1 Incoherent Imaging with Dynamical Diffraction

If one can assume ADF imaging to be incoherent, then it is reasonable
to expect that the total scattered intensity would be simply proportional
to the number of atoms illuminated by the probe. Early applications of
ADF imaging showed that diffraction of the electron beam in the sam-
ple could still influence the intensity seen in ADF images (Donald and
Craven 1979). Specifically, when a crystal is aligned with a low-order
zone axis parallel to the beam, strong channelling conditions which
enhance the strength of the scattering to high angles are established. To
explain this, we need to examine the influence of dynamical diffraction.

The analysis performed above has assumed that the scattering by the
sample can be treated as being a simple, multiplicative transmission
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function, i.e. the sample is thin. Under dynamical diffraction condi-
tions, the multiplicative transmission function approximation cannot
be made. If we continue to neglect thermal diffuse scattering (which
we include in Section 2.7.3), then it is possible to include dynamical
diffraction by making use of the Bloch wave model. In Eq. (22), the
Fourier transform of the object function gives the strength of the scat-
tering from an incoming partial plane wave to an outgoing one. The
effect of dynamical diffraction is that the strength of the scattering is
no longer simply dependent on the change of wavevector but on the
incoming and outgoing wavevectors independently, thus

Iapr(Q,z) = [[ Dapr(Ke) T(K)T*(K + Q)

(29)
Xd)(Kfr K/ Z)d)*(Kf/ K- Q, Z)dKf dK.

To include the effects of dynamical scattering, in a perfect crystal
that only contains spatial frequencies corresponding to reciprocal lattice
points it is possible to follow the approach of Nellist and Pennycook
(1999) and write the scattering as a sum over Bloch waves (see, for
example, Humphreys and Bithell 1992):

Iapr(Q,2) = 3 Dapr(g) [ TK)T*(K + Q)
3

x 3 &Y (K) @Y (K)exp [—iankg)(K)] (30)
]

Xy @g)(K)CD(gk)*(K)exp [inrzkgk)(K)] dK,
k

where @g)(K) is the gth Fourier component of the jth Bloch wave for
an incoming beam with transverse wavevector K. By performing the g
summation first, which plays an equivalent role in the sum over the
detector in Eq. (22), it is possible to look at the degree of coherent
interference between different Bloch waves, thus

Ci(K) = 3" Dapr(g) Y (K)o 5" (K), (31)
g

which, in a similar fashion to the approach in Eq. (28), can be written in
terms of the hole in the detector:

Ci(K) = 8; — / h(2+|1;|13|) o0(C, K)o®*(C + B, K)dCdB, (32)
where B and C are dummy real-space variables of integration, and the
Bloch waves have been written as real-space functions for a given inci-
dent beam transverse wavevector K. As we saw before, the hole in the
detector is imposing a coherence envelope. Thus Cy(K) allows only
interference effects to show up in the ADF image between Bloch states
that are sharply peaked and whose peaks are physically close such that
they lie within a few tenths of an angstrom of each other. A physical
interpretation is that the high-angle ADF detector is acting like a high-
pass filter (as it has been seen to do for thin specimens — see Section
2.7.1) acting on the exit-surface wavefunction. Only when the probe
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excites sharply peaked Bloch states will the electron density be sharply
peaked.

2.7.2 The Effect of Thermal Diffuse Scattering

Early analyses of ADF imaging took the approach that at high enough
scattering angles, the thermal diffuse scattering (TDS) arising from
phonons would dominate the image contrast (Howie 1979). In the
Einstein approximation, this scattering is completely uncorrelated
between atoms, and therefore there could be no coherent interference
effects between the scattering from different atoms. In this approach
the intensity of the wavefunction at each site needs to be computed
using a dynamical elastic scattering model and then the TDS from
each atom summed (Allen et al. 2003, Pennycook and Jesson 1990).
When the probe is located over an atomic column in the crystal, the
most bound, least dispersive states (usually 1s or 2s-like) are pre-
dominantly excited and the electron intensity “channels” down the
column. This channelling effect reduces the spreading of the probe
as it propagates, which is useful for thicker samples, though spread-
ing can still be seen, especially for aberration-corrected instruments
with larger convergence angles (Dwyer and Etheridge 2003). When
the probe is not located over a column, it excites more dispersive,
less bound states and spreads leading to reduced intensity at the
atom sites and a lower ADF signal. Both the Bloch wave (for exam-
ple Amali and Rez 1997, Findlay et al. 2003, Mitsuishi et al. 2001,
Pennycook 1989) and multislice (for example Allen et al. 2003, Dinges
et al. 1995, Kirkland et al. 1987, Loane et al. 1991) methods have been
used for simulating the TDS scattering to the ADF detector. Details of
the way TDS is incorporated into image calculations can be found in
Chapter 6.

It is possible to see the incoherence due to the detector geometry and
the incoherence due to TDS in a similar framework. In the analyses
presented here, the key to incoherent imaging has been the sum over
the many final wavevectors that are incident upon the detector. One
way of explaining the diffuse nature of thermal scattering is to con-
sider that, in addition to the transverse momentum imparted by the
elastic scattering from the crystal, additional momentum is imparted
by scattering from a phonon. Phonon momenta will be comparable to
reciprocal lattice vectors, and the range of phonon momenta present in
a crystal will therefore blur the elastic diffraction pattern. Furthermore,
each phonon will impart a slightly different energy to others, and
therefore scattering by different phonon momenta will lead to waves
that are mutually incoherent. If we consider a single detection point,
many beams elastically scattered to different final wavevectors will be
additionally scattered by phonons to the detector, leading to a sum in
intensity over final elastic wavevectors — exactly what is required for
incoherent imaging. It is fair to say, however, that the geometry of the
ADF detector will always be larger than typical phonon momenta (not
least because longer wavelength phonons are usually more common)
and that transverse incoherence is ensured by the use of a large detec-
tor. It is interesting to speculate whether a small detector at high angle
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Figure 2-8. The peak ADF image intensity (expressed as a fraction of the inci-
dent beam current) for isolated Pt and Pd columns expressed as a function of
number of atoms in a column (graph courtesy of H. E).

would give a strongly incoherent signal, relying as it would purely on
the sum over phonon momenta to give the necessary integral to destroy
the coherence.

The combined effects of channelling and TDS give rise to a depen-
dence of ADF image peak intensity on sample thickness typically of
the form shown in Figure 2-8. The ADF signal rises monotonically
with thickness, but is clearly non-linear, and so is not proportional to
the number of illuminated atoms. Changes in the slope of the graph
are caused by variations in the strength of the electron beam chan-
nelling along the column, arising from both channelling oscillations and
absorption. It is therefore clear that quantitative interpretation of ADF
images does require matching to simulations.

Almost all the simulations currently performed assume an Einstein
phonon dispersion model. Other, more realistic, dispersions have been
considered (Jesson and Pennycook 1995). Although the detector geom-
etry is highly effective for destroying coherence perpendicular to the
beam direction, phonons play a much more important role in control-
ling the coherence parallel to the beam direction. Jesson and Pennycook
(1995) showed that a realistic phonon dispersion could give rise to
short-range coherence envelopes in the depth direction. Detailed multi-
slice simulations (Muller et al. 2001) suggest that the effect of a realistic
phonon dispersion on the ADF intensities for a perfect crystal is small.

The combination of channelling and absorption can also lead to some
unexpected effects when the displacement of atoms varies along a col-
umn, referred to as strain contrast. Strain can lead to either a depletion
or an enhancement of ADF intensities depending on the inner radius
of the detector (Yu et al. 2004). This phenomenon has been ascribed to
the strain causing interband scattering between Bloch waves (Perovic
et al. 1993). A channelling wave that has been strongly absorbed may
be replenished by interband scattering, thereby leading to increased
intensity.
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2.8 Imaging Using Inelastic Electrons

Using the STEM to image at, or close to, atomic resolution using
inelastically scattered electrons is a powerful experimental mode.
Remarkable progress has been made since it was first demonstrated
(Browning et al. 1993) and the development of aberration-corrected
STEM has allowed impressive atomic-resolution mapping to be demon-
strated. Only core-loss inelastic scattering provides a sufficiently local-
ized signal to allow atomic resolution, and because such scattering
involves the excitation of an atomic core state to a final state, it is clear
that such scattering will be independent of neighbouring atoms and
that no interference between the scattering from neighbouring atoms
can be expected.

The inclusion of inelastic scattering is discussed extensively in
Chapter 6. As shown there, scattering from a specific initial state to
a specific final state can be treated by a simple, multiplicative scat-
tering function (see Eq. (11) of Chapter 6). The final image will be a
sum in intensity over many of such scattering functions because for
any experiment with finite energy resolution, a significant number of
final states must be included. Because each final state differs slightly in
energy, a sum in intensity is required, thereby breaking the coherence in
the imaging process. As noted in Chapter 6, however, this summation
is often not sufficient to prevent partial coherence effects from being
observed, and the use of a large collector aperture is further required to
ensure incoherent imaging. A large collector aperture destroys coher-
ence in exactly the same way as the large ADF detector does for elastic
or quasi-elastic scattering.

2.9 Optical Depth Sectioning and Confocal Microscopy

So far we have considered only two-dimensional imaging. The devel-
opment of aberration correctors in STEM has led to dramatic improve-
ments in lateral resolution due to the larger objective lens numerical
aperture allowed. Whilst the lateral resolution varies as the inverse of
the numerical aperture, the depth of focus is inversely proportional to
the square of the numerical aperture. In a state-of-the-art, aberration-
corrected STEM, the depth of focus may fall to just a few nanometres,
which is less than the typical thickness of TEM samples. The full width
at half-maximum of the probe intensity along the optic axis is given by

A
o

Whilst this raises concerns about interpreting high-resolution images
from thicker samples, it does raise the possibility of using this reduced
depth of focus to retrieve depth information.

The simplest approach to measuring such 3D information in STEM is
to record a focal series of images, thereby forming a 3D stack. Clearly
we want an incoherent imaging mode where the scattering is simply
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dependent on the 3D probe intensity distribution, and ADF imaging is
therefore suitable. Such an approach has been used for the 3D imag-
ing of Hf atoms in a transistor gate oxide stack (Van Benthem et al.
2005). Applications to the mapping of nanoparticle locations in hetero-
geneous catalysts (Borisevich et al. 2006) showed significant elongation
in the depth direction. This elongation was subsequently investigated
by Behan et al. (2009) and was seen to arise from the form of the OTF
in three dimensions. Figure 2-7 has already shown the form of the OTF
in 2D, and a 3D OTF can simply be formed by taking the Fourier trans-
form of the 3D probe intensity distribution. As seen in Figure 2-9, the
OTF is approximately of a donut shape and has a large missing region.
This missing region is known from light optics (Frieden 1967) and has
an opening angle that is given by 90°-«, where « is the acceptance angle
of the lens. In light optics, o can approach close to 90°, whereas even in
an aberration-corrected STEM, « is less than 2°, leading to a large miss-
ing region in the OTF. For laterally extended objects that are dominated
by low transverse spatial frequencies, only low longitudinal spatial fre-
quencies will be transferred, leading to longitudinal elongation. The
depth resolution for an extended object can be approximated as

Az = —, (34)

o

where d is the lateral extent of the object. Even for a 5-nm particle, the
depth resolution in an aberration-corrected STEM would be typically
200 nm. Methods to use deconvolution to overcome this problem have
been investigated (Behan et al. 2009, de Jonge et al. 2010), but it must be
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Figure 2-9. A cross section through the 3D OTF for incoherent imaging. Note
the missing cone region. The longitudinal (z*) and lateral (r*) axes have dif-
ferent scales. A 200-kV microscope with @ = 22 mrad has been assumed.
Reproduced from Behan et al. (2009).
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Figure 2-10. A schematic of the scanning confocal electron microscope.
Scattering from regions of the sample away from the confocal point (dashed lines)
is neither strongly illuminated nor focused at the detector pinhole.

remembered that it is not possible to reconstruct the information in the
missing cone unless prior information is included.

It has recently been shown that it is possible to use a microscope
fitted with aberration correctors both before and after the sample in
a confocal geometry (Nellist et al. 2006), similar to the confocal scan-
ning optical microscope that is widely used in light optics (Figure 2-10).
The advantage of such a configuration is that the second lens provides
additional depth resolution and selectivity. Further detailed analysis of
SCEM image contrast has been performed for both elastic (Cosgriff et al.
2008) and inelastic (D’Alfonso et al. 2008) scattering. For elastic scatter-
ing, there is no first-order phase contrast transfer, and so the contrast is
weak and relies on multiple scattering. Collection of inelastic scattering,
in the energy-filtered SCEM (EFSCEM) mode, is much more promising
(see also Chapter 6). There is no missing cone in the transfer function
(Figure 2-11) and recent results suggest that nanoscale depth resolu-
tions are achievable from laterally extended objects (Wang et al. 2010).

2.10 Conclusions

In this chapter we have reviewed imaging in the STEM, with particular
focus on BF and ADF imaging. A key strength of ADF imaging is its
incoherent nature, which it shares with many other STEM signals such
as EELS and EDX. Unlike conventional high-resolution TEM, the main
requirement for STEM is to minimize the aberrations so that a small,
intense probe is formed.

In this chapter we concentrated on single signals (e.g. BF or ADF)
that are recorded as a function of probe position. Large areas of the
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Figure 2-11. A cross section through the transfer function for incoherent SCEM
imaging. A 200-kV microscope with both the pre- and post-specimen optics
subtending 22 mrad has been assumed. Reproduced from Behan et al. (2009).

detector plane are summed over to record these signals, thus discarding
significant amounts of information. Attempts have been made to use
position-sensitive detectors in STEM imaging (see, for example, Nellist
et al. 1995, Rodenburg and Bates 1992) but have been limited to rather
small fields of view because of the problems of acquiring and handling
the vast amounts of data. With improved detectors and information
technology, we may well see a re-emergence of the idea of collecting
the entire detector plane as a function of each probe position (for some
recent ideas, see Faulkner and Rodenburg 2004). All possible detector
geometries can then be synthesized, or the entire 4D data set used to
retrieve information about the sample.
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