
Chapter 2

Bending and Buckling Instabilities

of Free Liquid Jets: Experiments

and General Quasi-One-Dimensional Model

A.L. Yarin

Abstract This chapter deals with liquid jets bending due to the aerodynamic

interaction with surrounding air or buckling due to the impingement on a solid

wall. The experimental evidence is considered and linear and nonlinear theories

describing perturbation growth developed in the framework of the quasi-one-dimen-

sional equations of the dynamics of liquid jets moving in air are discussed. Jets of

viscous Newtonian or rheologically complex liquids (in particular, viscoelastic

polymeric liquids) are considered. In addition, bending instability of the electrified

liquid jets (in particular, polymeric liquid jets in electrospinning) is considered.

In the latter case, both the experimental and theoretical aspects are tackled.
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Introduction

Thin liquid jets demonstrate not only capillary breakup considered in Chap. 1 but

some other regular long-wave forms of instability and breakup, e.g., bending

instability of jets moving in air with a relatively high-speed U or of the electrified

jets, as well as buckling of thin, highly viscous jets impinging on a wall [1].

Theoretical investigation of the dynamics of bending instability of liquid jets

rapidly moving in air began in the seminal works of Weber and Debye and Daen

[2, 3]. This leads to a rather complicated coupled problem on a dynamic interaction
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of air flow with a jet when the jet evolution is to be found as well. The linear

stability analysis of the temporary planar bending instability of an inviscid jet in [3]

resulted in the following characteristic equation for the growth rate g of bending

instability based on the three-dimensional equations of fluid mechanics

g ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� rgU2

ra20

K1ð�kÞI01ð�kÞ
K0
1ð�kÞI1ð�kÞ

� s
ra30

�kI01ð�kÞ
I1ð�kÞ

s
(2.1)

In (2.1) �k ¼ ka0 is the dimensionless wave number with k being the dimensional

wave number and a0 the unperturbed jet cross-sectional radius; r and s are the

density and surface tension of the jet liquid, respectively; the gas density is denoted

by rg; and I1 and K1 denote the modified Bessel functions. From several terms in

the analysis of [3] describing the dynamic action of air, we keep in (2.1) only the

largest one, of the order of rgU
2, since rg << r. The surface tension is a stabilizing

factor in the case of the bending instability, since bending results in an increase of

the jet surface area ½I01ð�kÞ> 0; K0
1ð�kÞ< 0 for any �k�. Beginning from a certain

critical value of the relative air velocity U, the first (positive) term under the square

root on the right hand side in (2.1) acquires a larger magnitude than the second

term, which corresponds to the onset of the bending instability and an exponential

growth of the bending perturbations. The bending instability is determined by a

peculiar pressure distribution in gas over the jet surface: in the framework of the

inviscid gas model, gas pressure on convex surface elements is lower than on the

concave ones.

General Quasi-One-Dimensional Equations of Dynamics

of Free Liquid Jets

The theory of Debye and Daen [3] does not account for a number of important

factors. The most important of them is the effect of liquid viscosity, which should

counteract to the perturbation growth. In addition, the experiments show that the

growing bending perturbations are three-dimensional rather than planar. Also, in the

case of low-viscous liquid jets, bending perturbations grow together with the axisym-

metric capillary perturbations, which significantly change the cross-sectional sizes

and shapes during bending [4]. Moreover, all these factors are dominant in reality.

Therefore, the analysis of the dynamics of the bending perturbations in the frame-

work of an inviscid liquid model is intrinsically contradictory. Accounting for these

factors in the framework of the Navier–Stokes equations in the context of the bending

perturbations of liquid jets is tremendously difficult. However, these difficulties can

be relatively easily overcome in the framework of the quasi-one-dimensional descrip-

tion of liquid motion in the bending jets. In the works of Yarin et al. [1, 5, 6], the

general quasi-one-dimensional equations of the straight and bending jets were

derived from the integral balances of mass, momentum, and moment of momentum,

56 A.L. Yarin



as well as by averaging the three-dimensional equations of hydrodynamics over the

jet cross-section [7]. The quasi-one-dimensional continuity and momentum equa-

tions, as well as the moment of momentum equation for the general case of motion of

a thin liquid jet in air derived by Yarin et al. [1, 5–7] read

@lf
@t

þ @Wf

@s
¼ 0; f ¼ pa2; (2.2)

@lf ~V
@t

þ @Wf ~V

@s
¼ 1

r
@

@s
P~tþ ~Q
� �

þ l~Ff þ~q
l
r
; (2.3)

@l~K
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þl ~t�~j2 � k~U� ~O�~j1 þ d~j1
� �h i

þ @

@s
W~K1 þ~j3 � ~V
� �

¼ 1

r
@~M

@s
þ l
r
~t� ~Qþ ~m

l
r
� lk~j1 �~F (2.4)

These equations are a close hydrodynamic analog of the equations of the Euler-

Bernoulli beam theory [8]. They are related to the three-dimensional equations of

hydrodynamics (the Navier–Stokes equations in the case of viscous Newtonian

liquids) exactly as the equations of the Euler-Bernoulli beam theory are related to

the three-dimensional equations of the theory of elasticity. The hydrodynamics

of thin liquid jets is reduced to finding the evolution in time t and over a spatial

coordinate s of the “integral” parameters – the cross-sectional area f, the velocity of
the center of mass of a liquid cross-section ~V, and the angular velocity of this cross-
section ~O. Equation (2.2) is the mass balance (the continuity equation). Equation

(2.3), the momentum equation, represents itself the balance of forces acting on a jet

element, namely, the inertial, internal and external forces. Equation (2.4) represents

itself the moment of momentum balance, in particular, its left-hand side expresses

the rate of change of the moment of the inertial forces. The following notation is

used in (2.2)–(2.4)

~K ¼
ð
D

~x� ~O�~x
� �

dS� k~j1 � ~V; ~K1 ¼
ð
D

~x� ~O�~x
� �

dS; (2.5)

~j1 ¼
ð
D

y~xdS; ~j2 ¼
ð
D

~O�~xþ d~x
� �

~O� ~o
� �

� ~x�~tð Þ
h i

dS; (2.6)

~j3 ¼
ð
D

~x ~O� ~o
� �

� ~x�~tð Þ
h i

dS; l ¼ @~R

@s

�����
����� (2.7)

2 Bending and Buckling Instabilities of Free Liquid Jets 57



~U ¼ @~R

@t
; W ¼ Vt � Ut; d ¼ � 1

2

1

l
@Vt

@s
� kVn

� �
(2.8)

Here, ~R and~x denote the position vectors of the jet axis, and of a point in the

jet cross-section, respectively (~x is reckoned from the center of mass of a jet

cross-section D(s, t) and belongs to its plane);~F is the body force per jet element

of unit volume;~q and ~m are the distributed force and moment of force imposed

on the jet by the environment, respectively; ~Q is the shearing force acting in the

jet cross-section, which is determined using (2.4); k is the jet axis curvature; r is

liquid density. Here and hereinafter,~n,~b, and~t denote the principal unit normal,

unit binormal, and unit tangent to the jet axis, respectively. The angular velocity

of the trihedron~n,~b and~t associated with the jet axis is denoted ~o. Subscripts n,
b, and t denote projections on the principal normal, binormal, and tangent to the

jet axis, respectively; y is the coordinate reckoned along the principal normal. In

the case of Newtonian viscous liquid, the magnitude of the longitudinal force in

the jet cross-section P and the moment of the internal stresses ~M are related

to the kinematic parameters in a cross-section of radius a by the following

expressions

P ¼ 3m
1

l
@Vt

@s
� kVn

� �
� sG

� 	
f þ Ps; (2.9)

G ¼ 1

a
1þ 1

l2
@a

@s

� �2
" #�1=2

� 1þ 1

l2
@a

@s

� �2
" #�3=2

1

l
@

@s

1

l
@a

@s

� �
; (2.10)
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Here, k is the geometric torsion of the jet axis, m and s are the viscosity and

surface tension coefficient, respectively, and I is the moment of inertia of the jet

cross-section.

The system of (2.2)–(2.14) describes both the axisymmetric capillary instability

of straight jets ((1.49)–(1.51) in Chap. 1 represent its particular case) and bending

instability of liquid jets. It is closed if the jet cross-sections possess double symme-

try (in particular, it is closed for jets with circular cross-sections). This system of

equations was derived by Yarin et al. in [1, 5–7] assuming the jet slenderness and

the absence of significant shear tractions at its surface. These assumptions are

sufficiently accurate in the case of highly viscous jets moving in air. In the cases

of short wavelength perturbations and large axis curvatures, as well as in the case

of liquid jets propagating in liquid medium of comparable viscosity, the quasi-

one-dimensional description, strictly speaking, is inappropriate. The assumptions of

the jet slenderness and of the absence of significant shear tractions at the jet surface

lead to the following additional restrictions on the internal kinematics in the jet,

namely to

On ¼ � 1

l
@Vb

@s
� kVn; Ob ¼ 1

l
@Vn

@s
� kVb þ kVt; (2.15)

The kinematic equation, which should be added to the system of (2.2)–(2.15),

determines the location of the jet axis in space in accordance with the velocity field

in it

@~R

@t
¼ ~V� ðl~V �~iÞ~t (2.16)

Equation (2.16) is written here for the simplest case where the tangent to the jet

axis is inclined at any point to a certain straight line O1x by an acute angle and it is

possible to introduce a Cartesian coordinate system O1x�z with the corresponding

unit vectors~i,~j and~k and to describe the jet axis using the following equations

x ¼ s; � ¼ Hðs; tÞ; B ¼ Zðs; tÞ; ~R ¼~i x þ~jH þ~kZ (2.17)

In the other cases, the jet axis parameter s can be chosen differently, which leads
to changes in the expression for @~R=@t.

The distributed force and moment of force imposed on the jet by the environ-

ment ~q and ~m should be specified separately. In particular, in the case of small

spatial perturbations of the jet axis when it rapidly moves in air, the inviscid flow

theory yields the following expressions

~q ¼ �rgU
2f0 ~j

@2H

@s2
þ~k

@2Z

@s2

� �
; ~m ¼ 0; f0 ¼ pa20; (2.18)
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Equation (2.18) for~q means that it is directed along the normal (as �~n).
For the finite bending perturbations, the drag force imposed by a relative air flow

should be accounted in addition. Then, for example, for planar jet bending, (2.18)

are generalized by the following expressions

~q¼�rgU
2

(
f
@2H

@s2

"
1þ
�
@H

@s

�2
#�5=2

þa

�
@H

@s

�2
"
1þ
�
@H

@s

�2
#�1

� sgn

�
@H

@s

�)
~n; ~m¼ 0 (2.19)

These expressions close the system of the general quasi-one-dimensional equa-

tions of free liquid jets moving in air with arbitrary speeds.

In the context of the electrified jets in electrospraying and electrospinning, the

distributed force~q originates from the Coulomb repulsion of different parts of the

jet surface. Then, it is given by the following expression [9–11]

~q ¼ �e2 ln
L

a

� �
k~n (2.20)

where e is the electric charge at the jet surface per unit jet length and L is a cutoff

length along the jet axis. Comparison of (2.18) and (2.20) shows that both the

aerodynamic and electric bending forces are directed along the normal (as �~n )
and should result in a very similar aerodynamically or electrically driven bending

instability, as discussed below.

Linear Stability Theory for Bending Breakup of Newtonian

Liquid Jets Moving in Air

The solutions of a particular version of the quasi-one-dimensional equations of the

jet dynamics in the case of capillary breakup, when they can be reduced to

(1.49)–(1.51) of Chap. 1, were discussed there. Here, we discuss the applications

of (2.2)–(2.19) to the aerodynamically-driven bending instability of the uncharged

liquid jets rapidly moving in air following the work of Yarin [1, 5, 6]. The

characteristic equation for the growth rate of small bending perturbations of highly

viscous slender liquid jets moving in air in the case of the temporal instability reads

g2 þ 3

4

mk
4

ra20
gþ s

ra30
� rgU

2

ra20

 !
k
2 ¼ 0 (2.21)
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According to (2.21), both planar and three-dimensional (helical) small bending

perturbations increase with the same growth rate if the relative velocity of gas

flow is

U >

ffiffiffiffiffiffiffiffiffi
s

rga0

s
(2.22)

when the dynamic action of air can overbear the resistance of surface tension to

growth of bending perturbations. The growth rate of the axisymmetric capillary

perturbations is much smaller than that of the bending perturbations for sufficiently

viscous liquids when the inequality

m2

ra20rgU2
� 1 (2.23)

holds. In this case, deformations of the jet due to the capillary Rayleigh-Weber

instability can be neglected during bending.

It is worth noting that at m¼ 0 (2.21) coincides with the long-wave limit ð�k ! 0Þ
of (2.1).

The breakup length of jets in the case of the aerodynamically-driven bending

instability is determined by the following expression [1, 6]

Lbreakup ¼ D � 3mra20U
3

ðrgU2 � s=a0Þ2
" #1=3

(2.24)

where D ¼ ln ma0=z0ð Þ, m¼ 2–4, z0 is the initial amplitude of bending perturbations.

The value of the factorm is chosen in agreement with the experimental data [4] and the

energy estimates, which show that as the bending perturbation amplitude reaches the

value of the order of a few cross-sectional radii, the jet is almost immediately squeezed

by the air pressure difference at its surface. Equation (2.24) predicts a decrease in the

jet breakup length at higher flow velocityU, which agrees with the experimental data.

(It is emphasized that the breakup length Lbreakup of straight capillary jets experiencing
Rayleigh-Weber instability increases proportionally to U).

Nonlinear Theory of Finite Bending Perturbations of Liquid

Jets Moving in Air

In the works of Yarin [1, 6], the aerodynamically-driven nonlinear bending insta-

bility of thin jets of highly viscous liquids rapidly moving in air was studied

numerically by solving (2.2)–(2.19). It was shown that the nonlinear effects, in
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particular, the most important of them – the viscous stresses originating from the

elongation of the bending jet axis – decelerate growth of bending perturbations.

However, for the estimates of the perturbation amplitudes and timing up to the

amplitudes of the order of (2–4)a0 one may extrapolate the predictions of the linear

theory with sufficient accuracy [as it was done in derivation of (2.24)]. The

presence in (2.19) for~q of the quadratic drag force leads to a slow sweep of bending

perturbations down the gas flow in addition to growth of their amplitude (the latter

is due to the “lift” component of the aerodynamic force ~q). The configurations of

the jet axis corresponding to one length of the bending perturbation at several

consecutive time moments denoted by numerals by the curves are shown in Fig. 2.1.

It is seen that the jet axis at the end takes a form of a cliff which leads to an

“overturning.” At this moment, the amplitude of the bending perturbation is of the

order of 4a0. Figure 2.2 depicts the corresponding jet section at the moment of

“overturning.”

The rate of growth of the bending perturbations, as well as its deceleration due to

the nonlinear effect (the longitudinal viscous stresses resulting from stretching of the

jet axis at the nonlinear stage of bending) can be also calculated based on the energy

balance given by Yarin [1]. Namely, the work of the distributed aerodynamic

bending force~q is spent on changes in the kinetic and surface energies and viscous

dissipation in the jet. Assuming sinusoidal shape of a bending section of a jet, one

arrives at the following equation for the amplitude H(t) of the bending perturbation

H00 þ 3

4

m
ra20

�k4H0 þ 9

4

m
ra40

�k4H2H0 þ H�k2
s
ra30

� rgU
2

ra20

 !
¼ 0 (2.25)

Fig. 2.1 Jet evolution in the case of the bending perturbations of finite amplitude affected by air

drag force [1]. All the parameters in the plot are dimensionless. As a length scale, the wavelength

of the fastest growing bending mode in the linear approximation l� ¼ 2p ð9=8Þm2a40= rrgU
2

� �h i1=6
is chosen. Time denoted by the numerals near the curves is rendered dimensionless by the

characteristic time of small bending perturbations, T ¼ rma20

 �

= r2gU
4

� �h i1=3
(Courtesy of

Pearson Education)
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In (2.25) primes denote time differentiation. The above-mentioned nonlinear

effect related to stretching of the jet axis by finite bending perturbations is given by

the third (nonlinear inH) term on the left-hand side in (2.25). The linearized version

of (2.33) corresponds to small bending perturbations and readily admits the solution

H ¼ exp(gt). The amazing fact is that the growth rate g thus obtained satisfies the

exact (2.21). The nonlinear numerical solution of (2.25) is depicted in Fig. 2.3

together with the numerical solution of the quasi-one-dimensional equations and

the result of the linear theory.

Bending Instability of Rheologically Complex Liquid Jets

Capillary instability and breakup of thin jets of dilute polymer solutions considered

in section Capillary Breakup of Rheologically Complex Liquid Jets of Chap. 1

represents itself an example of the so-called strong flows, in which coil-stretch

transition of macromolecular coils can happen because the elongation rate is so

Fig. 2.2 Predicted

instantaneous shape of

a jet with a large-scale

aerodynamically-driven

bending instability

corresponding to the jet axis

configuration at t ¼ 7 in

Fig. 2.1 [1]. The cross-

sectional radius ranging from

65% to 80% of its initial value

(Courtesy of Pearson

Education)

Fig. 2.3 The amplitude of the bending perturbation of a Newtonian liquid jet with m ¼ 1 Pa s [1].

Curve 1 was obtained by solving the complete system of the quasi-one-dimensional equations

of the jet dynamics (2.2)–(2.19). The straight line 2 corresponds to the linear theory: H ¼ H0exp

(gt) with g found from (2.21). Curve 3 was obtained by numerical integration of the nonlinear

energy balance, (2.25). The length scale is taken as l� ¼ 0:943� 10�2 m and T ¼ 0.0047 s is used

as a time scale (Courtesy of Pearson Education)
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high that viscoelastic relaxation does not succeed to fully unload the liquid. The

corresponding presence of significant elastic stresses results in such peculiar non-

Newtonian phenomena as formation of the beads-on-a-string structure. Bending

instability of non-Newtonian liquids, in particular, of concentrated polymer solu-

tions and melts, also reveals a wide spectrum of nontrivial deviations from the

Newtonian behavior, related to a number of important applications. Some of them

are discussed below.

The bending instability of jets of power law liquids rapidly moving in air was

studied by Yarin [1] in the framework of the energy balance similar to the one

which led to (2.25). An equation for the bending amplitude H obtained, which

generalizes (2.25) for the power law liquids, reveals that the evolution of the

bending perturbations of pseudoplastic jets (n < 1) is dominated by an initial

stage where the perturbation amplitude and rates of deformation are small (similar

to the capillary breakup of pseudoplastic jets discussed in Ch.1). On the other hand,

in bending of dilatant (n > 1) high-speed jets, an increase of the effective viscosity

at a later stage significantly decelerates perturbation growth.

The dynamics of bending perturbations of high-speed viscoelastic jets of

uncharged polymer solutions and melts, as well as of concentrated micellar solu-

tions was studied by Yarin [1]. One of the important applications of such jets is in

melt blowing – a technology used to produce nonwoven mats of polymer nanofibers

[12]. In Yarin [1], it was shown that the growth rate of small bending perturbations

is determined by the following characteristic equation

g2 þ 3

4

m�k4

ra20ð1þ gyÞ gþ
s
ra30

� rgU
2

ra20
þ s0
ra20

 !
�k2 ¼ 0 (2.26)

which generalizes (2.21) to the case of viscoelastic liquid jets (the Newtonian case

is recovered with the relaxation time y ¼ 0). In (2.26) the initial longitudinal stress

in the jet can either be absent (s0 ¼ 0) or present and “frozen” s0 ¼ const 6¼ 0.

If s0¼ 0, (2.26) predicts an accelerated growth of small bending perturbations of

viscoelastic liquids compared to a corresponding Newtonian liquid (with the

same values of r, m, s, a0, and U) due to a decrease in the effective viscosity meff ¼
m/(1 þ gy). The initial stress s0 > 0 is a stabilizing factor, which diminishes the

growth rate g, or can even prevent bending instability if (s0 þ s/a0) > rgU
2. The

following dimensionless groups govern the bending perturbations of viscoelastic

jets

P1 ¼
rg
r
; P2 ¼ m2

ra20rgU2
; P3 ¼

rgU
2

m=y
; P4 ¼ s0

rgU2
; P5 ¼ s=a0

rgU2
; (2.27)

Figure 2.4 depicts the growth rates predicted from (2.26) for two jets of the

upper-convected Maxwell liquids, which are shown by curves 1 and 3. They

correspond to different values of the relative gas velocity (U for curve 1 is higher
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than for curve 3). Curves 2 and 4 show the results for the corresponding Newtonian

liquid jets, with curve 2 corresponding to curve 1, and curve 4 to curve 3.

The nonlinear dynamics of the bending perturbations of high-speed viscoelas-

tic uncharged jets moving in air reveals a new phenomenon found by Yarin [1].

Figure 2.5 shows that at the nonlinear stage the growth of the perturbation

amplitude is not only drastically slowed down due to the longitudinal stresses

resulting from the jet elongation (similar to Newtonian jets discussed above), but

the amplitude can also decrease and oscillate. These latter phenomena result from

the competition of the inertial and elastic forces. A jet element undergoing

bending misses its “equilibrium” position due to its inertia, and the jet axis

becomes overstretched, which produces an extra longitudinal elastic stress. This

stress tends to contract the jet element. However, during the contraction stage

(when the bending perturbation amplitude decreases), the jet element once more

misses its “equilibrium” position due to its inertia and becomes overcompressed.

This initiates a new cycle of the oscillations. Viscous stresses gradually dissipate

the energy of these oscillations.

Fig. 2.4 Growth rate of small

bending perturbations of

viscoelastic jets of the upper-

convected Maxwell liquid [1].

For all curvesP1¼ 10–3,P4¼
P5 ¼ 0. For curves 1 and 2:

P2 ¼ 0.156 � 104; for curves

3 and 4P2 ¼ 0.4 � 104. For

curves 2 and 4P3 ¼ 0. For

curves 1 and 3P3 ¼ 0.64 and

P3 ¼ 0.25, respectively

(Courtesy of Pearson

Education)

Fig. 2.5 The amplitude Y of the bending perturbations of a jet of the upper-convected Maxwell

liquid is shown by curve 1 [1]. The values of the dimensionless groups are:P1¼ 10–3,P2¼ 0.156�
104, P3 ¼ 0.64, P4 ¼ P5 ¼ 0. Curve 2 depicts the amplitude of the corresponding jet of

Newtonian liquid (P3 ¼ 0) (Courtesy of Pearson Education)
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Buckling of Thin Liquid Jets

G.I. Taylor in his seminal works [13, 14] discovered a new instability mode of

highly viscous jets, namely buckling of slowly moving jets impinging onto a wall

when they are subjected to a longitudinal compressive force. In one of his experi-

ments, compressive forces resulted from squeezing the ends of a liquid thread

floating on the mercury surface. In another experiment, highly viscous jets were

either moving vertically downward in a liquid and passing into a lower layer of

higher density, which created a sudden increase in the compressive buoyancy force,

or impinging onto a wall. The latter case was experimentally studied in detail in

[15, 16]. These works showed that buckling occurs only in very slowly moving

highly viscous jets. The jets with the values of the Reynolds number Re exceeding

the critical threshold of Recr � 1.2 were stable and straight. Therefore, in this case,

the buckling instability emerges when the Reynolds number decreases. On the other

hand, there is also a restriction on the jet lengths L from nozzle to wall. If L is less

than a certain critical value Lcr, there is no buckling. Immediately after the onset of

the buckling instability (at Re 	 Recr and L/d0 
 Lcr/d0 with d0 being the nozzle

diameter) a two-dimensional bucking (folding) sets in, and the jet is deposited on

the wall as folds. However, with a further increase of the ratio L/d0, bucking
perturbations become spiral-like. The jet axis becomes three-dimensional, which

signifies the bifurcation from folding to coiling, and the jet is deposited on the wall

as coils. In the experiments [15], the dependences of Lcr and the folding and coiling
frequencies on the liquid jet viscosity, its velocity and the nozzle diameter were

established. Buckling was also observed in horizontal jets moving over the free

surface of a denser liquid (such jets widen beginning from the nozzle, in distinction

from gravity-driven jets, which initially become thinner and begin to widen only

close to the wall onto which they impinge). All the observations confirmed the idea

of Taylor [14] that buckling of liquid jets is determined by the presence of the

longitudinal compressive force acting in the jet and in this sense is a direct analog

of the elastic buckling of bars and columns studied by Euler [8]. A detailed theory

of the onset of buckling instability (folding of highly viscous liquid jets and

films-planar jets-impinging on a wall) was given by Yarin et al. in [1, 17, 18]

based on the general quasi-one-dimensional equations of jet dynamics

(2.2)–(2.19) (see also the later efforts directed on a nonlinear buckling theory

in [19]).

Recently, jet buckling on laterally moving solid surfaces nearly perpendicular to

the jet axis was reported [20–22], which is of interest, in particular, in relation to

writing by short straight electrically driven jets. The stability analysis in that case

was also based on the quasi-one-dimensional equations of the dynamics of liquid

jets similar to (2.2)–(2.19). It revealed that the characteristic frequencies of buck-

ling are practically unaffected by the lateral motion of the surface and stay the same

as in the case of liquid jet impingement on a stationary hard flat surface [21, 22].

Moreover, the deposit morphology at the wall is practically unaffected by the

method of jet initiation (gravity-driven jets [20] versus the electrically driven jets
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[22]) as Fig. 2.6 demonstrates. The buckling frequency o predicted by the linear

stability theory of Yarin et al. [1, 17]

ln o
d0
V0

� �
¼ �0:0194 ln

mQ
rgd40

� �
þ 0:2582 (2.28)

is in reasonable agreement with the experimental data for o evaluated from the

images similar to those in Fig. 2.6 (d0 denotes the initial cross-sectional jet diame-

ter, Q is the volumetric flow rate in the jet, and g is the gravity acceleration).

Bending Instability of Electrified Liquid Jets

The electrified jets of concentrated polymer solutions move in air with low speeds

of the order of 1 m/s. However, they bend due to the Coulombic interactions

discussed above in relation with the electric bending force (2.20). Such jets emerge

Fig. 2.6 (a–f) Comparison of the buckled patterns created by electrified jets of polyethylene oxide

(PEO) in water, collected on glass slides in [22], to patterns produced by the buckling of the

uncharged gravity-driven syrup jets [20]. Note that the gravity-driven syrup jets and their buckling

patterns are about 1,000 times larger than those of the electrified jets of PEO in water. The upper

panel in each pair depicts the results for the electrified PEO jets in [22]. The lower panels show the

similar patterns produced by the syrup jets in [20]. The symbols in the lower right corner of each

panel are the figure number found in [20] (Courtesy of Elsevier)
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in electrospinning of polymer nanofibers, one of the nanotechnological processes

[9–11, 23, 24]. Comparison of the expressions for the bending forces
!
q in the

aerodynamic and electric cases, (2.18) and (2.20), respectively, reveals that in the

electrically driven bending instability the factor e0
2ln(L/a0)/pa0

2 plays the role of

the factor rgU
2 in the aerodynamic bending. Accounting for this analogy, it is easy

to see that the electrospinning process is enabled by the fact that the viscoelastic

stresses dominate the surface tension and prevent capillary breakup when the

electric analog of (2.23)

pm2

re20 ln L=a0ð Þ � 1 (2.29)

holds (e0 denotes the initial electric charge per unit length of a straight jet). If

polymer concentration is too low, capillary perturbations grow on the background

of the bending perturbations, since the inequality does not hold, and nanofibers with

beads are formed, which is also of interest in certain applications [11]. In the case of

electrospinning, the stabilizing role of the viscoelastic stresses in the jet is the key

element of the process, since it aims at production of intact nanofibers, in distinction

from electrospraying, the process where liquid is fully atomized by the electric

forces, which enhances capillary instability.

Several images of bending polymer jets in electrospinning are shown in Fig. 2.7.

The electrospinning jets typically have an almost straight section of the order of

several cm followed by a number of bending loops shown in Fig. 2.7. The region

near the vertex of the envelope cone about the bending loops in this figure was

imaged at 2,000 frames per second. The stereographic images in Fig. 2.7 show the

jet shape in three dimensions. The expanding spiral in this figure is a simple

example of the kinds of paths that were observed in [9]. After a short sequence of

unstable bending back and forth, with growing amplitude, the jet followed a

bending, winding, spiraling, and looping path in three dimensions. The jet in each

loop grew longer and thinner as the loop diameter and circumference increased.

After some time, segments of a primary loop suddenly developed a new bending

instability (secondary loops), similar to, but at a smaller scale than, the first

10 mm 2 mm

Fig. 2.7 Left: Stereographic images of an electrically driven bending instability. The exposure time

was 0.25ms. The arrowmarks amaximum lateral excursion of a loop.Right: An enlarged image of the

end of the straight segment of the jet. The exposure time was 0.25 ms (After [9]. Courtesy of AIP)
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(cf. the smaller loops on the right-hand side image in Fig. 2.7, where the secondary

loops superimposed on the primary ones are clearly seen). Each cycle of bending

instability can be described in three steps. (1) A smooth segment that was straight or

slightly curved suddenly developed primary bending loops. (2) The segment of the

jet in each bend elongated and became a part of spiraling loops with growing

diameters. (3) As the loop length increased, the cross-sectional diameter of the jet

forming the loop grew smaller, the conditions for step (1) re-established on a

smaller scale, and the next cycle of bending instability began resulting in the

secondary loops. This cycle of instability was observed to repeat at an even smaller

scale resulting in a fractal-like jet. The length of such a fractal jet increased

enormously creating nanofibers. In a while, the polymer solution jet lost most of

its solvent due to evaporation in flight, solidified as it dried, and electrospun

nanofibers were collected at some distance below the envelope cone.

The instability mechanism that is relevant in the electrospinning context is

illustrated by the Coulombic interaction of three point-like material elements,

each with charge e, moving on a jet and originally in a straight line at A, B, and

C as shown in Fig. 2.8. (It is emphasized that charge transport in such a jet is

practically purely convective [11]). Two Coulomb forces having magnitudes F ¼
e2/r2 (in the Gaussian units) push against charge B from opposite directions. If a

bending perturbation causes the charged material element B to move off the line by

a distance d to B0, a net force F1 ¼ 2F cos y ¼ ð2e2=r3Þd acts on charge B in the

direction perpendicular to the line. This net force tends to cause B to move further

in the direction of the bending perturbation away from the line between fixed

charges, A and C. Then, the growth of the small bending perturbation that is

characterized by d is governed in the linear approximation by the second law of

Newton according to the equation

m
d2d
dt2

¼ 2e2

l21
d (2.30)

A

C

B’

r

r

δ θ

F

F

F1

jet axis

B

f

f

Fig. 2.8 Illustration of the

instability, leading to

bending of an electrified jet

(After [9]. Courtesy of AIP)
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where m is the mass, and ‘ is the initial separation between charges A and B in the

straight jet.

The growing solution of this equation, d ¼ d0 exp½ð2e2=ml31Þ1=2t�, shows that

small perturbations increase exponentially. The increase is sustained because the

electrostatic potential energy of the system shown in Fig. 2.8 decreases as e2/rwhen
the perturbations, characterized by d and r, grow.

A detailed theory of the bending instability of the electrified polymer jets in

electrospinning was given in [9, 10] (see also the reviews [11, 23, 24] and refer-

ences therein). Recasting the inequality (2.22) for the onset of the aerodynamic

bending reveals that the destabilizing electric force overcomes the stabilizing effect

of the surface tension if

e20 ln
L

a0

� �
> pa0s (2.31)

The equation for the growth rate of small aerodynamic bending perturbations

(2.21) is recast in the following equation for the electrically-driven bending [9, 10]

g2 þ 3

4

m�k4

ra20
gþ s

ra30
� e20 ln L=a0ð Þ

pra40

� �
�k2 ¼ 0 (2.32)

The corresponding wavenumber �k� and the growth rate g� of the fastest growing
electrically-driven bending perturbation are given by

�k� ¼ 8

9

ra20
m2

e20 ln L=a0ð Þ
pa20

� s
a0

� 	� 
1=6

(2.33)

g� ¼
e20 ln L=a0ð Þ=pa0 � s
� �2=3

3mra40

 �1=3 (2.34)

with ln L=a0ð Þ ¼ ln 1=�k�ð Þ [10].
The nonlinear stage of the electrically-driven bending instability in electrospin-

ning was studied numerically in [9, 10] using the general quasi-one-dimensional

equations of the dynamics of thin liquid jets described in Section “General Quasi-

One-Dimensional Equations of Dynamics of Free Liquid Jets.” In addition, in [10],

the dynamic equations were supplemented by the equations describing solvent

evaporation, jet solidification, and the effect of these processes on the rheological

behavior of polymeric liquid. Figure 2.9 illustrates the predicted evolution of an

electrospun jet.

The fact that strongly stretched polymeric jets are stable relative to bending

perturbations demonstrated in [9] means that the electrospun jets possess an initial

straight section. It also means that transversal waves can propagate over a stretched

jet as over a string [25, 26] (Fig. 2.10). The widening of a lateral displacement pulse
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Fig. 2.9 Bending instability of a single jet. Only the jet axis is shown at the dimensionless time

moments: (a) 0.19, (b) 0.39, (c) 0.59, (d) 0.79, and (e) 0.99 (After [9]. Courtesy of AIP)

Fig. 2.10 Propagation and widening of a single lateral displacement pulse on an electrically-

driven jet of a concentrated polymer solution [26]. The interelectrode distance L ¼ 5.5 cm,

potential difference of U ¼ 3 kV, and the electric current I ¼ 100 nA. The jet was straight before

the lateral displacement pulse was applied by a plastic impactor (Courtesy of Elsevier)
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W between t ¼ 0 and t ¼ Dt can be measured from such images. Then, the

longitudinal stress in the polymeric jet is recovered as

sxx ¼ r
W

2Dt

� �2
(2.35)

An elongational rheometer developed in [26] based on this principle revealed

that the initial longitudinal stress created by the electric stretching of a polymeric jet

as it transforms from the modified Taylor cone to a thin jet, is of the order of 10–100

kPa. These values are one or two orders of magnitude larger than those measured

for the uncharged viscoelastic jets. The rheometer also allows evaluation of the

modulus of elasticity and relaxation time of concentrated polymer solutions and

melts.
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