Chapter 2

Bending and Buckling Instabilities

of Free Liquid Jets: Experiments

and General Quasi-One-Dimensional Model

A.L. Yarin

Abstract This chapter deals with liquid jets bending due to the aerodynamic
interaction with surrounding air or buckling due to the impingement on a solid
wall. The experimental evidence is considered and linear and nonlinear theories
describing perturbation growth developed in the framework of the quasi-one-dimen-
sional equations of the dynamics of liquid jets moving in air are discussed. Jets of
viscous Newtonian or rheologically complex liquids (in particular, viscoelastic
polymeric liquids) are considered. In addition, bending instability of the electrified
liquid jets (in particular, polymeric liquid jets in electrospinning) is considered.
In the latter case, both the experimental and theoretical aspects are tackled.

Keywords Bending instability of liquid jets - Buckling of liquid jets - Electrified
liquid jets - Electrospinning - Elongational rheology - Newtonian and rheologically
complex liquids - Quasi-one-dimensional equations of the dynamics of liquid jets -
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Introduction

Thin liquid jets demonstrate not only capillary breakup considered in Chap. 1 but
some other regular long-wave forms of instability and breakup, e.g., bending
instability of jets moving in air with a relatively high-speed U or of the electrified
jets, as well as buckling of thin, highly viscous jets impinging on a wall [1].
Theoretical investigation of the dynamics of bending instability of liquid jets
rapidly moving in air began in the seminal works of Weber and Debye and Daen
[2, 3]. This leads to a rather complicated coupled problem on a dynamic interaction
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of air flow with a jet when the jet evolution is to be found as well. The linear
stability analysis of the temporary planar bending instability of an inviscid jet in [3]
resulted in the following characteristic equation for the growth rate y of bending
instability based on the three-dimensional equations of fluid mechanics

y:,v_pg_lﬂm( (K)o Ky(k) on

In (2.1) k = kay is the dimensionless wave number with k being the dimensional
wave number and ag the unperturbed jet cross-sectional radius; p and o are the
density and surface tension of the jet liquid, respectively; the gas density is denoted
by pg: and I, and K; denote the modified Bessel functions. From several terms in
the analysis of [3] describing the dynamic action of air, we keep in (2.1) only the
largest one, of the order of ngz, since p, << p. The surface tension is a stabilizing
factor in the case of the bending instability, since bending results in an increase of
the jet surface area [I}(k) >0, K} (k) <O for any k]. Beginning from a certain
critical value of the relative air velocity U, the first (positive) term under the square
root on the right hand side in (2.1) acquires a larger magnitude than the second
term, which corresponds to the onset of the bending instability and an exponential
growth of the bending perturbations. The bending instability is determined by a
peculiar pressure distribution in gas over the jet surface: in the framework of the
inviscid gas model, gas pressure on convex surface elements is lower than on the
concave ones.

General Quasi-One-Dimensional Equations of Dynamics
of Free Liquid Jets

The theory of Debye and Daen [3] does not account for a number of important
factors. The most important of them is the effect of liquid viscosity, which should
counteract to the perturbation growth. In addition, the experiments show that the
growing bending perturbations are three-dimensional rather than planar. Also, in the
case of low-viscous liquid jets, bending perturbations grow together with the axisym-
metric capillary perturbations, which significantly change the cross-sectional sizes
and shapes during bending [4]. Moreover, all these factors are dominant in reality.
Therefore, the analysis of the dynamics of the bending perturbations in the frame-
work of an inviscid liquid model is intrinsically contradictory. Accounting for these
factors in the framework of the Navier—Stokes equations in the context of the bending
perturbations of liquid jets is tremendously difficult. However, these difficulties can
be relatively easily overcome in the framework of the quasi-one-dimensional descrip-
tion of liquid motion in the bending jets. In the works of Yarin et al. [1, 5, 6], the
general quasi-one-dimensional equations of the straight and bending jets were
derived from the integral balances of mass, momentum, and moment of momentum,
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as well as by averaging the three-dimensional equations of hydrodynamics over the
jet cross-section [7]. The quasi-one-dimensional continuity and momentum equa-
tions, as well as the moment of momentum equation for the general case of motion of
a thin liquid jet in air derived by Yarin et al. [1, 5-7] read
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These equations are a close hydrodynamic analog of the equations of the Euler-
Bernoulli beam theory [8]. They are related to the three-dimensional equations of
hydrodynamics (the Navier—Stokes equations in the case of viscous Newtonian
liquids) exactly as the equations of the Euler-Bernoulli beam theory are related to
the three-dimensional equations of the theory of elasticity. The hydrodynamics
of thin liquid jets is reduced to finding the evolution in time ¢ and over a spatial
coordinate s of the “integral” parameters — the cross-sectional area f, the velocity of
the center of mass of a liquid cross-section V, and the angular velocity of this cross-
section Q. Equation (2.2) is the mass balance (the continuity equation). Equation
(2.3), the momentum equation, represents itself the balance of forces acting on a jet
element, namely, the inertial, internal and external forces. Equation (2.4) represents
itself the moment of momentum balance, in particular, its left-hand side expresses
the rate of change of the moment of the inertial forces. The following notation is
used in (2.2)—(2.4)
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Here, R and X denote the position vectors of the jet axis, and of a point in the
jet cross-section, respectively (X is reckoned from the center of mass of a jet
cross-section D(s, 7) and belongs to its plane); F is the body force per jet element
of unit volume; q and m are the distributed force and moment of force imposed
on the jet by the environment, respectively; Q is the shearing force acting in the
jet cross-section, which is determined using (2.4); £ is the jet axis curvature; p is
liquid density. Here and hereinafter, i, B, and 7 denote the principal unit normal,
unit binormal, and unit tangent to the jet axis, respectively. The angular velocity
of the trihedron i, b and 7 associated with the jet axis is denoted @. Subscripts 7,
b, and 1 denote projections on the principal normal, binormal, and tangent to the
jet axis, respectively; y is the coordinate reckoned along the principal normal. In
the case of Newtonian viscous liquid, the magnitude of the longitudinal force in
the jet cross-section P and the moment of the internal stresses M are related
to the kinematic parameters in a cross-section of radius a by the following
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Here, x is the geometric torsion of the jet axis, u and ¢ are the viscosity and
surface tension coefficient, respectively, and / is the moment of inertia of the jet
cross-section.

The system of (2.2)—(2.14) describes both the axisymmetric capillary instability
of straight jets ((1.49)—(1.51) in Chap. 1 represent its particular case) and bending
instability of liquid jets. It is closed if the jet cross-sections possess double symme-
try (in particular, it is closed for jets with circular cross-sections). This system of
equations was derived by Yarin et al. in [1, 5-7] assuming the jet slenderness and
the absence of significant shear tractions at its surface. These assumptions are
sufficiently accurate in the case of highly viscous jets moving in air. In the cases
of short wavelength perturbations and large axis curvatures, as well as in the case
of liquid jets propagating in liquid medium of comparable viscosity, the quasi-
one-dimensional description, strictly speaking, is inappropriate. The assumptions of
the jet slenderness and of the absence of significant shear tractions at the jet surface
lead to the following additional restrictions on the internal kinematics in the jet,
namely to

1w 1o,
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The kinematic equation, which should be added to the system of (2.2)—(2.15),
determines the location of the jet axis in space in accordance with the velocity field
in it
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Equation (2.16) is written here for the simplest case where the tangent to the jet
axis is inclined at any point to a certain straight line O, ¢ by an acute angle and it is
possible to introduce a Cartesian coordinate system O;¢n{ with the corresponding
unit vectors i, ]_"and K and to describe the jet axis using the following equations

E=s, n=H(s,t), ¢=2Z(s,1), R=i¢ —|—IH+12Z 2.17)

In the other cases, the jet axis parameter s can be chosen differently, which leads
to changes in the expression for R /ot.

The distributed force and moment of force imposed on the jet by the environ-
ment  and m should be specified separately. In particular, in the case of small
spatial perturbations of the jet axis when it rapidly moves in air, the inviscid flow
theory yields the following expressions
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Equation (2.18) for d means that it is directed along the normal (as — i).
For the finite bending perturbations, the drag force imposed by a relative air flow
should be accounted in addition. Then, for example, for planar jet bending, (2.18)

are generalized by the following expressions
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These expressions close the system of the general quasi-one-dimensional equa-
tions of free liquid jets moving in air with arbitrary speeds.

In the context of the electrified jets in electrospraying and electrospinning, the
distributed force g originates from the Coulomb repulsion of different parts of the
jet surface. Then, it is given by the following expression [9-11]

-5/2

g=—e’In (Ij) kit (2.20)
where e is the electric charge at the jet surface per unit jet length and L is a cutoff
length along the jet axis. Comparison of (2.18) and (2.20) shows that both the
aerodynamic and electric bending forces are directed along the normal (as — i)
and should result in a very similar aerodynamically or electrically driven bending
instability, as discussed below.

Linear Stability Theory for Bending Breakup of Newtonian
Liquid Jets Moving in Air

The solutions of a particular version of the quasi-one-dimensional equations of the
jet dynamics in the case of capillary breakup, when they can be reduced to
(1.49)—(1.51) of Chap. 1, were discussed there. Here, we discuss the applications
of (2.2)—(2.19) to the aerodynamically-driven bending instability of the uncharged
liquid jets rapidly moving in air following the work of Yarin [1, 5, 6]. The
characteristic equation for the growth rate of small bending perturbations of highly
viscous slender liquid jets moving in air in the case of the temporal instability reads
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According to (2.21), both planar and three-dimensional (helical) small bending
perturbations increase with the same growth rate if the relative velocity of gas
flow is

(e
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U >

(2.22)

when the dynamic action of air can overbear the resistance of surface tension to
growth of bending perturbations. The growth rate of the axisymmetric capillary
perturbations is much smaller than that of the bending perturbations for sufficiently
viscous liquids when the inequality

12

pa%ng2 > 1 (2.23)
holds. In this case, deformations of the jet due to the capillary Rayleigh-Weber
instability can be neglected during bending.

It is worth noting that at u = 0 (2.21) coincides with the long-wave limit (k — 0)
of (2.1).

The breakup length of jets in the case of the aerodynamically-driven bending
instability is determined by the following expression [1, 6]
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where A = In(may/{y), m = 2-4, (o is the initial amplitude of bending perturbations.
The value of the factor m is chosen in agreement with the experimental data [4] and the
energy estimates, which show that as the bending perturbation amplitude reaches the
value of the order of a few cross-sectional radii, the jet is almost immediately squeezed
by the air pressure difference at its surface. Equation (2.24) predicts a decrease in the
jet breakup length at higher flow velocity U, which agrees with the experimental data.
(Itis emphasized that the breakup length Ly,caxp Of straight capillary jets experiencing
Rayleigh-Weber instability increases proportionally to U).

Nonlinear Theory of Finite Bending Perturbations of Liquid
Jets Moving in Air

In the works of Yarin [1, 6], the aerodynamically-driven nonlinear bending insta-
bility of thin jets of highly viscous liquids rapidly moving in air was studied
numerically by solving (2.2)—(2.19). It was shown that the nonlinear effects, in
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particular, the most important of them — the viscous stresses originating from the
elongation of the bending jet axis — decelerate growth of bending perturbations.
However, for the estimates of the perturbation amplitudes and timing up to the
amplitudes of the order of (2—4)a, one may extrapolate the predictions of the linear
theory with sufficient accuracy [as it was done in derivation of (2.24)]. The
presence in (2.19) for g of the quadratic drag force leads to a slow sweep of bending
perturbations down the gas flow in addition to growth of their amplitude (the latter
is due to the “lift” component of the aerodynamic force G). The configurations of
the jet axis corresponding to one length of the bending perturbation at several
consecutive time moments denoted by numerals by the curves are shown in Fig. 2.1.
It is seen that the jet axis at the end takes a form of a cliff which leads to an
“overturning.” At this moment, the amplitude of the bending perturbation is of the
order of 4a. Figure 2.2 depicts the corresponding jet section at the moment of
“overturning.”

The rate of growth of the bending perturbations, as well as its deceleration due to
the nonlinear effect (the longitudinal viscous stresses resulting from stretching of the
jet axis at the nonlinear stage of bending) can be also calculated based on the energy
balance given by Yarin [1]. Namely, the work of the distributed aerodynamic
bending force { is spent on changes in the kinetic and surface energies and viscous
dissipation in the jet. Assuming sinusoidal shape of a bending section of a jet, one
arrives at the following equation for the amplitude H(¢) of the bending perturbation

3o 9 u - U?
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Fig. 2.1 Jet evolution in the case of the bending perturbations of finite amplitude affected by air
drag force [1]. All the parameters in the plot are dimensionless. As a length scale, the wavelength

1/6

of the fastest growing bending mode in the linear approximation /, = 27 [(9 /8)utas/ <png 2)]

is chosen. Time denoted by the numerals near the curves is rendered dimensionless by the
1/3

characteristic time of small bending perturbations, T = [(p,ua%) / (pﬁU“)} (Courtesy of

Pearson Education)
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Fig. 2.2 Predicted
instantaneous shape of

a jet with a large-scale
aerodynamically-driven
bending instability
corresponding to the jet axis
configuration at t = 7 in

Fig. 2.1 [1]. The cross-
sectional radius ranging from
65% to 80% of its initial value
(Courtesy of Pearson
Education)
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Fig. 2.3 The amplitude of the bending perturbation of a Newtonian liquid jet with u = 1 Pa s [1].
Curve | was obtained by solving the complete system of the quasi-one-dimensional equations
of the jet dynamics (2.2)—(2.19). The straight line 2 corresponds to the linear theory: H = Hoexp
(yt) with y found from (2.21). Curve 3 was obtained by numerical integration of the nonlinear
energy balance, (2.25). The length scale is taken as /, = 0.943 x 1072 m and T = 0.0047 s is used
as a time scale (Courtesy of Pearson Education)

In (2.25) primes denote time differentiation. The above-mentioned nonlinear
effect related to stretching of the jet axis by finite bending perturbations is given by
the third (nonlinear in H) term on the left-hand side in (2.25). The linearized version
of (2.33) corresponds to small bending perturbations and readily admits the solution
H = exp(yt). The amazing fact is that the growth rate ) thus obtained satisfies the
exact (2.21). The nonlinear numerical solution of (2.25) is depicted in Fig. 2.3
together with the numerical solution of the quasi-one-dimensional equations and
the result of the linear theory.

Bending Instability of Rheologically Complex Liquid Jets

Capillary instability and breakup of thin jets of dilute polymer solutions considered
in section Capillary Breakup of Rheologically Complex Liquid Jets of Chap. 1
represents itself an example of the so-called strong flows, in which coil-stretch
transition of macromolecular coils can happen because the elongation rate is so
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high that viscoelastic relaxation does not succeed to fully unload the liquid. The
corresponding presence of significant elastic stresses results in such peculiar non-
Newtonian phenomena as formation of the beads-on-a-string structure. Bending
instability of non-Newtonian liquids, in particular, of concentrated polymer solu-
tions and melts, also reveals a wide spectrum of nontrivial deviations from the
Newtonian behavior, related to a number of important applications. Some of them
are discussed below.

The bending instability of jets of power law liquids rapidly moving in air was
studied by Yarin [1] in the framework of the energy balance similar to the one
which led to (2.25). An equation for the bending amplitude H obtained, which
generalizes (2.25) for the power law liquids, reveals that the evolution of the
bending perturbations of pseudoplastic jets (n < 1) is dominated by an initial
stage where the perturbation amplitude and rates of deformation are small (similar
to the capillary breakup of pseudoplastic jets discussed in Ch.1). On the other hand,
in bending of dilatant (n > 1) high-speed jets, an increase of the effective viscosity
at a later stage significantly decelerates perturbation growth.

The dynamics of bending perturbations of high-speed viscoelastic jets of
uncharged polymer solutions and melts, as well as of concentrated micellar solu-
tions was studied by Yarin [1]. One of the important applications of such jets is in
melt blowing — a technology used to produce nonwoven mats of polymer nanofibers
[12]. In Yarin [1], it was shown that the growth rate of small bending perturbations
is determined by the following characteristic equation
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which generalizes (2.21) to the case of viscoelastic liquid jets (the Newtonian case
is recovered with the relaxation time 6 = 0). In (2.26) the initial longitudinal stress
in the jet can either be absent (65 = 0) or present and “frozen” gy = const # 0.

If 69 =0, (2.26) predicts an accelerated growth of small bending perturbations of
viscoelastic liquids compared to a corresponding Newtonian liquid (with the
same values of p, i, 0, ap, and U) due to a decrease in the effective viscosity g =
w/(1 + y0). The initial stress oy > 0 is a stabilizing factor, which diminishes the
growth rate ), or can even prevent bending instability if (6o + o/ag) > ngz. The
following dimensionless groups govern the bending perturbations of viscoelastic
jets
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Figure 2.4 depicts the growth rates predicted from (2.26) for two jets of the
upper-convected Maxwell liquids, which are shown by curves 1 and 3. They
correspond to different values of the relative gas velocity (U for curve 1 is higher
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Fig. 2.4 Growth rate of small o T
bending perturbations of v, sec

viscoelastic jets of the upper- 100 |
convected Maxwell liquid [1].
Forall curves IT; = 107, T, = 1
I15 = 0. For curves 1 and 2:

IT, = 0.156 x 10 for curves
3and 4 I, = 04 x 10* For 50 -
curves 2 and 4 I1; = 0. For 3
curves 1 and 3 13 = 0.64 and
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Fig. 2.5 The amplitude Y of the bending perturbations of a jet of the upper-convected Maxwell
liquid is shown by curve 1 [1]. The values of the dimensionless groups are: IT; = 107, TT, = 0.156 x
10, T3 = 0.64, I, = IIs = 0. Curve 2 depicts the amplitude of the corresponding jet of
Newtonian liquid (I3 = 0) (Courtesy of Pearson Education)

than for curve 3). Curves 2 and 4 show the results for the corresponding Newtonian
liquid jets, with curve 2 corresponding to curve 1, and curve 4 to curve 3.

The nonlinear dynamics of the bending perturbations of high-speed viscoelas-
tic uncharged jets moving in air reveals a new phenomenon found by Yarin [1].
Figure 2.5 shows that at the nonlinear stage the growth of the perturbation
amplitude is not only drastically slowed down due to the longitudinal stresses
resulting from the jet elongation (similar to Newtonian jets discussed above), but
the amplitude can also decrease and oscillate. These latter phenomena result from
the competition of the inertial and elastic forces. A jet element undergoing
bending misses its “equilibrium” position due to its inertia, and the jet axis
becomes overstretched, which produces an extra longitudinal elastic stress. This
stress tends to contract the jet element. However, during the contraction stage
(when the bending perturbation amplitude decreases), the jet element once more
misses its “equilibrium” position due to its inertia and becomes overcompressed.
This initiates a new cycle of the oscillations. Viscous stresses gradually dissipate
the energy of these oscillations.
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Buckling of Thin Liquid Jets

G.I. Taylor in his seminal works [13, 14] discovered a new instability mode of
highly viscous jets, namely buckling of slowly moving jets impinging onto a wall
when they are subjected to a longitudinal compressive force. In one of his experi-
ments, compressive forces resulted from squeezing the ends of a liquid thread
floating on the mercury surface. In another experiment, highly viscous jets were
either moving vertically downward in a liquid and passing into a lower layer of
higher density, which created a sudden increase in the compressive buoyancy force,
or impinging onto a wall. The latter case was experimentally studied in detail in
[15, 16]. These works showed that buckling occurs only in very slowly moving
highly viscous jets. The jets with the values of the Reynolds number Re exceeding
the critical threshold of Re,, ~ 1.2 were stable and straight. Therefore, in this case,
the buckling instability emerges when the Reynolds number decreases. On the other
hand, there is also a restriction on the jet lengths L from nozzle to wall. If L is less
than a certain critical value L., there is no buckling. Immediately after the onset of
the buckling instability (at Re < Re., and L/dy > L./dy with d, being the nozzle
diameter) a two-dimensional bucking (folding) sets in, and the jet is deposited on
the wall as folds. However, with a further increase of the ratio L/d,, bucking
perturbations become spiral-like. The jet axis becomes three-dimensional, which
signifies the bifurcation from folding to coiling, and the jet is deposited on the wall
as coils. In the experiments [15], the dependences of L., and the folding and coiling
frequencies on the liquid jet viscosity, its velocity and the nozzle diameter were
established. Buckling was also observed in horizontal jets moving over the free
surface of a denser liquid (such jets widen beginning from the nozzle, in distinction
from gravity-driven jets, which initially become thinner and begin to widen only
close to the wall onto which they impinge). All the observations confirmed the idea
of Taylor [14] that buckling of liquid jets is determined by the presence of the
longitudinal compressive force acting in the jet and in this sense is a direct analog
of the elastic buckling of bars and columns studied by Euler [8]. A detailed theory
of the onset of buckling instability (folding of highly viscous liquid jets and
films-planar jets-impinging on a wall) was given by Yarin et al. in [1, 17, 18]
based on the general quasi-one-dimensional equations of jet dynamics
(2.2)—-(2.19) (see also the later efforts directed on a nonlinear buckling theory
in [19]).

Recently, jet buckling on laterally moving solid surfaces nearly perpendicular to
the jet axis was reported [20-22], which is of interest, in particular, in relation to
writing by short straight electrically driven jets. The stability analysis in that case
was also based on the quasi-one-dimensional equations of the dynamics of liquid
jets similar to (2.2)—(2.19). It revealed that the characteristic frequencies of buck-
ling are practically unaffected by the lateral motion of the surface and stay the same
as in the case of liquid jet impingement on a stationary hard flat surface [21, 22].
Moreover, the deposit morphology at the wall is practically unaffected by the
method of jet initiation (gravity-driven jets [20] versus the electrically driven jets
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Fig. 2.6 (a—f) Comparison of the buckled patterns created by electrified jets of polyethylene oxide
(PEO) in water, collected on glass slides in [22], to patterns produced by the buckling of the
uncharged gravity-driven syrup jets [20]. Note that the gravity-driven syrup jets and their buckling
patterns are about 1,000 times larger than those of the electrified jets of PEO in water. The upper
panel in each pair depicts the results for the electrified PEO jets in [22]. The lower panels show the
similar patterns produced by the syrup jets in [20]. The symbols in the lower right corner of each
panel are the figure number found in [20] (Courtesy of Elsevier)

[22]) as Fig. 2.6 demonstrates. The buckling frequency o predicted by the linear
stability theory of Yarin et al. [1, 17]

In (w%) = —0.0194 ln( Ho ) + 0.2582 (2.28)

0 pedy

is in reasonable agreement with the experimental data for o evaluated from the
images similar to those in Fig. 2.6 (d,, denotes the initial cross-sectional jet diame-
ter, Q is the volumetric flow rate in the jet, and g is the gravity acceleration).

Bending Instability of Electrified Liquid Jets

The electrified jets of concentrated polymer solutions move in air with low speeds
of the order of 1 m/s. However, they bend due to the Coulombic interactions
discussed above in relation with the electric bending force (2.20). Such jets emerge
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in electrospinning of polymer nanofibers, one of the nanotechnological processes
[9-11, 23, 24]. Comparison of the expressions for the bending forces q in the
aerodynamic and electric cases, (2.18) and (2.20), respectively, reveals that in the
electrically driven bending instability the factor ey’In(L/ag)/may> plays the role of
the factor ng2 in the aerodynamic bending. Accounting for this analogys, it is easy
to see that the electrospinning process is enabled by the fact that the viscoelastic
stresses dominate the surface tension and prevent capillary breakup when the
electric analog of (2.23)

nu?

e n(L)ao) > 1 (2.29)
holds (ey denotes the initial electric charge per unit length of a straight jet). If
polymer concentration is too low, capillary perturbations grow on the background
of the bending perturbations, since the inequality does not hold, and nanofibers with
beads are formed, which is also of interest in certain applications [11]. In the case of
electrospinning, the stabilizing role of the viscoelastic stresses in the jet is the key
element of the process, since it aims at production of intact nanofibers, in distinction
from electrospraying, the process where liquid is fully atomized by the electric
forces, which enhances capillary instability.

Several images of bending polymer jets in electrospinning are shown in Fig. 2.7.

The electrospinning jets typically have an almost straight section of the order of
several cm followed by a number of bending loops shown in Fig. 2.7. The region
near the vertex of the envelope cone about the bending loops in this figure was
imaged at 2,000 frames per second. The stereographic images in Fig. 2.7 show the
jet shape in three dimensions. The expanding spiral in this figure is a simple
example of the kinds of paths that were observed in [9]. After a short sequence of
unstable bending back and forth, with growing amplitude, the jet followed a
bending, winding, spiraling, and looping path in three dimensions. The jet in each
loop grew longer and thinner as the loop diameter and circumference increased.
After some time, segments of a primary loop suddenly developed a new bending
instability (secondary loops), similar to, but at a smaller scale than, the first

10 mm 2 mm

Fig. 2.7 Left: Stereographic images of an electrically driven bending instability. The exposure time
was 0.25 ms. The arrow marks a maximum lateral excursion of a loop. Right: An enlarged image of the
end of the straight segment of the jet. The exposure time was 0.25 ms (After [9]. Courtesy of AIP)
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(cf. the smaller loops on the right-hand side image in Fig. 2.7, where the secondary
loops superimposed on the primary ones are clearly seen). Each cycle of bending
instability can be described in three steps. (1) A smooth segment that was straight or
slightly curved suddenly developed primary bending loops. (2) The segment of the
jet in each bend elongated and became a part of spiraling loops with growing
diameters. (3) As the loop length increased, the cross-sectional diameter of the jet
forming the loop grew smaller, the conditions for step (1) re-established on a
smaller scale, and the next cycle of bending instability began resulting in the
secondary loops. This cycle of instability was observed to repeat at an even smaller
scale resulting in a fractal-like jet. The length of such a fractal jet increased
enormously creating nanofibers. In a while, the polymer solution jet lost most of
its solvent due to evaporation in flight, solidified as it dried, and electrospun
nanofibers were collected at some distance below the envelope cone.

The instability mechanism that is relevant in the electrospinning context is
illustrated by the Coulombic interaction of three point-like material elements,
each with charge e, moving on a jet and originally in a straight line at A, B, and
C as shown in Fig. 2.8. (It is emphasized that charge transport in such a jet is
practically purely convective [11]). Two Coulomb forces having magnitudes F =
¢*/r* (in the Gaussian units) push against charge B from opposite directions. If a
bending perturbation causes the charged material element B to move off the line by
a distance & to B’, a net force F| = 2F cos 0 = (2¢/r*)$ acts on charge B in the
direction perpendicular to the line. This net force tends to cause B to move further
in the direction of the bending perturbation away from the line between fixed
charges, A and C. Then, the growth of the small bending perturbation that is
characterized by ¢ is governed in the linear approximation by the second law of
Newton according to the equation

a’s  2e?
mE = (2.30)
Ejet axis
VA

Fig. 2.8 Tllustration of the
instability, leading to

bending of an electrified jet
(After [9]. Courtesy of AIP)
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where m is the mass, and ¢ is the initial separation between charges A and B in the
straight jet.

The growing solution of this equation, & = &y exp[(2¢? /ml?)l/ %1, shows that
small perturbations increase exponentially. The increase is sustained because the
electrostatic potential energy of the system shown in Fig. 2.8 decreases as e*/r when
the perturbations, characterized by J and r, grow.

A detailed theory of the bending instability of the electrified polymer jets in
electrospinning was given in [9, 10] (see also the reviews [11, 23, 24] and refer-
ences therein). Recasting the inequality (2.22) for the onset of the aerodynamic
bending reveals that the destabilizing electric force overcomes the stabilizing effect
of the surface tension if

L
e(2) In (a_o) > mayo (2.31)

The equation for the growth rate of small aerodynamic bending perturbations
(2.21) is recast in the following equation for the electrically-driven bending [9, 10]

—4

3 pk ZIn(L

yz+_l‘_2y+(i3_w>/gz:0 (2.32)
4 pag pay Tpdy

The corresponding wavenumber &, and the growth rate 7, of the fastest growing
electrically-driven bending perturbation are given by

27,2 1/6
9 u? nag ag
e2In(L/ay)/mag — o 2/3
. legIn(L/ o)/4 1(;3 ] (234)
(3upag)

with In(L/ao) = In(1/k.) [10].

The nonlinear stage of the electrically-driven bending instability in electrospin-
ning was studied numerically in [9, 10] using the general quasi-one-dimensional
equations of the dynamics of thin liquid jets described in Section “General Quasi-
One-Dimensional Equations of Dynamics of Free Liquid Jets.” In addition, in [10],
the dynamic equations were supplemented by the equations describing solvent
evaporation, jet solidification, and the effect of these processes on the rheological
behavior of polymeric liquid. Figure 2.9 illustrates the predicted evolution of an
electrospun jet.

The fact that strongly stretched polymeric jets are stable relative to bending
perturbations demonstrated in [9] means that the electrospun jets possess an initial
straight section. It also means that transversal waves can propagate over a stretched
jetas over a string [25, 26] (Fig. 2.10). The widening of a lateral displacement pulse
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Fig. 2.9 Bending instability of a single jet. Only the jet axis is shown at the dimensionless time
moments: (a) 0.19, (b) 0.39, (¢) 0.59, (d) 0.79, and (e) 0.99 (After [9]. Courtesy of AIP)

0.5ms

Fig. 2.10 Propagation and widening of a single lateral displacement pulse on an electrically-
driven jet of a concentrated polymer solution [26]. The interelectrode distance L = 5.5 cm,
potential difference of U = 3 kV, and the electric current / = 100 nA. The jet was straight before
the lateral displacement pulse was applied by a plastic impactor (Courtesy of Elsevier)
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W between t+ = 0 and + = Ar can be measured from such images. Then, the
longitudinal stress in the polymeric jet is recovered as

w 2

An elongational rtheometer developed in [26] based on this principle revealed
that the initial longitudinal stress created by the electric stretching of a polymeric jet
as it transforms from the modified Taylor cone to a thin jet, is of the order of 10—100
kPa. These values are one or two orders of magnitude larger than those measured
for the uncharged viscoelastic jets. The rheometer also allows evaluation of the
modulus of elasticity and relaxation time of concentrated polymer solutions and
melts.
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