
Chapter 2

H-Spaces and Co-H-Spaces

2.1 Introduction

NOTATION AND STANDING ASSUMPTIONS


 From this chapter on, most of the spaces that we consider will be based
and path-connected and have the based homotopy type of based CW complexes.
Some notable exceptions to path-connectedness are the 0-sphere S0 and the
0-skeleton of a CW complex. Unless otherwise stated, all functions under con-
sideration will be continuous and based and all homotopies will preserve the
base point. These restrictions are sometimes asserted explicitly for empha-
sis. We discuss unbased spaces, functions and homotopies from time to time.
However, whenever doing so, we explicitly make note of the fact.

 We take all homology and cohomology to be reduced, so that a space has

trivial zero-dimensional homology and cohomology.

 We adopt the following notation throughout: “�” for homotopy of maps

or same homotopy type of spaces, “�” for homeomorphism of spaces or iso-
morphism of groups and “�” for the relation of equivalence. Furthermore,
if X is a set with an equivalence relation and x P X, then xxy denotes the
equivalence class containing x.

There are reasons for the restrictions on spaces listed above. First of all,
nearly all of the spaces that are of interest to us are of this type. Second,
these assumptions avoid having to add additional hypotheses to several the-
orems since CW complexes satisfy many of these hypotheses. But because of
these assumptions, we must ensure that the constructions that we perform
on spaces of the homotopy type of CW complexes yield spaces of the homo-
topy type of CW complexes. This is so, but the proofs in some instances are
long and difficult. Presenting this material would take us far afield, and so
we describe some proofs and give references for the others.

In this chapter we discuss the important notions of H-space and grouplike
space and of co-H-space and cogroup. A grouplike space is the homotopy
analogue of a group. It is a group object in the homotopy category. An H-
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space is defined in the same way but without the assumption of associativity.
Cogroups and co-H-spaces are the categorical duals of these in the homotopy
category. We show that the set of homotopy classes of maps of any space into a
grouplike space has an induced group structure as does the set of homotopy
classes of maps of a cogroup into any space. We then consider the set of
homotopy classes of maps from a cogroup into a grouplike space and show
that the two group structures agree and are abelian. Loop spaces ΩY are
examples of grouplike spaces and suspensions ΣX are examples of cogroups.
We prove that there is a fundamental isomorphism rΣX,Y s � rX,ΩY s. Since
an n-sphere is a suspension, the set of homotopy classes of maps rSn, Y s is a
group. These are the homotopy groups of Y , denoted πnpY q, and discussed
in Section 2.4 and later in Section 4.5. Of particular interest in this section
is a theorem which we call Whitehead’s First Theorem which asserts that a
map of CW complexes is a homotopy equivalence if and only if it induces an
isomorphism of all homotopy groups. A natural generalization of spheres is
Moore spaces which are spaces with a single nonvanishing homology group.
Dually, Eilenberg–Mac Lane spaces are spaces with a single nonvanishing
homotopy group. The existence and uniqueness up to homotopy type of these
spaces are discussed. Homotopy groups with coefficients are then defined by
using Moore spaces and (homotopical) cohomology groups with coefficients
by using Eilenberg–Mac Lane spaces. The chapter ends with a discussion of
Eckmann–Hilton duality.

2.2 H-Spaces and Co-H-Spaces

Before discussing H-spaces and co-H-spaces, we introduce some terminology
that appears in the rest of the book. We assume that the reader is familiar
with the concept of a commutative diagram of groups and homomorphisms
and of spaces and maps. In commutative diagrams there is the initial point
(a group or space), a terminal point (a group or space), and two compositions
of homomorphisms or maps from the initial point to the terminal point. In
the case of abelian groups, if one of the compositions is the negative of the
other, then we say that the diagram anticommutes or is an anticommutative
diagram. In the case of spaces, if the two compositions are homotopic, then
we say that the diagram homotopy-commutes, commutes up to homotopy, or
is a homotopy-commutative diagram.

Now we turn to the notions of a grouplike space and an H-space. Let Y
be a space and recall that j1 : Y Ñ Y � Y and j2 : Y Ñ Y � Y are defined
by j1pyq � py, �q and j2pyq � p�, yq for all y P Y.
Definition 2.2.1 A grouplike space consists of a space Y and two maps
m : Y � Y Ñ Y and i : Y Ñ Y such that

1. mj1 � id � mj2 : Y Ñ Y,
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Y
j1 //

id
''OOOOOOOOOOOOOO Y � Y

m

��

and Y
j2 //

id
''OOOOOOOOOOOOOO Y � Y

m

��
Y Y.

2. mpm� idq � mpid�mq : Y � Y � Y Ñ Y,

Y � Y � Y
m�id //

id�m

��

Y � Y

m

��
Y � Y

m // Y.

3. mpid, iq � � � mpi, idq : Y Ñ Y,

Y
pid,iq //

�
''OOOOOOOOOOOOOO Y � Y

m

��

and Y
pi,idq //

�
''OOOOOOOOOOOOOO Y � Y

m

��
Y Y,

where pid, iq, pi, idq : Y Ñ Y � Y are defined by pid, iqpyq � py, ipyqq and
pi, idqpyq � pipyq, yq, for y P Y.
A grouplike space is sometimes referred to as an H-group. The map m is

called a multiplication and i is called a homotopy inverse. If only (1) holds,
then Y (or more properly, the pair pY,mq) is called an H-space. A space that
is an H-space and a CW complex is called an H-complex and a grouplike
space that is a CW complex is called a grouplike complex. We sometimes do
not explicitly mention the multiplication or homotopy inverse and refer to a
space Y as an H-space or grouplike space. Condition (2) is called homotopy-
associativity. A homotopy-associative H-space is one in which (1) and (2)
hold. In terms of the addition of maps defined below, condition (3) asserts
that id � i � � � i � id. Therefore ris is the homotopy inverse of rids in the
group rY, Y s. From this we obtain the inverse of any α � rf s P rX,Y s defined
as i�pαq � rif s. We show in Proposition 8.4.4 that a homotopy-associative
H-complex always has a homotopy inverse, and so is a grouplike complex.
The H-space pY,mq is homotopy-commutative if mt � m : Y � Y Ñ Y where
t : Y � Y Ñ Y � Y is defined by tpy, y1q � py1, yq, for y, y1 P Y.
Definition 2.2.2 Let pY,mq and pY 1,m1q be H-spaces and h : Y Ñ Y 1 a
map. We call h an H-map if the following diagram is homotopy-commutative,

Y � Y
h�h //

m

��

Y 1 � Y 1

m1

��
Y

h // Y 1.
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This is written h : pY,mq Ñ pY 1,m1q.
The space Y is a topological group if pY,m, iq is a grouplike space such

that equality holds instead of homotopy in all parts of Definition 2.2.1. In
this case, it is customary to write mpy, y1q as yy1 and ipyq as y�1. A grouplike
space is thus the analogue of a group in homotopy theory. Similarly an H-map
is the analogue of a homomorphism of groups. We give a class of examples
in Section 2.3 of spaces that are grouplike, but not topological groups. For
now we note that the spheres S1, S3, and S7 are all H-spaces. The first two
are in fact topological groups. Multiplication of complex numbers induces a
multiplication on S1 which makes it into a topological group and quaternionic
multiplication does the same for S3. The sphere S7 inherits its multiplication
from the multiplication of octonions or Cayley numbers [49, pp. 448–449]. But
the latter is not associative, and so S7 is an H-space that is not a topological
group. It has been proved [51] that this multiplication on S7 is not homotopy-
associative, so S7 is not a grouplike space. The question of whether any other
spheres have the structure of an H-space is a difficult one. A negative answer
has been given by the work of several people with the major result due to
Adams [1].

If pY,mq is an H-space and X is any space, then the set rX,Y s can be
given an additively written binary operation which is defined as follows. Let
f, g : X Ñ Y and define f � g � mpf � gq∆ � mpf, gq

X
∆ //X �X

f�g //Y � Y
m //Y,

where ∆ is the diagonal map. Then if α � rf s and β � rgs P rX,Y s, we set
α � β � rf � gs. This is a well-defined binary operation on the set rX,Y s.
We make some simple remarks about this operation.

• By (1), f�� � mpf��q∆ � mj1f � f. Therefore α�0 � α, and similarly
0 � α � α, where 0 is the homotopy class of the constant map. Thus for
an H-space pY,mq, the element 0 P rX,Y s is a two-sided identity for the
binary operation.

• If (3) holds, then, as mentioned earlier, i�pαq is the inverse of α in rX,Y s.
• Clearly m � p1� p2 : X �X Ñ X, where p1, p2 : X �X Ñ X are the two

projections, since mpp1 � p2q∆ � m.
• We obtain the category of H-spaces denoted H consisting of H-spaces and

homotopy classes of H-maps and the category of grouplike spaces denoted
HG consisting of grouplike spaces and homotopy classes of H-maps (see
Appendix F).

We recall some categorical language and notation (Appendix F). Let
HoTop� be the based homotopy category (consisting of spaces and homo-
topy classes of maps), let Gr be the category of groups, and let Sets� be
the category of based sets. Furthermore, let B� be the category of based sets
with a binary operation for which the basepoint is a two-sided identity and
the morphisms are based functions preserving the binary operation (called
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homomorphisms). In addition, AB� is the full subcategory of B� consisting
of based sets for which the binary operation is commutative. Then there are
forgetful functors B� Ñ Sets� and Gr Ñ B� (see Appendix F).

Now let Y be a fixed space and define a contravariant functor FY :
HoTop� Ñ Sets� by FY pXq � rX,Y s and FY pfq � f� : rX 1, Y s Ñ rX,Y s,
where f : X Ñ X 1. To say that FY : HoTop� Ñ Sets� factors through
B� means that for every space X, the set rX,Y s is a based set having a
binary operation with the homotopy class of the constant map a two-sided
identity and that f� : rX 1, Y s Ñ rX,Y s is a homomorphism for every map
f : X Ñ X 1. Similarly FY : HoTop� Ñ Sets� factors through Gr means that
rX,Y s is a group for every X with unit the homotopy class of the constant
map and that f� : rX 1, Y s Ñ rX,Y s is a homomorphism.

Proposition 2.2.3

1. Y is an H-space if and only if FY : HoTop� Ñ Sets� factors through B�.
2. Y is a homotopy-commutative H-space if and only if FY : HoTop� Ñ

Sets� factors through AB�.
3. Y is a grouplike space if and only if FY : HoTop� Ñ Sets� factors through

Gr.

Proof. (1) Let pY,mq be an H-space. We have already noted that rX,Y s is a
set with binary operation for which 0 is a two-sided identity. If f : X Ñ X 1

is a map and ras, rbs P rX 1, Y s, then

pa� bqf � mpa� bq∆X1f � mpaf � bfq∆X � af � bf,

and so f�pras � rbsq � f�ras � f�rbs. Thus FY : HoTop� Ñ Sets� factors
through B�. Conversely, suppose rX,Y s is an object of B� for every X with
the property that f� : rX 1, Y s Ñ rX,Y s is a homomorphism for every map
f : X Ñ X 1. Let the binary operation be denoted by � and let r�s be the
two-sided identity, where � is the constant map. Now define m : Y � Y Ñ Y
by rms � rp1s � rp2s P rY �Y, Y s, where p1 and p2 are the two projections of
Y � Y onto Y. Then, if j1, j2 : Y Ñ Y � Y are the two inclusions,

j�1 rms � rp1j1s � rp2j1s � ridY s � r�s � ridY s,

and so mj1 � idY . Similarly, mj2 � idY . Therefore pY,mq is an H-space.

(2) If pY,mq is homotopy-commutative and ras, rbs P rX,Y s, then

a� b � mpa� bq∆ � mtpa� bq∆ � mpb� aq∆ � b� a,

where t : Y �Y Ñ Y �Y interchanges coordinates, and so rX,Y s is commu-
tative. Conversely, suppose rX,Y s is commutative for all X. Let the multi-
plication m on Y be as defined in (1). Then

rmts � t�rms � t�prp1s�rp2sq � rp1ts�rp2ts � rp2s�rp1s � rp1s�rp2s � rms,
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and so m is homotopy-commutative.

(3) We omit the proof which is like (1) and (2) but we record the following
for later use. If FY factors through Gr, then the multiplication m and the
homotopy inverse i are defined by

rms � rp1s � rp2s and ris � �ridY s. [\

We next introduce a definition and corollary of Proposition 2.2.3.

Definition 2.2.4 A contravariant binary operation induced by Y is a binary
operation on rX,Y s for every space X such that 0 P rX,Y s is a two-sided
identity and for every f : X Ñ X 1, the function f� : rX 1, Y s Ñ rX,Y s is a
homomorphism. A contravariant group operation induced by Y is similarly
defined.

Then we have the following immediate consequence of Proposition 2.2.3.

Corollary 2.2.5 1. There is a one–one correspondence between the set of
homotopy classes of multiplications of Y and the set of contravariant bi-
nary operations induced by Y.

2. There is a one–one correspondence between the set of homotopy classes of
grouplike multiplications of Y and the set of contravariant group operations
induced by Y.

The following result is frequently used.

Proposition 2.2.6 If pY,mq and pY 1,m1q are H-spaces and h : pY,mq Ñ
pY 1,m1q an H-map, then h� : rX,Y s Ñ rX,Y 1s is a homomorphism of based
sets with a binary operation. In particular, if Y and Y 1 are grouplike spaces,
then h� : rX,Y s Ñ rX,Y 1s is a group homomorphism.

Proof. Let ras, rbs P rX,Y s; then

hpa� bq � hmpa� bq∆ � m1ph� hqpa� bq∆ � ha� hb.

Therefore h� is a homomorphism. [\
To obtain the notion which is dual to that of a grouplike space, we reverse

the arrows and replace the product with the wedge in Definition 2.2.1. As
noted in Section 1.2, we regard X _ X � X � X so that every element of
X_X is of the form px, �q or p�, x1q, for x, x1 P X. Recall that q1 � p1|X _X :
X _X Ñ X and q2 � p2|X _X : X _X Ñ X, where p1, p2 : X �X Ñ X
are the projections.

Definition 2.2.7 A cogroup consists of a space X and two maps c : X Ñ
X _X and j : X Ñ X such that

1. q1c � id � q2c : X Ñ X.
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2. pc_ idqc � pid_ cqc : X Ñ X _X _X

X
c //

c

��

X _X

c_id

��
X _X

id_c // X _X _X.

3. tid, juc � � � tj, iduc : X Ñ X, where tid, ju : X _ X Ñ X is defined
by tid, jupx, �q � x and tid, jup�, xq � jpxq, for all x P X, and tj, idu is
similarly defined.

A cogroup is also called a co-H-group, an H-cogroup, or a cogrouplike space.
The map c is the comultiplication and j the homotopy inverse. If only (1)
holds, then pX, cq or X is called a co-H-space. A co-H-space which is a
CW complex is called a co-H-complex. Condition (2) is called homotopy-
associativity (sometimes homotopy-coassociativity). We show in Proposition
8.4.4 that every simply connected, homotopy-associative co-H-complex has
a homotopy inverse. The co-H-space X is called homotopy-commutative if
sc � c : X Ñ X_X, where s : X_X Ñ X_X is defined by spx, �q � p�, xq
and sp�, xq � px, �q. We give examples of cogroups in Section 2.3 and show
that all spheres and wedges of spheres of dimension ¥ 1 are cogroups. There
are spaces that are co-H-spaces but not cogroups (see [9]). In addition, a
co-H-space in the topological category (defined by equality of maps instead
of homotopy of maps) is a one point space (see Exercise 2.4).

Definition 2.2.8 Let pX, cq and pX 1, c1q be co-H-spaces and g : X Ñ X 1 a
map. We call g a co-H-map if there is a homotopy-commutative diagram

X
g //

c

��

X 1

c1

��
X _X

g_g // X 1 _X 1.

This is written g : pX, cq Ñ pX 1, c1q.
The set rX,Y s has a binary operation when X is a co-H-space and Y is any

space: let f, g : X Ñ Y and let ∇ : Y _Y Ñ Y be the folding map defined by
∇py, �q � y and ∇p�, yq � y, for y P Y. We define f�g � ∇pf_gqc � tf, guc,

X
c //X _X

f_g //Y _ Y
∇ //Y.

Then for α � rf s and β � rgs P rX,Y s, we set α� β � rf � gs.
As before α � 0 � α � 0� α and c � i1 � i2 : X Ñ X _X, where i1, i2 :

X Ñ X_X are the two injections. In addition, if (3) holds, j�pαq�α � 0 �
α� j�pαq, and so j�pαq is the inverse of α P rX,Y s. We obtain the category
of co-H-spaces CH whose objects are co-H-spaces and whose morphisms are
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homotopy classes of co-H-maps and a full (sub)category of cogroups CG. Now
let X be a fixed space and define a covariant functor KX : HoTop� Ñ Sets�
by KXpY q � rX,Y s and KXpgq � g� : rX,Y s Ñ rX,Y 1s, where g : Y Ñ Y 1.
Then KX : HoTop� Ñ Sets� factors through B� means that for every space
Y, the set rX,Y s is a based set with a binary operation with the homotopy
class of the constant map a two-sided identity and that g� : rX,Y s Ñ rX,Y 1s
is a homomorphism for every map g : Y Ñ Y 1. Similarly KX : HoTop� Ñ
Sets� factors through Gr means that rX,Y s is a group for every Y with unit
the homotopy class of the constant map and that g� : rX,Y s Ñ rX,Y 1s is a
homomorphism.

Proposition 2.2.9

1. X is a co-H-space if and only if KX : HoTop� Ñ Sets� factors through
B�.

2. X is a homotopy-commutative co-H-space if and only if KX : HoTop� Ñ
Sets� factors through AB�.

3. X is a cogroup if and only if KX : HoTop� Ñ Sets� factors through Gr.

4. If pX, cq and pX 1, c1q are co-H-spaces and h : pX 1, c1q Ñ pX, cq is a co-
H-map, then h� : rX,Y s Ñ rX 1, Y s is a homomorphism of based sets
with a binary operation. In particular, if X and X 1 are cogroups, then
h� : rX,Y s Ñ rX,Y 1s is a group homomorphism.

5. If X is a co-H-space and f, g : X Ñ Y, then pf � gq� � f� � g� :
HnpX;Gq Ñ HnpY ;Gq and pf � gq� � f� � g� : HnpY ;Gq Ñ HnpX;Gq,
for all n ¥ 0 and abelian groups G.

Proof. The proofs of (1) – (3) are analogous to the proof of Proposition 2.2.3,
therefore we omit them. We do note, however, that in (3), if KX factors
through Gr, then the comultiplication c and homotopy inverse j are defined
as follows,

c � i1 � i2 and j � �idX ,

where i1 and i2 are the two injections of X Ñ X _ X. The proof of (4) is
parallel to the proof of Proposition 2.2.6, and also omitted. We only prove
(5) for homology. Let µX : HnpX _ Xq Ñ HnpXq ` HnpXq be the isomor-
phism given by µXpzq � pq1�pzq, q2�pzqq for z P HnpX _ Xq. Consider the
commutative diagram

HnpXq

∆ ''OOOOOOOOOOOO
c� // HnpX _Xq pf_gq� //

µX

��

HnpY _ Y q
µY

��

∇� // HnpY q

HnpXq `HnpXq
f�`g� // HnpY q `HnpY q,

δ

77ooooooooooo

where ∆ is the diagonal and δpu, u1q � u� u1, for u, u1 P HnpY q. Then

pf � gq� � ∇�pf _ gq�c� � δpf� ` g�q∆ � f� � g�,
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and the result follows. [\
Analogous to Definition 2.2.4, we have the following for co-H-spaces.

Definition 2.2.10 A covariant binary operation induced by X is a binary
operation on rX,Y s for every space Y such that 0 P rX,Y s is a two-sided
identity and for every map g : Y Ñ Y 1, the function g� : rX,Y s Ñ rX,Y 1s
is a homomorphism. A covariant group operation induced by X is similarly
defined.

We then have the following immediate consequence of Proposition 2.2.9.

Proposition 2.2.11 1. There is a one–one correspondence between the set
of homotopy classes of comultiplications of X and the set of covariant
binary operations induced by X.

2. There is a one–one correspondence between the set of homotopy classes of
cogroup comultiplications of X and the set of covariant group operations
induced by X.

An interesting situation arises when pX, cq is a co-H-space and pY,mq is an
H-space. Then the comultiplication c and the multiplication m each induce
a binary operation in rX,Y s.
Proposition 2.2.12 If pX, cq is a co-H-space and pY,mq is an H-space, then
the binary operation �c in rX,Y s obtained from c equals the binary operation
�m in rX,Y s obtained from m. In addition, this binary operation is abelian.

Proof. For every α � rf s, β � rgs, γ � rhs, δ � rks P rX,Y s, we prove

pα�m βq �c pγ �m δq � pα�c γq �m pβ �c δq. (2.1)

With ∆ � ∆X and ∇ � ∇Y , the left-hand side of Equation 2.1 is represented
by

∇pmpf � gq∆ _ mph� kq∆qc � m∇Y�Y
�pf � gq _ ph� kq�p∆_∆qc

and the right-hand side of Equation 2.1 is represented by

m
�p∇pf _ hqcq � p∇pg _ kqcq�∆ � mp∇�∇q�pf _ hq � pg _ kq�∆X_X c.

But it is easily checked that

∇Y�Y
�pf � gq _ ph� kq�p∆_∆q � p∇�∇q�pf _ hq � pg _ kq�∆X_X ,

and so Equation 2.1 is established. Now take β � 0 � γ in Equation 2.1,
getting

α�c δ � α�m δ.

This shows that the two binary operations agree. Next set α � 0 � δ in
Equation 2.1, getting
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β �c γ � γ �m β.

This shows that the operation is abelian. [\

2.3 Loop Spaces and Suspensions

In this section we study loop spaces which are a class of grouplike spaces and
suspensions which are a class of cogroups.

Definition 2.3.1 For a space B, the loop space ΩB is the subspace of BI

consisting of all paths l in B such that lp0q � � � lp1q. The loop space ΩB
has the subspace topology of the space of paths BI with the compact–open
topology (see Appendix A). The elements of ΩB are called loops in B. If
g : B Ñ B1 is a map, then Ωg : ΩB Ñ ΩB1 is defined by Ωgplq � g l (the
composition of g and l).

Clearly if g � g1 : B Ñ B1, then Ωg � Ωg1 : ΩB Ñ ΩB1. We next define
a map m : ΩB �ΩB Ñ ΩB by

mpl, l1qptq �
"
lp2tq if 0 ¤ t ¤ 1

2
l1p2t� 1q if 1

2 ¤ t ¤ 1,

for l, l1 P ΩB and t P I. We also define i : ΩB Ñ ΩB by iplqptq � lp1� tq, for
l P ΩB and t P I.

The loop mpl, l1q consists of the loop l followed by the loop l1. That is,
mpl, l1q is obtained by traversing the loop l at double speed followed by the
loop l1 also at double speed. The loop iplq is the loop l traversed in the
opposite direction. We note that mpl, l1q is just the sum of paths l � l1 and
iplq is �l, both of which were defined in Remark 1.4.7. We will see that the
map m provides ΩB with grouplike structure.

If B has the homotopy type of a CW complex, then so does ΩB by a
theorem of Milnor [70]. It also follows from Milnor’s result that many of the
path spaces such as BI or EB also have the homotopy type of a CW complex
whenever B does.

Proposition 2.3.2 If B is a space, then ΩB is a grouplike space with mul-
tiplication m and homotopy inverse i. For any map f : B Ñ B1, the map
Ωf : ΩB Ñ ΩB1 is an H-map.

Proof. We must first verify the three conditions in Definition 2.2.1.
(1) We show id � mj1 : ΩB Ñ ΩB by defining a homotopy F : ΩB� I Ñ

ΩB. For l P ΩB and s, t P I, we set

F pl, sqptq �
"
l
�
2t{p2� sq� if 0 ¤ t ¤ 2�s

2� if 2�s
2 ¤ t ¤ 1.
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The other homotopy for (1) is similar.

(2) We show mpm� idq � mpid�mq : ΩB�ΩB�ΩB Ñ ΩB by defining
a homotopy G : ΩB � ΩB � ΩB � I Ñ ΩB. For l, l1, l2 P ΩB and s, t P I,
we set

Gpl, l1, l2, sqptq �
$&%
l
�
4t{p1� sq� if 0 ¤ t ¤ s�1

4
l1p4t� 1� sq if s�1

4 ¤ t ¤ s�2
4

l2
�p4t� s� 2q{p2� sq� if s�2

4 ¤ t ¤ 1.

(3) We show � � mpid, iq : ΩB Ñ ΩB by defining a homotopy H :
ΩB � I Ñ ΩB. For l P ΩB and s P I, we set

Hpl, sqptq �
"
lp2stq if 0 ¤ t ¤ 1

2
lp2sp1� tqq if 1

2 ¤ t ¤ 1.

The other homotopy for (3) is similar.
Finally, m1pΩf � Ωfq � pΩfqm : ΩB � ΩB Ñ ΩB1, where m1 is the

multiplication of ΩB1. Therefore Ωf is an H-map. [\
In the proof of the previous proposition formal definitions of the required

homotopies were given. However, it is helpful in understanding these homo-
topies to visualize them and say what they actually do.

homotopy-unit

s

t

p 1
2
, 1ql �

s
l
�

2t
2�s

	
�

l

homotopy-associativity

s

t

p 1
2
, 1qp 3

4
, 1q

l l1 l2

l l1 l2

p 1
4
, 0qp 1

2
, 0q

ls is path l from lp0q to lpsq

homotopy-inverse

s

t

p 1
2
, 1ql �l

s
ls �ls

� �

p 1
2
, 0q

Figure 2.1

For example, in (3) we see that at time s the homotopy H applied to the
path l is first the path l going from lp0q to lpsq and then is the path l in the
opposite direction going from lpsq to lp0q. Clearly this is the constant path �
when s � 0 and the path mpl, ilq when s � 1. A similar analysis can be made
for the homotopies in (1) and (2).

LetHoTop� denote the homotopy category and letHG denote the category
of grouplike spaces. Then Ω : HoTop� Ñ HG defined by ΩpXq � ΩX and
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Ωrf s � rΩf s is a well-defined functor. Clearly pΩB,mq is a grouplike space
that is not in general a topological group. From Propositions 2.2.3 and 2.3.2 it
follows that for any space B, ΩB induces natural group structure on rX,ΩBs.
In addition, if f : B Ñ B1 is a map, then pΩfq� : rX,ΩBs Ñ rX,ΩB1s is a
homomorphism.

Next we turn to suspensions.

Definition 2.3.3 For any space A, define the suspension ΣA (sometimes
called the reduced suspension) to be the identification space

pA� Iq{pA� t0u Y t�u � I Y A� t1uq.

There is a map c : ΣAÑ ΣA_ΣA defined by

cxa, ty �
" pxa, 2ty, �q if 0 ¤ t ¤ 1

2p�, xa, 2t� 1yq if 1
2 ¤ t ¤ 1,

where a P A, t P I, and � denotes the basepoint of ΣA. We also define
j : ΣAÑ ΣA by jxa, ty � xa, 1� ty. If f : AÑ A1, then Σf : ΣAÑ ΣA1 is
given by Σfxa, ty � xfpaq, ty.

� A

A

�

A

ΣA ΣA_ΣA

c

Figure 2.2

Clearly if f � f 1 : AÑ A1, then Σf � Σf 1 : ΣAÑ ΣA1.
There is another way to view the suspension. Let C0X and C1X be the two

cones on X (see Section 1.4). Then i0 : X Ñ C1X is defined by i0pxq � xx, 0y
and i1 : X Ñ C0X is defined by i1pxq � xx, 1y. Then the suspension ΣX is
homeomorphic to the identification space C0X_C1X{�, where i1pxq � i0pxq,
for every x P X.
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Proposition 2.3.4 For any space A, the space ΣA is a cogroup with co-
multiplication c and homotopy inverse j. For any f : A Ñ A1, the map
Σf : ΣAÑ ΣA1 is a co-H-map.

The proof of this is completely analogous to that of Proposition 2.3.2 and is
left as an exercise. However, after we give the proof of Proposition 2.3.5 we
show how a proof can be derived from Proposition 2.3.2.

If CG denotes the category of cogroups, it follows from Proposition 2.3.4,
that Σ : HoTop� Ñ CG is a functor defined by ΣpAq � ΣA and Σpfq � Σf.
By Proposition 2.2.9, for every space A, the set rΣA, Y s has group structure
for every space Y such that a map g : Y Ñ Y 1 induces a homomorphism g� :
rΣA, Y s Ñ rΣA, Y 1s. Moreover, a map h : A1 Ñ A induces a homomorphism
pΣhq� : rΣA, Y s Ñ rΣA1, Y s.

We have seen that if A and B are any two spaces, both rΣA,Bs and
rA,ΩBs are groups. If f : ΣAÑ B is a map, we define κpfq : AÑ ΩB by

κpfqpaqptq � fxa, ty,

for a P A and t P I.

xa, 1
2
y A

B

κpfqpaq

Ð
Ý
Ý
Ý

�

fxa, 1
2
y

ΣA

B

f

Figure 2.3

Clearly κpfq is well-defined and continuous (Appendix A). Furthermore, if
ft is a homotopy between f : ΣA Ñ B and f 1 : ΣA Ñ B, then κpftq is a
homotopy between κpfq : A Ñ ΩB and κpf 1q : A Ñ ΩB. Thus κ induces
κ� : rΣA,Bs Ñ rA,ΩBs. Similarly, if g : AÑ ΩB, we define κpgq : ΣAÑ B
by κpgqxa, ty � gpaqptq, for a P A and t P I. Then κ induces κ� : rA,ΩBs Ñ
rΣA,Bs. Now

κpκpgqqpaqptq � pκpgqqxa, ty � gpaqptq,
and so κκ � id. In a like manner, κκ � id. Thus κ� : rΣA,Bs Ñ rA,ΩBs is
a bijection with inverse κ� : rA,ΩBs Ñ rΣA,Bs. In addition, if h : A1 Ñ A
and k : B Ñ B1 are maps, then
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κpfqh � κpfΣhq and pΩkqκpfq � κpkfq,

for every f : ΣAÑ B. Thus

h�κ� � κ� pΣhq� and pΩkq� κ� � κ� k�.

Proposition 2.3.5 For any spaces A and B, the bijection κ� : rΣA,Bs Ñ
rA,ΩBs is an isomorphism of groups.

Proof. Let f, g : ΣAÑ B and consider κpf � gq � κp∇pf _ gqcq : AÑ ΩB.
Then for a P A and t P I,

pκp∇pf _ gqcqpaqqptq � ∇pf _ gqcxa, ty
�
"
∇pf _ gqpxa, 2ty, �q if 0 ¤ t ¤ 1

2
∇pf _ gqp�, xa, 2t� 1yq if 1

2 ¤ t ¤ 1

�
"
fxa, 2ty if 0 ¤ t ¤ 1

2
gxa, 2t� 1y if 1

2 ¤ t ¤ 1.

On the other hand, κpfq � κpgq � mpκpfq � κpgqq∆ : AÑ ΩB. Then

pmpκpfq � κpgqq∆paqqptq � mpκpfqpaq, κpgqpaqqptq
�
" pκpfqpaqqp2tq if 0 ¤ t ¤ 1

2pκpgqpaqqp2t� 1q if 1
2 ¤ t ¤ 1

�
"
fxa, 2ty if 0 ¤ t ¤ 1

2
gxa, 2t� 1y if 1

2 ¤ t ¤ 1.

Thus κpf � gq � κpfq � κpgq, and the result follows. [\
Definition 2.3.6 The isomorphism κ� in Proposition 2.3.5 or its inverse κ�
is called the adjoint isomorphism. We say that f and κpfq and also α and
κ�pαq are adjoint to each other.

Using the fact that κ� is a bijection and that pΩB,m, iq is grouplike for
all B, we now show that pΣA, c, jq is a cogroup for all A, where c and j are
the maps defined in Definition 2.3.3. We have that rA,ΩBs is a group, with
binary operation denoted +, and so κ� : rΣA,Bs Ñ rA,ΩBs induces group
structure with two-sided identity r�s on rΣA,Bs, for all B. We denote this
binary operation in rΣA,Bs by�1. Because any map k : B Ñ B1 induces a ho-
momorphism pΩkq� : rA,ΩBs Ñ rA,ΩB1s, it follows from pΩkq� κ� � κ� k�
that k� : rΣA,Bs Ñ rΣA,B1s is a homomorphism. Therefore by Propo-

sition 2.2.9(3), there exists a comultiplication rc and a homotopy inverse rj
such that pΣA,rc,rjq is a cogroup. We show that c � rc and j � rj. By Def-
inition 2.3.3, κpcq � κpi1q � κpi2q, where i1, i2 : ΣA Ñ ΣA _ ΣA are the
two injections. But rc � i1 �1 i2 (see the proof of Proposition 2.2.9), and so
κprcq � κpi1q � κpi2q. Thus κpcq � κprcq, and so c � rc. Finally j � �id by
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definition and so κpjq � �κpidq. But κprjq � �κpidq (proof of Proposition

2.2.9). Therefore j � rj, and so pΣA, c, jq is a cogroup.
The suspension and loop space constructions can be iterated.

Definition 2.3.7 For spaces A and B and define Σ0A � A and Ω0B � B
and for integers n ¥ 1,

ΣnA � ΣpΣn�1Aq and ΩnB � ΩpΩn�1Bq.

We next consider homotopy commutativity of iterated suspensions and
loop spaces.

Proposition 2.3.8 For spaces A and B, ΣnA is a homotopy-commutative
cogroup and ΩnB is a homotopy-commutative grouplike space, if n ¥ 2.

Proof. We just show that ΣnA is homotopy commutative. For any space Y,
we have the following isomorphism of groups, rΣnA, Y s � rΣn�1A,ΩY s, for
n ¥ 2, by Proposition 2.3.5. The latter group is abelian by Proposition 2.2.12.
By Proposition 2.2.9(2), ΣnA is homotopy-commutative. [\

Recall that the upper cap En� of the unit n-sphere Sn is defined by En� �
tpx1, x2, . . . , xn�1q P Sn |xn�1 ¥ 0u. The lower cap En� of Sn is similarly
defined by xn�1 ¤ 0. Then Sn � En� Y En� and Sn�1 � En� X En�.

Proposition 2.3.9 For all n ¥ 1, Sn is homeomorphic to ΣSn�1.

Proof. There are homeomorphisms h� : En Ñ En� and h� : En Ñ En�
defined by

h�pxq �
�
x,
a

1� |x|2
	

and

h�pxq �
�
x,�

a
1� |x|2

	
,

for x P En. Recall that C0X � pX � Iq{pX � t0u Y t�u � Iq and C1X �
pX�Iq{pX�t1u Y t�u�Iq. By Lemma 1.4.10, there is a homeomorphism rK :
C1pSn�1q Ñ En. Similarly by defining L : Sn�1�I Ñ En by Lpx, tq � p1�tq�
�tx, we obtain a homeomorphism rL : C0pSn�1q Ñ En as in Lemma 1.4.10.

We compose rK with h� to obtain a homeomorphism τ : C1pSn�1q Ñ En�
and we compose rL with h� to obtain a homeomorphism λ : C0pSn�1q Ñ En�.
Each of τ and λ restricted to Sn�1 is the identity map of Sn�1. We regard
ΣSn�1 as C1pSn�1q YSn�1 C0pSn�1q, the disjoint union of C1pSn�1q and
C0pSn�1q with Sn�1 � C1pSn�1q identified with Sn�1 � C0pSn�1q. Then
the maps τ and λ yield a homeomorphism (see Figure 2.4)

ΣSn�1 � C1pSn�1q YSn�1 C0pSn�1q � En� Y En� � Sn. [\
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ΣSn�1

Sn

�

Figure 2.4

2.4 Homotopy Groups I

By Propositions 2.2.9, 2.3.4, and 2.3.9, the set rSn, Y s is a group for all spaces
Y and all n ¥ 1. These are the homotopy groups of Y.

Definition 2.4.1 For every space Y and n ¥ 0, the set rSn, Y s is called the
nth (ordinary) homotopy group of Y and is denoted πnpY q. For n � 1, it is
called the fundamental group of Y.

We assume that the reader has had some exposure to the basic prop-
erties of fundamental groups. For review, we have presented the topics on
the fundamental group that we use in Appendix B. If n ¥ 1, then πnpY q
is a group for all Y and a map f : Y Ñ Y 1 induces a homomorphism
f� : πnpY q Ñ πnpY 1q. In general, π0pY q is a set with a distinguished ele-
ment and f� : π0pY q Ñ π0pY 1q is a function that preserves the distinguished
element. For another characterization of π0pY q, see Exercise 2.24.

We next give a few elementary properties of homotopy groups. We give
more information on homotopy groups in Section 4.5 and compute some of
these groups in Section 5.6.

• For n ¥ 2, the groups πnpY q are abelian. This follows from Proposition
2.3.8.

• The fundamental group π1pY q is abelian if Y is an H-space by Proposition
2.2.12. In general, π1pY q is not abelian (Appendix B). If Y is a grouplike
space, then π0pY q is a group (Exercise 2.24).

• If n ¥ 1, then πnpY q � πn�1pΩY q as groups by Proposition 2.3.5. In
particular, ΩY is path-connected if and only if π1pY q � 0 by Exercise
2.24.

• If f � g : Y Ñ Y 1, then f� � g� : πnpY q Ñ πnpY 1q, for all n ¥ 0.
• If f : X Ñ Y is a homotopy equivalence, then f� : πnpY q Ñ πnpY 1q is

an isomorphism, for all n ¥ 0. For if g : Y Ñ X is a homotopy inverse of
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f, then fg � id. Therefore f�g� � pfgq� � id� � id. Similarly gf � id
implies that g�f� � id. Therefore f� is an isomorphism.

• Let i : X Ñ Y be an inclusion and let r : Y Ñ X be a retraction. Then
i� : πnpXq Ñ πnpY q is a monomorphism and r� : πnpY q Ñ πnpXq is an
epimorphism, for all n, since r�i� � id. In fact, πnpY q � i�πnpXq`Ker r�.
This clearly holds if r is a homotopy retraction. It also holds if r is an
arbitrary map and i is a section or homotopy section of r.

• If Y is contractible, then πnpY q � 0, for all n ¥ 0. This follows because
id � � : Y Ñ Y, and so id � pidq� � �� � 0 : πnpY q Ñ πnpY q, for all
n ¥ 0.

• For spaces Y and Y 1, we have πnpY �Y 1q � πnpY q`πnpY 1q, for all n ¥ 0.
For, by Corollary 1.3.7, the function θ : πnpY q ` πnpY 1q Ñ πnpY � Y 1q
defined by θprf s, rgsq � rpf, gqs, for rf s P πnpY q and rgs P πnpY 1q, is a
bijection with inverse function λ given by λrhs � pp1�rhs, p2�rhsq. Thus λ
is an isomorphism, and so πnpY � Y 1q � πnpY q ` πnpY 1q. Furthermore,
we define µ : πnpY q ` πnpY 1q Ñ πnpY � Y 1q by µpα, βq � j1�pαq � j2�pβq,
where j1 : Y Ñ Y �Y 1 and j2 : Y 1 Ñ Y �Y 1 are the two inclusions. Then
λµ � id, so µ is an isomorphism and equals θ. These results clearly extend
to the product of finitely many spaces.

• If Y and Y 1 are spaces of the homotopy type of CW complexes, then the
fundamental group of the wedge Y _Y 1 is the free product π1pY q �π1pY 1q
of π1pY q and π1pY 1q (Appendix B).

• If Y is a nonpath-connected space and X is the path-connected component
of Y containing the basepoint, then the inclusion i : X Ñ Y induces an
isomorphism i� : πnpXq Ñ πnpY q, for all n ¥ 1. This is since for any map
f : Sn Ñ Y, we have that fpSnq � X because fpSnq is a path-connected
space containing �. Similarly, for any homotopy F : Sn � I Ñ Y, we have
that F pSn � Iq � X.

The result that the fundamental group of an H-space is abelian is easy to
prove. The result that the fundamental group of a co-H-space is free, which
we prove next, is more difficult. It requires some facts about free groups and
free products of groups (Appendix B).

Let G be a group that is not necessarily abelian. For notational conve-
nience, we write g for the inverse g�1 of g P G. We denote the free product
of G with itself by G �G. If g P G, then g regarded as an element of the first
factor of G �G is written g1 and as an element of the second factor of G �G
is written g2. Thus an element ξ P G �G can be written

ξ �
p¹
i�1

gi
1γi

2, where gi, γi P G.

Then there are projection homomorphisms p1, p2 : G � G Ñ G given by
p1pξq �

±
gi and p2pξq �

±
γi. We introduce the following notation:

EG � tξ P G �G | p1pξq � p2pξqu.
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Thus ξ � ±p
i�1 gi

1γi
2 P EG if and only if γp � � � γ1g1 � � � gp � 1. Then π :

EG Ñ G is defined by π � p1|EG � p2|EG, and so πpξq � ± gi �
±
γi.

Finally, let ξu � u1u2 P EG, where u P G and let ΞG � tξu | u � 1u.
The following result, which appears in [7, Prop. 3.1], is based on ideas

attributed to M. Kneser.

Lemma 2.4.2 The group EG is free with basis ΞG.

Proof. It is clear that the set ΞG is an independent set. In order to write any
expression ξ �± gi

1γi
2 that satisfies γp � � � γ1g1 � � � gp � 1 as a product of the

ξu and their inverses, we use the following simple algorithm. For 1 ¤ i ¤ 2p,
define δi by the formulas

δ2k � γk � � � γ1g1 � � � gk and δ2k�1 � δ2kgk�1.

Thus δ1 � g1, δ2 � γ1g1, δ3 � γ1g1g2, and so on, and δ2p � 1. Now one
verifies that ξ is the alternating product

ξ �
2p¹
i�1

ξ
piq
δi
,

where piq � p�1qi�1 (Exercise 2.20). [\
Proposition 2.4.3 If X is a co-H-complex, then π1pXq is a free group.

Proof. If G � π1pXq, then as noted earlier, π1pX_Xq is isomorphic to G�G,
the free product of G with itself. Let c : X Ñ X _X be a comultiplication
and let q1, q2 : X _ X Ñ X be the projections. Because qic � id, we have
that c induces a homomorphism s � c� : G Ñ G �G such that p1s � p2s �
id : G Ñ G. Thus s determines a homomorphism σ : G Ñ EG such that
πσ � id. Therefore σ maps G isomorphically onto σpGq � EG. By Lemma
2.4.2, EG is free. Since a subgroup of a free group is free [39, p. 85], σpGq is
free. Hence G � π1pXq is free. [\

Next we present additional results on homotopy groups. We begin with a
definition.

Definition 2.4.4 A path-connected space Y is said to be n-connected, if
πipY q � 0, for all i ¤ n. A 1-connected space Y is also called simply connected.
A map f : X Ñ Y is called an n-equivalence (also called an n-connected map),
if f� : πipXq Ñ πipY q is an isomorphism for all i   n and an epimorphism
for i � n. A map f : X Ñ Y is a weak (homotopy) equivalence or an 8-
equivalence if f� : πnpXq Ñ πnpY q is an isomorphism for all n.

Lemma 2.4.5 Let pX,Aq be a based, relative CW complex with dim pX,Aq ¤
n, let B and Y be spaces (not necessarily of the homotopy type of CW com-
plexes), and let e : B Ñ Y be an n-equivalence, n ¤ 8. Let j : AÑ X be the
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inclusion and assume that there are maps f : X Ñ Y and g : A Ñ B and a
diagram

A
g //

j

��

B

e

��
X

f //

rg
88qqqqqqq
Y,

such that eg �L fj, for some homotopy L : A � I Ñ Y. Then there exists a
map rg : X Ñ B such that rgj � g and a homotopy F : X � I Ñ Y such that
erg �F f, where F |A� I � L.

This lemma, which is the major step in proving Whitehead’s theorem 2.4.7,
follows from the HELP lemma 4.5.7 which is proved in Section 4.5 after we
have discussed the relative homotopy groups.

From Lemma 2.4.5 we can easily prove the following proposition.

Proposition 2.4.6 Let X be a based CW complex, let B and Y be spaces
(not necessarily of the homotopy type of CW complexes), and let e : B Ñ Y
be an n-equivalence, n   8. Then e� : rX,Bs Ñ rX,Y s is an injection if
dimX   n and a surjection if dimX ¤ n. If n � 8, then e� : rX,Bs Ñ
rX,Y s is a bijection for any based CW complex X.

Proof. We first show that e� is onto if dimX ¤ n. Let rf s P rX,Y s, set
A � t�u, and define g : A Ñ B to be the constant map. We then apply
Lemma 2.4.5 to f and g and obtain a map rg P rX,Bs such that e�rrgs � rf s.
Thus e� is onto.

Now assume that dimX   n and eg0 �F eg1 for g0, g1 : X Ñ B. Let
X 1 � X � I and so dimX 1 ¤ n. We set A1 � X � BI Y t�u � I and define
G : A1 Ñ B by

Gpx, iq � gipxq and Gp�, tq � �,
for x P X, t P I, and i � 0, 1. Since dim pX 1, A1q ¤ n, we can apply Lemma
2.4.5 to F and G. We get a homotopy H : X � I Ñ B such that H|A1 � G.
Then g0 �H g1, and so e� is one–one. [\

There are two important theorems due to J. H. C. Whitehead which we
shall arbitrarily call Whitehead’s first theorem and Whitehead’s second the-
orem. We now prove Whitehead’s first theorem [92].

Theorem 2.4.7 If f : X Ñ Y is a map of CW complexes, then f is a weak
equivalence if and only if f is a homotopy equivalence.

Proof. We only prove that if f is a weak equivalence, it is a homotopy equiv-
alence, since the other implication has been proved. Consider the function
f� : rY,Xs Ñ rY, Y s. By Proposition 2.4.6, f� is a bijection. Therefore there is
a map g : Y Ñ X such that fg � idY . But fgf � f and so f�rgf s � f�ridX s,
where f� : rX,Xs Ñ rX,Y s. This latter f� is a bijection, and so gf � idX .
Thus f is a homotopy equivalence. [\
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Remark 2.4.8 Whitehead’s first theorem is useful to show that a map is a
homotopy equivalence. For this we would prove that the map induces isomor-
phisms of all homotopy groups. Because our spaces have the homotopy type
of CW complexes, it would follow that the map is a homotopy equivalence.
We frequently use this remark without comment.

We observe that it is not sufficient that πnpXq � πnpY q, for all n, for X
and Y to have the same homotopy type. By Whitehead’s first theorem, there
should be a map f : X Ñ Y that induces an isomorphism of all homotopy
groups. An example of the nonsufficiency is given in 5.6.2.

Theorem 2.4.9 Let X and Y be path-connected spaces (not necessarily of
the homotopy type of CW complexes), let f : X Ñ Y be a map, and let
n ¥ 0. Then there is a space K such that pK,Xq is a relative CW complex
having relative cells of dimensions ¥ n�1 with the following property. There
exists a map f̄ : K Ñ Y such that f̄ |X � f and f̄� : πipKq Ñ πipY q is an
isomorphism for i ¡ n and a monomorphism for i � n.

Proof. In the proof we write h�i for the induced homotopy homomorphism
h� : πipW q Ñ πipZq, for any map h : W Ñ Z. The idea of the proof is to
attach pn�1q-cells to X to kill Kerf�n and then attach additional pn�1q-cells
to map onto πn�1pY q. This process is then repeated. We begin by choosing
generators rgαsαPA of Kerf�n, where gα : Snα Ñ X and Snα � Sn. Then the
gα determine g :

�
αPA S

n
α Ñ X and we attach pn � 1q-cells to X by g to

form the adjunction space X 1 � X Yg
�
En�1
α . Since fg � �, the map fg

can be extended to
�
En�1
α by Lemma 1.4.10 and Proposition 1.4.9. This

extension and f determine a map f 1 : X 1 Ñ Y such that f 1|X � f. Then
f 1�n�1 : πn�1pX 1q Ñ πn�1pY q, and we choose elements rhβs P πn�1pY q for
β P B that are a set of generators. Then the hβ determine h :

�
βPB S

n�1
β Ñ

Y and we form Xn�1 � X 1 _�βPB S
n�1
β and define fn�1 : Xn�1 Ñ Y by

fn�1 � tf 1, hu. Note that pXn�1, Xq is a relative CW complex.
Let k : X Ñ X 1 and l : X 1 Ñ Xn�1 be inclusion maps and let j � lk :

X Ñ Xn�1. Then there is a commutative diagram

πipXq

j�i

��

k�i

��

f�i

((QQQQQQQQQQQQQQ

πipX 1q f 1�i //

l�i

��

πipY q.

πipXn�1q
fn�1
�i

66mmmmmmmmmmmmm

We claim that fn�1
�n is a monomorphism and fn�1

�n�1 is an epimorphism. If γ P
Kerfn�1

�n , then γ � j�npδq for some δ P Kerf�n, since j�n is an epimorphism
by Proposition 1.5.24. Therefore
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δ �
¸
αPA1

nαrgαs,

where A1 � A is a finite subset and nα P Z. But

k�npδq �
¸
αPA1

nαrkgαs � 0,

because kgα � �. Therefore γ � j�npδq � l�npk�npδqq � 0. Hence fn�1
�n is a

monomorphism.
Next we show that fn�1

�n�1 is an epimorphism. Given ε P πn�1pY q, we have
ε � °

βPB1 mβrhβs, where B1 � B is a finite subset and mβ P Z. Since

Xn�1 � X 1 _�βPB S
n�1
β , we let iβ : Sn�1

β Ñ Xn�1 be the inclusion maps

and set ξ � °βPB1 mβriβs in πn�1pXn�1q. Then

fn�1
�n�1pξq �

¸
βPB1

mβrhβs � ε,

and so fn�1
�n�1 is an epimorphism. This proves the claim.

We then apply this construction to fn�1 and obtain an extension fn�2 :
Xn�2 Ñ Y such that fn�2

�n�1 is a monomorphism and fn�2
�n�2 is an epimorphism.

Because fn�1
�n�1 is an epimorphism, it follows that fn�2

�n�1 is an isomorphism

and fn�2
�n�2 is an epimorphism.

We continue this process and obtain maps fk : Xk Ñ Y, for all k ¡ n.
We set Xn � X and form the space K � Yk¥nXk with the weak topology
determined by the Xk. Then the fk determine a map f̄ : K Ñ Y which is an
extension of f. Therefore f̄�i is an isomorphism for i ¡ n and a monomor-
phism for i � n by Proposition 1.5.24. This completes the proof. [\
The following corollary is frequently used.

Corollary 2.4.10

1. Let X and Y be path-connected spaces and let f : X Ñ Y be an n-
equivalence, n ¥ 0. Then there exists a space K obtained from X by at-
taching cells of dimensions ¥ n � 1 and there exists a map f̄ : K Ñ Y
such that f̄ |X � f and f̄ is a weak equivalence.

2. Let Y be a k-connected space (not necessarily of the homotopy type of a
CW complex) with k ¥ 0. Then there exists a CW complex K and a weak
equivalence f : K Ñ Y such that Kk � t�u. In particular, if Y is any
path-connected space, there exists a CW complex K with K0 � t�u and a
weak equivalence f : K Ñ Y.

3. If Y is a k-connected space of the homotopy type of a CW complex, k ¥ 0,
then there exists a CW complex K of the homotopy type of Y such that
Kk � t�u. In particuliar, HipY q � 0 for i ¤ k.
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Proof. (1) Let K be the space constructed in Theorem 2.4.9. By Proposition
1.5.24, the inclusion map i : X Ñ K is an n-equivalence. This and the fact
that f is an n-equivalence implies that f̄ is an n-equivalence. By Theorem
2.4.9, f̄ is a weak equivalence.

(2) By hypothesis, the map t�u Ñ Y is a k-equivalence. We then apply
Part (1) to obtain the desired result.

(3) We apply Whitehead’s first theorem 2.4.7 to (2). [\
Definition 2.4.11 For any space Y (not necessarily of the homotopy type of
a CW complex), a CW complex K together with a weak equivalence K Ñ Y
is called a CW approximation to Y.

The existence of a CW approximation for any space, gives some indication
of the importance of CW complexes in homotopy theory. It has been shown
in [69] how to construct a CW approximation functorially. We do not prove
this. However, the following remark is a consequence.

Remark 2.4.12 If a : K Ñ X and b : L Ñ Y are two CW approximations
and f : X Ñ Y is a map, then there exists a map h : K Ñ L, unique up to
homotopy, such that fa � bh. It follows that the homotopy type of a CW
approximation of a space is uniquely determined by the homotopy type of
the space.

Proposition 2.4.6 gives conditions for an induced map of homotopy sets to
be a bijection. The following similar result is very useful.

Proposition 2.4.13 Let pX,Aq be a relative CW complex such that all rel-
ative cells have dimension ¥ n� 2, let i : AÑ X be the inclusion map, and
let Y be a space. Then i� : rX,Y s Ñ rA, Y s is an injection if πjpY q � 0 for
j ¡ n� 1 and is a surjection if πjpY q � 0 for j ¡ n.

Proof. We first show that i� is onto if πjpY q � 0 for j ¡ n. Let f : A Ñ Y
be a map and consider the relative pn� 2q-skeleton

pX,Aqn�2 � AY
¤
γPC

en�2
γ ,

for γ P C. Let φγ : Sn�1
γ Ñ pX,Aqn�1 � A be an attaching function. By Ex-

ercise 2.25, fφγ �free hγ : Sn�1
γ Ñ Y, for some based map hγ . By hypothesis,

hγ � � and so fφγ is freely homotopic to a constant function. By Corollary

1.4.11, fφγ extends to a free map rfγ : En�2
γ Ñ Y. These functions together

with f determine a map fn�2 : pX,Aqn�2 Ñ Y that extends f. Next we
write

pX,Aqn�3 � pX,Aqn�2 Y
¤
δPD

en�3
δ

with attaching maps ψδ : Sn�2
δ Ñ pX,Aqn�2, where δ P D. Then as before

fn�2ψδ is freely homotopic to a constant function, and so fn�2 extends to
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a map fn�3 : pX,Aqn�3 Ñ Y. We continue in this way and obtain a map
g : X Ñ Y such that gi � f. Thus i� is onto.

Next we show that i� is one–one if j ¡ n� 1. Suppose f, g : X Ñ Y and
fi �F gi. Then f, g and F determine a map F 1 : X � BI Y A� I Ñ Y. We
then apply the previous argument to the relative CW complex pX � I,X �
BI Y A � Iq and the map F 1 to obtain an extension G : X � I Ñ Y of F 1.
Thus f �G g, and so i� is one–one. [\

We next discuss a relation between the homotopy groups and the homology
groups of a space. We begin by defining the Hurewicz homomorphism hn :
πnpY q Ñ HnpY q, for any space Y and integer n ¥ 1. Let α � rf s P πnpY q.
Then f : Sn Ñ Y induces a homomorphism f� : HnpSnq Ñ HnpY q. We fix a
generator γn P HnpSnq � Z for all n ¥ 1 and set hnpαq � f�pγnq P HnpY q.
Clearly hn is well-defined. By Proposition 2.2.9, pf � gq�pγnq � f�pγnq �
g�pγnq, and thus hn is a homomorphism. Also, it is easily seen that if k :
Y Ñ Y 1 is a map, then the following diagram is commutative

πnpY q
k� //

hn

��

πnpY 1q
h1n
��

HnpY q
k� // HnpY 1q,

where hn and h1n are Hurewicz homomorphisms.
We next wish to prove that the Hurewicz homomorphism is an isomor-

phism in a special case. For this, we first introduce the notion of the degree
of a map.

Definition 2.4.14 Let f : Sn Ñ Sn be a map, n ¥ 1, and let f� : HnpSnq Ñ
HnpSnq be the induced homology homomorphism. We define an integer, the
degree of f , denoted deg f, by f�pγnq � pdeg fqγn, where γn P HnpSnq � Z is
a generator. The definition is clearly independent of the choice of generator.

Lemma 2.4.15 Let f, g : Sn Ñ Sn.

1. f � g ñ deg f � deg g.

2. degpfgq � pdeg fqpdeg gq.
3. degpf � gq � deg f � deg g.

Proof. Only (3) requires proof and this follows from Proposition 2.2.9. [\
Thus the degree yields a homomorphism deg : πnpSnq Ñ Z.

Proposition 2.4.16 For n ¥ 1, the homomorphism deg : πnpSnq Ñ Z is an
isomorphism and so rids a generator of πnpSnq � Z.

Proof. Since degpidq � 1, it follows that deg is onto. We show that deg is
one–one in Appendix D. [\
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This is an important result that plays a crucial role in what follows.
We introduce some notation before returning to the Hurewicz homomor-

phism. If Gα is an abelian group for α P A, then
À

αGα denotes the direct
sum of the Gα. If fα : Gα Ñ H is a homomorphism of abelian groups for
every α, we denote by tfαu :

À
αGα Ñ H the homomorphism determined

by the fα. Similarly, if the Gα are groups (not necessarily abelian), we let
�αGα denote the free product of the Gα (Appendix B). Homomorphisms
fα : Gα Ñ H of groups determine a homomorphism tfαu : �αGα Ñ H. Now
consider the wedge of n-spheres

�
α S

n
α for α P A, where A is any index set

and let iα : Snα Ñ
�
α S

n
α be the inclusion. Then it is known [39, p. 126] that

tiα�u :
À

αHnpSnαq Ñ Hnp
�
α S

n
αq is an isomorphism.

Lemma 2.4.17 1. For n ¥ 2, tiα�u :
À

αPA πnpSnαq Ñ πnp
�
αPA S

n
αq is an

isomorphism.

2. tiα�u : �αPA π1pS1
αq Ñ π1p

�
αPA S

1
αq is an isomorphism.

Proof. We assume that each sphere Snα is a CW complex with two cells (Ex-
ample 1.5.10(5)).
(1) The result is clear if A consists of one element. Now let A � tα1, . . . , αku
be a finite set with k ¥ 2. Let W � �k

i�1 S
n
αi and P � ±k

i�1 S
n
αi and let

j : W Ñ P be the inclusion. Then P is a CW complex and W is a subcomplex
such that the n�1-skeleton Pn�1 �W. By Proposition 1.5.24, j� : πnpW q Ñ
πnpP q is an isomorphism. But if jαi : Snαi Ñ

±k
i�1 S

n
αi is the inclusion, then

tjαi�u :
Àk

i�1 πnpSnαiq Ñ πnpP q is an isomorphism by the discussion at the
beginning of this section. From this (1) follows when A is finite. Now let A
be infinite and let f : Sn Ñ�

α S
n
α be a map. Since fpSnq is compact, there

is a finite set tα1, . . . , αku such that fpSnq � �k
i�1 S

n
αi by Lemma 1.5.6.

Therefore rf s P πnp
�
α S

n
αq is in the image of πnp

�k
i�1 S

n
αiq Ñ πnp

�
α S

n
αq,

for some set tα1, . . . , αku. Consequently tiα�u :
À

α πnpSnαq Ñ πnp
�
α S

n
αq

is onto. To show that tiα�u is one–one, we observe that any homotopy F :
Sn � I Ñ �

α S
n
α has compact image and so factors through a homotopy

F 1 : Sn � I Ñ�k
i�1 S

n
αi for some finite set tα1, . . . , αku. This completes the

proof of (1).

(2) This is proved in Appendix B as Proposition B.3. [\
The following proposition contains a special case of the Hurewicz theorem

for a wedge of spheres of the same dimension. The full Hurewicz theorem is
proved in Section 6.4 as Theorem 6.4.8.

Proposition 2.4.18

1. If n ¥ 1, then πipSnq � 0 for i   n and hn : πnpSnq Ñ HnpSnq � Z is an
isomorphism.

2. Let Snα � Sn for all α in some set A.

a. If n ¥ 2, then the Hurewicz homomorphism hn : πnp
�
αPA S

n
αq Ñ

Hnp
�
αPA S

n
αq is an isomorphism.
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b. The Hurewicz homomorphism h1 : π1p
�
αPA S

1
αq Ñ H1p

�
αPA S

1
αq is an

epimorphism.

Proof. (1) Let i   n and give each of Si and Sn the CW decomposition with
two cells. If f : Si Ñ Sn is any map, then by Corollary 1.5.23, f is homotopic
to a cellular map f 1 : Si Ñ Sn. Thus f 1pSiq � � and so f � �. Therefore
πipSnq � 0. To determine hn, consider the commutative diagram

Z

�

��
πnpSnq

deg

66lllllllllllllll hn //HnpSnq,
where the vertical arrow is the isomorphism that assigns to the integer k the
element kγn P HnpSnq, for γn a generator of HnpSnq. The result follows from
Proposition 2.4.16.

(2) For Part (a) consider the commutative diagram

À
α πnpSnαq

tiα�u //

À
α hα

��

πnp
�
α S

n
αq

hn

��À
αHnpSnαq

tiα�u // Hnp
�
α S

n
αq,

where hα : πnpSnαq Ñ HnpSnαq and hn are Hurewicz homomorphisms. Be-
cause the horizontal homomorphisms are isomorphisms and the hα are iso-
morphisms, hn is an isomorphism. Part (b) is a special case of Proposition
B.5. [\

The last result of this section is part of Whitehead’s second theorem 6.4.15.

Proposition 2.4.19 Let X and Y be path-connected CW complexes, let f :
X Ñ Y be a map, and let n ¥ 1 be an integer. If f is an n-equivalence, then
f� : HipXq Ñ HipY q is an isomorphism for all i   n and an epimorphism
for i � n.

Proof. By Corollary 2.4.10(1) and Exercise 2.26, there is a CW complex K
containing X such that K is obtained from X by adjoining cells of dimensions
¥ n� 1 and there is a weak homotopy equivalence f̄ : K Ñ Y such that the
following diagram commutes

X

j

��

f //Y

K,
f̄

88rrrrrrrrrrrr

where j is the inclusion map. By Whitehead’s first theorem 2.4.7, f̄ is a
homotopy equivalence, and so f� : HipXq Ñ HipY q is an isomorphism for
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all i   n and an epimorphism for i � n if and only if the same holds for
j� : HipXq Ñ HipKq. All the cells of K of dimension ¤ n lie in X, thus
the relative homology group HipK,Xq � 0, for all i ¤ n. From the exact
homology sequence of the pair pK,Xq, it follows that j� : HipXq Ñ HipKq
is an isomorphism for all i   n and an epimorphism for i � n. [\
The complete second theorem of Whitehead (Theorem 6.4.15) has another
part in which the roles of homology and homotopy groups are interchanged.
This theorem is proved in Section 6.4 as a consequence of the relative
Hurewicz theorem.

2.5 Moore Spaces and Eilenberg–Mac Lane Spaces

The following two lemmas are useful in our discussion of Moore spaces and
Eilenberg–Mac Lane spaces.

Lemma 2.5.1 Let n ¥ 1 and let X be a based CW complex with pn � 1q-
skeleton Xn�1 � t�u and dimX ¤ n� 1, that is, X � Xn Y �βPB e

n�1
β , for

Xn ��αPA S
n
α, where Snα are n-spheres and en�1

β are open pn� 1q-cells. Let
Y be a space and let φ : πnpXq Ñ πnpY q be a homomorphism. Then there
exists a map f : X Ñ Y such that f� � φ : πnpXq Ñ πnpY q.
Proof. Let k : Xn Ñ X and iα : Snα Ñ Xn be the inclusions maps. Then
there are homomorphisms

πnpXnq k� //πnpXq φ //πnpY q

and we define fα : Snα Ñ Y by φk�riαs � rfαs. The fα determine a map
fn : Xn Ñ Y such that fniα � fα. Therefore

fn� riαs � rfαs � φk�riαs.

By Lemma 2.4.17, the riαs are generators of πnpXnq, and so fn� � φk�. Let
hβ : Snβ Ñ Xn be an attaching function for en�1

β . By Exercise 2.25 and
Lemma 1.5.3 we may assume that hβ is a (based) map. Then khβ � � since
khβ factors through the contractible space En�1

β � En�1. Hence fn� rhβs �
φk�rhβs � 0. Thus fnhβ � � for every β P B, and consequently fn extends
to a map f : X Ñ Y. But φk� � fn� � f�k� and k� : πnpXnq Ñ πnpXq is
onto by Proposition 1.5.24. Therefore f� � φ. [\
Lemma 2.5.2 For every abelian group G and n ¥ 1, there exists a based
CW complex L with the following properties: the pn�1q-skeleton Ln�1 � t�u,
dimL ¤ n� 1, and for all i ¥ 0,

HipLq �
"
G if i � n
0 if i � n.
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Proof. We take a presentation G � F {R, where F is free-abelian and R � F.
We choose bases txαuαPA and trβuβPB of F and R, respectively. Let Snα be
the n-sphere indexed by α P A and define Ln to be the wedge

�
αPA S

n
α. The

Hurewicz homomorphism hn : πnpLnq Ñ HnpLnq is an isomorphism for n ¥ 2
and an epimorphism for n � 1 by Proposition 2.4.18. If β P B, then rβ P
R � F � HnpLnq. We choose a map kβ : Snβ Ñ Ln such that hnrkβs � rβ .

Using kβ , we attach pn� 1q-cells en�1
β to Ln and form L � Ln Y�βPB e

n�1
β .

To complete the proof we use the CW homology of L (Appendix C). The ith
chain group CipLq is the free-abelian group generated by the i-cells, and so

CipLq �
$&%F if i � n
R if i � n� 1
0 if i � 0, n, n� 1.

Furthermore, it is not difficult to show that the boundary homomorphism
Cn�1pLq Ñ CnpLq can be identified with the inclusion R � F (see [64,
Prop. 8.2.12]). Thus L has the desired homology. [\

We turn to Moore spaces.

Definition 2.5.3 Let G be an abelian group and n an integer ¥ 2. A based
CW complex X is called a Moore space of type pG,nq if X is 1-connected
and

HipXq �
"
G if i � n
0 if i � n.

In Lemma 2.5.2, a Moore space L of type pG,nq has been constructed. We
denote this Moore space (or any space homeomorphic to it) by MpG,nq.
We note a few properties of MpG,nq.
Lemma 2.5.4

1. The Hurewicz homomorphism hn : πnpMpG,nqq Ñ HnpMpG,nqq is an
isomorphism, and so πnpMpG,nqq � G.

2. If φ : G Ñ H is a homomorphism of abelian groups, then there exists
a map f : MpG,nq Ñ MpH,nq such that f� � φ : HnpMpG,nqq Ñ
HnpMpH,nqq.

Proof. (1) From the construction of MpG,nq in Lemma 2.5.2 as p�αPA S
n
αqY�

βPB e
n�1
β , we have a commutative diagram

0 // πnp
�
βPB S

n
β q

k� //

h1n
��

πnp
�
αPA S

n
αq

h2n
��

i� // πnpMpG,nqq
hn

��

// 0

0 // Hnp
�
βPB S

n
β q

k� // Hnp
�
αPA S

n
αq

i� // HnpMpG,nqq // 0,
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where hn, h
1
n, and h2n are Hurewicz homomorphisms, k :

�
βPB S

n
β Ñ�

αPA S
n
α is determined by the kβ , and i is the inclusion. The bottom row is

exact, h1n and h2n are isomorphisms (2.4.18), ik � �, and the upper i� is onto
by Proposition 1.5.24. Thus the top row is exact and so hn is an isomorphism.

(2) Let φ : G Ñ H be a homomorphism and let L � MpG,nq and M �
MpH,nq. Consider the Hurewicz homomorphisms h1 : πnpLq Ñ HnpLq � G
and h : πnpMq Ñ HnpMq � H which are isomorphisms by (1). By Lemma
2.5.1, there exists a map f : L Ñ M such that f� � h�1φh1 : πnpLq Ñ
πnpMq. Hence the induced homology homomorphism f� � φ : HnpLq Ñ
HnpMq. [\
Remark 2.5.5 We note that several choices have been made in the construc-
tion of MpG,nq such as the presentation of G and the choice of generators of
R and F. We show in Proposition 6.4.16 that the homotopy type of a Moore
space of type pG,nq depends only on G and n. However, in spite of the no-
tation, MpG,nq is not functorial in G. For now, when we write MpG,nq we
assume that it has been constructed relative to a choice of presentation and
of generators.

The spaces MpG,nq can easily be described in special cases. We have
MpZ, nq � Sn and if F is a free-abelian group with a basis whose cardinality
is the same as some set A, then MpF, nq ��αPA S

n
α. Furthermore, MpZm, nq

can be taken to be the space Sn Ym en�1 obtained by attaching an pn� 1q-
cell to Sn by a map m : Sn Ñ Sn of degree m. For n � 1, we define the
Moore space MpZ, 1q � S1. We do not consider MpG, 1q for other groups
G (see [89]). For n ¥ 3, MpG,nq � ΣMpG,n � 1q (see Exercise 3.1). In
addition, if L is the space of Lemma 2.5.2 with n � 1, then MpG, 2q � ΣL.
Thus all Moore spaces MpG,nq are suspensions, in fact, MpG,nq is a double
suspension if n ¥ 3 or if n � 2 and G is free-abelian. Hence rMpG,nq, Xs
is a group for all X. It is abelian if n ¥ 3 or if n � 2 and G is free-abelian.
At the end of this section we discuss the reason for making the definition of
Moore space in terms of homology groups instead of cohomology groups. We
compare Moore spaces with spaces with a single nonvanishing cohomology
group.

The suspension structure of Moore spaces MpG,nq enables us to define
homotopy groups with coefficients.

Definition 2.5.6 Let G be an abelian group and let n ¥ 1 (assuming G � Z
if n � 1). Then for every space X, define the nth homotopy group of X with
coefficients in G by

πnpX;Gq � rMpG,nq, Xs.
Other notation (which we do not use) for this is πnpG;Xq (see [40, p. 10]).

Note that πnpX;Zq � πnpXq, the nth (ordinary) homotopy group of X. Fur-
thermore, a map h : X Ñ X 1 induces a homomorphism h� : πnpX;Gq Ñ
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πnpX 1;Gq defined as the induced homomorphism h� : rMpG,nq, Xs Ñ
rMpG,nq, X 1s.

Homotopy groups with coefficients are discussed in the sequel. In partic-
ular, we present a universal coefficient theorem in Section 5.2 that expresses
homotopy groups with coefficients in terms of ordinary homotopy groups.

We next turn to Eilenberg–Mac Lane spaces.

Definition 2.5.7 Let G be an abelian group and let n be an integer ¥ 1.
An Eilenberg–Mac Lane space of type pG,nq is a space X of the homotopy
type of a based CW complex such that for every i ¥ 1,

πipXq �
"
G if i � n
0 if i � n.

An Eilenberg–Mac Lane space of type pG,nq is denoted KpG,nq.
The following lemma is used to show that Eilenberg–Mac Lane spaces

exist.

Lemma 2.5.8 If X is a space, then for every m ¥ 1, there exist spaces W pmq

and inclusion maps jm : X ÑW pmq such that

1. πipW pmqq � 0 for i ¡ m.

2. jm� : πipXq Ñ πipW pmqq is an isomorphism for i ¤ m.

3. W pmq is obtained from X by attaching cells of dimension ¥ m� 2.

Proof. Parts (1) and (3) follow immediately from Theorem 2.4.9 by taking
Y � t�u and n � m� 1. Part (2) is a consequence of Proposition 1.5.24. [\

Next we show that Eilenberg–Mac Lane spaces exist and obtain some of
their properties.

Proposition 2.5.9 Let G be an abelian group and n an integer ¥ 1.

1. There exists an Eilenberg–Mac Lane space KpG,nq.
2. If φ : GÑ H is a homomorphism, then there exists a map h : KpG,nq Ñ

KpH,nq such that h� � φ : πnpKpG,nqq Ñ πnpKpH,nqq.
3. Any two Eilenberg–Mac Lane spaces of type pG,nq have the same homotopy

type.

Proof. (1) We first construct an Eilenberg–Mac Lane space of type pG,nq
when n ¥ 2. We apply Lemma 2.5.8 with X equal to the Moore space
MpG,nq. Then W pnq is an Eilenberg–Mac Lane space of type pG,nq by
Lemma 2.5.4. For n � 1, we set KpG, 1q � ΩKpG, 2q.

(2) Let φ : G Ñ H be a homomorphism and let K � KpG,nq and L �
KpH,nq be any Eilenberg–Mac Lane spaces. Let X be the Eilenberg–Mac
Lane space of type pG,nq constructed in (1). We construct a map f : X Ñ L
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such that f� � φ : πnpXq Ñ πnpLq. If j : Xn�1 Ñ X is the inclusion, then
j� : πnpXn�1q Ñ πnpXq is an isomorphism by Proposition 1.5.24. The n� 1-
skeleton Xn�1 �MpG,nq and L satisfy the hypotheses of Lemma 2.5.1, and
so there exists fn�1 : Xn�1 Ñ L such that fn�1

� � φj� : πnpXn�1q Ñ πnpLq.
Now apply Proposition 2.4.13 to the relative CW complex pX,Xn�1q and the
map fn�1. We conclude that there is a map f : X Ñ L such that fj � fn�1,
and so f� � φ. Similarly the identity map id : GÑ G yields a map g : X Ñ K
such that g� � id. Then g is a homotopy equivalence by Whitehead’s first
theorem. Thus if h � fg�1 : KpG,nq Ñ KpH,nq, we have h� � φ.

(3) If K and L are both Eilenberg–Mac Lane spaces of type pG,nq, then
the identity homomorphism idG : G Ñ G induces a map h : K Ñ L by (2).
Then h is a homotopy equivalence. [\

In general Eilenberg–Mac Lane spaces are infinite-dimensional complexes
and are not easy to describe. There are a few that are familiar spaces and
we mention these now: KpZ, 1q � S1, KpZ2, 1q � RP8, infinite-dimensional
real projective space, and KpZ, 2q � CP8, infinite-dimensional complex pro-
jective space (see Exercise 5.19).

It can be shown that for any group G (not necessarily abelian), Eilenberg–
Mac Lane spaces of type pG, 1q exist and are unique up to homotopy. However,
we have no need to consider the spaces KpG, 1q when G is non-abelian (except
in Exercise 2.31).

Now let KpG,n � 1q be an Eilenberg–Mac Lane space with n ¥ 1. We
apply the loop space functor to this space and have by Proposition 2.3.5 that

πipΩKpG,n� 1qq � πi�1pKpG,n� 1qq �
"
G if i � n
0 if i � n.

Hence, as previously noted in the case n � 1, ΩKpG,n� 1q is an Eilenberg–
Mac Lane space KpG,nq. In fact, ΩkKpG,n� kq is an Eilenberg–Mac Lane
space of type pG,nq. Therefore, for any space X, the set rX,KpG,nqs has
abelian group structure.

We next indicate how Eilenberg–Mac Lane spaces give rise to cohomology
groups.

Definition 2.5.10 For any space X, abelian group G and integer n ¥ 1, we
define the nth homotopical cohomology group of X with coefficients in G as

HnpX;Gq � rX,KpG,nqs.

If h : X 1 Ñ X is a map, then h� : HnpX;Gq Ñ HnpX 1;Gq is just the induced
homomorphism h� : rX,KpG,nqs Ñ rX 1,KpG,nqs.
Remark 2.5.11 It can be shown that if X is a CW complex, then the ho-
motopical cohomology groups HnpX;Gq are isomorphic to the singular co-
homology groups Hn

singpX;Gq. There are several proofs of this: one uses the
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Brown representation theorem [39, p. 448] and another uses obstruction the-
ory [91, p. 250]. In addition, in [46] Huber gives an isomorphism between the
homotopical cohomology groups and the Cech cohomology groups. We give
a simple proof of the isomorphism with singular cohomology in Section 5.3.

We note that we can define a function ρ : HnpX;Gq Ñ Hn
singpX;Gq as fol-

lows. If rf s P HnpX;Gq, then f�sing : Hn
singpKpG,nq;Gq Ñ Hn

singpX;Gq is the
induced homomorphism of singular cohomology. Note that HnpKpG,nqq � G
since KpG,nq can be taken to be MpG,nq with cells of dimension ¥ n � 2
attached. Thus there is an element bn P Hn

singpKpG,nq;Gq, called the nth
basic class, which is defined by µpbnq � id, where µ : Hn

singpKpG,nq;Gq Ñ
HompHnpKpG,nqq, Gq � HompG,Gq is the epimorphism in the universal co-
efficient theorem for cohomology (Appendix C). Then set ρrf s � f�singpbnq. It
is shown that ρ is an isomorphism in Theorem 5.3.2.

We need some properties of homotopical cohomology groups in the fol-
lowing chapters. These properties are known to hold for CW or singular
cohomology groups. But since we do not prove the equivalence of the latter
cohomology groups with the homotopical cohomology groups until Theorem
5.3.2, we next establish these properties.

Lemma 2.5.12 Let X and Y be path-connected, based CW complexes, let
f : X Ñ Y be a map and let n ¥ 1 be an integer. If f is an n-equivalence,
then, for every group G, f� : HipY ;Gq Ñ HipX;Gq is an isomorphism for
i   n and a monomorphism for i � n.

Proof. (1) By Corollary 2.4.10(1), there is a CW complex K obtained from
X by adjoining cells of dimensions ¥ n � 1 and a homotopy equivalence f̄ :
K Ñ Y such that f̄ j � f, where j : X Ñ K is the inclusion map. Therefore
f� : HipY ;Gq Ñ HipX;Gq is an isomorphism for i   n and a monomorphism
for i � n if and only if the same holds for j� : HipK;Gq Ñ HipX;Gq. But
the latter follows at once from Proposition 2.4.13. [\
Next we let X be a space, G an abelian group, and n ¥ 1 an integer. We
define a homomorphism ηπ : HnpX;Gq Ñ HompπnpXq, Gq by ηπrf s � f� :
πnpXq Ñ πnpKpG,nqq � G.

Lemma 2.5.13 If X is an pn�1q-connected based CW complex, n ¥ 1, then
ηπ : HnpX;Gq Ñ HompπnpXq, Gq is an isomorphism. (For n � 1 we assume
that π1pXq is abelian.)

Proof. By Corollary 2.4.10(3), we may assume Xn�1 � t�u. We first prove
that ηπ : HnpX;Gq Ñ HompπnpXq, Gq is an isomorphism when X � Xn�1.
By Lemma 2.5.1, ηπ is onto. Now let f : X Ñ K, where K � KpG,nq,
and assume that ηπrf s � 0. Since Xn is a wedge of n-spheres, f |Xn � � :
Xn Ñ K. But pX,Xnq has the homotopy extension property, and so there
is a map f 1 : X Ñ K such that f � f 1 and f 1|Xn � �. Therefore f 1 induces

a map rf 1 : X{Xn Ñ K such that rf 1q � f 1, where q : X Ñ X{Xn is the
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projection. Since X{Xn is a wedge of pn� 1q-spheres, rf 1 � �. Hence f 1 � �,
and so f � �. Therefore ηπ is an isomorphism when dimX ¤ n � 1. For an
arbitrary pn�1q-connected CW complex X, the inclusion map Xn�1 Ñ X is
an pn�1q-equivalence by the cellular approximation theorem. Thus πnpXq �
πnpXn�1q and, by Lemma 2.5.12, HnpX;Gq � HnpXn�1;Gq. Therefore ηπ :
HnpX;Gq Ñ HompπnpXq, Gq is an isomorphism. [\

We next prove the Hopf classification theorem [91, p. 244].

Theorem 2.5.14 If X is a CW complex of dimension ¤ n, then there is a
bijection between rX,Sns and HnpXq.
Proof. Let KpZ, nq be the Eilenberg–Mac Lane space constructed in the proof
of Proposition 2.5.9 with G � Z and let i : Sn Ñ KpZ, nq be the inclusion.
Then i induces i� : rX,Sns Ñ rX,KpZ, nqs � HnpXq. The n� 1-skeleton of
KpZ, nq is Sn, therefore Proposition 1.5.24 shows that i� is a bijection. [\
NOTE We denote the homotopical cohomology groups by HnpX;Gq and
refer to them as cohomology groups.

In the Eckmann–Hilton duality theory (discussed in the next section),
cohomology groups with coefficients are dual to homotopy groups with coef-
ficients. The former are defined as homotopy classes of maps with codomain
an Eilenberg–Mac Lane space and the latter as homotopy classes of maps
with domain a Moore space. Eilenberg–Mac Lane spaces are spaces with a
single nonvanishing homotopy group, thus it would appear that the dual no-
tion should be a co-Moore space, that is, a space with a single nonvanishing
cohomology group. However, we have instead taken the dual to be a Moore
space, that is, a space with a single nonvanishing homology group. The reason
for this is that co-Moore spaces of type pG,nq do not exist for every group G
(see [39, pp. 318–319]). Therefore to ensure the existence of homotopy groups
with coefficients for any abelian group G, they have been defined in terms of
Moore spaces.

We carry this discussion of co-Moore spaces a bit further. For a finitely
generated abelian group G, write G � F ` T, where F is a free-abelian
group and T is a finite abelian group. If CpG,nq denotes a co-Moore space of
type pG,nq, then a simple calculation of cohomology shows that MpF, nq _
MpT, n � 1q is a CpG,nq. In particular, if G � Zm, then MpZm, n � 1q is a
CpZm, nq. As noted above, we could have defined the homotopy groups of X
with coefficients in Zm using co-Moore spaces by

rπnpX;Zmq � rCpZm, nq, Xs.

Then rπnpX;Zmq � rMpZm, n� 1q, Xs � πn�1pX;Zmq.
However, we use Definition 2.5.6 for homotopy groups with coefficients.
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2.6 Eckmann–Hilton Duality I

Our exposition is based on the duality theory of Eckmann and Hilton that we
have referred to several times without explanation. We now discuss this topic.
The first appearance of the duality in the literature was in the papers [27, 28,
29] of Eckmann and Hilton and the book [40] by Hilton. This duality principle
differs from certain other duality principles which are formal and automatic.
For example, in projective geometry there is a duality which asserts that
every definition remains meaningful and every theorem true if we interchange
the words point and line (and consequently other pairs of words such as
colinear and concurrent, side and vertex, and so on)[22, Chap. 3]. Parts of
the Eckmann–Hilton duality are formal and automatic (usually those parts
that can be described in categorical terms). However, much of it is intuitive,
informal, and heuristic.

We begin with the aspect of the Eckmann–Hilton duality which depends
on duality in a category and we refer to some fundamental facts about cat-
egories and functors from Appendix F. With any category C, we associate a
dual category Cop (also called the opposite category). The objects of Cop are
precisely those of C, but the set of morphisms from an object X in Cop to an
object Y in Cop, denoted CoppX,Y q, is defined to be CpY,Xq. If composition
of morphisms in Cop is denoted by � and composition in C by juxtaposition,
then f � g � gf.

Now suppose that Σ is a statement or concept that is meaningful in a
category C. Then we can apply it to the category Cop and interpret it as
a statement or concept in C. This latter statement or concept in C that is
denoted Σ� is the dual of Σ. If Σ � Σ�, then we say that Σ is self-dual.

For example, recall from Appendix F the notion of categorical product. If
X and Y are objects in a category C, their categorical product is an object
P in C together with morphisms p1 : P Ñ X and p2 : P Ñ Y such that
the following holds. If f : A Ñ X and g : A Ñ Y are any morphisms, then
there exists a unique morphism θ : AÑ P such that p1θ � f and p2θ � g. If
Σ denotes this concept in category C, then the dual concept Σ� in C is the
following. Suppose X and Y are objects in C and there is an object C in C
together with morphisms i1 : X Ñ C and i2 : Y Ñ C such that if f : X Ñ B
and g : Y Ñ B are any morphisms, then there exists a unique morphism
θ : C Ñ B with θi1 � f and θi2 � g. Then C is the coproduct in C of X and
Y, and so the coproduct is dual to the product. We can investigate various
categories to see if the product or the coproduct exists and, if so, if it is given
by a well-known construction. This can of course be done for any Σ and Σ�.

The main categories that we consider are the topological category Top�
and the homotopy category HoTop� (Appendix F). In Top� the product of X
and Y is just their cartesian productX�Y with p1 and p2 the two projections.
The coproduct is the wedge X _ Y with i1 and i2 the two injections. For
the product and coproduct in the homotopy category HoTop� we take the
cartesian product X � Y with homotopy classes of p1 and p2 for the former
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and the wedge X _ Y with homotopy classes of i1 and i2 for the latter (see
Lemma 1.3.6). Thus the product and the wedge as just defined are dual in
HoTop�. Other examples of dual concepts in HoTop� are homotopy retracts
and homotopy sections, and H-spaces and co-H-spaces.

There is another aspect of Eckmann–Hilton duality that is more obscure
and which often takes the form of a duality between functors or constructions.
We illustrate this with an example. Suppose f : X Ñ Y is a map. Then f � �
if and only if there is a contractible space T such that f factors through T,
that is, there are maps i : X Ñ T and rf : T Ñ Y such that the following
diagram commutes

X
f //

i

��

Y

T.

rf

88ppppppppppppp

This happens if there is a functor C that assigns a contractible space CpXq
to every space X and a map iX : X Ñ CpXq with the above property. The
cone on X does this, as we know by Proposition 1.4.9. If we dualize this by
reversing the direction of the maps, then we seek a functor E such that EpY q
is contractible for every space Y and a map pY : EpY q Ñ Y with the following

property: f � � : X Ñ Y if and only if there is a map pf : X Ñ EpY q such
that the following diagram commutes

Y X
foo

pfwwooooooooooooo

EpY q.
pY

OO

We have seen that the path space EY has this property (Proposition 1.4.9).
One might raise the question of why the dual of a contractible space is a
contractible space. This could be argued as follows. The dual of an identity
morphism in a category is an identity morphism because the defining property
of idX is idXf � f and g idX � g, for all morphisms f and g. The constant
morphisms have a similar defining property, and so the dual of a constant
map is a constant map. Thus identity morphisms and constant morphisms
are self-dual. But in Top� a contractible space is one in which the identity
map is homotopic to the constant map. Thus it is reasonable to regard the
dual of a contractible space to be a contractible space.

We digress briefly to comment further on this example in order to in-
dicate the origin of the Eckmann–Hilton duality. The preceding discussion
can be transfered to the category of (left) R-modules in the following way.
A homomorphism φ : A Ñ B of R-modules is called i-nullhomotopic if it
can be extended to some injective R-module Q that contains A. This could
be regarded as the analogue of extending a map of spaces to the cone of
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the domain. We then say that two R-homomorphisms from A to B are i-
homotopic if their difference is i-nullhomotopic. Alternatively, φ : A Ñ B is
p-nullhomotopic if it can be factored through some projective R-module P
that has B as a quotient. Then P could be regarded as the analogue in this
category of the path space of the codomain. Two homomorphisms would then
be p-homotopic if their difference is p-nullhomotopic. It can be shown that the
notions of i-homotopy and p-homotopy in the category of R-modules do not
agree. Furthermore, by taking Q{A we obtain an analogue of the suspension
and by taking the kernel of P Ñ B we obtain an analogue of the loop space.
It was the realization that injective modules and their quotients play the role
of cones and suspensions and that projective modules and their kernels play
the role of path spaces and loop spaces in the category of left R-modules that
was the beginning of the Eckmann–Hilton duality [40, Chap. 13].

We return to discussing the cone and path space functors in the category
Top�. We observe that they are adjoint functors. This implies that for a map
f : X Ñ Y, there is a one–one correspondence between maps F : CX Ñ Y
such that FiX � f and maps rF : X Ñ EY such that pY rF � f. The
correspondence is just the adjoint one given by

rF pxqptq � F xx, ty,

for x P X and t P I (Proposition 1.3.4). Thus the two notions of nullho-
motopy in the category of R-modules become the single notion of ordinary
nullhomotopy for the category of spaces and maps. We say that the cone
functor C and the path space functor E are dual functors (in addition to
being adjoint). The suspension ΣX is a quotient of the map iX : X Ñ CX
and the loop space ΩY is a “kernel” of the map pY : EY Ñ Y, therefore we
view the functors Σ and Ω as dual to each other. We have already noted that
these two functors are adjoint in the homotopy category HoTop�, namely,

rΣX,Y s � rX,ΩY s

by Proposition 2.3.5. Therefore we regard the functors Σ and Ω as dual and
adjoint in HoTop�. In a similar way the reduced cylinder X
I and the path
space XI can be regarded as dual and adjoint functors of X.

Furthermore, the homotopy groups appear to have properties dual to those
of the cohomology groups. For example, the homotopy groups are covariant
functors and the cohomology groups are contravariant functors. Moreover,
there is a formula that expresses the homotopy groups of a product as a
product of homotopy groups and an analogous formula for the cohomology
groups of a wedge. In addition, the homotopy groups of the loop space of X
are isomorphic to those of X (with a shift in degree) and a similar statement
holds for the cohomology of a suspension. But there are also important dif-
ferences. The fundamental group of a space is not necessarily abelian, but
all cohomology groups are abelian. The homotopy groups for most common
spaces such as CW complexes are not necessarily zero from some degree
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on (see Section 5.6), whereas the cohomology groups are zero above the di-
mension of the space (although this difference may not indicate a failure of
duality). In spite of this, we do view ordinary homotopy groups and integral
cohomology as being informally dual to each other. Although the duality
becomes more tenuous when we assert that specific spaces are dual to each
other, we regard Eilenberg–Mac Lane spaces and Moore spaces as duals in a
weak sense. Therefore we think of homotopy groups with coefficients as dual
to cohomology groups with coefficients.

We return to discussing duality in Section 6.5 after we have presented
more material. There we also discuss some of the interesting, unusual, and
anomalous features of duality.

Exercises

Exercises marked with p�q may be more difficult than the others. Exercises
marked with p:q are used in the text.

2.1. p:q Let pY,mq be an H-space and assume that pY � Y, Y _ Y q has the
homotopy extension property. Prove that there a multiplication m1 on Y that
is homotopic to m and such that m1py, �q � y and m1p�, yq � y, for all y P Y.
2.2. p:q Let f : X Ñ Y be a map which has a left homotopy inverse. Prove
that if Y is an H-space, then X is an H-space. With this multiplication on X,
is f an H-map? What condition will ensure that if Y is homotopy-associative,
then X is homotopy-associative?

2.3. Let Y be a grouplike space with multiplication m and homotopy inverse
i. Define a commutator map φ : Y � Y Ñ Y by φ � pp1 � p2q � pip1 � ip2q.
Prove

1. pY,mq is homotopy-commutative if and only if φ � �.
2. If α � rf s, β � rgs P rX,Y s, then the group commutator rα, βs � rφpf, gqs.
3. If k is a positive integer, set kφ � φ�� � ��φ pk termsq : Y �Y Ñ Y. Show

that m� kφ is a multiplication on Y.

4. Dualize (1)–(3) to cogroups.

2.4. Prove that if “�” is replaced by equality in the definition that pX, cq is
a co-H-space, then X � t�u.
2.5. Is S0 a (nonpath-connected) co-H-space?

2.6. Prove that a spaceX admits a comultiplication if and only if the diagonal
map ∆ : X Ñ X � X can be factored up to homotopy through X _ X.
Prove that a space X admits a multiplication if and only if the folding map
∇ : X _X Ñ X can be extended up to homotopy to X �X.



Exercises 71

2.7. Let X be an pn� 1q-connected space with n ¥ 2.

1. Prove that if dimX ¤ 2n � 1, then there is a comultiplication on X. If
dimX ¤ 2n�2, prove that any two comultiplications on X are homotopic.

2. Prove that if πipXq � 0 for i ¥ 2n � 1, then there is a multiplication on
X. Prove that any two multiplications on X are homotopic if πipXq � 0
for i ¥ 2n

In Exercises 2.8–2.14 also consider the dual of the given problem.

2.8. Let pY,mq be an H-space, let f, g : X Ñ Y be maps and let f�g : X Ñ Y
be their sum. Prove for any space A, that pf�gq� � f��g� : rA,Xs Ñ rA, Y s.
2.9. Let pX, cq and pX 1, c1q be co-H-spaces and let g : X 1 Ñ X be a map.
Prove the following generalization of Proposition 2.2.9: g is a co-H-map if
and only if for every space Y and every α, β P rX,Y s, we have pα� βqrgs �
αrgs � βrgs.
2.10. p�q Let jΣX : ΣX Ñ ΣX be the homotopy inverse map defined by
jΣXxx, ty � xx, 1 � ty, for x P X and t P I. Consider the double suspension
Σ2X and the map τ : Σ2X Ñ Σ2X defined by τxx, s, ty � xx, t, sy. Prove
that jΣ2X � τ � ΣjΣX .

2.11. p:q Define a map θ : ΣpX1 _X2q Ñ pΣX1q _ pΣX2q by θxpx1, �q, ty �
pxx1, ty, �q and θxp�, x2q, ty � p�, xx2, tyq, for x1 P X1, x2 P X2 and t P I.
If ij : Xj Ñ X1 _ X2 and ιj : ΣXj Ñ pΣX1q _ pΣX2q are inclusions and
qj : X1_X2 Ñ Xj and χj : pΣX1q_pΣX2q Ñ ΣXj are projections, j � 1, 2,
then prove that (1) θ Σij � ιj and χj θ � Σqj , (2) θ is a homeomorphism
with inverse tΣi1, Σi2u and (3) θ � ι1Σq1 � ι2Σq2.

2.12. p:q Let pX, cXq be a co-H-space and θ : ΣpX _Xq Ñ ΣX _ ΣX the
homeomorphism of Exercise 2.11. Show that θ ΣcX is a comultiplication that
is homotopic to cΣX , the suspension comultiplication on ΣX.

2.13. Show that if X and Y are co-H-spaces, then X _ Y is a co-H-space.
If X and Y are both homotopy-associative or both homotopy-commutative,
does the same hold for X _ Y ? Let θ : ΣpX _ Y q Ñ ΣX _ ΣY be the
homeomorphism of Exercise 2.11. Show that θ is a co-H-map.

2.14. Prove that if X is a co-H-space, then ΣX is homotopy-commutative.

2.15. p�q Find another homotopy in the proof of Proposition 2.3.2(3).

2.16. For any space A, prove that pA� Iq{pA�BIq is homeomorphic to ΣB,
for some space B. What is B?
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2.17. Consider the cofiber sequence X Ñ CX Ñ ΣX, the fiber sequence
ΩY Ñ EY Ñ Y and a map f : ΣX Ñ Y. Find a map θ : CX Ñ EY such
that the following diagram commutes

X //

rf
��

CX //

θ

��

ΣX

f

��
ΩY // EY // Y,

where rf is the adjoint of f.

2.18. p�q p:q Prove: π1pXq � 0 if and only if for paths f, g : I Ñ X such that
fp0q � gp0q � � and fp1q � gp1q, we have f � g rel BI.
2.19. If G is a group we define a comultiplication on G to be a homomorphism
s : GÑ G �G such that p1s � id � p2s : GÑ G.

1. Prove that G admits a comultiplication if and only if π : EG Ñ G has a
right inverse.

2. Prove that G admits a comultiplication if and only if G is a free group.

Note that Proposition 2.4.3 asserts that the functor π1 carries a space with
a comultiplication to a group with a comultiplication.

2.20. p:q In the proof of Lemma 2.4.2 verify that

ξ �
2p¹
i�1

ξ
piq
δi
.

2.21. If X is an H-space and a co-H-space, prove that π1pXq is 0 or Z. Give
examples of these spaces.

2.22. Let X and Y be co-H-complexes that are not simply connected. Prove
that X � Y is not a co-H-space.

2.23. p:q Prove that a path-connected CW complex X is contractible if and
only if πqpXq � 0 for all q ¥ 1.

2.24. p:q Let X be a space that is not necessarily path-connected. Show that
there is a bijection µ from π0pXq to the set of path-components of X. Show
that if pX,mq is a grouplike space, then m induces group structure on π0pXq
and on the set of path-components of X such that µ is an isomorphism.

2.25. p:q Let X and Y be spaces with X a CW complex and Y path-
connected. If f : X Ñ Y is a free map, prove that there is a (based) map
g : X Ñ Y such that f �free g.

2.26. p:q In Corollary 2.4.10(1) show that if X is a CW complex, then K can
be taken to be a CW complex containing X as a subcomplex.
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2.27. Let i : AÑ X be a cofiber map, where A and X are not necessarily of
the homotopy type of CW complexes. Prove that there exists a relative CW
complex pK,Aq and a weak equivalence f : K Ñ X such that f |A � i.

2.28. Let X and Y be spaces (not necessarily of the homotopy type of CW
complexes). We define X � Y if there exist spaces X1, X2, . . . , Xn such that
X1 � X, Xn � Y and for i � 1, 2, . . . , n� 1, there exists a weak equivalence
Xi Ñ Xi�1 or a weak equivalence Xi�1 Ñ Xi. Prove that X � Y ðñ X
and Y have CW approximations of the same homotopy type. For this problem
you can assume the result stated in Remark 2.4.12.

2.29. How many homotopy classes of homotopy retractions are there of the
inclusion i1 : Sn Ñ Sn _ Sn?

2.30. p�q Let A be a set and let F pAq be the free group generated by A. For
every α P A, let pα : F pAq Ñ F tαu � Z denote the projection. Prove that

rF pAq, F pAqs �
£
αPA

Ker pα,

where rF pAq, F pAqs is the commutator subgroup of F pAq. Note that F pAq �
�αPA F tαu.
2.31. Let G be any group and let X be an Eilenberg–Mac Lane space of
type pG, 1q. Prove that X is an H-space if and only if G is abelian. (You may
assume existence and basic properties of KpG, 1q’s.)
2.32. p�q p:q Prove that Hn�1pKpG,nqq � 0, for n ¡ 1.

2.33. Given a sequence of abelian groups G1, G2, . . . , show that there exists
a path-connected CW complex X such that HipXq � Gi for all i. Show a
similar result for homotopy groups.

2.34. p:q If G is an abelian group and n ¥ 1, prove that the Hurewicz homo-
morphism hn : πnpKpG,nqq Ñ HnpKpG,nqq is an isomorphism.

2.35. p�q p:q If f, g : X Ñ KpG,nq are maps and X is pn � 1q-connected,
n ¥ 1, then prove that pf � gq� � f� � g� : HipXq Ñ HipKpG,nqq provided
i   2n� 1.

2.36. In analogy to ρ : HnpX;Gq Ñ Hn
singpX;Gq defined after Remark 2.5.11,

define a homomorphism ρ1 : πnpX;Gq Ñ HnpX;Gq and show that ρ1 is the
Hurewicz homomorphism when G � Z.

2.37. (Cf. Lemma 2.5.13) If X is a space, then rX,S1s is an abelian group
since S1 is a commutative topological group. Show that the group rX,S1s
contains no non-zero elements of finite order. (It may be helpful to use the
covering space RÑ S1.)
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2.38. Prove the following generalization of the Hopf classification theorem.
If X is a CW complex of dimension ¤ n, then there is a bijection between
rX,MpG,nqs and HnpX;Gq. Formulate and prove the dual result.

2.39. Consider the natural map j : X _ Y Ñ X � Y.

1. Use the characterization of X _ Y as a categorical coproduct in HoTop�
and the characterization of X � Y as a categorical product in HoTop� to
define rjs.

2. Show that rjs is self-dual.
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