Chapter 2
H-Spaces and Co-H-Spaces

2.1 Introduction

NOTATION AND STANDING ASSUMPTIONS

e From this chapter on, most of the spaces that we consider will be based
and path-connected and have the based homotopy type of based CW complezes.
Some notable exceptions to path-connectedness are the 0-sphere S° and the
0-skeleton of a CW complex. Unless otherwise stated, all functions under con-
sideration will be continuous and based and all homotopies will preserve the
base point. These restrictions are sometimes asserted explicitly for empha-
sis. We discuss unbased spaces, functions and homotopies from time to time.
However, whenever doing so, we explicitly make note of the fact.

o We take all homology and cohomology to be reduced, so that a space has
trivial zero-dimensional homology and cohomology.

e We adopt the following notation throughout: “~" for homotopy of maps
or same homotopy type of spaces, “=" for homeomorphism of spaces or iso-
morphism of groups and “~7 for the relation of equivalence. Furthermore,
if X is a set with an equivalence relation and x € X, then (x) denotes the
equivalence class containing x.

There are reasons for the restrictions on spaces listed above. First of all,
nearly all of the spaces that are of interest to us are of this type. Second,
these assumptions avoid having to add additional hypotheses to several the-
orems since CW complexes satisfy many of these hypotheses. But because of
these assumptions, we must ensure that the constructions that we perform
on spaces of the homotopy type of CW complexes yield spaces of the homo-
topy type of CW complexes. This is so, but the proofs in some instances are
long and difficult. Presenting this material would take us far afield, and so
we describe some proofs and give references for the others.

In this chapter we discuss the important notions of H-space and grouplike

space and of co-H-space and cogroup. A grouplike space is the homotopy
analogue of a group. It is a group object in the homotopy category. An H-

M. Arkowitz, Introduction to Homotopy Theory, Universitext, 35
DOI 10.1007/978-1-4419-7329-0_2, © Springer Science+Business Media, LLC 2011
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space is defined in the same way but without the assumption of associativity.
Cogroups and co-H-spaces are the categorical duals of these in the homotopy
category. We show that the set of homotopy classes of maps of any space into a
grouplike space has an induced group structure as does the set of homotopy
classes of maps of a cogroup into any space. We then consider the set of
homotopy classes of maps from a cogroup into a grouplike space and show
that the two group structures agree and are abelian. Loop spaces {2Y are
examples of grouplike spaces and suspensions XX are examples of cogroups.
We prove that there is a fundamental isomorphism [Y'X, Y] = [X, £2Y]. Since
an n-sphere is a suspension, the set of homotopy classes of maps [S™,Y] is a
group. These are the homotopy groups of Y, denoted 7, (Y), and discussed
in Section 2.4 and later in Section 4.5. Of particular interest in this section
is a theorem which we call Whitehead’s First Theorem which asserts that a
map of CW complexes is a homotopy equivalence if and only if it induces an
isomorphism of all homotopy groups. A natural generalization of spheres is
Moore spaces which are spaces with a single nonvanishing homology group.
Dually, Eilenberg-Mac Lane spaces are spaces with a single nonvanishing
homotopy group. The existence and uniqueness up to homotopy type of these
spaces are discussed. Homotopy groups with coeflicients are then defined by
using Moore spaces and (homotopical) cohomology groups with coefficients
by using Eilenberg-Mac Lane spaces. The chapter ends with a discussion of
Eckmann-Hilton duality.

2.2 H-Spaces and Co-H-Spaces

Before discussing H-spaces and co-H-spaces, we introduce some terminology
that appears in the rest of the book. We assume that the reader is familiar
with the concept of a commutative diagram of groups and homomorphisms
and of spaces and maps. In commutative diagrams there is the initial point
(a group or space), a terminal point (a group or space), and two compositions
of homomorphisms or maps from the initial point to the terminal point. In
the case of abelian groups, if one of the compositions is the negative of the
other, then we say that the diagram anticommutes or is an anticommutative
diagram. In the case of spaces, if the two compositions are homotopic, then
we say that the diagram homotopy-commutes, commutes up to homotopy, or
is a homotopy-commutative diagram.

Now we turn to the notions of a grouplike space and an H-space. Let Y
be a space and recall that j; : Y > Y xY and jo : Y = Y x Y are defined

by j1(y) = (y,*) and ja(y) = (*,y) for all y € Y.

Definition 2.2.1 A grouplike space consists of a space Y and two maps
m:Y xY ->Y andi:Y — Y such that

1. mji xid>~mjy: Y - Y,
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J1 J2

Y——— =Y xY and Y————— =Y xY
\ \Lm \ lm
id id
Y Y.

2. mimxid)~m(idxm): Y xY xY Y,

mxid

Y xYXxY ———Y xY

lmm lm

Y xY Y.

Y————— =Y xY and Y————=Y xY
Y Y,

where (id, 7), (i,id) : Y — Y x Y are defined by (id,?)(y) = (y,i(y)) and
(i,id)(y) = (i(y),y), for y € Y.

A grouplike space is sometimes referred to as an H-group. The map m is
called a multiplication and i is called a homotopy inverse. If only (1) holds,
then Y (or more properly, the pair (Y, m)) is called an H-space. A space that
is an H-space and a CW complex is called an H-complex and a grouplike
space that is a CW complex is called a grouplike compler. We sometimes do
not explicitly mention the multiplication or homotopy inverse and refer to a
space Y as an H-space or grouplike space. Condition (2) is called homotopy-
associativity. A homotopy-associative H-space is one in which (1) and (2)
hold. In terms of the addition of maps defined below, condition (3) asserts
that id + ¢ ~ # ~ ¢ + id. Therefore [¢] is the homotopy inverse of [id] in the
group [Y,Y]. From this we obtain the inverse of any a = [f] € [X, Y] defined
as iy (a) = [if]. We show in Proposition 8.4.4 that a homotopy-associative
H-complex always has a homotopy inverse, and so is a grouplike complex.
The H-space (Y, m) is homotopy-commutative if mt ~ m :Y xY — Y where
t:Y xY - Y xY is defined by t(y,vy') = (¢, y), for y,y' € Y.

Definition 2.2.2 Let (Y, m) and (Y’,m’) be H-spaces and h : ¥ — Y’ a
map. We call h an H-map if the following diagram is homotopy-commutative,

hxh

Y XY ————Y' xY’

F Lk

Y Y.
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This is written h : (Y, m) — (Y',m’).

The space Y is a topological group if (Y, m,i) is a grouplike space such
that equality holds instead of homotopy in all parts of Definition 2.2.1. In
this case, it is customary to write m(y,y’) as yy’ and i(y) as y~ 1. A grouplike
space is thus the analogue of a group in homotopy theory. Similarly an H-map
is the analogue of a homomorphism of groups. We give a class of examples
in Section 2.3 of spaces that are grouplike, but not topological groups. For
now we note that the spheres S, $2, and S7 are all H-spaces. The first two
are in fact topological groups. Multiplication of complex numbers induces a
multiplication on S' which makes it into a topological group and quaternionic
multiplication does the same for S3. The sphere S7 inherits its multiplication
from the multiplication of octonions or Cayley numbers [49, pp. 448-449]. But
the latter is not associative, and so S” is an H-space that is not a topological
group. It has been proved [51] that this multiplication on S7 is not homotopy-
associative, so S7 is not a grouplike space. The question of whether any other
spheres have the structure of an H-space is a difficult one. A negative answer
has been given by the work of several people with the major result due to
Adams [1].

If (Y,m) is an H-space and X is any space, then the set [X,Y] can be
given an additively written binary operation which is defined as follows. Let
fyg: X =Y and define f + g =m(f x g)A =m(f,g)

A fxg m

X X x X Y xY Y,

where A is the diagonal map. Then if « = [f] and 8 = [g] € [X, Y], we set
a+ B = [f +g]. This is a well-defined binary operation on the set [X,Y].
We make some simple remarks about this operation.

e By (1), f+*=m(fx*)A =mjf ~ f. Therefore « +0 = o, and similarly
0+ a = «, where 0 is the homotopy class of the constant map. Thus for
an H-space (Y,m), the element 0 € [X,Y] is a two-sided identity for the
binary operation.

e If (3) holds, then, as mentioned earlier, i, () is the inverse of a in [ X, Y].

e Clearly m =p; +ps: X x X — X, where p1,ps : X x X — X are the two
projections, since m(p; x p2)A =m.

e We obtain the category of H-spaces denoted H consisting of H-spaces and
homotopy classes of H-maps and the category of grouplike spaces denoted
HG consisting of grouplike spaces and homotopy classes of H-maps (see
Appendix F).

We recall some categorical language and notation (Appendix F). Let
HoTop, be the based homotopy category (consisting of spaces and homo-
topy classes of maps), let Gr be the category of groups, and let Sets, be
the category of based sets. Furthermore, let B, be the category of based sets
with a binary operation for which the basepoint is a two-sided identity and
the morphisms are based functions preserving the binary operation (called
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homomorphisms). In addition, AB, is the full subcategory of B, consisting
of based sets for which the binary operation is commutative. Then there are
forgetful functors By — Sets, and Gr — B, (see Appendix F).

Now let Y be a fixed space and define a contravariant functor Fy :
HoTop, — Setsy by Fy(X) = [X,Y] and Fy(f) = f*: [X",Y] - [X,Y],
where f : X — X'. To say that Fy : HoTop, — Sets, factors through
B means that for every space X, the set [X,Y] is a based set having a
binary operation with the homotopy class of the constant map a two-sided
identity and that f* : [X’,Y] — [X,Y] is a homomorphism for every map
f: X — X’. Similarly Fy : HoTops — Sets, factors through Gr means that
[X,Y] is a group for every X with unit the homotopy class of the constant
map and that f* : [X',Y] — [X,Y] is a homomorphism.

Proposition 2.2.3

1. 'Y is an H-space if and only if Fy : HoTopy — Sets, factors through Bs.

2. Y is a homotopy-commutative H-space if and only if Fy : HoTopy —
Setsy factors through AB..

3. Y is a grouplike space if and only if Fy : HoTop, — Setsy factors through
Gr.

Proof. (1) Let (Y, m) be an H-space. We have already noted that [X,Y] is a
set with binary operation for which 0 is a two-sided identity. If f : X — X’
is a map and [a], [b] € [X”, Y], then

(a+b)f =m(axb)Ax:/f =m(af xbf)Ax =af +bf,

and so f*([a] + [b]) = f*[a] + f*[b]. Thus Fy : HoTop, — Sets, factors
through B, . Conversely, suppose [X, Y] is an object of B, for every X with
the property that f* : [X', Y] — [X,Y] is a homomorphism for every map
f: X — X'. Let the binary operation be denoted by + and let [#] be the
two-sided identity, where * is the constant map. Now definem : Y xY — Y
by [m] = [p1] + [p2] € [Y x Y, Y], where p; and py are the two projections of
Y x Y onto Y. Then, if ji,jo : Y —» Y x Y are the two inclusions,

Jtm] = [pri] + [p2j1] = [idy] + [#] = [idy],

and so myj; =~ idy. Similarly, mjs >~ idy. Therefore (Y, m) is an H-space.
(2) If (Y, m) is homotopy-commutative and [a], [b] € [X, Y], then

a+b=m(axbA=mtla xb)A=m(bxa)A=0>b+a,

wheret : Y xY — Y x Y interchanges coordinates, and so [X, Y] is commu-
tative. Conversely, suppose [X,Y] is commutative for all X. Let the multi-
plication m on Y be as defined in (1). Then

[mt] = t*[m] = t*([p1]+[p2]) = [pat]+[pat] = [p2]+[pa] = [p1]+[p2] = [m],
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and so m is homotopy-commutative.

(3) We omit the proof which is like (1) and (2) but we record the following
for later use. If Fy factors through Gr, then the multiplication m and the
homotopy inverse i are defined by

[m] = [pl] + [pg] and [’L] = —[idy]. O
We next introduce a definition and corollary of Proposition 2.2.3.

Definition 2.2.4 A contravariant binary operation induced by Y is a binary
operation on [X,Y] for every space X such that 0 € [X,Y] is a two-sided
identity and for every f : X — X', the function f* : [X",Y] - [X,Y] is a
homomorphism. A contravariant group operation induced by Y is similarly
defined.

Then we have the following immediate consequence of Proposition 2.2.3.

Corollary 2.2.5 1. There is a one—one correspondence between the set of
homotopy classes of multiplications of Y and the set of contravariant bi-
nary operations induced by Y.

2. There is a one—one correspondence between the set of homotopy classes of
grouplike multiplications of Y and the set of contravariant group operations
induced by Y.

The following result is frequently used.

Proposition 2.2.6 If (Y, m) and (Y',m') are H-spaces and h : (Y,m) —
(Y',m') an H-map, then hy : [X,Y] = [X,Y’] is a homomorphism of based
sets with a binary operation. In particular, if Y and Y’ are grouplike spaces,
then hy : [X,Y] — [X,Y'] is a group homomorphism.

Proof. Let [a], [b] € [X,Y]; then
h(a +b) = hm(a x b)A ~m'(h x h)(a x b)A = ha + hb.
Therefore hy is a homomorphism. m]

To obtain the notion which is dual to that of a grouplike space, we reverse
the arrows and replace the product with the wedge in Definition 2.2.1. As
noted in Section 1.2, we regard X v X € X x X so that every element of
X v X is of the form (x, #) or (,2), for z, 2’ € X. Recall that ¢ = p;|X v X :
XvXosXandg=pXvX:XvX->X wherep;,pp: X x X > X
are the projections.

Definition 2.2.7 A cogroup consists of a space X and two maps ¢ : X —
X v X and j: X — X such that

1. gie~id 2 qoc: X — X.
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2. (cvid)ex(idve)e: X - X vXvX

[

X XvX

ic icvid
idve

XvX——XvXvX

3. {id,j}c ~ + ~ {j,id}c : X — X, where {id,j} : X v X — X is defined
by {id,j}(z,*) = x and {id, j}(*,z) = j(x), for all z € X, and {j,id} is
similarly defined.

A cogroup is also called a co-H-group, an H-cogroup, or a cogrouplike space.
The map ¢ is the comultiplication and j the homotopy inverse. If only (1)
holds, then (X,c) or X is called a co-H-space. A co-H-space which is a
CW complex is called a co-H-complez. Condition (2) is called homotopy-
associativity (sometimes homotopy-coassociativity). We show in Proposition
8.4.4 that every simply connected, homotopy-associative co-H-complex has
a homotopy inverse. The co-H-space X is called homotopy-commutative if
sc~c: X - X vX,wheres: X vX — X v X is defined by s(z, *) = ()
and s(#,z) = (x,*). We give examples of cogroups in Section 2.3 and show
that all spheres and wedges of spheres of dimension > 1 are cogroups. There
are spaces that are co-H-spaces but not cogroups (see [9]). In addition, a
co-H-space in the topological category (defined by equality of maps instead
of homotopy of maps) is a one point space (see Exercise 2.4).

Definition 2.2.8 Let (X, ¢) and (X’,¢’) be co-H-spaces and g : X — X' a

map. We call g a co-H-map if there is a homotopy-commutative diagram

X ! X/

XVXLX’VX'.

This is written g : (X,¢) — (X', ).

The set [ X, Y] has a binary operation when X is a co-H-space and Y is any
space: let f,g: X > Y andlet V:Y vY — Y be the folding map defined by
V(y, =) =yand V(x,y) =y, fory € Y. We define f+g = V(f vg)e = {f,g}c,

v

X—sxvx iy y-Yeoy

Then for o = [f] and 8 = [g] € [X,Y], we set o + 8 = [f + g].
Asbeforea+0=a=0+a and c =iy + iy : X - X v X, where iy,1is :

X — X v X are the two injections. In addition, if (3) holds, j*(a)+a =0 =

a+ j*(a), and so j*(«) is the inverse of a € [X,Y]. We obtain the category

of co-H-spaces CH whose objects are co-H-spaces and whose morphisms are
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homotopy classes of co-H-maps and a full (sub)category of cogroups CG. Now
let X be a fixed space and define a covariant functor x : HoTopy — Setsy
by Kx(Y) =[X,Y] and Kx(g9) = g« : [X, Y] = [X,Y’], where g : ¥ — Y.
Then Kx : HoTop, — Sets, factors through B, means that for every space
Y, the set [X,Y] is a based set with a binary operation with the homotopy
class of the constant map a two-sided identity and that g, : [X, Y] — [X,Y”]
is a homomorphism for every map g : Y — Y'. Similarly Kx : HoTops —
Setsy factors through Gr means that [X, Y] is a group for every Y with unit
the homotopy class of the constant map and that g, : [X,Y] - [X,Y'] is a
homomorphism.

Proposition 2.2.9

1. X is a co-H-space if and only if Kx : HoTop, — Sets, factors through
B.

2. X is a homotopy-commutative co-H-space if and only if Kx : HoTopy —
Setsy factors through AB,.

3. X is a cogroup if and only if Cx : HoTopy — Setsy factors through Gr.

4. If (X,¢) and (X',c') are co-H-spaces and h : (X', ') — (X,c¢) is a co-
H-map, then h* : [X,Y] — [X',Y] is a homomorphism of based sets
with a binary operation. In particular, if X and X' are cogroups, then
h*: [X,Y] = [X,Y'] is a group homomorphism.

5. If X is a co-H-space and f,g : X — Y, then (f + g)x = f& + gx :
H,(X;G) - H,(Y;G) and (f +9)* = f*+9¢*: H'(Y;G) - H'(X; G),
for all n = 0 and abelian groups G.

Proof. The proofs of (1) — (3) are analogous to the proof of Proposition 2.2.3,
therefore we omit them. We do note, however, that in (3), if Kx factors
through Gr, then the comultiplication ¢ and homotopy inverse j are defined
as follows,

c=1i1 +1iy and j= —idy,

where 1 and iy are the two injections of X — X v X. The proof of (4) is
parallel to the proof of Proposition 2.2.6, and also omitted. We only prove
(5) for homology. Let pux : Hy(X v X) — H,(X)® H,(X) be the isomor-
phism given by pux(2) = (q1x(2), q2x(2)) for z € H,(X v X). Consider the
commutative diagram

(fve)x Hn(Y v Y) L) H»,L(Y)

b

Hn(Y) @ Hn(Y),

Hy(X) —2 > H,(X v X)

S b

H,(X)® H,(X)

faDgx

where A is the diagonal and §(u,u') = u + o/, for u, v’ € H,(Y'). Then

(f+9)sx =Vl Vg)sce =0(fs ®gs)A = fo + g4,
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and the result follows. |
Analogous to Definition 2.2.4, we have the following for co-H-spaces.

Definition 2.2.10 A covariant binary operation induced by X is a binary
operation on [X,Y] for every space Y such that 0 € [X,Y] is a two-sided
identity and for every map g : Y — Y, the function g, : [X,Y] — [X,Y”]
is a homomorphism. A covariant group operation induced by X is similarly
defined.

We then have the following immediate consequence of Proposition 2.2.9.

Proposition 2.2.11 1. There is a one—one correspondence between the set
of homotopy classes of comultiplications of X and the set of covariant
binary operations induced by X.

2. There is a one—one correspondence between the set of homotopy classes of
cogroup comultiplications of X and the set of covariant group operations

induced by X.

An interesting situation arises when (X ¢) is a co-H-space and (Y, m) is an
H-space. Then the comultiplication ¢ and the multiplication m each induce
a binary operation in [X,Y].

Proposition 2.2.12 If (X, ¢) is a co-H-space and (Y, m) is an H-space, then
the binary operation +. in [X,Y] obtained from c equals the binary operation
+m in [X, Y] obtained from m. In addition, this binary operation is abelian.

Proof. For every a = [f], B =[g], v = [h], § = [k] € [X, Y], we prove
(a +m 6) +e (’Y +m 6) = (a +e ’7) +m (6 +e 5) (2'1)

With A = Ax and V = Vy, the left-hand side of Equation 2.1 is represented
by

V(m(f x g)A v m(h x k)A)e =mVyxy ((f x g) v (h x k))(A v A)c
and the right-hand side of Equation 2.1 is represented by
m((V(f v h)e) x (V(g v k)c))A =m(V x V)((f v h)x(gv k:))AXvX c.
But it is easily checked that
Vyxy ((f x g) v (hx k) (AvA)=(VxV)((fvh)x(gvk)Ax.x,
and so Equation 2.1 is established. Now take f = 0 = ~ in Equation 2.1,

getting
a+.0=a+,,0.

This shows that the two binary operations agree. Next set « = 0 = ¢ in
Equation 2.1, getting
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B+ey=7+m B

This shows that the operation is abelian. m]

2.3 Loop Spaces and Suspensions

In this section we study loop spaces which are a class of grouplike spaces and
suspensions which are a class of cogroups.

Definition 2.3.1 For a space B, the loop space 2B is the subspace of B!
consisting of all paths ! in B such that {(0) = = = I(1). The loop space 2B
has the subspace topology of the space of paths B! with the compact—open
topology (see Appendix A). The elements of 2B are called loops in B. If
g : B — B’ is a map, then ¢ : 2B — 2B’ is defined by 2¢(l) = gl (the
composition of g and ).

Clearly if g ~ ¢’ : B — B’, then 29 ~ ¢’ : 2B — 2B’. We next define
amap m: 2B x 2B — 2B by

) 1(2t) if
m(l,1')(t) = {l/(gt —1) if

for [,1' € 2B and t € I. We also define ¢ : 2B — 2B by i(l)(t) = (1 —1t), for
le 2B and tel.

The loop m(l,1') consists of the loop I followed by the loop . That is,
m(l,1l') is obtained by traversing the loop [ at double speed followed by the
loop I’ also at double speed. The loop i(l) is the loop I traversed in the
opposite direction. We note that m(l,1') is just the sum of paths [ + 1" and
i(l) is —I, both of which were defined in Remark 1.4.7. We will see that the
map m provides 2B with grouplike structure.

If B has the homotopy type of a CW complex, then so does 2B by a
theorem of Milnor [70]. It also follows from Milnor’s result that many of the
path spaces such as B! or EB also have the homotopy type of a CW complex
whenever B does.

Proposition 2.3.2 If B is a space, then 2B is a grouplike space with mul-
tiplication m and homotopy inverse 1. For any map f : B — B’, the map
N2f: 0B — QB is an H-map.

Proof. We must first verify the three conditions in Definition 2.2.1.
(1) We show id ~ mj; : 2B — 2B by defining a homotopy F : 2B x I —
2B. For l € 2B and s,t € I, we set

P, )(t) = {l (2t/(2 - 5)) i

1

0
2

m//\
~
[\
-
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The other homotopy for (1) is similar.

(2) We show m(m x id) ~ m(id x m) : 2B x 2B x 2B — (2B by defining
a homotopy G : 2B x 2B x 2B x I — 2B. For [,I’,]1" € 2B and s,t € I,
we set

1(4t/(1+ s)) if 0<t <=
G, s)(t) =3 UI'(4t — 1 — ) if st < st2
(4t —s—2)/(2—s))if 2 <t <L

(3) We show = ~ m(id,i) : 2B — 2B by defining a homotopy H :
2B x I — 2B. Forle 2B and s € I, we set

if
H(,5)(t) = {1(25(1 — ) if

The other homotopy for (3) is similar.
Finally, m’(2f x 2f) = (2f)m : 2B x 2B — B’ where m’ is the
multiplication of 2B’. Therefore {2f is an H-map. |

In the proof of the previous proposition formal definitions of the required
homotopies were given. However, it is helpful in understanding these homo-
topies to visualize them and say what they actually do.

¥ l (%:1) * 5 (%:1)(221) 5 l (%71) —1
l 4 I

l l 4 I * ®
(1:0)(3,0) (3.0)

homotopy-unit homotopy-associativity ls is path [ from 1(0) to I(s)
homotopy-inverse

Figure 2.1

For example, in (3) we see that at time s the homotopy H applied to the
path [ is first the path [ going from [(0) to I(s) and then is the path [ in the
opposite direction going from I(s) to 1(0). Clearly this is the constant path =
when s = 0 and the path m(l,il) when s = 1. A similar analysis can be made
for the homotopies in (1) and (2).

Let HoTop, denote the homotopy category and let HG denote the category
of grouplike spaces. Then 2 : HoTop, — HG defined by 2(X) = 2X and
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02[f] = [2f] is a well-defined functor. Clearly (2B, m) is a grouplike space
that is not in general a topological group. From Propositions 2.2.3 and 2.3.2 it
follows that for any space B, 2B induces natural group structure on [ X, 2B].
In addition, if f : B — B’ is a map, then (2f), : [X,2B] — |X,2B'] is a
homomorphism.

Next we turn to suspensions.

Definition 2.3.3 For any space A, define the suspension YA (sometimes
called the reduced suspension) to be the identification space

(AxD)J(Ax{0} u {+} xT u Ax{l}).
There is a map ¢: YA —» YA v YA defined by

({a, 2t), *) if 0<
«a,t) = {(*,<a, 2t — 1)) if 1 <

where a € A, t € I, and # denotes the basepoint of Y’A. We also define
j: XA - XAby jla,ty ={a,1 —t). If f: A— A’ then X¥f: YA > YA is
given by X f{a,t) = (f(a),t).

A

Figure 2.2

Clearly if f ~ f': A— A’ then Yf ~ X f : YA — YA

There is another way to view the suspension. Let Cy X and C; X be the two
cones on X (see Section 1.4). Then i : X — C1X is defined by ig(z) = {z,0)
and i1 : X — CpX is defined by i;(x) = {(x,1). Then the suspension XX is
homeomorphic to the identification space Co X v Cy X /~, where i1 (z) ~ io(z),
for every z € X.
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Proposition 2.3.4 For any space A, the space XA is a cogroup with co-
multiplication ¢ and homotopy inverse j. For any f : A — A’, the map
Xf: XA - YA is a co-H-map.

The proof of this is completely analogous to that of Proposition 2.3.2 and is
left as an exercise. However, after we give the proof of Proposition 2.3.5 we
show how a proof can be derived from Proposition 2.3.2.

If CG denotes the category of cogroups, it follows from Proposition 2.3.4,
that X' : HoTopy — CG is a functor defined by Y'(A) = YA and X(f) = X' f.
By Proposition 2.2.9, for every space A, the set [Y'A, Y] has group structure
for every space Y such that a map g : Y — Y’ induces a homomorphism g, :
[YAY] — [YA,Y']. Moreover, a map h: A” — A induces a homomorphism
(Xh)* . [YAY] - [ZAY].

We have seen that if A and B are any two spaces, both [Y'A, B] and
[A, 2B] are groups. If f: YA — B is a map, we define x(f) : A — 2B by

() (a)(t) = fla,t),

. w(f)(a)
f
—

Figure 2.3

forae Aand tel.

YA

Clearly r(f) is well-defined and continuous (Appendix A). Furthermore, if
f+ is a homotopy between f : YA — B and f' : YA — B, then s(f;) is a
homotopy between x(f) : A —» 2B and s(f') : A - 2B. Thus k induces
ket [XA, B] = [A, £2B]. Similarly, if g : A — 2B, we define 5(g) : YA - B
by ®(g){a,ty = g(a)(t), for a € A and ¢ € I. Then & induces Ry : [A, 2B] —

[Z A, B]. Now
K(R(9))(a)(t) = (F(g)){a,t) = g(a)(t),

and so sk = id. In a like manner, "k = id. Thus k. : [YA, B] — [A, 2B] is
a bijection with inverse Ry : [4, 2B] — [Y'A, B]. In addition, it h : A’ - A
and k : B — B’ are maps, then
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p(f)h=w(fXh) and  (2k) 5(f) = K(kf),

for every f: YA — B. Thus
h¥ kg = ke (Zh)*  and  (02k)y kg = Ky Es.

Proposition 2.3.5 For any spaces A and B, the bijection ky : [¥ A, B] —
[A, 2B] is an isomorphism of groups.

Proof. Let f,g: XA — B and consider x(f + g) = k(V(f v g)c) : A > 2B.
Then for a € A and t € I,

(k(V(f v g)e)(a)(t) = V(f v g)a,t)

_ {V(f vg)(a,2ty, %) if0<t
V(fvg)(x{a,2t = 1)) if 3 <t

_ [ fla2ty  if0<t<g
gla,2t —1yif £ <t < 1.

On the other hand, x(f) + k(g) = m(x(f) x k(g))A: A — 2B. Then

(m(k(f) x £(g))Ala))(t) = m(x(f)(a), x(g)(a))(t)
_ {(N(f)(a))(%) if0<t<y
(s(g) @)@ —1)if L <t <1
fla2ty  H0<t< ]
B {g<a,2t—1>1f i<t<l
Thus (f + g) = k(f) + k(g), and the result follows. o

Definition 2.3.6 The isomorphism k, in Proposition 2.3.5 or its inverse R
is called the adjoint isomorphism. We say that f and x(f) and also « and
Ky () are adjoint to each other.

Using the fact that r, is a bijection and that (£2B,m, 1) is grouplike for
all B, we now show that (XA, ¢, 7) is a cogroup for all A, where ¢ and j are
the maps defined in Definition 2.3.3. We have that [A, {2B] is a group, with
binary operation denoted +, and so ky : [YA, B] — [A, 2B] induces group
structure with two-sided identity [#] on [Y'A, B], for all B. We denote this
binary operation in [Y'A, B] by +'. Because any map k : B — B’ induces a ho-
momorphism (£2k), : [4, 2B] — [A, 2B'], it follows from (£2k)s ks = Ky ky
that ks : [YA,B] — [YA, B’] is a homomorphism. Therefore by Propo-
sition 2.2.9(3), there exists a comultiplication ¢ and a homotopy inverse j
such that (XA, ¢, 3) is a cogroup. We show that ¢ ~ ¢ and j ~ j. By Def-
inition 2.3.3, k(c) = k(i1) + K(i2), where i1,i5 : YA — YA v YA are the
two injections. But ¢ = i; +' i2 (see the proof of Proposition 2.2.9), and so
k(¢) = k(i1) + k(i2). Thus k(c) = k(¢), and so ¢ ~ ¢. Finally j = —id by
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definition and so x(j) = —x(id). But x(j) = —k(id) (proof of Proposition
2.2.9). Therefore j ~ j, and so (XA, ¢, ) is a cogroup.
The suspension and loop space constructions can be iterated.

Definition 2.3.7 For spaces A and B and define X°4 = A and 2°B = B
and for integers n > 1,

YPA=X(E"A) and Q"B =0Q(2"'B).

We next consider homotopy commutativity of iterated suspensions and
loop spaces.

Proposition 2.3.8 For spaces A and B, X" A is a homotopy-commutative
cogroup and 2" B is a homotopy-commutative grouplike space, if n = 2.

Proof. We just show that XA is homotopy commutative. For any space Y,
we have the following isomorphism of groups, [X"A,Y] =~ [~ A, 2Y], for
n = 2, by Proposition 2.3.5. The latter group is abelian by Proposition 2.2.12.
By Proposition 2.2.9(2), ™A is homotopy-commutative. O

Recall that the upper cap E7 of the unit n-sphere S™ is defined by £} =
{(z1,22,...,2p41) € S™|Tps1 = 0}. The lower cap E™ of S™ is similarly
defined by 2,41 <0. Then S" = E? U E™ and S" ' = E} n E™.

Proposition 2.3.9 For alln > 1, S™ is homeomorphic to X.S™ 1.

Proof. There are homeomorphisms hy : E" — E? and h_ : E" — E”
defined by

hy(z) = (x, VA |x|2) and

h(z) = (x 1o |x|2) ,

for # € E™. Recall that CoX = (X x I)/(X x {0} u {#} x I) and C1 X =
(X xI)/(X x {1} U {#} xI). By Lemma 1.4.10, there is a homeomorphism K :
C1(S™ 1) — E™. Similarly by defining L : S" "' xI — E" by L(z,t) = (1—t)*
+tz, we obtain a homeomorphism L : Co(S"~!) — E™ as in Lemma 1.4.10.
We compose K with A4 to obtain a homeomorphism 7 : Cy(S™~!) — EY
and we compose L with h_ to obtain a homeomorphism X : Co(S" 1) — E™.
Each of 7 and A restricted to S”~! is the identity map of S"~!. We regard
XSt as C1(S™ 1Y) Ugn-1 Co(S™ 1), the disjoint union of C7(S™ 1) and

Co(S™™1) with S"=! < C1(S™7!) identified with S"~! € Co(S™~!). Then
the maps 7 and A yield a homeomorphism (see Figure 2.4)

28 = (8™ Ugn—1 Co(S™™H) = B U E™ = S™. O
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Figure 2.4

2.4 Homotopy Groups 1

By Propositions 2.2.9, 2.3.4, and 2.3.9, the set [S™, Y] is a group for all spaces
Y and all n > 1. These are the homotopy groups of Y.

Definition 2.4.1 For every space Y and n > 0, the set [S™, Y] is called the
nth (ordinary) homotopy group of Y and is denoted 7, (Y"). For n = 1, it is
called the fundamental group of Y.

We assume that the reader has had some exposure to the basic prop-
erties of fundamental groups. For review, we have presented the topics on
the fundamental group that we use in Appendix B. If n > 1, then m,(Y)
is a group for all Y and a map f : Y — Y’ induces a homomorphism
fe : m(Y) = 7, (Y'). In general, mo(Y) is a set with a distinguished ele-
ment and fy : mo(Y) — mo(Y”) is a function that preserves the distinguished
element. For another characterization of my(Y"), see Exercise 2.24.

We next give a few elementary properties of homotopy groups. We give
more information on homotopy groups in Section 4.5 and compute some of
these groups in Section 5.6.

e For n > 2, the groups m,(Y) are abelian. This follows from Proposition
2.3.8.

e The fundamental group 71 (Y") is abelian if Y is an H-space by Proposition
2.2.12. In general, 71(Y") is not abelian (Appendix B). If Y is a grouplike
space, then m(Y) is a group (Exercise 2.24).

e If n > 1, then m,(Y) = 7w, 1(2Y) as groups by Proposition 2.3.5. In
particular, 2Y is path-connected if and only if 71(Y) = 0 by Exercise
2.24.

o If f~g:Y Y’ then fy = gy : mp(Y) » 7, (YY), for all n > 0.

e If f: X — Y is a homotopy equivalence, then fy : m,(Y) — m,(Y’) is
an isomorphism, for all n > 0. For if g : Y — X is a homotopy inverse of
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f, then fg ~ id. Therefore fyigy = (fg)x = idy = id. Similarly gf ~ id
implies that g, fs = id. Therefore f, is an isomorphism.

e Leti: X — Y be an inclusion and let r : Y — X be a retraction. Then
ix : Tp(X) = m(Y) is @ monomorphism and r, : 7, (Y) — 7,(X) is an
epimorphism, for all n, since 744 = id. In fact, 7, (V) = 47, (X) B Ker ry.
This clearly holds if r is a homotopy retraction. It also holds if 7 is an
arbitrary map and ¢ is a section or homotopy section of 7.

e If Y is contractible, then m,(Y) = 0, for all n > 0. This follows because
id~#*:Y - Y and soid = (id)x = #5 = 0 : m,(Y) — mp(Y), for all
n = 0.

e For spaces Y and Y, we have m, (Y xY”) = 7, (Y)® 7, (Y’), for all n > 0.
For, by Corollary 1.3.7, the function 6 : m,(Y) @ m,(Y') — 7, (Y x Y”)
defined by O([f1,[g]) = [(£.9)], for [f] € mu(Y) and [g] € m,(Y"), is a
bijection with inverse function A given by A[h] = (p1«[h], p2«[h]). Thus A
is an isomorphism, and so 7,(Y x Y’) = m,(Y) ® 7, (Y’). Furthermore,
we define p: 1, (Y) @7 (V') = mn (Y x Y7) by p(a, B) = jix(a) + j2:(8),
where j; : Y > Y x Y  and js : Y — Y x Y’ are the two inclusions. Then
Ap = id, so p is an isomorphism and equals €. These results clearly extend
to the product of finitely many spaces.

e If Y and Y’ are spaces of the homotopy type of CW complexes, then the
fundamental group of the wedge Y v Y” is the free product 71 (Y") 71 (Y”)
of m(Y) and 71 (Y”') (Appendix B).

e If Y is a nonpath-connected space and X is the path-connected component
of Y containing the basepoint, then the inclusion ¢ : X — Y induces an
isomorphism iy : 7, (X) — m,(Y), for all n > 1. This is since for any map
f:S™ =Y, we have that f(S™) € X because f(S™) is a path-connected
space containing #. Similarly, for any homotopy F': S™ x I — Y, we have
that F(S™ x I) € X.

The result that the fundamental group of an H-space is abelian is easy to
prove. The result that the fundamental group of a co-H-space is free, which
we prove next, is more difficult. It requires some facts about free groups and
free products of groups (Appendix B).

Let G be a group that is not necessarily abelian. For notational conve-
nience, we write g for the inverse g~' of g € G. We denote the free product
of G with itself by G« G. If g € G, then g regarded as an element of the first
factor of G # G is written ¢’ and as an element of the second factor of G = G
is written ¢”. Thus an element £ € G * G can be written

P
€= Hgi'ii”, where ¢;,7; € G.
i=1

Then there are projection homomorphisms py,ps : G * G — G given by
p1(&) =119 and p2(&) = [[7;- We introduce the following notation:

Eg ={§eG=+G|pi(§) =pa(§)}.
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"

Thus & = ||}, ¢/7,” € E¢ if and only if v, y191--gp, = 1. Then 7 :
Eg — G is defined by m = pi|Eg = p2|Eg, and so 7(¢) = [[g: = [[7:-
Finally, let &, = v'u” € Eq, where u € G and let E¢ = {§, | u # 1}.

The following result, which appears in [7, Prop.3.1], is based on ideas
attributed to M. Kneser.

Lemma 2.4.2 The group Eg is free with basis Z¢g.

Proof. Tt is clear that the set = is an independent set. In order to write any
expression { = [ [ ¢;/7,” that satisfies v, ---7191 -+~ g, = 1 as a product of the
&, and their inverses, we use the following simple algorithm. For 1 <7 < 2p,
define §; by the formulas

Ook =Yk 7191+ gk and  Jopt1 = 0okGr+1-

Thus 61 = g1, 62 = Y191, 03 = 710192, and so on, and d3, = 1. Now one
verifies that £ is the alternating product

2p )
e=T]ed,
i=1
where (i) = (—1)""! (Exercise 2.20). o

Proposition 2.4.3 If X is a co-H-complex, then m(X) is a free group.

Proof. It G = 71(X), then as noted earlier, 1 (X v X) is isomorphic to G =G,
the free product of G with itself. Let ¢ : X — X v X be a comultiplication
and let ¢1,q2 : X v X — X be the projections. Because ¢;c ~ id, we have
that ¢ induces a homomorphism s = ¢, : G — G = G such that p1s = pas =
id : G — G. Thus s determines a homomorphism o : G — FEg such that
mo = id. Therefore o maps G isomorphically onto o(G) € Eg. By Lemma
2.4.2, E¢ is free. Since a subgroup of a free group is free [39, p.85], o(G) is
free. Hence G = m1(X) is free. o

Next we present additional results on homotopy groups. We begin with a
definition.

Definition 2.4.4 A path-connected space Y is said to be m-connected, if
m;(Y) =0, for all i < n. A 1-connected space Y is also called simply connected.
A map f: X — Y is called an n-equivalence (also called an n-connected map),
if fi :m(X) — m(Y) is an isomorphism for all i < n and an epimorphism
for i =n. Amap f: X — Y is a weak (homotopy) equivalence or an oo-
equivalence if fy : m,(X) — m,(Y) is an isomorphism for all n.

Lemma 2.4.5 Let (X, A) be a based, relative CW complex with dim (X, A) <
n, let B and'Y be spaces (not necessarily of the homotopy type of CW com-
plezes), and let e : B — 'Y be an n-equivalence, n < o0. Let j : A — X be the
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inclusion and assume that there are maps f: X - Y and g: A — B and a
diagram

A —9> B

b

X —>f Y,

such that eg ~p, f7, for some homotopy L : A x I — Y. Then there exists a
map § : X — B such that gj = g and a homotopy F : X x I — Y such that
eq ~p f, where F|A x I = L.

This lemma, which is the major step in proving Whitehead’s theorem 2.4.7,
follows from the HELP lemma 4.5.7 which is proved in Section 4.5 after we
have discussed the relative homotopy groups.

From Lemma 2.4.5 we can easily prove the following proposition.

Proposition 2.4.6 Let X be a based CW complex, let B and Y be spaces
(not necessarily of the homotopy type of CW complezes), and lete : B —>Y
be an n-equivalence, n < 0. Then ey : [X,B] — [X,Y] is an injection if
dim X < n and a surjection if dim X < n. If n = oo, then ey : [X,B] —
[X,Y] is a bijection for any based CW complex X.

Proof. We first show that e, is onto if dim X < n. Let [f] € [X,Y], set
A = {x}, and define ¢ : A — B to be the constant map. We then apply
Lemma 2.4.5 to f and g and obtain a map g € [X, B] such that e,[g] = [f].
Thus e, is onto.

Now assume that dimX < n and egy ~p eg; for go,g1 : X — B. Let
X=X x I and so dim X’ <n. Weset A’ = X x 0I u{*} x I and define
G:A — Bby

G(x,i) = gi(x) and G(=,t

) =
for x € X, t eI, and i = 0,1. Since dim (X', A’") < n, we can apply Lemma
2.4.5 to F and G. We get a homotopy H : X x I — B such that H|A' =
Then go >~ g1, and so ey is one—one. O

There are two important theorems due to J. H. C. Whitehead which we
shall arbitrarily call Whitehead’s first theorem and Whitehead’s second the-
orem. We now prove Whitehead’s first theorem [92].

Theorem 2.4.7 If f: X —» Y is a map of CW complexes, then f is a weak
equivalence if and only if f is a homotopy equivalence.

Proof. We only prove that if f is a weak equivalence, it is a homotopy equiv-
alence, since the other implication has been proved. Consider the function
fe  [Y, X] — [Y,Y]. By Proposition 2.4.6, f, is a bijection. Therefore there is
amap g:Y — X such that fg ~ idy. But fgf ~ f and so f¢[gf] = f«[idx],
where f, : [X, X] — [X,Y]. This latter fy is a bijection, and so gf ~ idx.
Thus f is a homotopy equivalence. m|
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Remark 2.4.8 Whitehead’s first theorem is useful to show that a map is a
homotopy equivalence. For this we would prove that the map induces isomor-
phisms of all homotopy groups. Because our spaces have the homotopy type
of CW complexes, it would follow that the map is a homotopy equivalence.
We frequently use this remark without comment.

We observe that it is not sufficient that 7, (X) = m,(Y), for all n, for X
and Y to have the same homotopy type. By Whitehead’s first theorem, there
should be a map f : X — Y that induces an isomorphism of all homotopy
groups. An example of the nonsufficiency is given in 5.6.2.

Theorem 2.4.9 Let X and Y be path-connected spaces (not necessarily of
the homotopy type of CW complexes), let f : X — Y be a map, and let
n = 0. Then there is a space K such that (K, X) is a relative CW complex
having relative cells of dimensions = n+ 1 with the following property. There
exists a map f : K — Y such that f|X = f and fs : mi(K) — m;(Y) is an
isomorphism for i > n and a monomorphism for i = n.

Proof. In the proof we write hy; for the induced homotopy homomorphism
hy = mi(W) — m;(Z), for any map h : W — Z. The idea of the proof is to
attach (n+1)-cells to X to kill Ker f,,, and then attach additional (n+1)-cells
to map onto m,11(Y"). This process is then repeated. We begin by choosing
generators [go]aca of Kerfyn, where g, : SI' — X and S” = S™. Then the
ga determine g : \/ ., S — X and we attach (n + 1)-cells to X by g to
form the adjunction space X’ = X u, \/ E*™!. Since fg ~ *, the map fg
can be extended to \/E&”rl by Lemma 1.4.10 and Proposition 1.4.9. This
extension and f determine a map f’ : X’ — Y such that f/|X = f. Then
Jint1 Ty (X') = 71 (Y), and we choose elements [hg] € m,41(Y) for
B € B that are a set of generators. Then the hg determine 5 : \/BGB SZH —
Y and we form X"+ = X' v Vsen SEH and define f**!1: X"l Y by
= {f’, h}. Note that (X"*1 X) is a relative CW complex.

Let £k : X - X’ and [ : X’ — X™*! be inclusion maps and let j = Ik :
X — X"*!. Then there is a commutative diagram

/ lk*i Si
Fii

Fai | Wi(XI) _— Wi(Y).

\ il /
\ o

7T1-(Xn+1)

We claim that 2! is a monomorphism and far 4}1 is an epimorphism. If v €
Ker f2F then v = jun(8) for some § € Ker fy,,, since jy, is an epimorphism
by Proposition 1.5.24. Therefore
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0= Z na[Qa]v

acA’

where A’ € A is a finite subset and n, € Z. But

k*n(§) = Z na[kga] =0,

acA’

because kg ~ #. Therefore v = jun(6) = lyn(ksn(9)) = 0. Hence fH! is a

monomorphism.

Next we show that f;" jl is an epimorphism. Given € € 7,11 (Y"), we have
€ = Yigep mplhs], where B' € B is a finite subset and mg € Z. Since
X = X' v\ yep S5, we let ig 0 S5 — X"F! be the inclusion maps
and set & = Y5 g mplig] in w11 (X", Then

1€ = D] mslhs] = ¢,

BeB’

and so f,fn+ _&1 is an epimorphism. This proves the claim.

We then apply this construction to f?*! and obtain an extension fm+2 :
X"*2 — Y such that f:,ffl is a monomorphism and f:;fQ is an epimorphism.
Because fp7!, is an epimorphism, it follows that f;"¥2 is an isomorphism
and f:,f_EQ is an epimorphism.

We continue this process and obtain maps f* : X* — Y, for all k& > n.
We set X™ = X and form the space K = Up>, X" with the weak topology
determined by the X*. Then the f* determine a map f : K — Y which is an
extension of f. Therefore fy; is an isomorphism for i > n and a monomor-

phism for i = n by Proposition 1.5.24. This completes the proof. m|

The following corollary is frequently used.
Corollary 2.4.10

1. Let X and Y be path-connected spaces and let f : X — Y be an n-
equivalence, n = 0. Then there exists a space K obtained from X by at-
taching cells of dimensions > n + 1 and there exists a map f : K — Y
such that f|X = f and f is a weak equivalence.

2. Let Y be a k-connected space (not necessarily of the homotopy type of a
CW complex) with k = 0. Then there exists a CW complex K and a weak
equivalence f : K — Y such that K* = {«}. In particular, if Y is any
path-connected space, there exists a CW complex K with K° = {+} and a
weak equivalence f: K — Y.

3. If Y is a k-connected space of the homotopy type of a CW complex, k = 0,
then there exists a CW complex K of the homotopy type of Y such that
K* = {«}. In particuliar, H;(Y) =0 fori < k.
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Proof. (1) Let K be the space constructed in Theorem 2.4.9. By Proposition
1.5.24, the inclusion map i : X — K is an n-equivalence. This and the fact
that f is an n-equivalence implies that f is an n-equivalence. By Theorem
2.4.9, f is a weak equivalence.

(2) By hypothesis, the map {*} — Y is a k-equivalence. We then apply
Part (1) to obtain the desired result.

(3) We apply Whitehead’s first theorem 2.4.7 to (2). o

Definition 2.4.11 For any space Y (not necessarily of the homotopy type of
a CW complex), a CW complex K together with a weak equivalence K — Y
is called a CW approzimation to Y.

The existence of a CW approximation for any space, gives some indication
of the importance of CW complexes in homotopy theory. It has been shown
in [69] how to construct a CW approximation functorially. We do not prove
this. However, the following remark is a consequence.

Remark 2.4.12 If a : K - X and b: L — Y are two CW approximations
and f: X — Y is a map, then there exists a map h : K — L, unique up to
homotopy, such that fa ~ bh. It follows that the homotopy type of a CW
approximation of a space is uniquely determined by the homotopy type of
the space.

Proposition 2.4.6 gives conditions for an induced map of homotopy sets to
be a bijection. The following similar result is very useful.

Proposition 2.4.13 Let (X, A) be a relative CW complex such that all rel-
ative cells have dimension = n + 2, let i : A — X be the inclusion map, and
let Y be a space. Then i* : [X,Y] — [A,Y] is an injection if 7;(Y) = 0 for
j>n+1 andis a surjection if 7;(Y) =0 for j > n.

Proof. We first show that ¢* is onto if 7;(Y) =0 for j > n. Let f: A > Y
be a map and consider the relative (n + 2)-skeleton

(X, A" =Au | et

~veC

for v € C. Let ¢, : S27! — (X, A)"*! = A be an attaching function. By Ex-
ercise 2.25, f¢y ~free My : Sfy“rl — Y, for some based map h,. By hypothesis,
hy ~ * and so f¢, is freely homotopic to a constant function. By Corollary
1.4.11, f¢- extends to a free map f,y : E,’Y”r2 — Y. These functions together
with f determine a map f"*2 : (X, A)"*? — Y that extends f. Next we
write
()(7 A)n+3 _ (X, A)n+2 U U eg+3
6eD

with attaching maps s : Sg”’Q — (X, A)"*2 where 6 € D. Then as before
f+29s is freely homotopic to a constant function, and so f"*2 extends to
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a map f"*3 : (X, A)"*3 — Y. We continue in this way and obtain a map
g : X — Y such that gi = f. Thus i* is onto.

Next we show that i* is one—one if j > n + 1. Suppose f,g: X — Y and
fi ~F gi. Then f,g and F determine a map F’' : X x 0 v Ax I —>Y. We
then apply the previous argument to the relative CW complex (X x I, X x
0l u A x I) and the map F’ to obtain an extension G : X x I — Y of F’.
Thus f ~¢ g, and so i* is one—one. O

We next discuss a relation between the homotopy groups and the homology
groups of a space. We begin by defining the Hurewicz homomorphism h,, :
T (Y) = H,(Y), for any space Y and integer n > 1. Let a = [f] € m,(Y).
Then f:S™ — Y induces a homomorphism fy : H,(S™) = H,(Y). We fix a
generator vy, € H,(S™) = Z for all n > 1 and set hp(a) = fu(vn) € Ho(Y).
Clearly h,, is well-defined. By Proposition 2.2.9, (f + ¢)«(Vn) = fe(yn) +
g% (Yn), and thus h,, is a homomorphism. Also, it is easily seen that if k :
Y — Y’ is a map, then the following diagram is commutative

(V) — (V)
-k
Ho(Y) — = H,(Y"),

where h,, and h], are Hurewicz homomorphisms.

We next wish to prove that the Hurewicz homomorphism is an isomor-
phism in a special case. For this, we first introduce the notion of the degree
of a map.

Definition 2.4.14 Let f : S™ — S™ beamap, n > 1, and let fy : H,(S™) —
H,,(S™) be the induced homology homomorphism. We define an integer, the
degree of f, denoted deg f, by f4(7n) = (deg f)vn, where v, € H,(S™) = Z is
a generator. The definition is clearly independent of the choice of generator.

Lemma 2.4.15 Let f,g: 5™ — S™.

1. f~g=degf =degg.
2. deg(fg) = (deg f)(degyg).
3. deg(f +g) =deg f + degg.

Proof. Only (3) requires proof and this follows from Proposition 2.2.9. |

Thus the degree yields a homomorphism deg : 7, (S") — Z.

Proposition 2.4.16 Forn = 1, the homomorphism deg : m,(S™) — Z is an
isomorphism and so [id] a generator of 7, (S™) = Z.

Proof. Since deg(id) = 1, it follows that deg is onto. We show that deg is
one—one in Appendix D. m]
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This is an important result that plays a crucial role in what follows.

We introduce some notation before returning to the Hurewicz homomor-
phism. If G, is an abelian group for a € A, then @, G, denotes the direct
sum of the G,. If f, : G, — H is a homomorphism of abelian groups for
every «, we denote by {f,} : @, Go — H the homomorphism determined
by the f,. Similarly, if the G, are groups (not necessarily abelian), we let
%o G, denote the free product of the G, (Appendix B). Homomorphisms
fa : Go — H of groups determine a homomorphism {f,} : ko Go — H. Now
consider the wedge of n-spheres \/_, S% for a € A, where A is any index set
and let i, : S — \/,, S be the inclusion. Then it is known [39, p. 126] that
{iax} : B, Hn(SY) — Hp(\,, S%) is an isomorphism.

Lemma 2.4.17 1. Forn = 2, {ias} : @aeq ™(Sh) = TV aea S5) is an
isomorphism.

2. {ias} : %aea m(SL) — TV aea SL) is an isomorphism.

Proof. We assume that each sphere S is a CW complex with two cells (Ex-
ample 1.5.10(5)).
(1) The result is clear if A consists of one element. Now let A = {aq, ..., ax}
be a finite set with k > 2. Let W = \/f:1 Si and P = Hle S and let
j : W — P be the inclusion. Then P is a CW complex and W is a subcomplex
such that the n+ 1-skeleton P"*1 = W. By Proposition 1.5.24, j, : m,(W) —
7n(P) is an isomorphism. But if j,, : S7, — ]—[le Sy, is the inclusion, then
{Jous} ¢ @le 7 (S%,) — m,(P) is an isomorphism by the discussion at the
beginning of this section. From this (1) follows when A is finite. Now let A
be infinite and let f : S™ — \/_ SZ be a map. Since f(S™) is compact, there
is a finite set {ai,...,ax} such that f(S™) € \/ifc:1 S7 by Lemma 1.5.6.
Therefore [f] € m,(\/,, S2) is in the image of m,(\V/5_, S2.) — 7 (\V, S%),
for some set {av,...,ax}. Consequently {ins} : @, (S2) = m(V, SL)
is onto. To show that {i,} is one—one, we observe that any homotopy F :
S™ x I — \/,S% has compact image and so factors through a homotopy
F':8" xI— \/f:1 Sy for some finite set {aq, ..., ar}. This completes the
proof of (1).
(2) This is proved in Appendix B as Proposition B.3. O
The following proposition contains a special case of the Hurewicz theorem

for a wedge of spheres of the same dimension. The full Hurewicz theorem is
proved in Section 6.4 as Theorem 6.4.8.

Proposition 2.4.18

1. If n = 1, then m;(S™) = 0 fori <n and hy, : 7,(S™) > H,(S™) = Z is an
isomorphism.
2. Let S = S™ for all o in some set A.

a. If n = 2, then the Hurewicz homomorphism hy : m,(\/,ecq Sh) —
Hy(\ ea S2) is an isomorphism.

acA M a
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b. The Hurewicz homomorphism hy : m1(\/ e 4 Sa) = H1(V aea Sa) is an
epimorphism.

Proof. (1) Let i < n and give each of S* and S™ the CW decomposition with
two cells. If f : S* — S™ is any map, then by Corollary 1.5.23, f is homotopic
to a cellular map f' : S* — S™. Thus f/(S?) = % and so f ~ %. Therefore
m;(S™) = 0. To determine h,,, consider the commutative diagram

Z
deg

~

o (Sn) hp

H,(S™),

where the vertical arrow is the isomorphism that assigns to the integer k the
element kv, € H,(S™), for 7, a generator of H,(S™). The result follows from
Proposition 2.4.16.

(2) For Part (a) consider the commutative diagram

B, 7 (S1) —ox)

o

Tn(Va Sa)

|

{iaw}
Hn(\/oz Sg)?

where hy @ m,(S?) — H,(S) and h,, are Hurewicz homomorphisms. Be-
cause the horizontal homomorphisms are isomorphisms and the h, are iso-
morphisms, h, is an isomorphism. Part (b) is a special case of Proposition
B.5. m]

The last result of this section is part of Whitehead’s second theorem 6.4.15.

Proposition 2.4.19 Let X and Y be path-connected CW complezes, let f :
X =Y be a map, and let n = 1 be an integer. If f is an n-equivalence, then
fe s Hi(X) — H(Y) is an isomorphism for all i < n and an epimorphism
fori=n.

Proof. By Corollary 2.4.10(1) and Exercise 2.26, there is a CW complex K
containing X such that K is obtained from X by adjoining cells of dimensions
> n + 1 and there is a weak homotopy equivalence f : K — Y such that the
following diagram commutes

x— 71 .y
J d

i /

K

)

where j is the inclusion map. By Whitehead’s first theorem 2.4.7, f is a
homotopy equivalence, and so fy : H;(X) — H;(Y) is an isomorphism for
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all i < n and an epimorphism for ¢ = n if and only if the same holds for
Jx » Hi(X) — H;(K). All the cells of K of dimension < n lie in X, thus
the relative homology group H;(K,X) = 0, for all i < n. From the exact
homology sequence of the pair (K, X), it follows that j, : H;(X) — H;(K)
is an isomorphism for all ¢ < n and an epimorphism for i = n. m|

The complete second theorem of Whitehead (Theorem 6.4.15) has another
part in which the roles of homology and homotopy groups are interchanged.
This theorem is proved in Section 6.4 as a consequence of the relative
Hurewicz theorem.

2.5 Moore Spaces and Eilenberg—Mac Lane Spaces

The following two lemmas are useful in our discussion of Moore spaces and
Filenberg-Mac Lane spaces.

Lemma 2.5.1 Let n = 1 and let X be a based CW complex with (n — 1)-
skeleton X"~ 1 = {+} and dimX < n+1, that is, X = X" U UﬁeB egﬂ, for

n 1 are open (n+1)-cells. Let
Y be a space and let ¢ : m,(X) — 7, (Y) be a homomorphism. Then there

exists a map f: X =Y such that fo = ¢ : mp(X) = mp(Y).

Proof. Let k : X™ — X and i, : S} — X" be the inclusions maps. Then
there are homomorphisms

X" = \/aeA Sy, where S} are n-spheres and e

Fy ¢

T (X™) 7 (X) T (Y)
and we define f, : S” — Y by ¢ky[ia] = [fa]- The f, determine a map

f7: X™ > Y such that f"i, = f,. Therefore

f:[ia] = [fa] = Pk [ia]'

By Lemma 2.4.17, the [i,] are generators of m,(X™), and so fi = ¢k,. Let
hg : S5 — X" be an attaching function for egH. By Exercise 2.25 and
Lemma 1.5.3 we may assume that hg is a (based) map. Then khg ~ = since
khg factors through the contractible space Eg“ = E"T!. Hence f2[hs] =
¢ky[hg] = 0. Thus f"hg ~ = for every § € B, and consequently f" extends
toamap f: X — Y. But ¢pky = [ = feks and ky @ 1 (X7) > 1, (X) is
onto by Proposition 1.5.24. Therefore f, = ¢. |
Lemma 2.5.2 For every abelian group G and n = 1, there exists a based

CW complex L with the following properties: the (n—1)-skeleton L™t = {x},
dimL <n+1, and for alli > 0,

Giti=n
Hi(L):{o if i # n.
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Proof. We take a presentation G = F//R, where F' is free-abelian and R € F.
We choose bases {4 }aeca and {rg}gep of F' and R, respectively. Let S% be
the n-sphere indexed by a € A and define L™ to be the wedge \/ .4 Si- The
Hurewicz homomorphism h,, : w,(L") — H, (L") is an isomorphism for n > 2
and an epimorphism for n = 1 by Proposition 2.4.18. If 5 € B, then 73 €
R < F = H,(L"). We choose a map kg : S — L™ such that hnlkg] = rs.
Using kg, we attach (n + 1)-cells e’é“ to L™ and form L = L" U Jsep egﬂ.
To complete the proof we use the CW homology of L (Appendix C). The ith
chain group C;(L) is the free-abelian group generated by the i-cells, and so

Fifi=n
Cl(L)E Rifi=n+1
0 ifi#0,n,n+1.

Furthermore, it is not difficult to show that the boundary homomorphism
Cpni1(L) = Cu(L) can be identified with the inclusion R € F (see [64,
Prop. 8.2.12]). Thus L has the desired homology. O

We turn to Moore spaces.

Definition 2.5.3 Let GG be an abelian group and n an integer > 2. A based
CW complex X is called a Moore space of type (G,n) if X is l-connected
and

Gifi=n

0 if i # n.

Hy(X) = {

In Lemma 2.5.2, a Moore space L of type (G,n) has been constructed. We
denote this Moore space (or any space homeomorphic to it) by M (G, n).

We note a few properties of M (G, n).

Lemma 2.5.4

1. The Hurewicz homomorphism h, : m,(M(G,n)) —» H,(M(G,n)) is an
isomorphism, and so m,(M(G,n)) = G.

2. If ¢ : G — H is a homomorphism of abelian groups, then there exists

a map [ : M(G,n) - M(H,n) such that fyx = ¢ : H,(M(G,n)) —

Proof. (1) From the construction of M(G,n) in Lemma 2.5.2 as (\/ ¢4 S&) U
U seB egH, we have a commutative diagram

k i
0 ——=n(Vgep 55) — = mn(Vaea Si) — = ma(M(G,n)) —=0

k T

0—— Hu(V pep S5) —= Ha(V yen S5) —— Hu(M(G,n)) —=0,
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where h,, h], and h! are Hurewicz homomorphisms, k& : \/ seSE
V e St is determined by the kg, and i is the inclusion. The bottom row is
exact, h!, and h! are isomorphisms (2.4.18), ik ~ =, and the upper i, is onto

by Proposition 1.5.24. Thus the top row is exact and so h,, is an isomorphism.

(2) Let ¢ : G —> H be a homomorphism and let L = M(G,n) and M =
M(H,n). Consider the Hurewicz homomorphisms »' : 7, (L) — H,(L) = G
and h : m,(M) — H,(M) = H which are isomorphisms by (1). By Lemma
2.5.1, there exists a map f : L — M such that f, = h™1¢h’ : 7, (L) —
mn(M). Hence the induced homology homomorphism fy = ¢ : H,(L) —
H,(M). |

Remark 2.5.5 We note that several choices have been made in the construc-
tion of M(G,n) such as the presentation of G and the choice of generators of
R and F. We show in Proposition 6.4.16 that the homotopy type of a Moore
space of type (G,n) depends only on G and n. However, in spite of the no-
tation, M (G, n) is not functorial in G. For now, when we write M (G, n) we
assume that it has been constructed relative to a choice of presentation and
of generators.

The spaces M(G,n) can easily be described in special cases. We have
M(Z,n) = S™ and if F is a free-abelian group with a basis whose cardinality
is the same as some set A, then M (F,n) = \/ 4 St. Furthermore, M (Z,,n)
can be taken to be the space S™ Uy, e"*! obtained by attaching an (n + 1)-
cell to S™ by a map m : S™ — S™ of degree m. For n = 1, we define the
Moore space M(Z,1) = S'. We do not consider M(G,1) for other groups
G (see [89]). For n > 3, M(G,n) = Y¥M(G,n — 1) (see Exercise 3.1). In
addition, if L is the space of Lemma 2.5.2 with n = 1, then M(G,2) =~ Y'L.
Thus all Moore spaces M (G, n) are suspensions, in fact, M (G, n) is a double
suspension if n = 3 or if n = 2 and G is free-abelian. Hence [M (G, n), X]
is a group for all X. It is abelian if n > 3 or if n = 2 and G is free-abelian.
At the end of this section we discuss the reason for making the definition of
Moore space in terms of homology groups instead of cohomology groups. We
compare Moore spaces with spaces with a single nonvanishing cohomology
group.

The suspension structure of Moore spaces M(G,n) enables us to define
homotopy groups with coefficients.

Definition 2.5.6 Let G be an abelian group and let n > 1 (assuming G = Z
if n =1). Then for every space X, define the nth homotopy group of X with
coefficients in G by

(X G) = [M(G,n), X].

Other notation (which we do not use) for this is 7, (G; X) (see [40, p. 10]).

Note that 7, (X;Z) = m,(X), the nth (ordinary) homotopy group of X. Fur-
thermore, a map h : X — X’ induces a homomorphism hy : m,(X;G) —
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Tn(X';G) defined as the induced homomorphism hy : [M(G,n), X] —
[M(G,n), X'].

Homotopy groups with coefficients are discussed in the sequel. In partic-
ular, we present a universal coefficient theorem in Section 5.2 that expresses
homotopy groups with coefficients in terms of ordinary homotopy groups.

We next turn to Eilenberg-Mac Lane spaces.

Definition 2.5.7 Let G be an abelian group and let n be an integer > 1.
An FEilenberg-Mac Lane space of type (G,n) is a space X of the homotopy
type of a based CW complex such that for every ¢ > 1,

Gifi=n
”i(X)_{o if i # .

An Eilenberg-Mac Lane space of type (G,n) is denoted K (G, n).

The following lemma is used to show that Eilenberg—-Mac Lane spaces
exist.

Lemma 2.5.8 If X is a space, then for everym = 1, there exist spaces W (™)
and inclusion maps jpy, : X — W) such that

1. (W) =0 fori>m.

2. G (X)) = (W) is an isomorphism for i < m.

3. W) s obtained from X by attaching cells of dimension = m + 2.

Proof. Parts (1) and (3) follow immediately from Theorem 2.4.9 by taking
Y = {«} and n = m + 1. Part (2) is a consequence of Proposition 1.5.24. o

Next we show that Eilenberg—Mac Lane spaces exist and obtain some of
their properties.

Proposition 2.5.9 Let G be an abelian group and n an integer = 1.

1. There exists an FEilenberg-Mac Lane space K(G,n).

2. If ¢ : G — H is a homomorphism, then there exists a map h : K(G,n) —
K(H,n) such that hy = ¢ : 7, (K(G,n)) — 7, (K(H,n)).

3. Any two Filenberg—Mac Lane spaces of type (G, n) have the same homotopy
type.

Proof. (1) We first construct an Eilenberg-Mac Lane space of type (G,n)
when n > 2. We apply Lemma 2.5.8 with X equal to the Moore space
M(G,n). Then W) is an Eilenberg-Mac Lane space of type (G,n) by
Lemma 2.5.4. For n =1, we set K(G,1) = 2K(G,2).

(2) Let ¢ : G — H be a homomorphism and let K = K(G,n) and L =
K(H,n) be any Eilenberg-Mac Lane spaces. Let X be the Eilenberg—Mac
Lane space of type (G, n) constructed in (1). We construct amap f: X — L
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such that fy = ¢ : 1, (X) — mp(L). If j : X™! — X is the inclusion, then
Ju : T (X)) — 7, (X) is an isomorphism by Proposition 1.5.24. The n + 1-
skeleton X"t = M(G,n) and L satisfy the hypotheses of Lemma 2.5.1, and
so there exists f**!: X**1 — L such that 2! = ¢j, : 1o (X1 = 7, (L).
Now apply Proposition 2.4.13 to the relative CW complex (X, X"*1) and the
map "', We conclude that there is a map f : X — L such that fj ~ f**1,
and so fy = ¢. Similarly the identity mapid : G — G yieldsamapg: X —» K
such that g, = id. Then ¢ is a homotopy equivalence by Whitehead’s first
theorem. Thus if h = fg=' : K(G,n) — K(H,n), we have hy = ¢.

(3) If K and L are both Eilenberg-Mac Lane spaces of type (G,n), then
the identity homomorphism idg : G — G induces a map h : K — L by (2).
Then h is a homotopy equivalence. m|

In general Eilenberg—Mac Lane spaces are infinite-dimensional complexes
and are not easy to describe. There are a few that are familiar spaces and
we mention these now: K(Z,1) = St, K(Z,,1) = RP*, infinite-dimensional
real projective space, and K(Z,2) = CP™, infinite-dimensional complex pro-
jective space (see Exercise 5.19).

It can be shown that for any group G (not necessarily abelian), Eilenberg—
Mac Lane spaces of type (G, 1) exist and are unique up to homotopy. However,
we have no need to consider the spaces K (G, 1) when G is non-abelian (except
in Exercise 2.31).

Now let K(G,n + 1) be an Eilenberg-Mac Lane space with n > 1. We
apply the loop space functor to this space and have by Proposition 2.3.5 that

T(QK(Gon +1) = 1 (K(Gon 4+ 1)) = {8’ e -
Hence, as previously noted in the case n = 1, 2K (G,n + 1) is an Eilenberg—
Mac Lane space K(G,n). In fact, 2¥K(G,n + k) is an Eilenberg—Mac Lane
space of type (G,n). Therefore, for any space X, the set [X, K(G,n)] has
abelian group structure.

We next indicate how Eilenberg—Mac Lane spaces give rise to cohomology
groups.

Definition 2.5.10 For any space X, abelian group G and integer n > 1, we
define the nth homotopical cohomology group of X with coefficients in G as

H"(X;G) =[X,K(G,n)].

If h: X' > X is amap, then h* : H"(X;G) —» H"(X'; G) is just the induced
homomorphism h* : [X, K(G,n)] — [X’, K(G,n)].

Remark 2.5.11 It can be shown that if X is a CW complex, then the ho-
motopical cohomology groups H"(X; G) are isomorphic to the singular co-

homology groups Hgng(X ; ). There are several proofs of this: one uses the
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Brown representation theorem [39, p. 448] and another uses obstruction the-
ory [91, p.250]. In addition, in [46] Huber gives an isomorphism between the
homotopical cohomology groups and the Cech cohomology groups. We give
a simple proof of the isomorphism with singular cohomology in Section 5.3.

We note that we can define a function p : H"(X; G) — Hj,,(X; G) as fol-
lows. If [f] € H"(X;G), then f% .+ HE, (K(G,n);G) — H},,(X;G) is the

induced homomorphism of singular cohomology. Note that H, (K(G,n)) = G
since K(G,n) can be taken to be M(G,n) with cells of dimension > n + 2
attached. Thus there is an element 0" € Hg  (K(G,n);G), called the nth
basic class, which is defined by u(b") = id, where p : Hj  (K(G,n);G) —
Hom(H,(K(G,n)),G) =~ Hom(G, G) is the epimorphism in the universal co-
efficient theorem for cohomology (Appendix C). Then set p[f] = fZ,,(0"). It
is shown that p is an isomorphism in Theorem 5.3.2.

We need some properties of homotopical cohomology groups in the fol-
lowing chapters. These properties are known to hold for CW or singular
cohomology groups. But since we do not prove the equivalence of the latter
cohomology groups with the homotopical cohomology groups until Theorem
5.3.2, we next establish these properties.

Lemma 2.5.12 Let X and Y be path-connected, based CW complezes, let
f: X —>Y be amap and let n = 1 be an integer. If f is an n-equivalence,
then, for every group G, f* : H{(Y;G) — H'(X; Q) is an isomorphism for
i <n and a monomorphism for i = n.

Proof. (1) By Corollary 2.4.10(1), there is a CW complex K obtained from
X by adjoining cells of dimensions > n + 1 and a homotopy equivalence f :
K — Y such that fj = f, where j : X — K is the inclusion map. Therefore
f*: H(Y;G) - H'(X;G) is an isomorphism for i < n and a monomorphism
for i = n if and only if the same holds for j* : H/(K;G) - H'(X;G). But
the latter follows at once from Proposition 2.4.13. m|

Next we let X be a space, G an abelian group, and n > 1 an integer. We
define a homomorphism 7, : H"(X;G) - Hom(m,(X),G) by n:[f] = f« :
T (X) = 1, (K(G,n)) = G.

Lemma 2.5.13 If X is an (n—1)-connected based CW complex, n = 1, then
e H"(X; G) — Hom(m,(X), G) is an isomorphism. (For n = 1 we assume
that m1(X) is abelian.)

Proof. By Corollary 2.4.10(3), we may assume X"~! = {s}. We first prove
that 1, : H"(X;G) — Hom(m,(X),G) is an isomorphism when X = X"*1.
By Lemma 2.5.1, n, is onto. Now let f : X — K, where K = K(G,n),
and assume that 7,[f] = 0. Since X" is a wedge of n-spheres, f|X" ~ = :
X" — K. But (X, X"™) has the homotopy extension property, and so there
is amap f': X — K such that f ~ f" and f/|X™ = %. Therefore f’ induces
a map ]?’ : X/X™ — K such that f’q = f', where ¢ : X — X/X" is the
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projection. Since X /X" is a wedge of (n + 1)-spheres, f" ~ «. Hence f’ ~ =,
and so f ~ #. Therefore n, is an isomorphism when dim X < n + 1. For an
arbitrary (n —1)-connected CW complex X, the inclusion map X"*! — X is
an (n+ 1)-equivalence by the cellular approximation theorem. Thus 7, (X) =
o (X"*1) and, by Lemma 2.5.12, H"(X;G) =~ H*(X"*!; G). Therefore 7, :
H"(X;G) - Hom(7,(X),G) is an isomorphism. o

We next prove the Hopf classification theorem [91, p. 244].

Theorem 2.5.14 If X is a CW complex of dimension < n, then there is a
bijection between [X,S™] and H™(X).

Proof. Let K(Z,n) be the Eilenberg-Mac Lane space constructed in the proof
of Proposition 2.5.9 with G = Z and let i : S — K(Z,n) be the inclusion.
Then ¢ induces iy : [X,5"] — [X, K(Z,n)] = H"(X). The n + 1-skeleton of
K(Z,n) is 8™, therefore Proposition 1.5.24 shows that i, is a bijection. o

NOTE We denote the homotopical cohomology groups by H™(X;G) and
refer to them as cohomology groups.

In the Eckmann—Hilton duality theory (discussed in the next section),
cohomology groups with coefficients are dual to homotopy groups with coef-
ficients. The former are defined as homotopy classes of maps with codomain
an Filenberg-Mac Lane space and the latter as homotopy classes of maps
with domain a Moore space. Eilenberg-Mac Lane spaces are spaces with a
single nonvanishing homotopy group, thus it would appear that the dual no-
tion should be a co-Moore space, that is, a space with a single nonvanishing
cohomology group. However, we have instead taken the dual to be a Moore
space, that is, a space with a single nonvanishing homology group. The reason
for this is that co-Moore spaces of type (G,n) do not exist for every group G
(see [39, pp. 318-319]). Therefore to ensure the existence of homotopy groups
with coefficients for any abelian group G, they have been defined in terms of
Moore spaces.

We carry this discussion of co-Moore spaces a bit further. For a finitely
generated abelian group G, write G = F @ T, where F' is a free-abelian
group and 7T is a finite abelian group. If C(G,n) denotes a co-Moore space of
type (G,n), then a simple calculation of cohomology shows that M (F,n) v
M(T,n—1)is a C(G,n). In particular, if G = Z,,, then M(Z,,,n — 1) is a
C(Zym,n). As noted above, we could have defined the homotopy groups of X
with coefficients in Z,, using co-Moore spaces by

F(X: Z) = [C(Zn, ), X].

Then
Tn(X;Zm) = [M(Zp,n — 1), X | = m—1(X; Zp).

However, we use Definition 2.5.6 for homotopy groups with coefficients.
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2.6 Eckmann—Hilton Duality I

Our exposition is based on the duality theory of Eckmann and Hilton that we
have referred to several times without explanation. We now discuss this topic.
The first appearance of the duality in the literature was in the papers [27, 28,
29] of Eckmann and Hilton and the book [40] by Hilton. This duality principle
differs from certain other duality principles which are formal and automatic.
For example, in projective geometry there is a duality which asserts that
every definition remains meaningful and every theorem true if we interchange
the words point and line (and consequently other pairs of words such as
colinear and concurrent, side and vertez, and so on)[22, Chap. 3]. Parts of
the Eckmann—Hilton duality are formal and automatic (usually those parts
that can be described in categorical terms). However, much of it is intuitive,
informal, and heuristic.

We begin with the aspect of the Eckmann—Hilton duality which depends
on duality in a category and we refer to some fundamental facts about cat-
egories and functors from Appendix F. With any category C, we associate a
dual category C°P (also called the opposite category). The objects of C°P are
precisely those of C, but the set of morphisms from an object X in C°? to an
object Y in C°?, denoted C°P(X,Y), is defined to be C(Y, X). If composition
of morphisms in C°? is denoted by * and composition in C by juxtaposition,
then f+g=gf.

Now suppose that X' is a statement or concept that is meaningful in a
category C. Then we can apply it to the category C°P and interpret it as
a statement or concept in C. This latter statement or concept in C that is
denoted X* is the dual of 3. If 3 = 3* then we say that X is self-dual.

For example, recall from Appendix F the notion of categorical product. If
X and Y are objects in a category C, their categorical product is an object
P in C together with morphisms p; : P — X and ps : P — Y such that
the following holds. If f : A > X and g : A — Y are any morphisms, then
there exists a unique morphism 6 : A — P such that p10 = f and p20 = g. If
27 denotes this concept in category C, then the dual concept X* in C is the
following. Suppose X and Y are objects in C and there is an object C' in C
together with morphisms i; : X — C and i3 : Y — C such that if f: X —» B
and g : Y — B are any morphisms, then there exists a unique morphism
0 :C — B with 6i; = f and 6is = g. Then C is the coproduct in C of X and
Y, and so the coproduct is dual to the product. We can investigate various
categories to see if the product or the coproduct exists and, if so, if it is given
by a well-known construction. This can of course be done for any X and X*.

The main categories that we consider are the topological category Top,
and the homotopy category HoTop, (Appendix F). In Top, the product of X
and Y is just their cartesian product X xY with p; and ps the two projections.
The coproduct is the wedge X v Y with ¢; and ¢35 the two injections. For
the product and coproduct in the homotopy category HoTop, we take the
cartesian product X X Y with homotopy classes of p; and ps for the former
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and the wedge X v Y with homotopy classes of i; and iy for the latter (see
Lemma 1.3.6). Thus the product and the wedge as just defined are dual in
HoTopy. Other examples of dual concepts in HoT op, are homotopy retracts
and homotopy sections, and H-spaces and co-H-spaces.

There is another aspect of Eckmann—Hilton duality that is more obscure
and which often takes the form of a duality between functors or constructions.
We illustrate this with an example. Suppose f : X — Y is a map. Then f ~
if and only if there is a contractible space T" such that f factors through T,
that is, there are maps i : X — T and f : T' — Y such that the following
diagram commutes

X—=Y

b

This happens if there is a functor C' that assigns a contractible space C(X)
to every space X and a map ix : X — C(X) with the above property. The
cone on X does this, as we know by Proposition 1.4.9. If we dualize this by
reversing the direction of the maps, then we seek a functor E such that E(Y")
is contractible for every space Y and a map py : E(Y) — Y with the following
property: f ~ # : X — Y if and only if there is a map f: X — E(Y) such
that the following diagram commutes

!

Y<—-X

e

E(Y).

We have seen that the path space EY has this property (Proposition 1.4.9).
One might raise the question of why the dual of a contractible space is a
contractible space. This could be argued as follows. The dual of an identity
morphism in a category is an identity morphism because the defining property
ofidy isidx f = f and gidx = g, for all morphisms f and g. The constant
morphisms have a similar defining property, and so the dual of a constant
map is a constant map. Thus identity morphisms and constant morphisms
are self-dual. But in Top, a contractible space is one in which the identity
map is homotopic to the constant map. Thus it is reasonable to regard the
dual of a contractible space to be a contractible space.

We digress briefly to comment further on this example in order to in-
dicate the origin of the Eckmann—Hilton duality. The preceding discussion
can be transfered to the category of (left) R-modules in the following way.
A homomorphism ¢ : A — B of R-modules is called i-nullhomotopic if it
can be extended to some injective R-module @) that contains A. This could
be regarded as the analogue of extending a map of spaces to the cone of
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the domain. We then say that two R-homomorphisms from A to B are i-
homotopic if their difference is i-nullhomotopic. Alternatively, ¢ : A — B is
p-nullhomotopic if it can be factored through some projective R-module P
that has B as a quotient. Then P could be regarded as the analogue in this
category of the path space of the codomain. Two homomorphisms would then
be p-homotopic if their difference is p-nullhomotopic. It can be shown that the
notions of i-homotopy and p-homotopy in the category of R-modules do not
agree. Furthermore, by taking Q/A we obtain an analogue of the suspension
and by taking the kernel of P — B we obtain an analogue of the loop space.
It was the realization that injective modules and their quotients play the role
of cones and suspensions and that projective modules and their kernels play
the role of path spaces and loop spaces in the category of left R-modules that
was the beginning of the Eckmann—Hilton duality [40, Chap. 13].

We return to discussing the cone and path space functors in the category
Topy. We observe that they are adjoint functors. This implies that for a map
J + X — Y, there is a one-one correspondence between maps F : CX — Y
such that Fixy = f and maps F : X — EY such that pyF = f. The
correspondence is just the adjoint one given by

F(a)(t) = Flx,1),

for z € X and t € I (Proposition 1.3.4). Thus the two notions of nullho-
motopy in the category of R-modules become the single notion of ordinary
nullhomotopy for the category of spaces and maps. We say that the cone
functor C and the path space functor E are dual functors (in addition to
being adjoint). The suspension XX is a quotient of the map ix : X - CX
and the loop space 2Y is a “kernel” of the map py : EY — Y, therefore we
view the functors X and (2 as dual to each other. We have already noted that
these two functors are adjoint in the homotopy category HoTopy, namely,

[ZX,Y] = [X, QY]

by Proposition 2.3.5. Therefore we regard the functors X' and (2 as dual and
adjoint in HoT op. In a similar way the reduced cylinder X x I and the path
space X! can be regarded as dual and adjoint functors of X.

Furthermore, the homotopy groups appear to have properties dual to those
of the cohomology groups. For example, the homotopy groups are covariant
functors and the cohomology groups are contravariant functors. Moreover,
there is a formula that expresses the homotopy groups of a product as a
product of homotopy groups and an analogous formula for the cohomology
groups of a wedge. In addition, the homotopy groups of the loop space of X
are isomorphic to those of X (with a shift in degree) and a similar statement
holds for the cohomology of a suspension. But there are also important dif-
ferences. The fundamental group of a space is not necessarily abelian, but
all cohomology groups are abelian. The homotopy groups for most common
spaces such as CW complexes are not necessarily zero from some degree
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on (see Section 5.6), whereas the cohomology groups are zero above the di-
mension of the space (although this difference may not indicate a failure of
duality). In spite of this, we do view ordinary homotopy groups and integral
cohomology as being informally dual to each other. Although the duality
becomes more tenuous when we assert that specific spaces are dual to each
other, we regard Eilenberg-Mac Lane spaces and Moore spaces as duals in a
weak sense. Therefore we think of homotopy groups with coefficients as dual
to cohomology groups with coefficients.

We return to discussing duality in Section 6.5 after we have presented
more material. There we also discuss some of the interesting, unusual, and
anomalous features of duality.

Exercises

Exercises marked with () may be more difficult than the others. Exercises
marked with (f) are used in the text.

2.1. (1) Let (Y, m) be an H-space and assume that (Y x VY v Y) has the
homotopy extension property. Prove that there a multiplication m’ on Y that
is homotopic to m and such that m/(y, *) = y and m/(x,y) =y, for all y € Y.

2.2. (f) Let f: X = Y be a map which has a left homotopy inverse. Prove
that if Y is an H-space, then X is an H-space. With this multiplication on X,
is f an H-map? What condition will ensure that if Y is homotopy-associative,
then X is homotopy-associative?

2.3. Let Y be a grouplike space with multiplication m and homotopy inverse

i. Define a commutator map ¢ : Y xY =Y by ¢ = (p1 + p2) + (ip1 + ip2).

Prove

1. (Y, m) is homotopy-commutative if and only if ¢ ~ =.

2. Ifa = [f], B = [g] € [X,Y], then the group commutator [a, 5] = [¢(f, 9)].

3. If k is a positive integer, set k¢ = ¢ +---+ ¢ (k terms) : Y x Y — Y. Show
that m + k¢ is a multiplication on Y.

4. Dualize (1)—(3) to cogroups.

2.4. Prove that if “~” is replaced by equality in the definition that (X, ¢) is
a co-H-space, then X = {«}.

2.5. Is S° a (nonpath-connected) co-H-space?

2.6. Prove that a space X admits a comultiplication if and only if the diagonal
map A : X - X x X can be factored up to homotopy through X v X.
Prove that a space X admits a multiplication if and only if the folding map
V:X v X — X can be extended up to homotopy to X x X.
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2.7. Let X be an (n — 1)-connected space with n > 2.

1. Prove that if dim X < 2n — 1, then there is a comultiplication on X. If
dim X < 2n—2, prove that any two comultiplications on X are homotopic.

2. Prove that if m;(X) = 0 for ¢ > 2n — 1, then there is a multiplication on

X. Prove that any two multiplications on X are homotopic if m;(X) = 0
for i = 2n

In Exercises 2.8-2.14 also consider the dual of the given problem.

2.8. Let (Y, m) be an H-space, let f,g: X - Y bemapsandlet f+g: X - Y
be their sum. Prove for any space A, that (f+g). = fe+9g« : [A, X] — [4,Y].

2.9. Let (X, c¢) and (X', ¢') be co-H-spaces and let g : X’ — X be a map.
Prove the following generalization of Proposition 2.2.9: ¢g is a co-H-map if
and only if for every space Y and every a, 8 € [X,Y], we have (o + 3)[g] =

alg] + Blgl-

2.10. (*) Let jrx : XX — XX be the homotopy inverse map defined by
jox{x,ty =<x,1 —ty, for x € X and t € I. Consider the double suspension
32X and the map 7 : £2X — X?X defined by 7{z,s,t) = {x,t,s). Prove
that jE2X ~T X Ejgx.

2.11. () Define a map 0 : X(X; v Xo) — (X X;) v (X X3) by 0{(x1, *),t) =
({1, ty, *) and O{(#,x2),t) = (*,{xa,t)), for z1 € X1, zo € X5 and t € I.
Ifi; : X; - X1 v Xoand ¢; : XX; - (XX) v (¥X3) are inclusions and
¢ X1vXe — Xjand x; : (XX1) v (XX,y) = XX are projections, j = 1,2,
then prove that (1) 0 Xi; = ¢; and x,; 0 = Xg;, (2) 0 is a homeomorphism
with inverse {Xi1, Xio} and (3) 0 ~ 11 Xq1 + 12X qo.

2.12. () Let (X, cx) be a co-H-space and 0 : X(X v X) —» XX v Y'X the
homeomorphism of Exercise 2.11. Show that 6 Ycx is a comultiplication that
is homotopic to cxx, the suspension comultiplication on X' X.

2.13. Show that if X and Y are co-H-spaces, then X v Y is a co-H-space.
If X and Y are both homotopy-associative or both homotopy-commutative,
does the same hold for X vY? Let 0 : ¥(X vY) - XX v XY be the
homeomorphism of Exercise 2.11. Show that 6 is a co-H-map.

2.14. Prove that if X is a co-H-space, then XX is homotopy-commutative.
2.15. (#) Find another homotopy in the proof of Proposition 2.3.2(3).

2.16. For any space A, prove that (A x I')/(A x dI) is homeomorphic to X'B,
for some space B. What is B?
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2.17. Consider the cofiber sequence X — CX — XX, the fiber sequence
Y - EY > Y andamap f: YX — Y. Find amap 6 : CX — EY such
that the following diagram commutes

X CX rX
i f i 0 l f
QY EY Y,

where fis the adjoint of f.

2.18. (#) (f) Prove: m(X) = 0 if and only if for paths f,g : I — X such that
£(0) = g(0) = = and f(1) = g(1), we have f ~ grel 0I.

2.19. If G is a group we define a comultiplication on G to be a homomorphism
s: G — G = G such that p1s =id = pas : G — G.

1. Prove that G admits a comultiplication if and only if 7 : g — G has a
right inverse.
2. Prove that G admits a comultiplication if and only if G is a free group.

Note that Proposition 2.4.3 asserts that the functor m; carries a space with
a comultiplication to a group with a comultiplication.

2.20. (1) In the proof of Lemma 2.4.2 verify that

2p ]
e=T[e.
=1

2.21. If X is an H-space and a co-H-space, prove that m1(X) is 0 or Z. Give
examples of these spaces.

2.22. Let X and Y be co-H-complexes that are not simply connected. Prove
that X x Y is not a co-H-space.

2.23. () Prove that a path-connected CW complex X is contractible if and
only if my(X) =0 for all ¢ > 1.

2.24. () Let X be a space that is not necessarily path-connected. Show that
there is a bijection p from mo(X) to the set of path-components of X. Show
that if (X, m) is a grouplike space, then m induces group structure on mo(X)
and on the set of path-components of X such that p is an isomorphism.

2.25. () Let X and Y be spaces with X a CW complex and Y path-
connected. If f: X — Y is a free map, prove that there is a (based) map
g: X — Y such that f ~fee g.

2.26. (1) In Corollary 2.4.10(1) show that if X is a CW complex, then K can
be taken to be a CW complex containing X as a subcomplex.
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2.27. Let i : A — X be a cofiber map, where A and X are not necessarily of
the homotopy type of CW complexes. Prove that there exists a relative CW
complex (K, A) and a weak equivalence f : K — X such that f|4 = i.

2.28. Let X and Y be spaces (not necessarily of the homotopy type of CW
complexes). We define X ~ Y if there exist spaces X1, Xo,..., X, such that
Xi1=X,X,=Y and fori=1,2,...,n — 1, there exists a weak equivalence
X; — X411 or a weak equivalence X;;1 — X;. Prove that X ~ Y «— X
and Y have CW approximations of the same homotopy type. For this problem
you can assume the result stated in Remark 2.4.12.

2.29. How many homotopy classes of homotopy retractions are there of the
inclusion i1 : S™ — S™ v S"7?

2.30. (x) Let A be a set and let F'(A) be the free group generated by A. For
every a € A, let p, : F(A) —» F{a} = 7Z denote the projection. Prove that

[F(4), F(A)] = () Kerpa,

acA

where [F'(A), F(A)] is the commutator subgroup of F(A). Note that F'(A) =
Kaea F{a}

2.31. Let G be any group and let X be an Eilenberg-Mac Lane space of
type (G, 1). Prove that X is an H-space if and only if G is abelian. (You may
assume existence and basic properties of K(G,1)’s.)

2.32. (#) (f) Prove that H,,11(K(G,n)) =0, for n > 1.

2.33. Given a sequence of abelian groups G1,Go, ..., show that there exists
a path-connected CW complex X such that H;(X) = G; for all i. Show a
similar result for homotopy groups.

2.34. () If G is an abelian group and n > 1, prove that the Hurewicz homo-
morphism hy, : m,(K(G,n)) - H,(K(G,n)) is an isomorphism.

2.35. (#) (1) If f,g : X —» K(G,n) are maps and X is (n — 1)-connected,
n > 1, then prove that (f 4+ g)s« = fs + gs : Hi(X) — H;(K(G,n)) provided
1<2n—1.

2.36. In analogy to p : H"(X;G) — HE, . (X; G) defined after Remark 2.5.11,
define a homomorphism p’ : 7,(X;G) — H,(X;G) and show that p’ is the
Hurewicz homomorphism when G = Z.

2.37. (Cf. Lemma 2.5.13) If X is a space, then [X,S1] is an abelian group
since S! is a commutative topological group. Show that the group [X, S!]
contains no non-zero elements of finite order. (It may be helpful to use the
covering space R — S1.)
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2.38. Prove the following generalization of the Hopf classification theorem.
If X is a CW complex of dimension < n, then there is a bijection between
[X,M(G,n)] and H"(X; G). Formulate and prove the dual result.

2.39. Consider the natural map j: X vY —» X x Y.

1. Use the characterization of X v Y as a categorical coproduct in HoT op,
and the characterization of X x Y as a categorical product in HoT op, to
define [j].

2. Show that [§] is self-dual.
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