Chapter 2
Acoustic Cavitation

Olivier Louisnard and José Gonzalez-Garcia

1 Introduction

The benefit of acoustic cavitation owes to its ability to concentrate acoustic energy
in small volumes. This results in temperatures of thousands of kelvin, pressures
of GPa, local accelerations 12 orders of magnitude higher than gravity, shock-
waves, and photon emission. In a few words, it converts acoustics into extreme
physics.

The counterpart is that it constitutes a complex multidisciplinary problem,
involving a wide range of temporal and spatial scales, and is therefore difficult
to measure. Furthermore, it is a diphasic problem in essence, with the peculiarity
that the cavitation bubbles rise up “from nowhere” and self-arrange in a fascinating
variety of structures. For all these reasons it is difficult to control, to predict, and
to scale up. Several features of cavitation fields remain unexplained, although the
progress in optic recording systems recently shed light on previously unreachable
characteristics.

From a theoretical point of view, the physics of the single-bubble model has pro-
gressed considerably, thanks to single-bubble sonoluminescence experiments. Many
features specific to multibubble fields, however, remain obscure and constitute an
active research field. From an engineering point of view, the main unknown remains
the bubble size distribution and spatial repartition, which in general constitute the
main barrier to extrapolate the more or less known action of one bubble on a specific
process, to macroscopically observed effects.

By this contribution, we would like to help the reader to assess the main physics
involved when he switches on his sonotrode. This chapter is organized as follows.
We first present general results for bubbles in a quiet liquid (Section 2). Then, in
Section 3, the purely radial forced oscillations of a single bubble in an infinite lig-
uid will be addressed, focusing on thermal effects, solvent evaporation in inertial

O. Louisnard ()

Centre RAPSODEE, FRE CNRS 3213, Université de Toulouse, Ecole des Mines d’Albi, 81013
Albi Cedex 09, France

e-mail: louisnar @enstimac.fr

H. Feng et al. (eds.), Ultrasound Technologies for Food and Bioprocessing, 13
Food Engineering Series, DOI 10.1007/978-1-4419-7472-3_2,
© Springer Science+Business Media, LLC 2011



14 O. Louisnard and J. Gonzalez-Garcia

bubbles, and their relevance to sonochemistry. Bubbles’ loss of sphericity and the
resulting effects will be presented in Section 4. The last section addresses cavitation
bubble fields and their interaction with the sound field, from both experimental and
theoretical points of view.

2 The Quiet Bubble

Before entering in the complex field of acoustic cavitation, it is instructive to exam-
ine the behavior of a free spherical gas bubble in a quiet liquid, which can be
intuitively apprehended from everyday life.

2.1 A Key Phenomenon: Surface Tension

Increasing the interface between two media requires energy in order to bring
molecules from the bulk to the interface. Without a compensating force, an inter-
face therefore has a natural tendency to decrease. In the case of the bubble, the
compensating force is an overpressure in the bubble, known as Laplace tension:

20
Po=po+ N3 2.1)

where py is the liquid pressure, R is the bubble radius, and o is the surface tension.
This overpressure is unimportant for large bubbles but increases when R approaches
the value 20 /po from above. For example, for an air bubble in water at atmospheric
pressure (o = 0.072 N~!,pg = 101 kPa), 20/pg is 1.45 pwm so that the effect
of surface tension becomes important in this range of radii. This is precisely the
order of magnitude of the bubbles involved in cavitation, so that one can suspect
that surface tension will play an important role.

2.2 Bubble Ambient Radius

We consider a bubble containing a given mass m, of incondensable gas in a liquid
at ambient pressure pg, temperature 7. The bubble also contains vapor of the lig-
uid, in equilibrium with the latter at Ty, so that the partial pressure of vapor is the
equilibrium saturation pressure py eq(70). We seek the radius Ry of such a bubble in
mechanical equilibrium. Owing to surface tension, the pressure inside the bubble py,
is po + 20 /Ry. Using the law of perfect gases yields

mg RTy 20
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This cubic equation yields the bubble ambient radius Ry. The vapor pressure
Dv.eq(To) can be neglected for temperature well below the boiling point. For fur-
ther use, we define the dimensionless Laplace tension for the bubble in ambient
conditions

20 2.3)
oy = —— .
PoRo

2.3 Radial Mechanical Stability: The Blake Threshold

Equation (2.2) gives the radius of a bubble in mechanical equilibrium for a given
liquid ambient pressure pg. One might look for the evolution of the bubble radius
from Rp to R when the liquid pressure pg is decreased to p = pg — pa. Assuming
that this variation is slow enough to allow isothermal transformations of the gas, the
evolution of R can be obtained implicitly by

3
20 Ry 20
pv,eq(TO) + | po _pv,eq(TO) + R_O F - ? = P0 — Pa (2.4)

Rather than seeking explicitly R from Equation (2.4), it is more instructive to
look for a graphical solution. Figure 2.1 is obtained by using Equation (2.4), and it
shows the variation of the equilibrium radius R as a function of the liquid pressure
po — pa. It is seen that if the external pressure is lowered to a value smaller than
po — pgm, there is no possible equilibrium radius R. Physically, at this point, the
liquid starts to flow outward and the bubble undergoes an explosive expansion. This
analysis is the key point of inertial cavitation.

This critical value pgrit, which depends on Ry and thus on the quantity of gas
mg contained in the bubble, is called the “Blake threshold” (Akhatov et al., 1997a;
Blake, 1949; Hilgenfeldt et al., 1998; Louisnard and Gomez, 2003) and can be cal-

culated explicitly by seeking the minimal value of R from Equation (2.4). This yields

1/2
PE = po — pyeq + Po 4o / (2.5)
a ved 271+ ag '

The values of pgrit are represented in Fig. 2.2 for an air bubble in water in ambient

conditions (¢ = 0.0725 N - m_l,Pv,eq = 2,000 Pa, pg = 100 kPa).

An important point to note from Equation (2.5) and Fig. 2.1 is that the corre-
sponding external pressure po — pgﬁt can be lower than the vapor pressure of the
liquid, and even negative for small values of Ry. It should be recalled that a lig-
uid, owing to internal cohesion force, can effectively support negative pressures or

“tensions” (see Section 5.2).
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Fig. 2.1 Evolution of the bubble equilibrium radius R when the liquid pressure po — pa
is decreased, for a 1-pwm bubble in ambient conditions
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Fig. 2.2 Blake threshold for an air bubble in water in ambient conditions (pg = 101325 Pa,
0 =00725N-m™ ")

2.4 Perturbations of Radial Equilibrium: Free Frequency

The gas filling the bubble provides elasticity to the bubble/water mechanical sys-
tem; the bubble will oppose a resistance to any compression or expansion imposed
by the liquid motion. This force may in turn put the liquid into motion, so that
the bubble/liquid constitutes a mass—spring system. Perturbing the bubble slightly
from its equilibrium radius therefore results in free radial oscillations, whose fre-
quency can be calculated from energy conservation consideration or from a bubble
dynamics equation (see Section 3.2.3). If the oscillations are assumed isothermal,
the angular frequency of the free oscillations reads
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where p; is the liquid density.

Bubble-free oscillations are responsible for the noise emitted by running water. In
the context of acoustic cavitation, one would expect that a bubble excited at its free
frequency would undergo strong oscillations and would be the main factor for cav-
itation effects. Active bubbles in strong sound fields are in fact excited well below
their resonant frequency, as will be discussed throughout further in the chapter.

2.5 Gas Exchange with the Liquid

In saturation condition, that is, if the liquid is saturated with gas at ambient pressure
Do, a gas bubble dissolves because of surface tension. This can be readily understood
from Fick’s law, as shown below.

Let us denote Co, as the concentration of dissolved gas in the solution, and let
us consider a bubble of ambient radius Ry in mechanical equilibrium in the liquid.
Far from the bubble, the concentration is Co,. At the bubble wall, the dissolved gas
is in equilibrium with the gas inside the bubble, at pressure pg, = po + 20/Ry (let
us neglect vapor to simplify the reasoning). Therefore, by virtue of Henry’s law,
the dissolved gas concentration at the bubble wall is Cg = pg, /kg, Where kg is the
Henry constant. We therefore express the difference in concentration between the
bubble wall and at infinity as

C C
CR—szco[’ﬁ—ﬂ]zco[Has—ﬂ] @7
pPo Co Co

where Cy = po/k, is the saturation concentration, that is the concentration of dis-
solved gas in the liquid in equilibrium with the gas at pg. Thus if Co/Co < 1 the
liquid is under-saturated, if Coo/Cp > 1 the liquid is supersaturated (as is the case
in bubbly beverages that are saturated in CO» at a few bars)

For a saturated liquid, we have C,/Cop = 1, so that from Equation (2.7), Cg —
Cos > 0. Fick’s law thus predicts an outward gas diffusion flux, so that the bubble
dissolves increasingly faster as its size decreases. The analytical solution of the
problem has been given by Epstein and Plesset (1950). A practical implication of
this phenomenon is that no stable gas bubble should exist in a quiet saturated liquid.

If the liquid is supersaturated in gas, that is Co./Cp > 1, Equation (2.7) shows
that there exists a critical value of Ry above which the bubble grows by gaining
gas from the liquid, and below which it dissolves. The bubble growth can be easily
observed in a glass of champagne, for example.

In a sound field, an oscillating bubble can grow even in a saturated or under-
saturated liquid. The phenomenon is termed “rectified diffusion” and will be
discussed in Section 3.4.
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2.6 Translational Motion

Common observation tells us that a bubble rises. This is because the buoyancy force
Fa = —4 / 371R8p1g is greater in magnitude than the weight of the bubble Fg =
4 / 371R(3) pbg, Where pj, is the bubble density. After some time, the bubble will reach a
steady velocity, which can be obtained by balancing the buoyancy force F with the
viscous drag force Fy = —4mw Rou1v (the weight being negligible since pp, < p1):

|y
V=—=R;—

3 T

where ] is the dynamic viscosity of the liquid.

In a sound field a bubble undergoes generalized buoyancy forces, termed
Bjerknes forces, and can be either attracted or repelled by zones of high acoustic
pressures. They also undergo mutual attraction or repulsion as they experience the
field radiated by a neighboring bubble. This issue will be presented in Section 5.3.

2.7 Departure from Spherical Shape

Above some critical size, quiet bubbles depart from their spherical shape as they rise
in the liquid, generally flattening their rear part. Radially oscillating bubbles exhibit
various shape instabilities, leading to their destruction, and have a peculiar behavior
near solid boundaries (Section 4).

3 The Forced Spherical Single Bubble

3.1 Introduction

This section recalls the main features of a radially oscillating spherical bubble in
an infinite liquid. This ideal picture may sound unrealistic, and anyone having
looked at a cavitation experiment may have doubts on its practical use. However,
it leads to important fundamental results, whose usefulness in cavitation predic-
tion has been proved. Moreover, levitation experiments of single bubbles, designed
much earlier than their initial use by Gaitan et al. (1992) for single-bubble sonolu-
minescence (SBSL), produced numerous experimental confirmations of theory in a
configuration relevant to the above hypothesis.

This section will refer frequently to recent theoretical and experimental work
developed in the context of SBSL. This is because the latter issue has raised numer-
ous papers presenting either new issues or theoretical and experimental refinements
of known results. Most of these results are also relevant to multibubble fields.

In this section, after presenting the equations governing the forced oscillations
of a spherical bubble and their reduction in the linear case, we will focus on the
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case of inertial oscillations, which is responsible for most of the practical effects
of acoustic cavitation. The thermal behavior of the bubble interior, along with
vapor and gas transport at the interface will next be discussed. The chemistry in
the bubble will only be briefly mentioned, and we refer the reader to the chapter
of K.S. Suslick in this book. Finally, the rectified diffusion phenomenon, possibly
leading to accumulation of gas in the bubble, will be presented.

3.2 Radial Oscillations

3.2.1 Rayleigh—Plesset Equations

Rayleigh (1917) studied the collapse of a spherical empty cavity, whatever its ori-
gin, in order to assess its possible responsibility for the erosion damage on ship
propellers. He derived a differential equation, which is basically the principle of
mechanical energy conservation in the absence of dissipative forces.

We assume a spherical bubble filled with incondensable gas and vapor, in a lig-
uid of infinite extent, and we first neglect gas transport between the liquid and the
bubble. A correct representation of the problem would require the resolution of
conservation equations in both phases, but several levels of approximations have
allowed us to obtain the equation of motion in the form of a second-order ordinary
differential equation.

The most common assumption is the uniformity of the pressure inside the bubble,
which, along with the liquid incompressibility hypothesis, yields the Rayleigh—
Plesset family of equations (Noltingk and Neppiras, 1950; Plesset, 1949). The first
assumption is questionable in view of the order of magnitude of the bubble wall
velocities, which may attain several times the sound velocity in the gas. The valid-
ity of this assumption has been addressed recently by Lin et al. (2002a), and the
Rayleigh—Plesset equation, almost one century after its first derivation, was finally
found to be valid in a very wide range of parameters. In its most basic form, it reads

RR4+ 28 =L iy - 22 —a R_ ) (2.8)
= R g P :
where over-dots denote time derivatives. p(?) is the driving pressure, which can be
understood as either the pressure infinitely far from the bubble, or the pressure that
would be measured in the liquid at the bubble center, if the latter would be absent.
For sinusoidal driving, p(f) can be written as

p(t) = po — pasin(wt) (2.9)

where p, is the driving pressure amplitude, and o is the angular frequency of the
driving. In what follows, we note f = w/2x the frequency, and T = 1/f the period
of the driving. It should be noted that a value of p, greater than pp means that the
liquid pressure becomes negative during some part of the expansion phase.
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The pressure py, in the bubble is the sum of the partial pressures of gas p, and
vapor py. We neglect vapor for now and will detail this issue in Section 3.3.5.
Expression of the uniform pressure in the bubble p,(f) depends on the thermal
behavior of the gas and the equation of state chosen. The gas may be considered as
perfect, except at the end of the collapse, where it reaches high density so that van
der Waals repulsion forces between atoms or molecules become important. Keeping
the assumption of perfect gas, the gas pressure may be written as pg,(Ro / R)? in
the isothermal limit, and Pg,(Ro / R)3V, in the adiabatic limit, where y is the ratio
of the gas specific heats. A more detailed analysis of thermal effects shows that, in
fact, none of these assumptions is uniformly valid, and we will detail this point in
Section 3.3.

3.2.2 Effects of Liquid Compressibility

The compressibility of a medium can be neglected when the typical length of the
system (the bubble radius R) is much lower than the wavelength. The latter is ¢;zgyn,
where T4y, is the characteristic timescale of the bubble oscillation, and ¢| the sound
speed in the fluid.

For linear oscillations, 74y is simply the acoustic period 1/fand R >~ Ry, so
that the conditions reads Ry < cj / f. Compressibility can therefore be neglected
for low frequency, and one may expect compressibility effects for high frequencies.
This is indeed the case and is one of the reasons for damping of the oscillations (see
Section 3.2.3).

For arbitrary oscillations, Tagyn >~ R / R so that compressibility can be neglected
ifR <« ¢1. This is not fulfilled for inertial cavitation, where the bubble wall can attain
c] or even more. Corrections to the Rayleigh equation thus involve corrective terms
in R/cy. Several compressible equations have been derived over the years (see Lezzi
and Prosperetti, 1987; Prosperetti, 1999; Prosperetti and Lezzi, 1986, and references
herein), and it has long been discussed to assess which form was the most appro-
priate, up to the work of Prosperetti and Lezzi (1986; Lezzi and Prosperetti, 1987)
who rigorously derived classes of equations of first and second order. Their formu-
lation recovers many earlier results, among which is the Keller equation (Keller and
Miksis, 1980)

N R\ 3. R
RR(l——)+=-R|1—— ) =
q 2 3¢

1 1+R+Rd ( ) 20, R
01 cl ¢y dt Pg =P R MIR

(2.10)

3.2.3 Linear Oscillations

The radial oscillations of a bubble are in essence non-linear. This can be seen math-
ematically from Equation (2.10), but can be more easily understood from a physical
point of view (Lauterborn and Mettin, 1999): a bubble can be expanded to an
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arbitrary size, but can be compressed only down to near zero radius. However, if one
considers only low amplitude driving pressure, the bubble can respond with small
oscillations around its ambient radius Ry. In this range, the bubble/water system can
be considered as a linear forced oscillator, similar to a mass—spring system excited
by a periodic force. Mathematically, this approximation can be easily obtained by
setting

(1) = poll + Pe®],  R(t) = Ry [1 4 Xeiwf] 2.11)

in Equation (2.10) and neglecting terms of order greater than 1 in X or P. A linear
relation is then obtained between the complex amplitudes of the bubble radius X and
of the driving P:

1 1
X = P 2.12
,olR(z) w(z) — w? + 2ibw ( )
with
1 [ po 172
wy = —{—[377(14-0!5)—015]} (2.13)
Ro | m

2

Z A R pdas) g, (2.14)

PIRG cl PIwRG
where 7 is either 1 for isothermal, or y for adiabatic behavior of the gas, respectively.
More generally,  may take intermediate values, known as polytropic exponent, rep-
resenting in an approximate way the diffusive heat transport between the bubble and
the liquid (see Section 3.3). The damping factor b is the sum of three contributions:
the first is due to viscous dissipation in the liquid, the second corresponds to energy
loss by acoustic radiation in the compressible fluid, and the last owes to energy dis-
sipation by heat diffusion in the gas (3 denotes the imaginary part of a complex
number, and the value of ® can be found in Prosperetti, 1977a).

From Equation (2.12), we can recover expected results for the bubble as a forced
harmonic oscillator, which we think is important to review here:

e for w < wyp, the bubble radius is out of phase with the driving pressure (if we
neglect the term 2ib). Thus, the bubble expands in the depression phase of the
driving, which is the intuitively expected behavior.

e for w > wy, the bubble radius is in phase with the driving pressure. This may
sound intriguing since in that case, the bubble expands as the external pressure
increases. This owes to the predominance of liquid inertia at high frequencies. It
has practical consequences on the direction of the Bjerknes force (Section 5.3.1),
or the acoustic opacity of bubbly liquids to waves of frequency larger than the
bubble’s resonance frequency (see Section 5.1.4).
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e the bubble oscillations become increasingly large for frequencies near wq. It
should be noted that such large amplitudes may invalidate the basic hypothesis
on the weakness of the oscillations.

Acoustic cavitation is generally far from the linear regime, but the above remarks
can help to understand some basic features. However, they predict wrong results at
high drivings, especially for Bjerknes forces (Section 5.3.1).

Experimentally, the driving frequency f = w/2m is a fixed parameter, while
all bubbles ambient sizes may a priori exist in the liquid. It is therefore useful to
define the resonance radius Ryes, which is the radius that a bubble should have to
be resonant at w. It can be obtained from Equation (2.13), replacing wo by @ and
Rop by R,. Neglecting surface tension terms (og < 1), and assuming isothermal
oscillations, we get

1 (3p0\ 2
Ries = — | — 2.15
T 2 < Pl ) 19

In the case of a bubble in water in ambient conditions, we may retain the approx-
imate relation Rpesf = 3 m - s~L. For f = 20 kHz, the resonant radius is 150 pwm,
while for f = 1 MHz, it drops down to 3 pm.

3.2.4 Non-linear Oscillations

When excited at larger amplitudes, the bubble oscillations can exhibit a rich col-
lection of non-linear phenomena. To get a rapid insight into these behaviors, it is
convenient to vary one or several parameters (among Ry, p,, and f) and to display
only the maximum radius attained by the bubble over one cycle for this parameter.
The curves obtained are termed “response curves.” A large collection of such curves
can be found in Lauterborn and Mettin (1999). We summarize these results below.
Non-linear resonances: When the ratio of the linear resonance frequency and
the driving frequency fo/f (or equivalently the ratio of the resonant radius to the
ambient radius R;/R() approaches a rational number n/m, a non-linear resonance
can occur and the amplitude of the bubble oscillations increases. This can be seen in
the small peaks in the lower curve of Fig. 2.3. The 1/1 peak corresponds to the linear
resonance frequency. Following the accepted terminology, the resonances n/1 are
called harmonic resonance, the resonances 1/m are sub-harmonic resonances, while
rational ratio n/m resonances are ultra-harmonic resonances (Lauterborn, 1976).
Period doubling and chaos: Period doubling denotes the destabilization of a non-
linear oscillator, when varying one parameter (here Ry), to oscillations with a period
twice as large as the driving. In this case two different maxima would be recorded,
the first on even driving periods, the second on odd ones. This can be visualized
by a separation of the response curve in two branches (see upper curve in Fig. 2.3
near Ry = 45 pm). Changing the parameter yields further destabilizations toward
period-4, period-8, and so on, ending in a chaotic regime. The latter is aperiodic and
a different maximum is recorded at each driving period. This yields the clouds of
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Fig. 2.3 Response curves for an air bubble driven at f = 20 kHz (the resonance radius is about
150 wm in this case), p, = 70 kPa (lower curve), and p, = 130 kPa (upper curve) as a func-
tion of the bubble ambient radius. The fractional numbers indicate the order of the resonances.
Adapted from Sonochemistry and Sonoluminescence (1999, pp. 63-72), in the chapter “Nonlinear
Bubble Dynamics: Response Curves and More” by Lauterborn and Mettin. With kind permission
of Springer Science and Business Media

dots in the upper curve of Fig. 2.3 (period-4 and higher are scarcely visible because
they occur in a narrow parameter range). These successive transitions are termed
“sub-harmonic route to chaos.”

The experimental consequence of period doubling is the appearance of a spec-
tral component at f/2 in the emitted cavitation noise (Neppiras, 1969). The route
to chaos has furthermore been demonstrated experimentally by Lauterborn and
Cramer (1981a, b), who recorded f/2, f/4 spectral components, and finally broad-
band noise, as the driving was increased. The appearance of either a sub-harmonic
spectral component f/2, or a broadband spectrum, is generally considered as a
mark of strong cavitation, and has been correlated experimentally to erosive effects
(Gaete-Garreton et al., 1997).

3.2.5 Dynamical Blake Threshold

A noticeable change can be observed between the two curves of Fig. 2.3 in the
range [0, 10] wm. At 70 kPa, the response curve is monotonic, while at 130 kPa,
the curve passes to a very marked maximum. This peak is termed “giant resonance”
by Akhatov et al. (1997a), and is much larger than the main resonance 1/1. This
feature has important implications for many cavitation phenomena, especially for
diffusional stability of bubbles in levitation cells (Section 3.4.3), and inversion of
Bjerknes forces (Section 5.3.1).

A zoom on the small range of R( can be seen in Fig. 2.4, for 130 kPa and higher
drivings. It is seen that, starting from small radii, the response curves increase sud-
denly for a driving-dependent critical value of Ry. If conversely, p, were increased
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Fig.2.4 Same as Fig. 2.3 in arange of smaller R( and large drivings. Adapted from Sonochemistry
and Sonoluminescence (1999, pp. 63—-72), in the chapter “Nonlinear Bubble Dynamics: Response
Curves and More” by Lauterborn and Mettin. With kind permission of Springer Science and
Business Media

for constant Ry, a similar brutal transition would be found (somewhere between the

two curves of Fig. 2.3).
This is exemplified in Fig. 2.5, which represents one period of oscillation of a
1 wm bubble for three very close value of the driving p, near 143 kPa, simulated

0 02 04 06 0.8 1
t/T

Fig. 2.5 Upper graph: dynamics of a 1-um bubble driven at f = 20 kHz, driving amplitudes
pa = 142 kPa (dash-dotted line), 143.5 kPa (dashed line), and 144 kPa (solid line). The transition
from stable to inertial oscillations can be clearly identified. Lower graph: corresponding driving
pressures. The three curves are indistinguishable
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from Equation (2.10). The bubble dynamics switches drastically from quasi-static
oscillations (dash-dotted curve) to large amplitude ones. It is interesting to note that
the three curves are indistinguishable at the beginning of the cycle, up to ¢ slightly
above 0.2T.

In fact, this transition occurs at the Blake threshold, calculated from static argu-
ments in Section 2.3. Its physical origin is a competition between the explosive
motion caused by the liquid negative pressures and the stabilizing effect of sur-
face tension (Akhatov et al., 1997a; Hilgenfeldt et al., 1998; Lauterborn and Mettin,
1999; Louisnard and Gomez, 2003). For the lowest driving, surface tension prevents
the bubble to expand, while it can no longer do so for the largest. For a fixed p,,
Equation (2.5) can be inverted to yield a critical radius Rgrit, which would coincide
with the lift-off of the response curves in Fig. 2.4.

3.2.6 Inertial Oscillations

The upper curve in Fig. 2.5 displays an explosive growth, stopped by the re-
compression of the driving. The growth is then followed by a rapid collapse because
the low internal pressure in the bubble at its maximum radius cannot retain the liquid
to flow inward. This is the characteristic of “inertial oscillations.” The term “iner-
tial” refers to the large explosive expansion of the bubble (0.25 < /T < 0.35 in the
upper curve of Fig. 2.5), during which the motion is mainly governed by the liquid
inertia. Inertial bubbles have been termed “transient bubbles” in the past, since at
that time many experimental observations evidenced bubbles undergoing fragmen-
tation after collapse (see Section 4). The SBSL experiments demonstrate that this
is not necessarily the case, and SBSL bubbles are a typical example of inertial and
stable bubbles.

Inertial oscillations appear in the parameter space just above the Blake thresh-
old, and are in fact the only bubbles present in the high-pressure zone of strong
sound fields (see Section 5.4.5). Inertial bubbles are the main contributors for most
applications, owing to the extreme conditions mentioned hereafter.

3.2.7 The Bubble Collapse

We now turn to a brief description of the bubble collapse. The potential energy
stored during expansion is then converted into kinetic energy of the liquid and the
inward velocity increases drastically, possibly exceeding the sound velocity in the
liquid. This is the original problem treated analytically by Rayleigh (1917), who
derived scaling laws for the radius versus time (see also Hilgenfeldt et al., 1998;
Lofstedt et al., 1993).

The collapse is stopped by the compression of incondensable gas in the bubble.
The gas density increases and the van der Waals repulsion forces between molecules
or atoms prevent further compression. The bubble rebounds on a timescale of
the order of a few nanoseconds. The end of the collapse is almost adiabatic (see
Section 3.3.4), and the gas is heated up to thousands of Kelvin, which can pro-
mote chemical reactions and sonoluminescence. The bubble internal pressure may
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increase up to 1 GPa or more, and the outward acceleration as the bubble rebounds
may reach 10'? g. The short timescale involved can reveal the effect of the com-
pressibility of the liquid. A diverging spherical wave is emitted, which causes energy
loss by radiation (Hilgenfeldt et al., 1998). This wave may steepen into a shock,
whose characteristics have been calculated by Benjamin (1958), Tomita and Shima
(1977), and Fujikawa and Akamatsu (1980) and demonstrated experimentally by
Pecha and Gompf (2000). Shockwaves emitted from collapsing bubbles are held
responsible for particle desagglomeration and emulsification (Li and Fogler, 2004).

After the rebound, the bubble expands again and undergoes secondary collapses,
termed “‘afterbounces.” The decay of these afterbounces is closely linked to the
energy loss in the primary collapse, which in turn depends on several parame-
ters: quantity of solvent in the bubble, thermal diffusion, and chemical reactions
among others. The frequency of these rebounds is more or less the free frequency
of the bubble. Indeed, the collapse acts mainly as an impulse excitation on a nearly
free bubble, to which the latter responds with oscillations at its Eigen-frequency.
These afterbounces play an important role in the spherical stability of bubbles (see
Section 4).

Let us note that the energy restored in the collapse, in any form, is the poten-
tial energy stored during expansion. The latter decreases with frequency, since the
bubble has less time to expand. One therefore expects less intense collapses as fre-
quency increases, but this competes with the higher number of collapses per unit
time. At the scale of a single bubble, some effects may therefore exhibit an opti-
mum as frequency varies. A generalization for multibubble configuration is difficult
because frequency also has effects on the acoustic field and the bubble size distribu-
tion. However, such effects have been observed in sonochemistry (see for example
Pétrier and Francony, 1997).

3.3 Thermal Effects in the Bubble

3.3.1 The Physics

When the bubble is compressed, the gas in the bubble is heated. Because the sur-
rounding liquid is colder, heat can escape by diffusion from the bubble toward the
liquid. The center of the bubble is therefore hotter than the surface, and the oppo-
site holds during the bubble expansion. Hence, the gas is not in thermal equilibrium
and, rigorously, its behavior is neither isothermal nor adiabatic. Furthermore, the
existence of temperature gradients implies an irreversible loss of energy over one
oscillation cycle.

One may first wonder if temperature gradients also exist in the liquid. During
bubble compression, for example, does this outward heat flux increase noticeably
the temperature of the liquid near the bubble surface? This is an important issue for
applications of cavitation, since the liquid may contain non-volatile species that may
be altered by high temperatures (chemical reactions for sonochemistry or phase tran-
sition for sonocrystallization). A rough estimate of the liquid temperature increase



2 Acoustic Cavitation 27

near the bubble surface can be obtained by using the continuity of the heat flux at
the bubble (Prosperetti et al., 1988):

Tk =To _ (Kgcpgpg)l/z (2.16)

Tc—Tg KCp o

where TR is the temperature of the liquid at the bubble surface, 7¢ is the tempera-
ture at the bubble center, and Ty is the undisturbed liquid temperature far from the
bubble. K, Cp, and p are the thermal conductivities, specific heats, and densities of
the gas (subscript g), and of the liquid (subscript 1), respectively. The right-hand side
being typically of the order of 107> to 1072, the temperature variations of the liquid
near the bubble surface are expected to be two or three orders of magnitude smaller
than the ones at the bubble center.

The calculation of the gas pressure in the bubble (p; in Equation (2.10)) requires
the knowledge of the temperature field. The isothermal and adiabatic approxima-
tions avoid this difficulty, but should be considered as extreme ideal cases. The
real behavior is governed by the equation of energy conservation in the gas phase
(Prosperetti, 1991; Prosperetti et al., 1988), but it is instructive to draw a general pic-
ture from the comparison of the timescale of bubble dynamics Tayn, and the diffusive
timescale tg4ifr, whose ratio is the Peclet number Pe.

3.3.2 Linear Oscillations

For linear oscillations, Tgy, = 1 / f and t4iff = R% / Xg» Where xo, = K, / chpg is the
diffusivity of the gas, so that the thermal Peclet number is Pey = tgisr / Tdyn =
R%f/ Xg- A small value of Pey (for a low frequency, or small bubbles) means
that the diffusive timescale is very small, so that the gas will equilibrate immedi-
ately in response to a compressional heating and the bubble behaves isothermally.
Conversely, for a large value (for high frequency, or large bubbles), heat cannot
escape from the bubble, and the gas behaves adiabatically. For intermediate val-
ues, temperature gradients exist in the bubble interior, and part of the compressional
heating can escape from the bubble.

The resolution of the problem within the linear approximation yields the gas
pressure as a linearized form of

Ro 3n
DPg = Dg (E) (2.17)

where 7 is called “polytropic exponent” (Devin, 1959; Prosperetti, 1977a) and can
be expressed as a function of Pey. The limit cases n=1 for Peg — 0, and n=y
for Pey — o0, are recovered in the isothermal and adiabatic limits, respectively.
It should be noted that thermal diffusion also introduces a net energy loss over one
period, contributing to the damping of the oscillations (see the third term in Equation
(2.14)).
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3.3.3 Non-linear Oscillations

The above simplified picture is satisfactory for linear or weakly non-linear oscilla-
tions, and far from resonances, and in agreement with experimental results (Crum,
1983; Crum and Prosperetti, 1983). It is known to fail, however, near resonances
(see the discussion in Crum and Prosperetti, 1984).

For non-linear oscillations, a correct treatment of thermal diffusion in the bubble
requires the resolution of the energy conservation equation in the gas. Approximate
analytical solutions were proposed by Miksis and Ting (1984), Prosperetti (1991),
and Kamath et al. (1992). Several numerical schemes have also been developed
(Kamath and Prosperetti, 1989; Kamath et al., 1993; Prosperetti et al., 1988) and
were shown to modify the response curves, especially near resonances, but were
restricted to moderate drivings.

3.3.4 Inertial Bubbles

The maximum temperature obtained at the end of a perfect spherical collapse is a
crucial issue for sonoluminescence and sonochemistry.

The main characteristic of inertial cavitation is the short timescale of the collapse,
which may be much shorter than the diffusion timescale. Thus, during the final part
of the collapse, the gas is expected to behave almost adiabatically. This idea was
followed in the early paper of Noltingk and Neppiras (1950) in order to estimate the
final collapse temperature:

R 3(y—1)
T(Rmin)=To( ' ) (2.18)

Rmin

where R; is the radius from which the behavior starts to be adiabatic. Noltingk and
Neppiras (1950) considered the transition to occur at maximum radius. This result
already indicated that in otherwise similar conditions, higher temperatures should
be obtained for higher values of y, so that a collapsing mono-atomic gas bubble
is hotter than a polyatomic gas bubble (air for example). This is why sonochemical
yields can be enhanced by bubbling the solution with argon or other noble gases. The
decrease of multibubble sonoluminescence intensity when adding a small propane
fraction in argon is a clear experimental demonstration of this effect (McNamara
et al., 1999).

The timescale of the bubble expansion is three or four orders of magnitudes larger
than that of the collapse, and can be much larger than the diffusive timescale, so that
the bubble expansion and the initial stage of the collapse can be isothermal, the
final stage being adiabatic. Hence, no two approximations are uniformly appropri-
ate. In fact, the behavior of the gas in the different parts of the bubble oscillation
now depends on the instantaneous value of the Peclet number Pe(?) = taiff/Tayn,
where tgifr = R(t)?/ Xg and Tgyy = R(1)/|R(?)|. Tt is therefore tempting to extend
the linear results by defining a dynamic polytropic exponent from Pe(z), so that the
gas behavior automatically varies between isothermal and adiabatic. This approach
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was used by Hilgenfeldt et al. (1999b) and independently by Storey and Szeri
(2001), and were used successfully within a self-consistent theory of single-bubble
sonoluminescence (Hilgenfeldt et al., 1999a, b).

A refined approach accounting for thermal (and also mass) diffusion, using a
dynamic thermal diffusion length has been proposed by (Brenner et al., 2002;
Toegel et al., 2000a), and found to be in good agreement with direct Navier—Stokes
calculations of Storey and Szeri (2000). Yasui (1997) proposed a similar model inde-
pendently. During compression, part of the compressional heat escapes toward the
liquid by thermal diffusion, and therefore, the lower the thermal conductivity of the
gas, the hotter the temperature reached in the bubble. This suggested that for noble
gas bubbles, the collapse temperature should increase in the series He, Ne, Ar, Kr,
Xe. This is indeed the case and is demonstrated unambiguously by the experimental
results of Didenko et al. (2000) for multibubble cavitation.

3.3.5 Solvent Evaporation and Condensation

When the bubble expands, the internal pressure decreases, so that the volatile species
must evaporate into the bubble to restore equilibrium. Conversely, when the bubble
shrinks, condensation takes place. Therefore, if there is equilibrium at the bubble
surface, accounting for the presence of vapor can be done easily by setting the partial
vapor pressure py in the bubble to py eq, the number of molecules of solvent adjusting
to the bubble volume variations.

However, in view of the very short timescale of the bubble collapse, two pro-
cesses limit this mass transport. First, evaporation and condensation have finite
kinetics, so that the vapor in the bubble may not have enough time to condense
during the collapse. Secondly, the vapor is not alone in the bubble and its diffusive
transport through other species (typically air or any incondensable gas) can be lim-
ited. Storey and Szeri (2000) considered both phenomena in their model and found
that the water transport in sonoluminescing bubbles was mainly diffusion-limited.

As seen above, the final temperature of the adiabatic collapse is very dependent
on y. Any solvent vapor present in the bubble lowers y and therefore the final
bubble temperature. It is therefore expected that the presence of a volatile species in
the liquid will cool the bubble content. This is evidenced by experiments on SBSL
intensity in water contaminated with various alcohols (Ashokkumar et al., 2000,
2002; Toegel et al., 2000b). Similarly, lowering the temperature decreases the vapor
pressure, lowers the solvent evaporation into the bubble, and should thus increase
the collapse temperature. This is confirmed by the experiments of McNamara et al.
(1999) in octanol at various bulk temperatures. The higher brightness of SBSL in
cold water (Barber et al., 1994; Hiller et al., 1992; Vazquez and Putterman, 2000)
is also attributed to this effect (Storey and Szeri, 2000, 2002; Toegel et al., 2000a;
Vazquez and Putterman, 2000; Yasui, 2001).

The effect of vapor pressure is exemplified in Fig. 2.6, obtained by using the
model of Toegel et al. (2000a) for a 4 wm argon bubble in water at 25°C (solid lines)
and 1°C (dashed lines), driven at 120 kPa, 26,500 Hz. The upper graph represents
the radius-time curves. The bubble expands less in cold water because less vapor
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Fig. 2.6 Radius-time curves (upper graph) and number of water molecules in the bubble (lower
graph) for a 4-pum Argon bubble in water at 25°C (solid lines) and 1°C (dashed lines), driven at
120 kPa, 26,500 Hz. The horizontal thin solid line in the lower graph is the number of Argon
molecules in the bubble

evaporates, which leads to a shift between the two collapse times. The lower graph
represents the number of water molecules in the bubble, and the horizontal line is
the number of argon molecules. In hot water, it is seen that the number of water
molecules at the end of the expansion is ten times higher than the number of gas
molecules. It is seen that in both cases, some water remains trapped in the bubble
after the first collapse, because water transport from the bubble center toward the
surface is limited by diffusion through argon. Similar curves can be found in Storey
and Szeri (2000). Finally, the collapse temperature for cold water is 9,600 K and
drops down to 9,020 K for hot water. This difference would increase with higher
drivings.

3.3.6 Relevance to Sonochemistry

Evaporation is fundamental in acoustic cavitation and constitutes the cornerstone of
sonochemistry: the solvent contains the “fuel” for the reactions, which, once evap-
orated in the bubble, is heated by the nearly adiabatic compression, and can be
dissociated into radicals, so that the bubble is filled with a mixture of polyatomic
species. This process is termed ‘“sonolysis.” The endothermic reactions occurring
in the bubble also consume a part of the collapse energy and therefore also influ-
ence the collapse temperature. Didenko et al. (2000) showed experimentally that by
fixing the vapor pressures of octanol and dodecane to the same value, a noticeably
hotter collapse was obtained in octanol, which suggests that the octanol expends
less energy in its chemical reactions than dodecane.
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A simple model in the form of a differential equations system is now available
for bubble inertial oscillation accounting for heat and mass transport, and chemistry
involving H, C, O, and N (Storey and Szeri, 2001, 2002; Yasui, 2001). This model
yields interesting results and confirms some tendencies observed in sonochemistry
(see, for example, Storey et al., 2001, for methane formation from water—methanol
mixtures).

3.3.7 Measuring Cavitation Temperatures

Suslick and co-workers, in their early works, used reactions of known temperature-
dependent kinetics to determine the temperature attained in cavitation bubbles (see
Suslick et al., 1999, for a review). A more efficient and reliable method consists in
recording the sonoluminescence spectra of species whose emission properties are
known, used as thermal probes. The authors used molecular emission of diatomics
(C») (Flint and Suslick, 1991), or emission from metal atoms (Fe, Cr, Mo) origi-
nating from volatile organometallics (McNamara et al., 1999). The comparison of
recorded and calculated spectra yields an estimation of the collapse temperature
with good accuracy. The order of magnitude of the temperatures attained reaches
5,000 K in some cases.

The temperature attained in SBSL experiments is more difficult to assess since
the luminescence spectrum is continuous (although lines could be obtained in some
cases) and the emission mechanism is controversial. On the basis of radiative col-
lision processes in a weakly ionized gas, temperatures near 20,000 K have been
proposed (Brenner et al., 2002; Hammer and Frommhold, 2000). Recent SBSL
experiments in sulfuric acid yielded a 2,700-fold increase in light intensity, and
following the authors, the bubble would contain a hot plasma core at 30,000 K
(Flannigan and Suslick, 2005; Hopkins et al., 2005).

3.4 Rectified Diffusion

3.4.1 The Physics

As seen in Section 2.5, a quiet bubble in a saturated liquid dissolves, owing to
surface tension. When the bubble undergoes radial oscillations, the situation may
change. In the expansion phase, the gas pressure in the bubble decreases and so
does the dissolved gas concentration at the bubble wall Cr = p,(#)/kg, by virtue of
Henry’s law. When the bubble shrinks, the concentration Cg increases. Hence, an
oscillating concentration gradient appears in the liquid, resulting in an oscillating
diffusion flux. During expansion gas enters in the bubble, and during contraction
the bubble loses gas. The process has a non-zero average for the following reasons:

e during expansion, the area for gas exchange is higher, so that there is more gas
entering the bubble than gas leaving it during contraction
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e Dbecause of spherical symmetry and liquid mass conservation, the volume of liquid
surrounding the bubble becomes thinner during expansion than during contrac-
tion; the outward concentration gradient is thus higher during expansion, and
Fick’s law predicts a larger inward flux during expansion

Both phenomena predict a net gas accumulation in the bubble over one oscil-
lation cycle and can produce a noticeable bubble growth over many periods. This
phenomenon is known as rectified diffusion (RD).

3.4.2 Rectified Diffusion Threshold

The above arguments would predict that an oscillating bubble always grows. In fact,
surface tension still promotes dissolution, and a competition takes place between
both phenomena. One therefore expects that above a certain oscillation level, the
bubble grows, whereby it dissolves in the opposite case. Since the bubble oscilla-
tions increase with the driving, this analysis predicts a threshold for bubble growth,
termed “rectified diffusion threshold,” which defines a curve in the (Ro, p,) plane.
Above the threshold the bubble grows (Ry increases), while below the threshold it
dissolves (R decreases). On the threshold, there is diffusive equilibrium on aver-
age, and the bubble keeps a constant Ry. A negative slope of the RD threshold in the
(Ro, pa) plane corresponds to an unstable equilibrium, while positive slope points
are stable ones.

3.4.3 Bibliography

The first theoretical treatment dates back to Blake (1949), who did not account for
liquid convection. Hsieh and Plesset (1961) proposed the first complete formulation
of the problem, and derived an approximate solution for linear oscillations, in good
agreement with the measurements of Strasberg (1961). A theoretical breakthrough
was performed by Eller and Flynn (1965), who obtained a solution of the problem
usable for any bubble dynamics R(7) calculated separately, and opening the the-
ory to non-linear and/or large amplitude oscillations. The mean outward flux across
the bubble wall over one period was found to be proportional to the time-averaged
concentration difference:

(2.19)

(Cr)a — Co = Cp [(pg>4 - Cﬁ}

Po Co

where the notation (.)4 refers to the non-linear time average
 Jy sR (@) dr
===

Jo @ dr

This expression can be compared with the static case, Equation (2.7). The thresh-
old is obtained for (pg)4/po = Coo/Co. The average gas pressure (py)4 decreases as

(g)a
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the bubble oscillation amplitude increases. One therefore expects that the threshold
will be lower for any combination of parameters increasing the oscillation ampli-
tude, for example, by increasing the driving, approaching a linear or non-linear
resonance, or for inertial oscillations.

Further measurements were carried out by Eller (1972), showing good agree-
ment with the theory of Eller and Flynn (1965) for the threshold. However, the
measured growth rates were found to be much higher than predicted by the the-
ory. This was confirmed by Gould (1974), who established a correlation between
this abnormally high growth rate with the appearance of bubble shape instabilities.
Crum (1980) repeated threshold and growth rate measurements, and also derived
analytical expressions of both quantities for linear oscillations, taking into account
the damping of the oscillations because of thermal effects in the bubble (see Section
3.3). He found excellent agreement for the threshold, and also for the growth rate
for pure water, but noticed that the addition of a small amount of surfactant yielded
a fivefold increase of the growth rate without any discernible bubble surface insta-
bility. This effect was attributed qualitatively to a layer of surfactant adsorbed at the
bubble surface, and was later confirmed theoretically by Fyrillas and Szeri (1995).
Crum and Hansen (1982) compared different expressions of the rectified threshold
and proposed an interesting discussion on the case of pulsed driving.

The linear threshold of Crum (1980) and Crum and Hansen (1982) is presented
in Fig. 2.7. As expected, a strong decrease is visible near the linear resonance. It is
important to note that this threshold yields wrong results near non-linear resonances,
and also for high drivings, typically near p, >~ po (see Section 3.4.4).

Church (1988) calculated the rectified diffusion threshold in a wide parameter
range, without relying on the hypothesis of linear oscillations. His results showed
the existence of various positive slope branches, raising for the first time the pos-
sibility of small diffusively stable bubbles. Later, starting a series of papers on the
possible effect of surfactants on rectified diffusion, Fyrillas and Szeri (1994) solved
in an elegant manner the convection—diffusion problem by perturbation methods,

P |
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Fig. 2.7 Rectified diffusion threshold based on a hypothesis of linear oscillations. Solid curve:
C1/Co = 1 (saturation); Dashed curve: C1/Cy = 0.9; Dash-dotted curve: C1/Cp = 0.8
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and were the first to obtain a consistent expression of the growth rate, valid either
near the threshold or not. In a second paper (Fyrillas and Szeri, 1995), they examined
the effect of surfactants, possibly resisting gas transport across the bubble inter-
face, and found growth rates in agreement with earlier experiments, strengthening
the early hypothesis of Crum (1980). They finally proposed a theoretical formula-
tion for the oscillatory adsorption/desorption process of a surfactant at the surface
of an oscillating bubble, and demonstrated that the average quantity of surfactant
adsorbed over one period was higher than in the equilibrium case (Fyrillas and Szeri,
1996).

Meanwhile, the first experiments on SBSL revealed the actual existence of
a diffusively stable cavitation bubble, neither growing, nor dissolving (Gaitan
et al., 1992). This unusual feature in cavitation was investigated by several authors
(Akhatov et al., 1997a; Hilgenfeldt et al., 1996; Lofstedt et al. 1995), who calculated
that diffusively stable bubbles can be obtained in degassed conditions and that they
correspond to the appearance of a positive slope of the rectified diffusion threshold.
However, Barber et al. (1995) found that the ranges of dissolved gas concentrations
for diffusive stability were lower by a factor 100 in pure argon than in air. The
agreement with theory was found good for argon bubbles, but not for air bubbles,
for which theory predicted growth instead of the stability observed experimentally.
Lofstedt et al. (1995) and Barber et al. (1997) therefore postulated an “anomalous
mass flow” necessary to reject more air in the compression phase than predicted by
rectified diffusion theory. This key point of SBSL was solved by Lohse et al. (1997)
and Lohse and Hilgenfeldt (1997), who proposed that the air in the bubble was
heated enough to allow dissociation of O, and N», the product being easily expelled
from the bubble. The air bubble in SBSL experiments were thus found to be in fact
an argon bubble (present as 1% in air). This hypothesis is now accepted and has
received experimental confirmation (Ketterling and Apfel, 1998; Matula and Crum,
1998). It is interesting to note that the theory of rectified diffusion, almost a half-
century after its first theoretical treatment, indirectly supplied a clue to explain this
singular chemical effect.

3.4.4 Merging of the Blake and Rectified Diffusion Thresholds
for Small Bubbles

Very small bubbles are prevented from oscillating strongly by surface tension, and
hence they need a strong driving to become inertial, which is evidenced by the
increase of the Blake threshold toward small radii (see left part of Fig. 2.1). If
their radial oscillation is so constrained, one may suspect that neither can they grow
by rectified diffusion. This therefore suggests that the Blake and rectified diffusion
thresholds would almost be the same for small ambient radii.

This is indeed the case, as demonstrated analytically and numerically by
Louisnard and Gomez (2003) (this property was already apparent in the results of
Church (1988), but remained unnoticed by the latter author). Figure 2.8 shows the
RD threshold, computed from the Keller equation (2.10) (thick solid line) for sat-
urated water (Co, = 1) in a 26.5 kHz acoustic field. Also shown is the threshold
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Fig. 2.8 Exact RD threshold for saturated water (C; = 1) calculated numerically from the Keller
equation (thick solid line); Blake threshold from Equation (2.5) (thick dashed line); and linear
theory RD threshold calculated from Crum and Hansen (1982) (thick dot-dashed line). The thin
lines represent respectively the exact (solid) and linear (dot-dashed) RD thresholds calculated for
slightly degassed water (C1 = 0.8). Adapted from Louisnard and Gomez (2003)

calculated from the linear theory (Crum, 1980; Crum and Hansen, 1982, thick dot-
dashed line); it is readily seen that for bubbles of small ambient radii, the linear
theory fails to predict the pressure threshold value, but for larger bubbles the exact
threshold merges with the linear one, at least in the range of radii considered here.
The Blake threshold is also represented (thick dashed line), and it is seen that the
two curves merge for acoustic pressure greater than, say 1.4 bar, for saturated water.
Performing the same calculations for slightly degassed water (Co, = 0.8) yields the
same conclusion, as attested by Fig. 2.8 (the numerical RD threshold is represented
by a thin solid line and the linear one by thin dot-dashed line). The computation was
also repeated for 50 and 100 kHz frequencies, leading to the same conclusion (not
shown).

This feature casts some doubts on what is referred to as the “gaseous cavitation
cycle” by Neppiras (1980), which states that small bubbles would grow by rectified
diffusion by oscillating in a stable manner (“stable” should be understood in this
context as non-inertial) up to the Blake threshold, where they oscillate inertially,
break up, and seed new small bubbles. Indeed, for high drivings, the above result
indicates that the region in the parameter space for growing non-inertial bubbles is
negligible. This might suggest that other growth mechanisms, for example coales-
cence under secondary Bjerknes forces (Section 5.3.2), may initially participate in
the development of the bubble fields (Louisnard, O. (2001). Theoretical Study of
Competition Between Dissolution and Coalescence of Small Bubbles in an Acoustic
Field, “Unpublished”; Louisnard and Gomez, 2003; Mettin, 2005).

Rectified diffusion however occurs in cavitation fields at moderate drivings (say
below 100 kPa). In this case, bubbles can indeed grow by rectified diffusion toward
large sizes, as attested by the experiments of Crum (1980), and this phenomenon can
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be used for degassing applications (Kapustina, 1973). Even for strong drivings, there
always exist lower pressure zones in the liquid, where some bubbles can undergo
rectified diffusion.

4 Non-spherical Oscillations

4.1 Introduction

Two phenomena prevent the bubble from losing its sphericity: the first one is surface
tension and the second is of dynamical origin (we refer the reader to an interesting
discussion by Prosperetti, 1999). Conversely, various effects may induce loss of
sphericity. First, the environment of the bubble may itself deviate from isotropy.
One may think about the influence of a neighboring bubble or a solid boundary,
the anisotropy of the acoustic field itself, the effect of gravity that introduces a
translational motion, even in the case of levitation experiments, or steady liquid
motion. Furthermore, a radially oscillating bubble can develop surface oscillation
by an intrinsic shape instability mechanism.

4.2 Shape Instabilities

The dynamic stability of a purely radial motion has been investigated in the early
work of Plesset (1949). The local bubble radius is expanded as the sum of spherical
harmonics:

0,90 = R0 + Y an()Y,(60,) (2.20)

n=1

Assuming potential flow, writing the continuity equations at the bubble interface
and performing a linear stability analysis yields

i 4 3R, NE D(n +2)—2 =0 221
a;ﬂr?an—(n— ) I—e—(n+ )(n+ )m ay = (2.21)

The mode n = 1 corresponds to a translational motion of the spherical bubble
with a velocity v = a;. For n>2, the second term in the square bracket shows that
surface tension has a stabilizing role, increasing with the mode number. The first
term has a destabilizing role when R > 0, that is, when the acceleration is oriented
from the gas toward the liquid. This is the classical statement of the Rayleigh—
Taylor instability, originally derived for a plane interface. Here, it can appear at the
end of the collapse, as the bubble rebounds, where R can reach huge values. Its
occurrence is thought to limit the stability region of SBSL for increasing drivings p,
(see below). The second term in Equation (2.21) is seen to act as a negative damping
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when R < 0, that is, when the bubble is collapsing (Plesset and Mitchell, 1956), and
therefore favors instability during the bubble collapse.

Another type of instability, termed “parametric” or “Faraday instability” (well
known in the case of a plane interface), accumulates over time because of the
periodic character of the square bracket in Equation (2.21). Figure 2.9 exhibits
short exposure photographs of cavitation bubbles undergoing this type of instability
(Kornfeld and Suvorov, 1944).

Fig. 2.9 Snapshots of shape instable bubbles. Reused with permission from Kornfeld and Suvorov
(1944, p. 495). Copyright 1944, American Institute of Physics

Parametric instabilities have been correlated with an erratic translational motion
of the bubble by Eller and Crum (1970) for drivings lower than 70 kPa, near 20 kHz.
Their approximate calculations of thresholds for parametric instability compares
reasonably with the measured thresholds for erratic drift.

The theory of Plesset has been extended by Prosperetti (1977b) to account for
viscous effects, and simplified in the limit where viscous effects are concentrated in
a diffusion layer near the bubble (Hilgenfeldt et al., 1996; Prosperetti and Seminara,
1978).

4.3 Stability Thresholds

In SBSL experiments, when p, is increased, the sonoluminescing bubble suddenly
disappears (near p, = 150 kPa, Gaitan et al., 1992). This is attributed to the appear-
ance of Rayleigh—Taylor instability as the bubble collapses. Besides, in the same
experiments, if water is not degassed enough, bubbles may grow by rectified diffu-
sion (emitting SL) up to a critical size (near 5 pm) where they break, pinch-off a
microbubble, and start to grow again (this process is known as unstable SBSL). The
upper critical size is found theoretically to correspond to parametric instabilities.

To explain these findings, Brenner et al. (1995), Hilgenfeldt et al. (1996), and
Brenner et al. (2002) established the region in the parameter space where stable and
unstable SBSL can be obtained. From this formulation, they sought the domain in
the parameter space (Ro, p,), where the bubble remains spherical against both para-
metric and Rayleigh—Taylor instability. The former was found to limit the stability
domain toward increasing Ry, while the latter did so for increasing py.

The obtained results were then refined by several authors, taking into account the
variations of the gas density during collapse (Lin et al., 2002b; Yuan et al., 2001),
and/or using a more realistic model for the bubble radial oscillations. The latter
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point is crucial especially for predicting the Rayleigh-Taylor instability thresh-
old, which is very sensitive to the precise value of R at the end of the collapse.
Prosperetti and Hao (1999) showed that accounting for thermal effects in the gas
reduced R sufficiently to suppress the Rayleigh-Taylor instability in the SBSL range
of parameters. The same conclusion was reached by Augsdorfer et al. (2000) and
Yuan et al. (2001), while Lin et al. (2002b) recalculated the instability thresholds
accounting for variations of gas density and for thermal effects and water trans-
port at the bubble wall (Storey and Szeri, 2001). For the Rayleigh—Taylor threshold,
they found a convincing agreement with the experiments of Ketterling and Apfel
(2000).

Although initially relevant to SBSL, these thresholds are also of great impor-
tance for cavitation fields. Anisotropy is more important in multibubble fields than
in single-bubble levitation experiments, so that, for the same drivings, the values of
Ry calculated or measured in the latter context may be considered as upper bound-
aries for bubble sizes in cavitation fields. In connection with this issue, we would
like to mention the experimental work of Gaitan and Holt (1999), who measured
the parametric instability threshold in a 20 kHz levitation cell for a wide range of
driving p, (Fig. 2.10). The points clearly define an upper bound for the ambient
radius for a given driving. The resonant radius at 20 kHz is 150 pm, and it is clear
from these measurements that no resonant bubble can survive even for relatively
low drivings. Even for p, as low as 30 kPa, it is seen that bubbles would undergo
shape instability near 60 pm.

x  ? : 0 m=5
S R ST o "Sfiahleprbles
A3 T Cilco=T0%

Driving Pressure (bars)

0

0 20 40 60 80 100

Fig. 2.10 Instability threshold measured in a 20 kHz levitation cell. The different symbols indicate
the order of the unstable mode recorded by image processing. The cross symbols correspond to an
instability whose order could not be determined. The solid line is the calculated rectified diffusion
threshold for C;/Cy = 0.7. Reprinted Fig. 2.2 with permission from Gaitan and Holt (1999).
Copyright (1999) by the American Physical Society
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4.4 Self-Propulsion of Non-spherical Bubbles

Common observation of cavitation fields reveals bubbles undergoing erratic dancing
motions. It was first suggested by Strasberg and Benjamin (1958) that this transla-
tion motion could originate from surface instabilities. As mentioned above, this has
been confirmed experimentally by Eller and Crum (1970), who observed that the
measured driving threshold for this behavior to occur coincided with the calculated
threshold for parametric surface instabilities. The problem has been tackled theoret-
ically by Benjamin and Ellis (1990) and Zardi and Seminara (1995), who showed
that the translation motion could appear by a non-linear coupling between two adja-
cent instability modes. More recent treatment (Doinikov, 2004; Reddy and Szeri,
2002) generalized this result.

4.5 Non-spherical Collapses Near Boundaries and Erosion

A bubble collapsing near another bubble or near a solid surface undergoes a non-
spherical collapse. The astonishing variety of shapes attained by these bubbles
constitutes a scientific challenge, both theoretically and experimentally, owing to
the short deformation timescales involved in the collapse. The main motivation for
investigating non-spherical collapses dates back to the original issue of solids dam-
aging by hydrodynamic cavitation bubbles. As noted by Lauterborn et al. (1999),
no material has been found to resist their attack, a rather peculiar effect, if one intu-
itively thinks of bubbles as soft objects. The issue is of importance not only for
erosion of propellers, blades, and hydraulic systems, but also for acoustic cavitation
whose erosion effect is well known and generally damages the tip of the transducer.

The analysis of Rayleigh outlined that the high pressures, possibly as shock-
waves, generated by a spherical implosion were the origin of erosion. Since then,
it appeared that the impact of high-speed liquid jets, formed by the involution of
collapsing cavities, could be a primary factor in cavitation damage. The impor-
tant pioneering experimental and theoretical study of Benjamin and Ellis (1966)
stated the problem in terms of the important concept of Kelvin impulse and pre-
sented images of spark-induced bubbles. Other results on spark-induced bubbles
near boundaries can be found in the literature, but better reproducibility and preci-
sion in the location of the bubble can be obtained with laser-generated bubbles since
the early experiments of Lauterborn and Bolle (1975).

The phenomenon can be seen in the photographic series in Fig. 2.11 from
Lauterborn et al. (1999). The bubble involutes from the top, and the downward lig-
uid jet develops, pushes the lower boundary of the bubble toward the solid surface,
impinging on it violently, which creates a pit just below the bubble. On some occa-
sions, the jet can pierce the bubble, which becomes a torus, and further disintegrates
into a circle of small bubbles, whose implosion generates a circle of pits. The behav-
ior is reproducible for a fixed ratio between the boundary-bubble separation and the
maximum bubble radius. More experimental facts, including complex shockwaves
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Fig. 2.11 Non-spherical collapse of a laser-induced bubble near a flat rigid boundary, recorded at
75,000 frames per second. The solid boundary is below the bubble. Adapted from Lauterborn et al.
(1999), with kind permission of John Wiley and Sons Ltd

formation, can be found in Philipp and Lauterborn (1998), Lauterborn et al. (1999),
and Lindau and Lauterborn (2003).

Erosion by acoustic cavitation is also well known, but is infinitely more difficult
to control than laser bubbles. Recent experiments show that within the same experi-
ment, the various bubble structures that emerge from the acoustic field (see Section
5.4) have different erosion effects (Krefting et al., 2004). Unlike laser experiments
that allow the precise positioning of the bubble, acoustic cavitation bubbles can
rise up from various places, and the solid boundaries themselves can act as bubble
sources. Laser bubble experiments therefore constitute a perfect tool to assess the
complex phenomena involved, and the precise mechanisms of damaging at the scale
of a single bubble.

4.6 Non-spherical Collapses Far from Boundaries

Non-spherical collapses can also occur without the presence of a solid boundary.
First by symmetry, a bubble collapsing at a distance s of a solid boundary problem
is equivalent to the problem of two identical bubbles collapsing at a distance 2s.
This is confirmed by experiments of Lauterborn et al. (1999).

But a single bubble can also collapse non-spherically and form liquid jets because
of its translational motion. This is supported by the experiments of spark-induced
bubble with or without gravity (Benjamin and Ellis, 1966) and theoretically (Blake
and Gibson, 1987; see also Prosperetti, 1999), on the basis of impulse conservation.
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Even in levitation experiments, this is also the case because the bubble undergoes
a small, but non-zero, translational motion, owing to gravity. It has been suggested
that sonoluminescing bubbles could in fact collapse non-spherically, and that the
corresponding liquid jet could be responsible for the light emission (Prosperetti,
1997). It was found, however, that under microgravity, where jets would be unex-
pected, even more light was emitted (Matula, 2000), and also that light emission
decreases and even ceases with increasing asphericity (Ohl et al., 1998).

Whether or not aspherical collapses indeed occur in single bubble experiments
remains an open question. In multibubble fields, it is generally accepted that the bub-
bles collapse aspherically, but this is difficult to assess experimentally. Another issue
relevant to this discussion is the difference of light emission spectra between single-
and multi-bubble sonoluminescence. Without entering into this complex problem,
we would like to mention the experiments of Matula et al. (1995). The sonolumi-
nescence spectrum of NaCl-water mixtures reveals that the sodium line emission
is present in multi-bubble sonoluminescence (MBSL), and absent in SBSL. Since
sodium cannot evaporate into the bubbles, this may suggest that droplets of solution
could enter the bubble during a surface instability process or aspherical collapse
with jetting. Therefore, one of the latter processes would necessarily occur in multi-
bubble conditions. This is an important point, since it means that non-volatile
species could also participate in this way to chemical reactions in the hot gaseous
environment inside the bubble.

5 Cavitation Fields

5.1 Acoustics

5.1.1 Equation of Linear Acoustics

Linear acoustics refers to non-dissipative low amplitude sound propagation. Thus
it may not be the relevant tool to study cavitation, since the latter converts acoustic
energy into various forms of energy (thermal, interfacial or light). However, some
basic concepts can be used profitably, on one hand to design sonoreactors, and on
the other hand to characterize cavitation experiments.

The linear propagation of an acoustic wave results from the isotropic elastic prop-
erties of the liquid. When the liquid is expanded or compressed, an elastic force
tends to restore equilibrium, and in doing so, accelerates the liquid. Non-dissipative
acoustic waves can be described by linearized Euler equations, neglecting viscosity:

L PtV =0 (2.22)

plI— =—Vp (2.23)
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where u(x, #) is the liquid velocity field associated to the acoustic wave, and p(x, f)
the local acoustic pressure. This set of equations can be reduced to a propagation
equation

Vp——=—==0 (2.24)

Various boundary conditions may be associated to this equation. Among the
simplest, either the pressure or the velocity can be prescribed. An infinitely soft
boundary is represented by p=0, and an infinitely rigid one by u.n = 0, where n is
the outward unit vector normal to the boundary.

Assuming mono-harmonic waves at frequency w, and using complex notation

1 . 1 .
P=3 [pa(x)e“‘” + c.c.] , u=2 [ua(x)el“” + c.c.] (2.25)

where c.c. denotes the complex conjugate. Equation (2.24) reduces to the Helmholtz
equation

V2pa + kipa =0 (2.26)

where k| = w/c is the wavenumber.

5.1.2 Energy Conservation: Non-dissipative Acoustics

An energy conservation equation can be deduced from Eqgs. (2.22) and (2.23):

/f/( Pt +EE> v = //—PundS 2.27)

where V is an arbitrary volume of fluid and S its boundary. The parenthesis in the
volume integral is the acoustic energy density (in W m~3), which is the sum of the
kinetic and potential compressional energy of the liquid, and pu is called acoustic
intensity (in W m~2). Both are local quantities. Equation (2.27) expresses that the
variations of acoustic energy in a volume result from the difference between the
fluxes of mechanical energy entering and leaving this volume, and result directly
from the theorem of kinetic energy.

For mono-harmonic waves, it can be easily checked that the left side of Equation
(2.27) is zero on average over one acoustic period. Besides, the average acoustic
intensity pu can be shown to read N(pyu,)/2, where 9 denotes the real part of
a complex number. Now, let us consider the case of a sonoreactor excited by the
vibrating surface Ssonotrode Of @ sonotrode, and closed by boundaries Spoundariess Of
unspecified type for now. Equation (2.27) becomes
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/ / ——Jt(paua)ndS— / / —N(patia).n dS (2.28)

sonmmde Sbounddnes
Pactive = power Pbound = power
(> 0) emitted (> 0)lost
into the liquid through the
boundaries

The left integral is the power transmitted from the sonotrode to the liquid, and is
termed active power. The above relation states that all the mechanical energy enter-
ing the liquid is lost by boundaries. In the case of perfect rigid or soft boundaries,
Equation (2.28) merely states that the acoustic power transmitted to the liquid by the
sonotrode is zero. This a priori paradoxical result originates from the non-dissipative
character of the medium, which is implicitly assumed in Egs. (2.23) and (2.24).

5.1.3 Energy Conservation and Dissipation: Calorimetric Method

Various physical processes can yield attenuation of acoustic waves, including vis-
cosity or finite thermal diffusion, among others. In the case of bubbly liquids,
the main dissipation occurs at the bubble level (see Sections 3.2.3 and 5.1.4).
Whatever its physical origin, attenuation of mono-harmonic linear waves (or their
superposition) can be modeled by introducing a complex wavenumber

k=k — i (2.29)

in (2.26), where « > 0 is the attenuation coefficient in m~!. In this case, it can be
shown that Equation (2.28) becomes

// ——%(pdua)ndS_ // ~N(paua).ndS + /// Pal” g (2.30)
pIC1

Ssonolrode Sboundanes
Pactive = power Pround = power Pdiss = power
(> 0) emitted (> 0)lost (> 0) dissipated
into the liquid through the in the liquid
boundaries

For perfectly reflecting boundaries, this equation now states that the period-
averaged power sent through the sonotrode surface is the power dissipated in the
liquid.

The integral Pgiss represents the opposite of the power of internal dissipative
forces (for example viscous friction). Combining the theorem of kinetic energy with
the first principle of thermodynamics, it can be shown that
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d(T) .
IOICVIF = Pyiss + O (2.31)
\%4

where V is an arbitrary volume of insonified liquid, (7’) is the local temperature of
the liquid averaged over one or more acoustic periods, and Q is the (algebraic) heat
gained or lost by volume V. This equation is the basis of the so-called calorimetric
method. Taking V as the whole volume of insonified liquid, and stirring sufficiently
to ensure uniform temperature, (7') is monitored in a given point of the sonoreactor
by a temperature probe as soon as ultrasound is switched on. At r = 0 heat cannot
escape owing to thermal inertia, so that p|Cy,(dT/df);—o matches Pgiss. Thus, the
initial slope of the temperature curves yields an estimation of the power dissipated
in the liquid, which, from Equation (2.30), is also the active power sent through
the sonotrode area. This calorimetric method is easy to use and is commonly used
to characterize cavitation experiments (Ratoarinoro et al., 1995). Finally, it should
be noted that the quantity |pg|?/(pic;) is sometimes improperly termed “intensity.”
We emphasize that this is true only for plane traveling-wave, but is definitely not in
other cases.

5.1.4 Acoustics of Bubbly Liquids

The presence of bubbles in a liquid increases the compressibility of the effective
medium. Therefore, one expects the effective sound velocity to decrease. This is
indeed the case for low-frequency waves or small bubbles. As the frequency or
the bubble radius increases, the phase shift between the bubble response and the
local driving pressure leads to a variation of the effective sound speed. The latter
therefore varies with frequency, and waves in such a medium are called dispersive.
Moreover, the non-linear behavior of the bubbles oscillation renders high-intensity
waves non-linear.

Theory of bubbly liquids acoustics can be traced back to Foldy (1944) and
Carstensen and Foldy (1947). Their result contains the main physics and is equiv-
alent to the most recent theories in the linear case, and at low gas fractions. Linear
experimental data were recorded by Fox et al. (1955) and Silberman (1957), the
latter report still constituting a reference. Theory for non-linear waves has been
derived independently by van Wijngaarden (1968) and Iordansky (1960), and a sim-
ilar model, based on a rigorous averaging method, was derived by Caflish et al.
(1985). Commander and Prosperetti (1989) developed a linear form of this model,
extending it to polydisperse bubble populations and compared it to the experiments
of Silberman.

The Caflish propagation equation reads

Lop oo i /OON( Ro) = R3[p(1). Ro] dR (2.32)
——— = Vp=p—> X, Ro)—R’[p(»), :
012 ar p p‘aﬂ ) 0 3 p 0l dko
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where N(x, Ry)dRy is the number of bubbles per unit volume, in the range of sizes
[Ro, Ro + dRy], located at x, and R[p(?), Ro] is the radial dynamics of a bubble
of ambient radius Ry excited with the local acoustic pressure p(f), obtained from
Equation (2.10) for example. The integral can be recognized as the instantaneous
bubble volume fraction.

Equation (2.32) is intrinsically non-linear, but assuming mono-harmonic low-
amplitude waves and using the linear theory of bubble oscillations exposed in
Section 3.2.3, the Caflish model reduces to an Helmholtz equation V2p,+k2p, =0
with k? = (w/c)?, and

L f+°° Ro N(x. Ro) dR (233)

=== 4 X, .
22 0 wB(Ro) — & + 2ib(Ro) 070

where wq and b are given by Eqgs. (2.13) and (2.14). It should be noted that k and ¢

are now complex quantities, which implies a spatial wave attenuation (see Section

5.1.3). Moreover, both depend on frequency, traducing the dispersive character of

the medium. From expression (2.33), the following conclusions can be drawn:

e For w < wy, the sound speed in the bubbly liquid is lower than the sound speed
in the pure liquid. This was expected owing to the larger compressibility of the
medium.

e As w approaches wo, the sound speed decreases drastically. Just above wy, ¢
becomes negative, so that the sound velocity has a large imaginary part, which
produces strong attenuation of the waves. Physically, this peculiar result comes
from the fact that above resonance, the bubble contracts in the expansion phase
of the acoustic pressure (Section 3.2.3). Thus, all happens as if the bubbles had a
negative compressibility.

e For increasingly large frequencies, the oscillation of the bubbles vanishes and the
sound speed of the pure liquid is recovered.

It should be emphasized that the bubble size distribution N must be known if
one wishes to calculate the effective sound speed c. Various studies solved the lin-
ear Caflish model in order to predict the sound field in sonoreactors (Dédhnke et al.,
1999; Servant et al., 2000, 2003), but used an arbitrary Gaussian distribution, involv-
ing bubbles much larger than experimentally observed (see Section 5.4.5), so that
the validity of the predictions is difficult to assess. In fact, some of these results
show negligible departure from linear acoustics, owing to the small bubble fractions
introduced in the model.

5.2 Nucleation of Bubbles

As seen in Section 2.5, a spherical gas bubble is unstable in a saturated quiet liquid,
and must dissolve. This questions the origin of the numerous cavitation bubbles
observed shortly after switching on the sound field.
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The theoretical tensile strength of pure water, which is the lowest negative pres-
sure it can support without homogeneous nucleation of a cavity, is —100 MPa. The
lowest measured tensile strength reaches —27 MPa (Briggs, 1950). This is still well
below the negative acoustic pressures that can be reached with ultrasound. Thus, the
bubbles originate necessarily from existing gas pockets, stabilized in the liquid in
some way.

The first explanation is that free gas nuclei exist in the liquid, protected against
dissolution by a shell of either hydrophobic ions or surface active species. The sec-
ond explanation postulates that gas nuclei can remain trapped in the crevices of solid
impurities or of the vessel wall. Both hypotheses are supported by experimental
results. We refer the reader to the reviews of Crum (1982) and Apfel (1984).

It should be added that the size and location of such nuclei is an unknown data,
and is one of the main limits to observation of acoustic cavitation. Single-bubble
levitation experiments and laser bubbles may remedy this uncontrollable feature.

5.3 Forces Exerted on the Bubbles

5.3.1 Primary Bjerknes Force

Let us seek the force that would be exerted on the bubble if it were replaced by
liquid, in otherwise equal conditions. Neglecting viscous effects, it reads

F = / / —pnds (2.34)
S

where S is the bubble surface and p the local pressure on this surface. Using
divergence theorem, one may also write

F=/f/—VpdV (2.35)
\%4

where p should be understood as the pressure field that would exist in the liquid
replacing the bubble. If the fluid is only submitted to the gravity field, Vp = pig, and
we recover the buoyancy force Fo = —p;Vg. If the pressure field now results from
the acoustic wave, but varies little at the scale of the bubble (this implies R/A < 1),
Vp can be considered as homogeneous in V and equal to its value at the bubble
center, hence F = —VVp. This is the instantaneous primary Bjerknes force. For a
radially oscillating bubble in an acoustic field, both V and Vp are oscillating quanti-
ties, and the average of their product over one period may be different from zero, so
that the bubble experiences an average force. The so-called primary Bjerknes force
is this time average,

Fg, = —(V(HVp) (2.36)
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and may be seen as a generalized buoyancy force in an accelerating liquid.
Assuming a mono-harmonic standing wave, the acoustic field can be written as

P(X, 1) = pa(x) cos(wt) (2.37)

so that the primary Bjerknes force becomes
Fg, = —Vpa(V(t)cos(wt)) (2.38)

It is seen that the force points toward pressure nodes (minima) or pressure
antinodes (maxima), depending on the sign of the average. In the case of linear
oscillations, the Bjerknes force can be easily evaluated from Equations (2.11) and
(2.12), and the following conclusions can be drawn:

e for Ry < Ryes, bubbles are attracted toward pressure antinodes
e for Ry > Ry, bubbles are attracted toward pressure nodes

Repulsion of bubbles larger than R,.s has been reported by Goldman and Ringo
(1949), and can be observed easily in most cavitation experiments, where large (and
therefore visible) bubbles can be seen to escape and take refuge far from pressure
antinodes, possibly coalesce, and then rise by buoyancy.

Attraction of bubbles smaller than resonance size by pressure antinodes is con-
firmed by the experiments of Crum and Eller (1970) for moderate drivings, and is
used to levitate a bubble in SBSL experiments, the primary Bjerknes force com-
pensating exactly the mean buoyancy force at a point slightly above the pressure
antinode in the center of the cell (Barber et al., 1997; Gaitan et al., 1992).

However, it was shown by Akhatov et al. (1997b) that the primary Bjerknes
force can also become repulsive for sub-resonant bubbles, above a threshold in the
(Pa, Ro) plane. For example, bubbles of 10 pwm are repelled by antinodes for drivings
exceeding 170 kPa, in contradiction with linear theory. This has been confirmed by
experiments (Parlitz et al., 1999) and is illustrated in Fig. 2.12. The inversion of pri-
mary Bjerknes force has also been invoked to explain the upper limit of the driving
observed in SBSL experiments.

Finally, let us note that Bjerknes forces also exist in traveling waves, and may
become important for large drivings. They could explain the conical bubble fila-
ments observed under the transducer tip (Moussatov et al., 2003a), as mentioned
recently by Koch et al. (2004b).

5.3.2 Secondary Bjerknes Force

The arguments leading to the expression of the primary Bjerknes force can be
extended to the case where the bubble also experiences the acoustic field radiated
by a second bubble. The resulting force averaged over one period reads
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Fig. 2.12 Bubble filaments in a standing wave field. Upper graphs: simulations by a particle
model. Lower photos: snapshots of experimental structures. The left column is obtained for a driv-
ing of 130 kPa, the right one for 190 kPa. The inversion of the Bjerknes force is apparent on the
right graphs. Adapted from Lauterborn et al. (1999), with kind permission of John Wiley and Sons
Ltd

Pl ¢, o X2 —X]
Fg, = ——W1Vo) ———— (2.39)
4r X2 — x|
where V1, V, are the respective volumes of the bubbles, and x; and x; the spatial
positions of their centers. Here again, a practical result is readily obtained in the
case of linear oscillations:

e abubble smaller than and a bubble larger than resonance size repels each other
e two bubbles smaller or two bubbles larger than resonance size experience an
attracting force

The experiments of Crum (1975) confirm that the attraction of two sub-resonant
bubbles for moderate drivings and quantitative agreement is obtained for the
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bubble velocities. The effect of shape instabilities has been tackled by Pelekasis
and Tsamopoulos (1993), and the effects of non-linearity have been studied by Oguz
and Prosperetti (1990) and Mettin et al. (1997). The latter recalculated the secondary
Bjerknes force for non-linear bubble dynamics, and predicted amplitudes orders of
magnitude greater than with linear theory for bubbles ranging from 0.5 to 10 pm. An
outstanding experimental confirmation of the theory, using laser-induced bubbles in
a standing wave, can be found in Koch et al. (2004a)

Mettin et al. (1997) also found that possible mutual repulsion could occur, where
linear theory predicts the opposite. Furthermore, the transition from attraction to
repulsion can theoretically occur as the bubbles approach mutually, so that a stable
separation distance could exist. The result is of importance in the context of bubble
structures (see Section 5.4).

5.3.3 Added Mass and Viscous Drag Force

Bubble inertia is negligible, owing to the low density of the gas. However, as any
body accelerating relatively to the liquid, a bubble must push the latter, and in reac-
tion experiences a force from it. All happens as if the bubble had an added mass,
which for a spherical body always amounts to half the mass of the displaced liquid
(Magnaudet, 1997), so that

2 ;3 d
Fum = —gn R(1) pla(v —u) (2.40)
where v is the bubble velocity.

The bubble also experiences a viscous drag force from the liquid. The correct
expression of the drag force on a bubble moving radially is a delicate issue. For high-
Reynolds numbers, calculated either from the radial or the translational velocity,
Magnaudet and Legendre (1998) showed that

Fy = — 127 R(t)ii(v — u) (2.41)

This completes the set of forces exerted on cavitation bubbles. Since the bub-
ble inertia is negligible, the sum of these period-averaged forces must cancel. This
yields a differential equation whose resolution allows a theoretical prediction of
the bubble path. Good quantitative agreement with two bubbles experiments has
recently been obtained by Koch et al. (2004a).

5.4 Bubble Structures

An immediate conclusion can be drawn from the naked-eye observation of acous-
tic cavitation: the bubble spatial repartition is neither homogeneous nor stationary.
Bubbles self-organize in a variety of different patterns, evolving on a timescale
much larger than the acoustic period.
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Early observations report mainly two main classes of bubble structures: stream-
ers (Neppiras, 1980; Nyborg and Hughes, 1967) and clusters (Rozenberg, 1971b;
Sirotyuk, 1971), but these reports were penalized by a lack of sufficient imaging
techniques. Since then, the group of Lauterborn has recorded an impressive col-
lection of experimental data, using high-speed cameras and holographic systems,
combined with digital image processing. An extensive review of these observations
can be found in Mettin (2005) and references herein, establishing a “zoo” of bub-
ble structures. We summarize in a few words the characteristics of some of these
structures and their interpretation in terms of Bjerknes forces.

5.4.1 Streamers and Filaments

The basic streamer is a linear streak of bubbles traveling rapidly from one end
to the other. The streamer seems to start from a specific point in the liquid. This
structure appears in standing waves configurations at moderate drivings. The ori-
gin of the streamer corresponds to a pressure node and the bubbles travel toward
pressure antinodes, under the influence of the primary Bjerknes force. Secondary
Bjerknes forces act at various levels: they may help nuclei to coalesce near the
streamer origin, and maintain an attraction between a bubble and its neighbors in
the streamer. Bubbles are thought to break up as they reach the antinode, or form
clusters.

Streamers can combine and form slowly evolving agglomerates of filaments,
termed “Acoustic Lichtenberg Figures” by Lauterborn’s group (Fig. 2.12). The main
features of these structures have been explained theoretically by particle model
simulations (Parlitz et al., 1999; see also Section 5.5).

5.4.2 Bubble Layers: The Jellyfish and the Starfish

This jellyfish structure consists of two flat parallel layers of bubbles, presenting
filamentary structures when viewed from above. They appear in standing waves at
high amplitudes, and the layers are located symmetrically on each side of a nodal
plane. The layers are not located exactly at the antinodes; this confirms the repulsive
character of primary Bjerknes force for high drivings. The estimated driving at the
bubble locations is about 200 kPa, and the bubbles involved do not exceed a few
micrometers. The starfish structure shares some similarities with the jellyfish, except
that it is located near the liquid surface. Both structures are also predictable by
particle models.

5.4.3 Clusters

Small clusters of a few (up to some dozens) bubbles appear for large drivings
(between 190 and 300 kPa). They can form at the end of a filament. The bubbles
constituting the cluster change their positions, can split or merge, and their separa-
tion is of the order of their maximum size. The cluster as an entity is a rather stable
structure, and reacts to Bjerknes forces as if it were a single large bubble. Why the
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bubbles constituting the cluster do not coalesce under secondary Bjerknes force is
not completely understood.

Large clusters contain hundreds of bubbles of sizes and mutual distances compa-
rable to small ones. They have a noticeable spherical shape, appear spontaneously in
the liquid and travel rapidly. They are attracted by the surface to which they remain
attached, taking a hemispherical form, and have a strong eroding action.

5.4.4 Sonotrode Cavitation and Conical Structures

Small diameter sonotrodes, commonly used in sonochemistry, produce a dense
unstructured cloud of bubbles below the tip, increasing in size and density as the
power is raised. Such transducers also generate strong acoustic currents, which may
carry the bubbles far from the radiating surface. For larger diameter sonotrodes, the
bubbles form conical structures (Moussatov et al., 2003a, b), which appear to be
formed by filaments originating from the transducer when recorded with short-term
exposures. The conical structure has been explained by the action of the primary
Bjerknes force in a high-amplitude spatially attenuated traveling wave (Koch et al.,
2004b). Other structures can be found in the report of Mettin (2005).

5.4.5 Bubble Sizes and Lifetimes

In all the above observation, the bubble sizes recorded (see Mettin et al., 1999a,
for the method used) amount to a few micrometers or less, for driving amplitudes
ranging from 100 to 300 kPa. This is consistent with the theory of shape instabili-
ties, confirmed experimentally by single-bubble experiments (see Fig. 2.10). Other
measurements by laser techniques (Burdin et al., 1999) lead to the same conclusion.
This rules out the early picture of cavitation activity by resonant bubbles, and the
bubble sizes are in fact confined in a range between sub-micronic nuclei and radii
slightly above the Blake threshold radius. This reduction of the parameter space to
explore is of fundamental importance for theoretical aspects.

This conclusion should, however, be tempered since, even in this narrow range,
the behavior of bubbles can still vary noticeably. This is not only true for the
response curves (see Fig. 2.4), but even more for quantities like maximum tempera-
ture or shockwave intensities, which explains qualitatively why different structures
produce different chemical or mechanical effects. Recent calculations even show
that the chemical composition of bubbles can drastically change for acoustic pres-
sure changing from 180 kPa (jellyfishes) to 300 kPa (sonotrode cavitation) (Yasui
et al., 2005).

Another conclusion drawn from the above observations is the relatively long life-
time of bubbles in streamers and filaments (up to hundreds of cycles). This owes
probably to the relatively low driving to which they are submitted. Such bubbles are
excited above the Blake threshold, so that they are inertial and collapse at each cycle.
Theory even predicts that they should grow by rectified diffusion up to the instabil-
ity threshold (Louisnard and Gomez, 2003). The term “transient” would be used
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improperly in this case, and this observation therefore constitutes a breakthrough in
cavitation research.

There remain some uncertainties about the conversion of nuclei to inertial bub-
bles. In high-pressure zones, the nuclei could directly be excited above the Blake
threshold. But in low-pressure zones, for example, at the starting point of streamers,
how do the nuclei grow to an observable size? Competing effects of dissolution,
migration toward pressure antinodes, and coalescence may give an answer, and a
simplified theoretical study seems feasible.

5.5 How to Simulate Cavitation Fields

5.5.1 The Unknowns

Admitting that one could quantify the effect on a specific process (a chemical yield
for example), of a bubble of ambient radius Ry driven at a given acoustic pressure p,,
predicting a macroscopic effect requires knowledge of the spatial bubble distribution
N(Xx, Rp). Observation of cavitation structures indicate that this quantity also varies
with time, but on a timescale T much larger than the acoustic period. The second
unknown is the acoustic field itself p,(X, 7), exciting the various bubbles present at
point Xx.

Both quantities N and p, are coupled (Leighton, 1995); the bubbles can drift
under primary Bjerknes force, grow or dissolve, coalesce under secondary Bjerknes
forces, or break up under the influence of the acoustic field. Conversely, the evolu-
tion of the bubble distribution in the liquid modifies the local sound velocity (see
Equation (2.32)) and therefore the acoustic field.

5.5.2 Continuum Approach

Assuming that the bubble distribution is a continuous function N(x, t, Rp), of space
X, time 7, and bubble size Ry, its evolution can be described by a bubble conservation
equation, sometimes referred as a population balance equation. In generic form, this
equation can be written as

oN 0
—+V.Nv)+ — Nw)=B—-D (2.42)
ot IRy

where v is the bubble velocity, w the growth or dissolution rate, B the birth rate and
D the death rate. Such equations are commonly used in crystallization. It must be
emphasized that all terms must be based on the relevant physics, part of which has
been given in this chapter. With an optimistic point of view v could be obtained
from a balance of forces, and w from rectified diffusion theory. The birth term
B arises from bubble nucleation, coalescence, and fragmentation, while D origi-
nates from the two latter processes, which are poorly documented. Mathematical
difficulty moreover arises because of coalescence, which renders Equation (2.42)
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integro-differential. The most complete equation relevant to cavitation can be found
in Alekseev and Yushin (1986), but no solution was sought.

Among the various early attempts to obtain practical results from this equation,
we mention the work of Kobelev and Ostrovskii (1983, 1989), who considered coa-
lescence under secondary Bjerknes forces and bubble drift under primary ones, to
interpret the self-illumination effect of sound observed in bubbly liquids (Kobelev
etal., 1979). However these studies are limited to moderate sound fields, well below
the Blake threshold.

More recently, in order to explain why experimentally observed bubble fields
are always spatially inhomogeneous, Akhatov et al. (1994, 1996) demonstrated
the spontaneous emergence of a bubble spatial distribution instability. They used
an equation similar to Equation (2.42), accounting for bubble drift under Bjerknes
forces and heuristic birth and death terms, coupled with a linear propagation equa-
tion in bubbly liquids. Finally, in order to assess the importance of coalescence on
the bubble field formation, attempts were made to study the competition between
coalescence and dissolution of bubbles under the Blake threshold (Louisnard, O.
(2001). Theoretical Study of Competition Between Dissolution and Coalescence of
Small Bubbles in an Acoustic Field, “Unpublished”).

5.5.3 Particle Models

The continuum approach is of limited practical interest, especially to explain the
formation of bubble streamers and filaments. Moreover, the inversion of Bjerknes
forces needs non-linear bubble dynamics. Lauterborn and co-workers treated the
individual bubbles as particles moving under the action of the forces, as described
in Section 5.3 (Lauterborn et al., 1999; Mettin et al., 1999b; Parlitz et al., 1999). The
standing acoustic wave is assumed undisturbed by the bubble motion and a mono-
disperse bubble ambient radius is assumed. Structures obtained by simulation with
up to thousands of bubbles show outstanding similarities with several experimental
filamentary structures (see the comparison in Fig. 2.12).

The assumption of a fixed standing wave was recently released by Mettin et al.
(2006) by coupling the particle model to the propagation equation in bubbly liquids.
The results predict the intermittency of both the filamentary bubble structure and
the acoustic field, as experimentally observed. As far as we know, this is the most
sophisticated model of cavitation fields, trapping the essential physics involved.

6 Final Remarks

6.1 Topics Not Addressed

The recent experimental observations reported in this chapter have been obtained at
low-frequency cavitation, say, below 100 kHz. High-frequency cavitation is less
documented experimentally (we refer the reader to recent high-speed photogra-
phy observations by Chen et al., 2006, 2007). First, SBSL is only possible at low
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frequencies, so that the high-frequency range did not benefit from this precious
opportunity to observe and measure a single bubble. The theoretical results pre-
sented above should, however, also be relevant for high frequency. Three major
differences with low frequency should be mentioned. First, the resonance radius is
much lower (3 wm at 1 MHz), and thus very near the Blake critical radius. This
suggests that bubbles at high frequency might approach the resonance radius more
closely than they do at low frequencies. Second, the wavelength is much smaller
at high frequency (1.5 mm at 1 MHz in water), which necessarily has implica-
tions on the bubble structures. For example, streamers that build between nodes
and antinodes would be much smaller. The third difference has already been men-
tioned: the expansion phase is shorter at high frequency, which reduces the collapse
strength.

Chopped ultrasound also constitutes an interesting issue. From a fundamental
point of view, their study would shed light on the mechanisms of bubble population
build-up. For example, it has been observed that the delay for the bubble cloud
establishment depends in a non-monotonic way on the chopping mode (Labouret
et al., 2006). Besides, in view of industrial applications, chopped ultrasound could
reduce energy consumption noticeably.

Finally, for information on principles, design, and available types of ultrasonic
transducers, we refer the reader to the articles of Gallego-Juarez (1999) and Mason
(1999).

6.2 Further Readings

There is abundant literature on acoustic cavitation. The first comprehensive report
on the subject dates back to Flynn (1964), who influenced generations of researchers
on the topic. The physics of high-intensity fields (not only cavitation, but also
absorption, radiation pressure, and acoustic streaming) can be found in Rozenberg
(1971a). A wide collection of ultrasound applications is compiled in Rozenberg
(1973). Plesset and Prosperetti (1977) proposed a review of early results on bubble
dynamics. Many interesting references to early experimental work can be found in
the report of Neppiras (1980). Leighton (1994) presents a sound approach of cavi-
tation physics and a wide collection of references. A large collection of results on
cavitation and diphasic flows can be found in Brennen (1995). The proceedings
of the 1997 NATO conference on sonochemistry and sonoluminescence include
an interesting collection of articles on both topics (Crum et al., 1999). The com-
prehensive theoretical and experimental work of Lauterborn’s group is reviewed in
Lauterborn et al. (1999). More recent observations by the same group can be found
in Mettin (2005) and references herein.

For an early review of MBSL, we refer the reader to Walton and Reynolds (1984).
SBSL literature is interesting not only for the phenomenon itself, but also because its
interpretation covers a large part of cavitation physics. The review of Brenner et al.
(2002) presents a fascinating historical overview on sonoluminescence (including
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MBSL), a comprehensive presentation of single-bubble physics and a wide collec-
tion of references. Other interesting reviews on SBSL have been written by Hammer
and Frommbhold (2001) and Putterman and Weninger (2000).

Notations
an amplitude of the nth-order spherical harmonic
b damping coefficient for linear oscillations
B birth rate of bubbles
q sound speed in the liquid
Cxo dissolved gas concentration far from the bubble
Co dissolved gas concentration at saturation = pgo/kg
Cp, specific heat of the gas
Cp, specific heat of the liquid
Cr dissolved gas concentration at the bubble wall = p, /k,
c.c. conjugated complex number
effective sound speed in a bubbly liquid
D death rate of bubbles
f acoustic frequency = w/2mw
Fa buoyancy force
Fg bubble weight
F, viscous drag force
Fum added mass force
Fg, primary Bjerknes force
Fg, secondary Bjerknes force
g gravity
kg Henry’s constant
K, thermal conductivity of the gas
K thermal conductivity of the liquid
ki wavenumber of acoustic waves in the liquid
k wavenumber of acoustic waves in the bubbly liquid
myg mass of incondensable gas in the bubble
M, molar mass of the incondensable gas in the bubble
n outward unit vector
N bubble-size-distribution function
P complex amplitude of the driving pressure
Po ambient pressure
p(®), p(x,1) driving pressure
Pa depression in the liquid (for the quiet bubble)
Da amplitude of the driving (for single oscillating bubble)
Pa(x) complex amplitude of acoustic pressure
Pb pressure in the bubble = py + py

Pg gas partial pressure in the bubble
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gas partial pressure in the bubble in ambient conditions
vapor partial pressure in the bubble

Blake threshold

vapor equilibrium saturation pressure

thermal Peclet number = 7gis / Tdyn

thermal Peclet number for linear oscillations
active acoustic power

active acoustic power lost through boundaries
heat lost by the sonoreactor

local radius of a deformed bubble

ambient radius of the bubble

instantaneous radius of the bubble

radius at which the bubble interior starts to behave adiabatically
minimum bubble radius

maximum bubble radius

resonance radius

universal gas constant

surface delimiting volume V

time

acoustic period

ambient temperature

bubble center temperature

bubble surface temperature

liquid velocity

complex amplitude of liquid velocity, in linear acoustics
internal energy of a volume of liquid

bubble velocity

volume of liquid

instantaneous volumes of bubbles 1 and 2
growth or dissolution rate of the bubble

spatial position

spatial positions of the centers of bubbles 1 and 2
complex amplitude of the bubble radius

spherical harmonics

dimensionless Laplace tension 20/poRo
attenuation coefficient of linear wave

polytropic exponent

ratio of the gas-specific heats

wavelength

dynamic viscosity of the liquid

complex number for thermal effects in the linear theory
liquid density

gas density

bubble density

surface tension
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Tdyn characteristic time of bubble oscillations
T diff characteristic time of thermal diffusion
Xe thermal diffusivity of the gas

w angular frequency of the driving

wo free angular frequency of the bubble
Subscripts

b refers to the bubble interior

g refers to the gas

1 refers to the liquid

v refers to vapor
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