
Chapter 2
Hahn–Banach and Banach Open Mapping
Theorems

The Hahn-Banach theorem, in the geometrical form, states that a closed and convex
set can be separated from any external point by means of a hyperplane. This intu-
itively appealing principle underlines the role of convexity in the theory. It is the
first, and most important, of the fundamental principles of functional analysis. The
rich duality theory of Banach spaces is one of its direct consequences. The second
fundamental principle, the Banach open mapping theorem, is studied in the rest of
the chapter.

A real-valued function p on a vector space X is called a subadditive if p(x +
y) ≤ p(x) + p(y) for all x, y ∈ X . It is called positively homogeneous if for all
x ∈ X and α ≥ 0 it satisfies p(αx) = αp(x). If p is subadditive and, moreover,
p(αx) = |α|p(x) for all x ∈ X and all scalars α, then p is called a seminorm on X .
Note that every norm is a seminorm. Note, too, that every positively homogeneous
subadditive function is a convex function.

By a linear functional on a vector space X , we mean a linear mapping from X
into K.

Theorem 2.1 (Hahn, Banach) Let Y be subspace of a real linear space X, and let p
be a positively homogeneous subadditive functional on X. If f is a linear functional
on Y such that f (x) ≤ p(x) for every x ∈ Y , then there is a linear functional F on
X such that F = f on Y and F(x) ≤ p(x) for every x ∈ X.

Proof: Let P be the collection of all ordered pairs (M ′, f ′), where M ′ is a subspace
of X containing Y and f ′ is a linear functional on M ′ that coincides with f on Y and
satisfies f ′ ≤ p on M ′. P is nonempty as it contains the pair (Y, f ). We partially
order P by (M ′, f ′) ≺ (M ′′, f ′′) if M ′ ⊂ M ′′ and f ′′

∣
∣
M ′ = f ′. If {Mα, fα} is a

chain, then M ′ :=⋃Mα and a linear functional f ′ on M ′ defined by f ′(x) = fα(x)
for x ∈ Mα satisfy (Mα, fα) ≺ (M ′, f ′) for all α. By Zorn’s lemma, P has a
maximal element (M, F). We need to show that M = X .

Assume M 	= X , pick x1 ∈ X\M and put M1 = span{M, x1}. We will find
(M1, F1) ∈ P such that (M, F) ≺ (M1, F1), a contradiction. For a fixed α ∈ R we
define F1(x + t x1) = F(x) + tα for x ∈ M , t ∈ R. Then F is linear. It remains to
show that we can choose α so that F1 ≤ p.
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Due to the positive homogeneity of p and F , it is enough to choose α such that

F1(x + x1) ≤ p(x + x1)

F1(x − x1) ≤ p(x − x1)
for every x ∈ M. (2.1)

Indeed, for t > 0 we then have

F1(x + t x1) = t F1
( x

t + x1
) ≤ tp

( x
t + x1

) = p(x + t x1)

and for t = −η < 0 we have

F1(x + t x1) = F1(x − ηx1) = ηF1
( x
η
− x1

)

≤ ηp
( x
η
− x1

) = p(x − ηx1) = p(x + t x1).

But (2.1) is equivalent to (α :=) F1(x1) ≤ p(x + x1) − F(x) and (−α =)
−F1(x1) ≤ p(x − x1)− F(x) for every x ∈ M . This in turn is equivalent to

F(y)− p(y − x1) ≤ α ≤ p(x + x1)− F(x)

for every x, y ∈ M . Thus to find a suitable α ∈ R we need to show that sup{F(y)−
p(y − x1) : y ∈ M} ≤ inf{p(x + x1)− F(x) : x ∈ M}. This is in turn equivalent
to the statement that for every x, y ∈ M we have

F(y)− p(y − x1) ≤ p(x + x1)− F(x).

The latter reads F(x + y) ≤ p(x + x1)+ p(y − x1), which is true as

F(x + y) ≤ p(x + y) = p(x + x1 + y − x1) ≤ p(x + x1)+ p(y − x1).

This completes the proof of Theorem 2.1.

2.1 Hahn–Banach Extension and Separation Theorems

Before we pass to normed space versions of the Hahn–Banach theorem, we need to
establish the relationship between the real and the complex normed spaces.

Let X be a complex normed space. The space X is also a real normed space. We
will denote this real version of X by XR.

On the other hand, if X is a real normed space, then X × X becomes a complex
normed space XC when its linear structure and norm are defined for x, y, u, v ∈ X
and a, b ∈ R by

(x, y)+ (u, v) := (x + u, y + v)
(a + ib)(x, y) := (ax − by, bx + ay)

‖(x, y)‖C := sup{‖ cos(θ)x + sin(θ)y‖ : 0 ≤ θ ≤ 2π}.
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The set X × {0} := {(x, 0) : x ∈ X} is a closed R-linear subspace of XC which
is—as a real space—isometric to X under the mapping (x, 0) �→ x . Conversely,
XC = {h + ik : h, k ∈ X × {0}}.

We will verify that ‖ · ‖C is actually a norm on XC. It is clear that ‖ · ‖C is non-
negative, satisfies the triangle inequality, and factors real constants to their absolute
value. If α is real and z := (x, y) ∈ XC, then

‖e−iαz‖C = ‖(cos(α)x + sin(α)y,− sin(α)x + cos(α)y
)‖C

= sup{‖ cos(θ)[cos(α)x + sin(α)y] + sin(θ)[− sin(α)x + cos(α)y]‖ : 0 ≤ θ ≤ 2π}
= sup{‖ cos(θ + α)x + sin(θ + α)y‖ : 0 ≤ θ ≤ 2π}
= sup{‖ cos(η)x + sin(η)y‖ : 0 ≤ η ≤ 2π} = ‖z‖C.

Therefore ‖ · ‖C is a norm on XC. Since max{‖x‖, ‖y‖} ≤ ‖(x, y)‖C ≤ ‖x‖+‖y‖,
we have that the topology induced on XC = X × X by ‖ · ‖C is equivalent to the
product topology induced on X × X by ‖ · ‖.

We will now relate duals of X and XR. Consider the mapping R : X∗ → XR
∗

defined by R( f )(x) = Re
(

f (x)
)

for x ∈ X , where Re( f (x)) is the real part of
f (x). We claim that it is a norm-preserving mapping from X∗ onto XR

∗ and is
linear as a mapping (X∗)R → XR

∗.
To see this claim, note that if X is a complex Banach space and f ∈ X∗,

then supz∈BX
| f (z)| = supz∈BX

|Re
(

f (z)
)|. Indeed, for all z we have | f (z)| ≥

|Re
(

f (z)
)|, so one inequality is clear. On the other hand, for z ∈ BX we

write f (z) = eiα| f (z)| and have f (e−iαz) = e−iα f (z) = | f (z)|. Thus
|Re
(

f (e−iαz)
)| = | f (z)| and ‖e−iαz‖ = ‖z‖.

Now we show that R is onto XR
∗. To g ∈ XR

∗ we assign the functional defined
on X by G(x) = g(x)− ig(i x). Then G is linear over R, but also

G(i x) = g(i x)− ig(−x) = g(i x)+ ig(x) = i
(

g(x)− ig(i x)
) = iG(x).

Therefore G is linear over C and hence G ∈ X∗. Moreover, R(G) = g.

Theorem 2.2 (Hahn, Banach) Let Y be a subspace of a normed space X. If f ∈ Y ∗
then there exists F ∈ X∗ such that F

∣
∣
Y = f and ‖F‖X∗ = ‖ f ‖Y ∗ .

Proof: First assume that X is a real normed space. Define a new norm ||| · ||| on X by
|||x ||| = ‖ f ‖Y ∗‖x‖, where ‖ · ‖ is the original norm of X . We have | f (y)| ≤ |||y||| for
all y ∈ Y , so by Theorem 2.1 there is a linear functional F on X that extends f and
|F(x)| ≤ |||x ||| (= ‖ f ‖Y ∗‖x‖) for every x ∈ X . Therefore ‖F‖X∗ := sup{|F(x)| :
‖x‖ ≤ 1} ≤ ‖ f ‖Y ∗ . Since F extends f , we obviously have ‖F‖X∗ ≥ ‖ f ‖Y ∗ as
well. Consequently ‖F‖X∗ = ‖ f ‖Y ∗ .

Now assume that X is a complex normed space. Consider the linear func-
tional R( f ) on YR, where R is the isometry defined above. By the first part
of this proof, we extend R( f ) to a linear functional g ∈ XR

∗ that satisfies
‖g‖XR

∗ = ‖R( f )‖YR
∗ = ‖ f ‖Y ∗ . Then the norm of the linear functional F(x) :=

g(x)− ig(i x) ∈ X∗ is equal to ‖g‖XR
∗ (= ‖ f ‖Y ∗).
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The real part of F is g and thus Re
(

F
∣
∣
Y

) = Re( f ), that is, R(F
∣
∣
Y ) = R( f ).

Since R is a bijection of Y ∗ onto YR
∗, we get F

∣
∣
Y = f .

Corollary 2.3 (Hahn, Banach) Let X be a normed space. For every x ∈ X there is
f ∈ SX∗ such that f (x) = ‖x‖. In particular, ‖x‖ = max{| f (x)| : f ∈ BX∗} for
every x ∈ X.

As a consequence, if X 	= {0} then X∗ 	= {0} as well (see Corollary 3.33).

Proof: Put Y = span{x} and define f ∈ Y ∗ by f (t x) = t‖x‖. Clearly ‖ f ‖Y ∗ = 1
and f (x) = ‖x‖. Using Theorem 2.2 we extend f to a linear functional from X∗
with the same norm. From | f (x)| ≤ ‖ f ‖ ‖x‖ we have sup f ∈BX∗ | f (x)| ≤ ‖x‖. On
the other hand, the linear functional constructed above shows that the supremum is
attained and equal to ‖x‖.

Corollary 2.4 Let {xi }n
i=1 be a linearly independent set of vectors in a normed

space X and {αi }n
i=1 be a set of real numbers. Then there is f ∈ X∗ such that

f (xi ) = αi for i = 1, . . . , n.

Proof: Define a linear functional f on span{xi } by f (xi ) = αi for i =
1, . . . , n. Proposition 1.39 shows that f is continuous. The result follows from
Theorem 2.2.

Definition 2.5 Let C be a convex subset of a normed space X and let x ∈ C.
A non-zero linear functional f ∈ X∗ is called a supporting functional of C at x
if f (x) = sup{ f (y) : y ∈ C}. The point x is said to be a support point of C
(supported by f ).

By Corollary 2.3, for every x ∈ SX there is a supporting functional of BX at x ,
and so x is a support point of BX .

There exists a closed convex and bounded set C in a Banach space, having empty
interior, and a point in C that is not a support point (see Exercise 2.17). However,
every closed convex and bounded subset of a Banach space must have support
points. This follows from Theorem 7.41.

Consider a Banach space X . If Y is a subset of X , we define its annihilator by
Y⊥ = { f ∈ X∗ : f (y) = 0 for all y ∈ Y }. Note that Y⊥ is a closed subspace of X∗.
Similarly, for a subset Y of X∗ we define Y⊥ = {x ∈ X : f (x) = 0 for every f ∈
Y }, which is a closed subspace of X .

Note that if F is a subset of a Hilbert space H , then the orthogonal complement
F⊥ when considered a subspace of the dual H∗ under the canonical duality (see
Theorem 2.22) coincides with the annihilator F⊥.

Proposition 2.6 Let Y be a closed subspace of a Banach space X. Then (X/Y )∗ is
isometric to Y⊥ and Y ∗ is isometric to X∗/Y⊥.

Proof: Consider the mapping δ : Y⊥ → (X/Y )∗ defined by δ(x∗) : x̂ �→ x∗(x),
where x ∈ x̂ . This definition is correct, since x∗(x1) = x∗(x2) whenever x1, x2 ∈ x̂
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as x∗ ∈ Y⊥. To see that δ maps Y⊥ onto (X/Y )∗, given f ∈ (X/Y )∗, define x∗ ∈
X∗ by x∗(x) = f (x̂), where x ∈ x̂ . Then x∗ ∈ Y⊥ and δ(x∗)(x̂) = x∗(x) = f (x̂).
To check that δ is an isometry, write

‖δ(x∗)‖ = sup
‖x̂‖<1

|δ(x∗)(x̂)| = sup
‖x‖<1

|x∗(x)| = ‖x∗‖.

The middle equality follows since given ‖x̂‖ < 1, there is x ∈ x̂ such that ‖x‖ < 1.
On the other hand, given ‖x‖ < 1, we have ‖x̂‖ < 1.

To prove the second part of this proposition, define a mapping σ from Y ∗ into
X∗/Y⊥ by σ(y∗) = {all extensions of y∗ on X}. It is easy to see that σ(y∗) is a
coset in X∗/Y⊥ and the Hahn–Banach theorem gives that ‖σ(y∗)‖ = ‖y∗‖Y ∗ . It
follows that σ is a linear and onto mapping.

We will now establish several separation results.

Proposition 2.7 Let Y be a closed subspace of a normed space X. If x /∈ Y then
there is f ∈ SX∗ such that f (y) = 0 for all y ∈ Y and f (x) = dist(x,Y ).

Proof: Let (0 <) d = dist(x,Y ). Put Z = span{Y, x} and define a linear functional
f on Z by f (y + t x) = td for y ∈ Y and t ∈ K. Clearly f

∣
∣
Y = 0 and f (x) = d.

For u := y + t x , where y ∈ Y and t is a scalar such that u 	= 0, we have

| f (u)| = |t | d = |t |.‖u‖
‖u‖ d = |t |.‖u‖

‖y + t x‖d = ‖u‖
‖(y/t)+ x‖d

= ‖u‖d

‖x − (−(y/t)
)‖ ≤ ‖u‖d

dist(x,Y )
= ‖u‖.

Therefore ‖ f ‖ ≤ 1.
On the other hand, there is a sequence yn ∈ Y such that ‖yn − x‖ → d. We have

d = | f (yn)− f (x)| ≤ ‖ f ‖ · ‖yn − x‖, so by passing to the limit when n → ∞ we
obtain d ≤ ‖ f ‖d.

Thus ‖ f ‖ = 1, and f (x) = dist(x,Y ). Extending f on X with the same norm
we obtain the desired functional.

Proposition 2.8 Let X be a normed space. If X∗ is separable, then X is separable.

Proof: Choose a dense subset { fn} of SX∗ . For every n ∈ N, pick xn ∈ SX such
that fn(xn) >

1
2 . Let Y = span{xn}. As Y is separable (finite rational combinations

of {xn} are dense in Y ), it is enough to show that X = Y . If Y 	= X , then there
is f ∈ X∗, ‖ f ‖ = 1 such that f (x) = 0 for every x ∈ Y . Let n be such that
‖ fn − f ‖ < 1

4 . Then

| f (xn)| = | fn(xn)− ( fn(xn)− f (xn))| ≥ | fn(xn)| − | fn(xn)− f (xn)|
≥ | fn(xn)| − ‖ f − fn‖ · ‖xn‖ > 1

2 − 1
4 = 1

4 ,

a contradiction.

To prove separation results for sets we need a new notion.
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Definition 2.9 Let C be a set in a normed space X. We define the Minkowski
functional of C, μC : X → [0,+∞], by

μC (x) =
{

inf{λ > 0 : x ∈ λC}, if {λ > 0 : x ∈ λC} 	= ∅,
+∞, if {λ > 0 : x ∈ λC} = ∅.

Lemma 2.10 Let μ be a subadditive real function on a real normed space X. Then
(i) μ is continuous if and only if it is continuous at 0.
(ii) If μ is continuous, every linear functional f : X → R such that f ≤ μ is also
continuous.

Proof: From the subadditivity of μ it follows easily that, for x, y ∈ X , −μ(y− x) ≤
μ(x) − μ(y) ≤ μ(x − y), so μ is continuous if (and only if) it is continuous at 0.
This proves (i). In order to prove (ii), use Exercise 2.1.

Lemma 2.11 Let C be a convex neighborhood of 0 in a normed space X. Then its
Minkowski functional μC is a finite non-negative positively homogeneous subaddi-
tive continuous functional. Moreover, {x : μC (x) < 1} = Int(C) ⊂ C ⊂ C = {x :
μC (x) ≤ 1}.
Proof: Let Bδ = {x : ‖x‖ ≤ δ} ⊂ C for some δ > 0. Since 0 ∈ C , the point 0 is in
λC for every λ > 0 and thus μC (0) = 0. Given x ∈ X\{0}, we get δ x

‖x‖ ∈ Bδ ⊂ C ,

so x ∈ ‖x‖
δ

C . Thus

(0 ≤) μC (x) ≤ ‖x‖
δ
<∞. (2.2)

Given α, λ > 0, clearly x ∈ λC if and only if αx ∈ λαC . Therefore μC (αx) =
αμC (x) and thus μC is positively homogeneous. We claim that μC (x) < λ implies
that x ∈ λC . Indeed, there exists λ0 such that μC (x) ≤ λ0 < λ and x ∈ λ0C . Then
we can find c ∈ C such that x = λ0c. Therefore

(x =) λ0c = λ
(
λ0

λ
c + (1 − λ0)

λ
0

)

. (2.3)

Since C is convex and 0 ∈ C we get x ∈ λC as claimed.
To prove subadditivity, let x, y ∈ X and s, t such that μC (x) < s, μC (y) < t .

By the former claim, x ∈ sC and y ∈ tC . Then x + y ∈ sC + tC , and thus by the
convexity

x + y ∈ (t + s)
( s

t + s
C + t

t + s
C
)

⊂ (t + s)C.

Therefore μC (x + y) ≤ t + s, so by the choice of s and t we have μC (x + y) ≤
μC (x)+ μC (y).
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The continuity of μC at 0 follows from (2.2), so μC is continuous by Lemma
2.10. By the continuity of μC , the set {x ∈ X : μC (x) < 1} is open, and, by the
claim, a subset of C , hence a subset of Int(C). It follows that, if μC (x) = 1 and
0 < s < 1 < t , then sx ∈ Int(C) and t x 	∈ C . Therefore, if μC (x) = 1 then x
belongs to the boundary of C and if μC (x) > 1 then, again by the continuity of μC ,
x ∈ Int(X\C). This proves the statement.

Theorem 2.12 (Hahn, Banach) Let C be a closed convex set in a normed space X.
If x0 /∈ C then there is f ∈ X∗ such that Re

(

f (x0)
)

> sup{Re
(

f (x)
) : x ∈ C}.

Proof: First, let X be a real space. We may assume without loss of generality that
0 ∈ C , otherwise we consider (C − x) and x0 − x for some x ∈ C . Let δ =
dist(x0,C). Then δ is positive as C is closed. Set D = {x ∈ X : dist(x,C) ≤ δ/2}.
Since 0 ∈ C , we have δ

4 BX ⊂ D and so D contains 0 as an interior point. D is also
closed, convex, and x0 /∈ D. Let μD be the Minkowski functional of D. Since D is
closed and x0 /∈ D, we have μD(x0) > 1 (Exercise 2.21).

Define a linear functional on span{x0} by f (λx0) = λμD(x0). Then on span{x0}
we have f (λx0) ≤ μD(λx0). For λ ≥ 0 it is clear from the definition of f , for
λ < 0 we have f (λx0) = λμD(x0) < 0 while μD(λx0) ≥ 0. Extend f onto X by
Theorem 2.1 and denote this extension by f again. Then f (x) ≤ μD(x) for every
x ∈ X . The continuity of f follows from Lemma 2.10.

Since μD(x0) > 1 and f (x0) = μD(x0), we get f (x0) > 1, so f (x0) >

sup{ f (x) : x ∈ C}.
If X is a complex space, we construct g from X∗

R
as in the real case and then

define f (x) = g(x)− ig(i x).

For simplicity we will state the following result only for the real case.

Proposition 2.13 Let X be a real normed space.
(i) Let C be an open convex set in X. If x0 /∈ C then there is f ∈ X∗ such that
f (x) < f (x0) for all x ∈ C.
(ii) Let A, B be disjoint convex sets in X. If A is open then there is f ∈ X∗ such
that f (a) < inf f (b): b∈B for all a ∈ A.

Proof: (i) We pick some y ∈ C and consider D := C − y, y0 := x0 − y. Then define
μD and f on span{y0} as in the proof of Theorem 2.12. Let f denote the extended
functional as well. We have f (y0) = μD(y0) ≥ 1 as y0 /∈ D. Also f (x) < 1 for
x ∈ D as D is open (Exercise 2.21), and the statement follows.

(ii) Applying (i) to the open convex set C := A − B and to x0 := 0 we obtain
f such that f (x) < f (0) (= 0) for x ∈ A − B. Thus f (a) < f (b) for every
a ∈ A, b ∈ B. It follows that f (a) ≤ inf{ f (b) : b ∈ B} for a ∈ A. If a ∈ A
is such that f (a) = inf{ f (b) : b ∈ B}, then, from the openness of A we get
f (a + h) > inf{ f (b) : b ∈ B} for some a + h ∈ A, a contradiction. Therefore
f (a) < inf{ f (b) : b ∈ B} for all α ∈ A.
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Proposition 2.14 Let (X, ‖ · ‖) be a normed space. Let Y be a subspace of X and
let |‖ · |‖ be an equivalent norm on Y . Then there is an equivalent norm | · | on X
inducing on Y the norm |‖ · |‖.

Proof: Without loss of generality, we may assume that B(Y,‖·‖) ⊂ B(Y,|‖·|‖). The set
B := conv {B(Y,|‖·|‖) ∪ B(X,‖·‖)} is convex and balanced. Obviously, B is bounded
and contains B(X,‖·‖), so its Minkowski functional is an equivalent norm | · | on X
(see Fig. 2.1).

Fig. 2.1 Extending a norm

B(Y, )

B(X,|·|)

B(X, )

This norm certainly induces on Y the norm |‖· |‖, since B∩Y = B(Y,|‖·|‖). Indeed,
B(Y,|‖·|‖) ⊂ B. On the other hand, if y ∈ B ∩ B(Y,|‖·|‖), then y = λy1 + (1 − λ)x ,
where 0 ≤ λ ≤ 1, y1 ∈ B(Y,|‖·|‖), and x ∈ B(X,‖·‖) (see Exercise 1.12). We get
(1 − λ)x = y − λy1 ∈ Y . If λ 	= 1 then x ∈ Y , so x ∈ B(X,‖·‖) ∩ Y = B(Y,‖·‖) ⊂
B(Y,|‖·|‖). By convexity, y ∈ B(Y,|‖·|‖). If, on the contrary, λ = 1, we obtain again
y ∈ B(Y,|‖·|‖).

We refer to Exercise 5.95 for an alternative proof of the Hahn–Banach theorem.

2.2 Duals of Classical Spaces

In Propositions 2.15, 2.16, 2.17, 2.18, 2.19, and 2.20, we assume the scalar field to
be R.

Proposition 2.15 (Riesz) c∗0 = �1 in the sense that for every f ∈ c∗0 there is a
unique (ai ) ∈ �1 such that f (x) = ∑ ai xi for all x = (xi ) ∈ c0, and the mapping
f �→ (ai ) is a linear isometry from c∗0 onto �1.

Proof: Given f ∈ c∗0, define ai = f (ei ), where ei := (0, . . . , 0,
i
1, 0, . . . ) are the

standard unit vectors in c0. For n ∈ N we set

xn = (sign(a1), . . . , sign(an), 0, . . . ) ∈ c0.

Then ‖xn‖∞ = 1 and f (xn) = ∑n
i=1 |ai | ≤ ‖ f ‖ · ‖xn‖∞ = ‖ f ‖. Therefore

∑∞
i=1 |ai | ≤ ‖ f ‖ <∞, that is, the mapping f �→ (

f (ei )
)

is a continuous mapping
into �1. It is obviously linear.
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On the other hand, if
∑∞

i=1 |ai | < ∞ then
∑ |ai xi | < ∞ for every x = (xi ) ∈

c0. Indeed, we have
∑ |ai xi | ≤ sup |xi | ·∑ |ai | = ‖(ai )‖1‖(xi )‖∞. Consider the

linear functional h defined on c0 by h(x) = ∑ ai xi . Then from the above estimate
we have ‖h‖ ≤ ‖(ai )‖1 and also h(ei ) = ai , so h ∈ c∗0 and the mapping f �→
(

f (ei )
)

is thus onto. We also obtain that ‖ f ‖ = ‖( f (ai )
)‖1, hence the considered

mapping is an isometry onto �1.

Proposition 2.16 (Riesz) �∗1 = �∞ in the sense that for every f ∈ �∗1 there is a
unique (ai ) ∈ �∞ such that f (x) =∑ ai xi for all x = (x0) ∈ �1, and the mapping
f �→ (ai ) is a linear isometry from �∗1 onto �∞.

Proof: Given f ∈ �∗1, put ai = f (ei ) for i ∈ N, where ei are the standard unit vectors
in �1. Then |ai | ≤ ‖ f ‖, so ‖(ai )‖∞ ≤ ‖ f ‖. Conversely, for (ai ) ∈ �∞ consider the
functional h defined on �1 by h(x) =∑ ai xi . Again, |h(x)| ≤ ‖(ai )‖∞‖x‖1, hence
h ∈ �∗1 and ‖h‖ ≤ ‖(ai )‖∞. Similarly as in the proof of Proposition 2.15, we
conclude that the mapping is a linear isometry onto �∞.

Proposition 2.17 (Riesz) Let p, q ∈ (1,∞) be such that 1
p + 1

q = 1. Then �∗p = �q

in the sense that for every f ∈ �∗p there exists a unique element (ai ) ∈ �q such that
f (x) = ∑ ai xi for all x =: (xi ) ∈ �p, and the mapping f �→ (ai ) is a linear
isometry from �∗p onto �q .

Proof: For f ∈ �∗p, put ai = f (ei ). Considering

xn := (|a1|q−1 sign(a1), . . . , |an|q−1 sign(an), 0, . . .
)

we see that

n
∑

i=1

|ai |q = f (xn) ≤ ‖ f ‖ · ‖xn‖p = ‖ f ‖
( n
∑

i=1

(|ai |q−1)p
) 1

p = ‖ f ‖ ·
( n
∑

i=1

|ai |q
) 1

p
.

This reads
(
∑n

i=1 |ai |q
) 1

q ≤ ‖ f ‖. Hence ‖(ai )‖q ≤ ‖ f ‖ <∞.

If (ai ) ∈ �q and (xi ) ∈ �p, then the series
∑

xi ai is convergent by the Hölder
inequality (1.1) as

∑ |xi ai | ≤ ‖(xi )‖p‖(ai )‖q . Therefore the functional h defined
on �p by h(x) =∑ xi ai is well defined and ‖h‖ ≤ ‖(ai )‖q . The rest of the proof is
analogous to those above.

Similarly we show that for a set Γ and p ∈ [1,∞) we have c0(Γ )
∗ = �1(Γ ) and

�p(Γ )
∗ = �q(Γ ), where 1

p + 1
q = 1. This applies, in particular, for a finite set Γ .

Proposition 2.18 (Riesz) Let p, q ∈ (1,∞) be such that 1
p + 1

q = 1. Then
L p[0, 1]∗ = Lq [0, 1] in the sense that for every F ∈ L∗

p there is a unique f ∈ Lq

such that F(g) = ∫ 1
0 g f dx for all g ∈ L p, and the mapping F �→ f is a linear

isometry of L∗
p onto Lq .
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Proof: Let F ∈ L∗
p. For t ∈ [0, 1], let ut = χ[0,t) be the characteristic function

of [0, t). Define α(t) = F(ut ). We claim that α is absolutely continuous (see the
definition right before Proposition 11.13). Indeed, if [τi , ti ], i = 1, . . . , n, is a col-
lection of non-overlapping intervals, that is, their interiors are pairwise disjoint, put
εi = sign(α(ti )− α(τi )) and estimate:

n
∑

i=1

|α(ti )− α(τi )| =
n
∑

i=1

εi (α(ti )− α(τi )) = F
( n
∑

i=1

εi (uti − uτi )
)

≤ ‖F‖L∗
p
·
∥
∥
∥

n
∑

i=1

εi (uti − uτi )
∥
∥
∥

L p
= ‖F‖L∗

p

(∫ 1

0

∣
∣
∣

n
∑

i=1

εi (uti − uτi )
∣
∣
∣

p
dx
) 1

p

= ‖F‖
( n
∑

i=1

∫ ti

τi

1 dx
) 1

p = ‖F‖ ·
( n
∑

i=1

(ti − τi )
) 1

p
.

Therefore α is an absolutely continuous function on [0, 1]. By the Lebesgue funda-
mental theorem of calculus, we have α(t) − α(0) = ∫ t

0 α
′ dx for every t ∈ [0, 1].

Setting f = α′ and using α(0) = F(u0) = 0 we get

F(ut ) = α(t) =
∫ t

0
f dx =

∫ 1

0
ut f dx .

Since F is linear, we also have F(gn) =
∫ 1

0 gn f dx for all step functions gn :=
∑n

k=1 ck
(

u k
n
− u k−1

n

)

.

Let g be a bounded measurable function on [0, 1]. Then there is a sequence of
step functions gn such that gn → g a.e. and {gn} is uniformly bounded. By the
Lebesgue dominated convergence theorem, we get

lim
n→∞ F(gn) = lim

n→∞

∫ 1

0
gn f dx =

∫ 1

0
lim

n→∞ gn f dx =
∫ 1

0
g f dx .

On the other hand, since gn → g a.e. and gn are uniformly bounded, the same
theorem implies ‖gn − g‖L p → 0 as n → ∞. By the continuity of F on L p, we

thus have F(g) = lim
n→∞ F(gn) = ∫ 1

0 g f dx . Hence F(g) = ∫ 1
0 g f dx for every

bounded measurable function g on [0, 1].
We will show that f ∈ Lq and ‖ f ‖q ≤ ‖F‖. Consider a family of functions gn

defined by

gn(x) =
{ | f (x)|q−1 sign

(

f (x)
)

if | f (x)| ≤ n,
0 if | f (x)| > n.

The functions gn are bounded and measurable. Thus we have F(gn) =
∫ 1

0 gn f dx .
Note also that |F(gn)| ≤ ‖F‖ ‖gn‖p. On the other hand,
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∫ 1

0
|gn|p dx =

∫ 1

0
|gn|

q
q−1 dx =

∫ 1

0
|gn(t)| |gn(t)|

1
q−1 dx

≤
∫ 1

0
|gn| | f | dx =

∫ 1

0
gn f dx = F(gn) = |F(gn)|.

Hence
∫ 1

0 |gn|p dx ≤ ‖F‖ · ‖gn‖p = ‖F‖
(∫ 1

0 |gn|p dx
) 1

p
, so
(∫ 1

0 |gn|p dx
) 1

q ≤
‖F‖.

Since f is integrable, we have |gn| → | f |q−1 a.e. By Fatou’s lemma, the last
inequality implies that

(∫ 1

0
| f |q dx

) 1
q =
(∫ 1

0
| f |(q−1)p dx

) 1
q =
(∫ 1

0
|gn|p dx

) 1
q ≤ ‖F‖.

This shows that f ∈ Lq . Finally, let g ∈ L p. There exists a sequence {gn} of
bounded measurable functions that converges to g in L p. Then F(gn)→ F(g) and

by Hölder’s inequality (1.1) we have
∫ 1

0 gn f dx → ∫ 1
0 g f dx . We have shown that

F(gn) = ∫ 1
0 gn f dx for bounded measurable functions, so F(g) = ∫ 1

0 g f dx as
claimed.

On the other hand, given a function f ∈ Lq , we can define a linear functional

on L p by F(g) = ∫ 1
0 g f dx . It follows from the Hölder inequality (1.1) that F is

continuous and ‖F‖ ≤ ‖ f ‖q .

Using similar methods, we obtain an analogous result for the space L1.

Proposition 2.19 (Riesz) L1[0, 1]∗ = L∞[0, 1] in the sense that for every F ∈ L∗
1

there exists a unique f ∈ L∞ such that F(g) = ∫ 1
0 g f dx for all g ∈ L1, and the

mapping F �→ f is a linear isometry of L∗
1 onto L∞.

Proposition 2.20 (Riesz) For every F ∈ C[0, 1]∗ there exists a function f on [0, 1]
with bounded variation such that F(g) = ∫ 1

0 g d f (Stieltjes integral) for all g ∈
C[0, 1] and ‖F‖ =

1∨

0
f , where

1∨

0
f denotes the variation of f on [0, 1].

On the other hand, if f is a function of bounded variation on [0, 1], then F(g) :=
∫ 1

0 g d f is a continuous linear functional on C[0, 1].

Proof: Consider the space �∞[0, 1] of bounded functions on [0, 1] with the supre-
mum norm denoted by ‖ · ‖∞. If F ∈ C[0, 1]∗, we have that |F(g)| ≤ ‖F‖ · ‖g‖∞
for every g ∈ C[0, 1]. Since C[0, 1] is a subspace of �∞[0, 1], by the Hahn–
Banach theorem we can extend F to a functional F̃ on �∞[0, 1] such that |F̃(g)| ≤
‖F‖ · ‖g‖∞. We will represent F̃ similarly to the L p setting above. For t ∈ [0, 1],
let ut = χ[0,t), the characteristic function of [0, t). Put f (t) = F̃(ut ) for t ∈ [0, 1]
(note that F is not defined on ut as ut is not continuous). We will prove that f has
bounded variation on [0, 1]. To this end, consider t0 = 0 < t1 < · · · < tn−1 < tn =
1 and put εi = sign( f (ti )− f (ti−1)). We have
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n
∑

i=1

| f (ti )− f (ti−1)| =
n
∑

i=1

εi ( f (ti )− f (ti−1)) = F̃
( n
∑

i=1

εi (uti − uti−1)
)

≤ ‖F̃‖ ·
∥
∥
∥

n
∑

i=1

εi (uti − uti−1)

∥
∥
∥∞ = ‖F‖ · 1.

Hence f has bounded variation on [0, 1] which is bounded by ‖F‖.
For g ∈ C[0, 1] and gn :=∑n

i=1 g
( k

n

)(

u k
n
− u k−1

n

)

we have

F̃(gn) =
n
∑

i=1

g
( k

n

)(

f
( k

n

)− f
( k−1

n

)) =
∫ 1

0
gn d f.

Therefore lim
n→∞ F̃(gn) = lim

n→∞
∑n

k=1 g( k
n )
(

f ( k
n )− f ( k−1

n )
) = ∫ 1

0 g d f . Since F̃ ∈
�∞[0, 1]∗ and gn → g in ‖ · ‖∞, we have lim F̃(gn) = F̃(g), so F̃(g) = ∫ 1

0 g d f .

However, for g ∈ C[0, 1] we have F̃(g) = F(g), hence F(g) = ∫ 1
0 g(t) d f (t).

We have already shown that
1∨

0
f ≤ ‖F‖. On the other hand, from the theory of

Riemann–Stieltjes integral we have that given a function f of bounded variation,

F : g �→ ∫ 1
0 g d f is a linear mapping and

∫ 1
0 g(t) d f (t) ≤ ‖g‖∞

1∨

0
f . Therefore F

is continuous and ‖F‖ ≤
1∨

0
f .

In general, if K is a compact set, the space C(K )∗ can be identified with the
space of all regular Borel measures on K of bounded variation. Every such measure
μ defines a functional Fμ( f ) := ∫K f dμ, the correspondence μ �→ Fμ is a linear
isometry ([Rudi2, Theorem 2.14]).

Let k ∈ K . We define the corresponding Dirac functional (or Dirac measure) by
δk( f ) = f (k) for every f ∈ C(K ). Observe that δk is a continuous linear functional
of norm one. Indeed, on one hand, ‖δk‖ = sup

‖ f ‖≤1

(

δk( f )
) = sup

‖ f ‖≤1

(

f (k)
) ≤ 1. By

considering the constant function f = 1, we obtain ‖δk‖ = 1.

Proposition 2.21 The space C[0, 1]∗ is not separable.

Proof: Consider the Dirac measures δt for t ∈ [0, 1]. We claim that if t1 	= t2 then
‖δt1 − δt2‖ = 2. Indeed, ‖δt1 − δt2‖ ≤ ‖δt1‖ + ‖δt2‖ = 2. On the other hand,
choose f0 ∈ C[0, 1] such that f0(t1) = 1, f0(t2) = −1, and ‖ f0‖∞ = 1. Then
‖δt1 −δt2‖ ≥ | f0(t1)− f0(t2)| = 2. Similarly to the case of �∞ we find that C[0, 1]∗
is not separable.

Recall that the inner product on a complex Hilbert space �2, respectively L2, is
defined by

(

(xi ), (yi )
) = ∑ xi ȳi , respectively (g, f ) = ∫ 1

0 g f̄ dx . This motivates
the following identification of the dual space in case of complex scalars. Recall that
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a mapping Φ is called conjugate linear if Φ(αx + y) = ᾱΦ(x) + Φ(y) for all
vectors x, y and scalars α.

Theorem 2.22 (Riesz) Let H be a Hilbert space. For every f ∈ H∗ there is a
unique a ∈ H such that f (x) = (x, a) for all x ∈ H. The mapping f �→ a is a
conjugate-linear isometry of H∗ onto H.

Proof: The uniqueness of such a is clear. Indeed, if f (x) = (x, a1) = (x, a2) then
using x = a1−a2 we get (a1−a2, a1) = (a1−a2, a2). Thus (a1−a2, a1−a2) = 0,
so a1 = a2.

By the Cauchy–Schwarz inequality,

‖ f ‖ = sup
‖x‖≤1

| f (x)| = sup
‖x‖≤1

|(x, a)| ≤ sup
‖x‖≤1

(‖a‖ · ‖x‖) ≤ ‖a‖.

On the other hand, ‖ f ‖ = sup{| f (x)| : ‖x‖ ≤ 1} ≥ (a/‖a‖, a) = ‖a‖. Hence
‖ f ‖ = ‖a‖.

To obtain the representation of 0 	= f ∈ H∗, consider N := Ker( f ). It is a proper
closed subspace of H . Choose z0 ∈ N⊥ and assume without loss of generality that
f (z0) = 1.

We claim that H = N ⊕span{z0}. Indeed, given h ∈ H , it suffices to find a scalar
α such that h − αz0 ∈ N , that is, f (h − αz0) = 0. This is satisfied for α = f (h).

We now show that f (x) = (x, z0
‖z0‖2

)

for every x ∈ H . Given x := y + αz0,
where y ∈ N and α is a scalar, we have

f (x) = α f (z0) = α = α(z0, z0)/‖z0‖2

= (y, z0)/‖z0‖2 + (αz0, z0)/‖z0‖2 =
(

x,
z0

‖z0‖2

)

.

2.3 Banach Open Mapping Theorem, Closed Graph Theorem,
Dual Operators

Definition 2.23 Let ϕ be a mapping from a topological space X into a topological
space Y . We say that ϕ is an open mapping if it maps open sets in X onto open sets
in Y .

Let T be an operator from a normed space X into a normed space Y . Observe
that if T is an open mapping, then T is necessarily onto. Indeed, by Exercise 2.37,
δBY ⊂ T (BX ) for some δ > 0 and hence by linearity, Y ⊂ T (X). We will now
establish the converse for bounded operators.

By BO
X (r)we denote the open ball with radius r centered at the origin of a Banach

space X .
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Lemma 2.24 (Banach) Let X be a Banach space, Y a normed space and T ∈
B(X,Y ). If r, s > 0 satisfy BO

Y (s) ⊂ T (BO
X (r)), then BO

Y (s) ⊂ T (BO
X (r)).

Proof: By considering r
s T if necessary, we may assume that r = s = 1. Denote

BO
X = BO

X (1) and BO
Y = BO

Y (1). Let z ∈ BO
Y be given. Choose δ > 0 such that

‖z‖Y < 1 − δ < 1 and put y = (1 − δ)−1z. Note that ‖y‖Y < 1. We will show that
y ∈ (1 − δ)−1T (BO

X ), which implies that z ∈ T (BO
X ).

We start with y0 = 0 and inductively find a sequence yn ∈ Y such that
‖y − yn‖Y < δn and (yn − yn−1) ∈ T (δn−1 BO

X ). Indeed, having chosen

y0, y1, . . . , yn−1 ∈ Y , we have (y − yn−1) ∈ δn−1 BO
Y ⊂ T (δn−1 BO

X ), hence there
is w ∈ T (δn−1 BO

X ) such that ‖w − (y − yn−1)‖Y < δ
n . Setting yn = yn−1 +w we

complete the construction.
Next we find a sequence {xn}∞n=1 ⊂ X such that ‖xn‖X < δ

n−1 and T (xn) =
yn − yn−1 for n ∈ N. Since the series

∑
xi is absolutely convergent, we put x =

∑∞
n=1 xn . Then ‖x‖X ≤ ∑∞

n=1 ‖xn‖X <
∑∞

n=1 δ
n−1 = 1

1−δ and by the continuity
and linearity of T ,

T (x) = lim
N→∞

N
∑

n=1

T (xn) = lim
N→∞

N
∑

n=1

(yn − yn−1) = lim
N→∞ yN = y.

Note that T (BO
X (r)) = T (BX (r)), so the conclusion of the lemma is true if we

assume for instance δBY ⊂ T (BX ).

Theorem 2.25 (Banach open mapping principle) Let X,Y be Banach spaces and
T ∈ B(X,Y ). If T is onto Y then T is an open mapping.

Proof: Put G = T (BO
X ). Since T is linear, we only need to prove that G contains

a neighborhood of the origin. Note that we have T (BO
X (r)) = rG and rG = rG

for every r > 0. Therefore T (BO
X (r)) = rG for every r > 0. This implies that

Y = T (X) =
∞⋃

n=1
nG. By the Baire category theorem, there is n ∈ N such that nG

contains an interior point, so there is x0 ∈ G and δ > 0 such that
(

x0 + BO
Y (δ)

) ⊂
nG. Since nG is symmetric, we have

(−x0+BO
Y (δ)

) ⊂ nG. If x ∈ BO
Y (δ) then from

the convexity of nG we have x = 1
2 (x0+x)+ 1

2 (−x0+x) ∈ nG. Therefore BO
Y (δ) ⊂

T (BO
X (n)) and consequently BO

Y

(
δ
n

) ⊂ 1
n T (BO

X (n)) = T (BO
X ). By Lemma 2.24,

we have BO
Y

(
δ
n

) ⊂ T (B O
X ) as claimed.

It follows from the proof that if T : X → Y is onto, then there is δ > 0 such that
δBY ⊂ T (BX ).

Note that even if T ∈ B(X, Y ) is open, it does not imply that T (M) is closed in
Y whenever M is closed in X (Exercise 15.11).
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In Exercise 2.33, a rewording of the proof of the Banach open mapping principle
in the language of convex series is presented.

Corollary 2.26 Let X,Y be Banach spaces and let T ∈ B(X,Y ) be onto Y .
(i) If T is one-to-one, then T−1 is a bounded operator.
(ii) There is a constant M > 0 such that for every y ∈ Y there is x ∈ T−1(y)
satisfying ‖x‖X ≤ M‖y‖Y .
(iii) Y is isomorphic to X/Ker(T ).

Proof: (i) If O is open in X , then (T−1)−1(O) = T (O) is open in Y showing that
T−1 is continuous.

(ii) By the open mapping theorem, there is δ > 0 such that δBY ⊂ T (BX ).
Therefore for every y ∈ Y such that ‖y‖Y = δ, there is x ∈ BX such that T (x) = y.
Thus it is enough to put M = 1/δ.

(iii) Define a linear mapping T̂ from X/Ker(T ) onto Y by T̂ (x̂) = T (x) for
x ∈ x̂ . The mapping T̂ is well defined. Moreover T̂ is one-to-one and onto Y . Let
x̂n → 0. Then there is xn ∈ x̂n such that ‖xn‖X < ‖x̂n‖ + 1/n and therefore
xn → 0. Since T is continuous, we have T (xn)→ 0 and thus T̂ (x̂n)→ 0. Hence T̂
is continuous and one-to-one, so by (i) it is an isomorphism of X/Ker(T ) onto Y .

Theorem 2.27 (Banach closed graph theorem) Let X,Y be Banach spaces and let
T be an operator from X into Y . T is a bounded operator if and only if its graph
G := {(x, T (x)

) : x ∈ X} is closed in X ⊕ Y .

Recall that the norm on X ⊕ Y is defined by ‖(x, y)‖ = ‖x‖X +‖y‖Y . In partic-
ular, (xn, yn)→ (x, y) if and only if xn → x and yn → y (see Definition 1.33).

Note that G, the graph of T , is a subspace of X ⊕ Y .

Proof: If T is continuous and
(

xn, T (xn)
)→ (x0, y0), then y0 = T (x0). Indeed, we

have xn → x0 and T (xn) → y0, while the continuity of T implies that T (xn) →
T (x0). This means that (x0, y0)

(= (x0, T (x0)
))

is in the graph of T , showing that
G is closed.

If G is closed in X ⊕ Y , then G is a Banach space in the norm induced from
X ⊕ Y . Consider the mapping p : G → X defined by p

(

x, T (x)
) = x . By the

definition of the norm in X ⊕ Y we see that p is continuous, maps G onto X , and is
one-to-one. By Corollary 2.26, p−1 : x �→ (

x, T (x)
)

is a continuous mapping from
X onto G. Since also q : X ⊕Y → Y , q(x, y) := y, is continuous and T = q ◦ p−1,
T must be continuous.

Definition 2.28 Let X,Y be Banach spaces and T ∈ B(X,Y ). We define the dual
(also called adjoint) operator T ∗ ∈ B(Y ∗, X∗) for f ∈ Y ∗ by

(

T ∗( f )
)

(x) =
f
(

T (x)
)

, for all x ∈ X.

It is easy to observe that x �→ f
(

T (x)
)

is a linear mapping. If ‖x‖ ≤ 1 then
|T ∗( f )(x)| = | f

(

T (x)
)| ≤ ‖ f ‖ ‖T ‖. Thus T ∗( f ) is also bounded, so T ∗( f ) ∈ Y ∗

and T ∗ is well defined. Also the mapping f �→ T ∗( f ) is linear and the above
estimate shows that ‖T ∗( f )‖ ≤ ‖T ‖ ‖ f ‖. Consequently, T ∗ is a bounded operator
from X∗ into Y ∗.
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Proposition 2.29 Let X,Y be Banach spaces. If T ∈ B(X,Y ) then ‖T ∗‖ = ‖T ‖.

Proof: We have

‖T ∗‖ = sup
f ∈BY∗

‖T ∗( f )‖X∗ = sup
f ∈BY∗

{

sup
x∈BX

|T ∗( f )(x)|}

= sup
f ∈BY∗

{ sup
x∈BX

| f
(

T (x)
)|} = sup

x∈BX

{ sup
f ∈BY∗

| f
(

T (x)
)|} = sup

x∈BX

{‖T (x)‖Y } = ‖T ‖.

Let X,Y, Z be Banach spaces and let T ∈ B(X,Y ), S ∈ B(Y, Z). Then (ST )∗ =
T ∗S∗. Indeed, consider f ∈ Z∗. Then for every x ∈ X we get (ST )∗( f )(x) =
f
(

ST (x)
) = (S∗ f )

(

T (x)
) = (T ∗S∗( f )

)

(x), so (ST )∗( f ) = (T ∗S∗)( f ).

2.4 Remarks and Open Problems

Remarks

1. We mentioned in Open Problem 1 in Chapter 1 that quasi-Banach spaces behave
differently from Banach spaces. This is mainly due to the fact that the Hahn–
Banach theorem fails in that context, see [Kalt1].

Open Problems

1. It is an open problem if every infinite-dimensional Banach space has a separa-
ble infinite-dimensional quotient, i.e., if for every Banach space X there is an
infinite-dimensional separable Banach space Y and a bounded operator from X
onto Y . This problem is equivalent to the problem whether in every Banach space
X there is an increasing sequence {En}∞n=1 of distinct closed subspaces such that
⋃

n En = X (see, e.g., [Muji] and [HMVZ, Chapter 4]).

Exercises for Chapter 2

2.1 Let X be a real normed space. If f is a linear functional on E that is dominated
by a function p : E → R (i.e., f ≤ p), and p is continuous at 0, then f is
continuous.
Hint. − f (x) = f (−x) ≤ p(−x), hence −p(−x) ≤ f (x) ≤ p(x) for all x ∈ E .
Since this implies that f is continuous at 0, the conclusion follows from Proposi-
tion 1.25.
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2.2 Let C be a convex symmetric set in a Banach space X . Assume that a linear
functional f on X is continuous at 0 when restricted to C . Show that the restriction
of f to C is uniformly continuous.
Hint. Given ε > 0, we look for a neighborhood U of the origin in X such that
x, y ∈ C and x − y ∈ U imply | f (x − y)| < ε. We have 1

2 (x − y) ∈ C , so
by homogeneity of f we only need to find an open ball U centered at 0 such that
| f (w)| < ε/2 for point w ∈ C ∩ U . Such U exists by the continuity of f

∣
∣
C at 0.

2.3 Show that if X is a finite-dimensional Banach space, then every linear functional
f on X is continuous on X .
Hint. Use Proposition 1.39.

2.4 Show that if X is an infinite-dimensional normed space, then X admits a dis-
continuous linear functional.
Hint. Let {eγ } be a Hamel basis formed by vectors of norm 1. Define a linear func-
tional f on {eγ } so that the set { f (eγ )} is unbounded, and extend f on X linearly.
Then f is not bounded on the unit ball.

2.5 Show that if f 	= 0 is a linear functional on a normed space X , then the codi-
mension of f −1(0) in X is 1.
Hint. For x ∈ X write x = (x − ( f (x)/ f (x0))x0) + ( f (x)/ f (x0))x0, where x0 is
some fixed element in X with f (x0) 	= 0.

2.6 Recall that by a hyperplane of a normed space X we mean any subspace Y of
codimension 1 (that is, dim (X/Y ) = 1).

Let Y be a subspace of a normed space X . Show that Y is a hyperplane if and
only if there is a linear functional f , f 	= 0, such that Y = f −1(0). Show that Y is
a closed hyperplane if and only if there is f ∈ X∗, f 	= 0, such that Y = f −1(0).
Hint. One direction: Exercise 2.5. Given a closed hyperplane Y , take e /∈ Y , use
Proposition 2.7 to find f . Then Y ⊂ f −1(0) and since codim(Y ) = 1, equality
follows. For a general hyperplane, the proof is similar.

2.7 Let H be a hyperplane in a normed space X , and let F be a two-dimensional
subspace of X . Show that dim (F ∩ H) ≥ 1.
Hint. Use algebraic complementability of H in X .

2.8 Let H be a closed hyperplane of a Banach space X . Let x0 ∈ X\H . Prove that
there is a linear and continuous projection P from X onto H parallel to x0, i.e., such
that Px0 = 0 (for a more precise statement, see Exercise 5.7).
Hint. Exercise 2.6 gives f ∈ X∗ such that Ker f = H . By scaling we may assume
that f (x0) = 1. Let P : X → X be defined by P(x) = x − f (x)x0. This is the
sought projection.

2.9 Let X be a Banach space. Show that all closed hyperplanes of X are mutually
isomorphic. By induction we get that given k ∈ N, all closed subspaces of X of
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codimension k are mutually isomorphic. In fact, Zippin proved that the Banach–
Mazur distance of two hyperplanes of the same infinite-dimensional Banach space
is less than or equal to 25, see [AlKa, p. 238].
Hint. Let F and G to distinct closed hyperplanes of X . According to Exercise 2.6,
there exists f, g ∈ X∗ such that F := f −1(0) and G := g−1(0). Find e ∈ X such
that f (e) = g(e) = 1. Let Pf (resp., Pg) be the (linear and continuous) projection
of X onto F (resp., onto G) parallel to e (see Exercise 2.8). Clearly, Pf ◦ Pg(x) = x
for every x ∈ F , and Pg ◦ Pf (y) = y for every y ∈ G. From this it follows that
Pg
∣
∣
F : F → G is an isomorphism. See Fig. 2.2.

Fig. 2.2 All hyperplanes are
mutually isomorphic

0

e

x

Pf (x)

Pg(x)

F

G

2.10 Let f be a linear functional on a Banach space X . Show that if f is not iden-
tically 0, the following are equivalent (see also Proposition 3.19):

(i) f is continuous.
(ii) f is continuous at 0.
(iii) f −1(0) is closed.
(iv) f −1(0) is not dense in X .

Hint. (i)�⇒(ii) is obvious, and (ii)�⇒(i) is clear from the linearity of f . (i)�⇒(iii)
is clear. (iii)�⇒(iv) is obvious. (iv)�⇒(iii) follows from the fact that if f −1(0) is
not closed, then f −1(0) � f −1(0) ⊂ X and f −1(0) is a linear subspace. It is
enough to use now Exercise 2.5. (iii)�⇒(i): Since f −1(R\{0}) 	= ∅ is open, there
is some ball B = x0 + δBX such that f

∣
∣

B 	= 0. Assume f (x0) > 0, then also
f
∣
∣

B > 0 (connect x0 with points of B, f 	= 0 on the connecting segments and f is

continuous on each of those segments). Then f
∣
∣

BX
≥ − 1

δ
f (x0), so by symmetry of

BX we get | f (x)| ≤ 1
δ

f (x0) for x ∈ BX and f is continuous.
Another related approach is the following: two subspaces A and B of a normed

space X form an (algebraic) direct sum decomposition of X (written X = A ⊕ B)
if A ∩ B = {0} and A + B = X (see the paragraph prior to Definition 1.33). Prove
first that if f is a non-zero linear functional and x0 ∈ X such that f (x0) 	= 0, and
K := f −1(0), then X = K ⊕ span{x0} (see Exercise 2.5). As a consequence, no
subspace S of X exists such that K � S � X . Since K ⊂ K ⊂ X , and the closure
of a subspace is also a subspace (see Exercise 1.9) it follows that K is dense if it is
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not closed (the converse being trivially true). To finish the exercise, notice that if K
is closed, then X/K is then a one-dimensional space. Let f̂ : X/K → K a linear
functional such that f̂ ◦ q = f , where q : X → X/K is the canonical quotient
mapping (see Exercise 2.35). Apply now Exercise 2.3.

2.11 Find a discontinuous linear mapping T from some Banach space X into X
such that Ker(T ) is closed.
Hint. Let X = c0 and T (x) = ( f (x), x1, x2, . . . ) for x = (xi ), where f is a
discontinuous linear functional on X .

2.12 Let X be a Banach space, f ∈ SX∗ . Show that for every x ∈ X we have
dist
(

x, f −1(0)
) = | f (x)|.

Hint. The result is obviously true if f = 0. If not, put K = f −1(0). There exists,
by Proposition 2.7, g ∈ SX∗ that vanishes on K and g(x) = dist(x, K ). Since
g−1(0) = f −1(0), we get g = λ f for some scalar λ (see Exercise 2.5), and |λ| = 1
since both f and g belong to SX∗ . This proves the assertion.

2.13 (The “parallel-hyperplane lemma".) Let X be a real Banach space, f, g ∈ SX∗
and ε > 0 be such that | f (x)| ≤ ε for every x ∈ g−1(0) ∩ BX . Prove that either
‖ f − g‖ ≤ 2ε or ‖ f + g‖ ≤ 2ε (see Fig. 2.3).

{x : f(x)=0}
{x : f(x)=ε}

{x : f(x)=−ε}

{x : g(x)=0}

BX

0

Fig. 2.3 The “parallel-hyperplane lemma”

Hint. Consider f on g−1(0) and extend it with the same norm (at most ε) on X ,
calling this extension f̃ . Then f̃ − f = 0 on g−1(0) and thus f̃ − f = αg for some
α by Lemma 3.21. Note that |1 − |α|| = ∣∣‖ f ‖ − ‖ f − f̃ ‖∣∣ ≤ ‖ f̃ ‖ ≤ ε. Thus if
α ≥ 0, then ‖g + f ‖ = ‖(1− α)g + f̃ ‖ ≤ |1− α| + ‖ f̃ ‖ ≤ 2ε. If α < 0, calculate
‖g − f ‖.

2.14 If X is an infinite-dimensional Banach space, show that there are convex sets
C1 and C2 such that C1 ∪ C2 = X , C1 ∩ C2 = ∅, and both C1 and C2 are dense in
X .
Hint. Take a discontinuous functional f on X (Exercise 2.4), define C1 = {x :
f (x) ≥ 0} and C2 = {x : f (x) < 0}, use Exercise 2.10.

2.15 Let X be a finite-dimensional Banach space. Let C be a convex subset of X
that is dense in X . Prove that C = X .
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Hint. We may assume that 0 ∈ C . Let {e1, e2, . . . , en} be an algebraic basis of
X consisting of unit vectors. Fix ε > 0. For each i ∈ {1, 2, . . . , n} we can find
vi ∈ C such that ‖ei − vi‖ < ε. If ε > 0 is small enough, {v1, . . . , vn} is a
linearly independent set in C (look at the determinant of the matrix with columns
vi , i = 1, 2, . . . .n). The set conv ({vi : i = 1, 2, . . . , n} ∪ {0}) has a nonempty
interior and is contained in C , so C has a nonempty interior. If x0 ∈ X\C , then
there exists a closed hyperplane H that separates {x0} and Int(C), a contradiction
with the denseness of C .

2.16 Let N be a maximal ε-separated set in the unit sphere of a Banach space X
(see Exercise 1.47). Show that (1 − ε)BX ⊂ conv(N ).
Hint. Otherwise, by the separation theorem, we find x ∈ X and f ∈ SX∗ with
‖x‖ ≤ 1− ε and f (x) > supconv(N )( f ) = supN ( f ). For δ > 0 choose y ∈ SX such
that f (y) > 1− δ. By the maximality of N , there exists z ∈ N with ε > ‖y − z‖ ≥
f (y) − f (z). Thus supN ( f ) ≥ f (z) > f (y) − ε > 1 − δ − ε. This holds for any
δ > 0, so we have 1 − ε ≤ supN ( f ) < f (x) ≤ ‖x‖ ≤ 1 − ε, a contradiction.

2.17 Let D = {±ei : i ∈ N} ⊂ �2, where ei is the i th unit vector. The set
C := conv(D) has empty interior, so it coincides with its boundary. Show that 0 is
not a support point of C .
Hint. If 0 is supported by some f , prove that f must be 0. That the interior of C is
empty follows from the fact that C is the unit ball of �1 (use Exercise 3.36 or, more
generally, Exercise 3.37).

2.18 Let C be a subset of a Banach space X and f be a Lipschitz real-valued func-
tion on C . Show that f can be extended to a Lipschitz function on X .
Hint. Assume without loss of generality that f is 1-Lipschitz. Put for x ∈ X ,

F(x) = inf{ f (z)+ ‖z − x‖; z ∈ C}.

To see that F is finite for every x ∈ X , pick an arbitrary z0 ∈ C . Then for any z ∈ C ,

f (z)+ ‖x − z‖ ≥ f (z0)− ‖z − z0‖ + ‖x − z‖ ≥ f (z0)− ‖x − z0‖.

Thus

F(x) ≥ f (z0)− ‖x − z0‖.

If x ∈ C , then for every z ∈ C , f (x) ≤ f (z) + ‖z − x‖. Thus F(x) = f (x). To
show that F is 1-Lipschitz, pick x, y ∈ X , ε > 0 and choose z0 ∈ C so that

f (z0)+ ‖z0 − x‖ < F(x)+ ε.
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Then

F(y)− F(x) ≤ F(y)− f (z0)− ‖z0 − x‖ + ε
≤ f (z0)+ ‖z0 − y‖ − f (z0)− ‖z0 − x‖ + ε
≤ ‖x − y‖ + ε.

In Exercises 2.19, 2.20, 2.21, and 2.22, μC denotes the Minkowski functional of
a set C .

2.19 Let (X, ‖ · ‖) be a Banach space. Show that μBX (x) = ‖x‖.
Hint. Use continuity of the norm.

2.20 Let A, B be convex sets in a Banach space X . Show that if A ⊂ B then
μB ≤ μA. Show that μcA(x) = 1

cμA(x) for c > 0.
Hint. Follows from the definition.

2.21 Let C be a convex neighborhood of 0 in a real Banach space X (then μC is
a non-negative positive homogeneous subadditive continuous functional on X , see
Lemma 2.11). Prove the following:

(i) If C is also open, then C = {x : μC (x) < 1}. If C is closed instead, then
C = {x : μC (x) ≤ 1}.

(ii) There is c > 0 such that μC (x) ≤ c‖x‖.
(iii) If C is moreover symmetric, then μC is a continuous seminorm, that is, it is

a continuous homogeneous subadditive functional.
(iv) If C is moreover symmetric and bounded, thenμC is a norm that is equivalent

to ‖ · ‖X . In particular, it is complete, that is, (X, μC ) is a Banach space.
Note that the symmetry condition is good only for the real case. In a complex

normed space X we have to replace it by C being balanced.
Hint. (i) It follows from Lemma 2.11.

(ii) See Equation (2.2).
(iii) Observing that μC (−x) = μC (x) and positive homogeneity are enough to

prove μC (λx) = |λ|μC (x) for all λ ∈ R, x ∈ X .
(iv) From (iii) we already have the homogeneity and the triangle inequality. We

need to show that μC (x) = 0 implies x = 0 (the other direction is obvious). Indeed,
μC (x) = 0 implies that x ∈ λC for all λ > 0, which by the boundedness of C only
allows for x = 0.

In (ii) we proved μC (x) ≤ c‖x‖, an upper estimate follows from C ⊂ d BX .
The equivalence then implies completeness of the new norm.

2.22 Let K be a bounded closed convex and symmetric set in a Banach space X .
Denote by Y the linear hull of K . Let |‖ · |‖ on Y be defined as the Minkowski
functional of K . Show that (Y, |‖ · |‖) is a Banach space, i.e., K is a Banach disc.
For an extension of this result to the setting of locally convex spaces and for some
of its consequences see Exercises 3.71, 3.72, 3.73, and 3.74.
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Hint. If (xn) is a Cauchy sequence in (Y, |‖ · |‖) it is Cauchy in X and converges, say
to x0, in X . Given a closed ball U in (Y, |‖ · |‖), note that U is closed in X . As (xn)

is Cauchy in (Y, |‖ · |‖), there is n0 ∈ N such that xn − xm ∈ U for all n,m ≥ n0.
As U is closed in X , xn − x0 ∈ U for n ≥ no (in particular, x0 ∈ Y ). It follows that
xn → x0 in (Y, |‖ · |‖).

2.23 Prove that, if n ∈ N, the dual space of a n-dimensional Banach space is again
n-dimensional. Prove that the dual space of an infinite-dimensional normed space is
again infinite-dimensional.
Hint. Use Propositions 1.36 and 2.17—this last one for a finite index set. The
infinite-dimensional assertion follows from this.

2.24 Show that if Y is a subspace of a Banach space X and X∗ is separable then so
is Y ∗.
Hint. Y ∗ is isomorphic to the separable space X∗/Y⊥.

2.25 Show that �1 is not isomorphic to a subspace of c0.
Hint. The dual of �1 is nonseparable. Use now Exercise 2.24.

2.26 Show that c0 is not isomorphic to C[0, 1].
Hint. Check the separability of their duals—Proposition 2.21.

2.27 Let X be a Banach space.
(i) Show that in X∗ we have X⊥ = {0} and {0}⊥ = X∗. Show that in X we have

(X∗)⊥ = {0} and {0}⊥ = X .
(ii) Let A ⊂ B be subsets of X . Show that B⊥ is a subspace of A⊥.

Hint. Follows from the definition.

2.28 Let X be a Banach space. Show that:
(i) span(A) = (A⊥)⊥ for A ⊂ X .
(ii) span(B) ⊂ (B⊥)⊥ for B ⊂ X∗. Note that in general we cannot put equality.
(iii) A⊥ = ((A⊥)⊥

)⊥ for A ⊂ X and B⊥ = ((B⊥)⊥
)

⊥ for B ⊂ X∗.
Hint. (i) Using definition, show that A ⊂ (A⊥)⊥. Then use that B⊥ is a closed
subspace for any B ⊂ X∗, proving that span(A) ⊂ (A⊥)⊥. Take any x /∈ span(A).
Since span(A) is a closed subspace, by the separation theorem there is f ∈ X∗ such
that f (x) > 0 and f

∣
∣
span(A) = 0. But then f

∣
∣

A = 0, hence f ∈ A⊥, also f (x) > 0,

so x /∈ (A⊥)⊥.
(ii) Similar to (i).
(iii) Applying (i) to A⊥ we get A⊥ ⊂ (

(A⊥)⊥
)⊥. On the other hand, using

A ⊂ (A⊥)⊥ and the previous exercise we get
(

(A⊥)⊥
)⊥ ⊂ A⊥. The dual statement

is proved in the same way.

2.29 Let X = R
2 with the norm ‖x‖ = (|x1|4 + |x2|4)1/4. Calculate directly the

dual norm on X∗ using the Lagrange multipliers.
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Hint. The dual norm of (a, b) ∈ X∗ is sup{ax1 + bx2 : x4
1 + x4

2 = 1}. Define
F(x1, x2, λ) = ax1 + bx2 −λ(x4

1 + x4
2 − 1) and multiply by x1 and x2, respectively,

the equations you get from ∂F
∂x1

= 0 and ∂F
∂x2

= 0.

2.30 Let Γ be a set and let p ∈ [1,∞), q ∈ (1,∞] be such that 1
p + 1

q = 1. Show
that c0(Γ )

∗ = �1(Γ ) and �p(Γ )
∗ = �q(Γ ).

Hint. See the proofs of Propositions 2.15, and 2.16, 2.17.

2.31 Show that c∗ is linearly isometric to �1.
Hint. We observe that c = c0 ⊕ span{e}, where e := (1, 1, . . . ) (express x :=
(ξi ) ∈ c in the form x = ξ0e + x0 with ξ0 := lim

i→∞ ξi and x0 ∈ c0). If u ∈ c∗,

put v′0 = u(e) and vi = u(ei ) for i ≥ 1. Then we have u(x) = u(ξ0e) + u(x0) =
ξ0v

′
0 +∑∞

i=1 vi (ξi − ξ0) and (v1, v2, . . . ) ∈ �1 as in Proposition 2.15. Put ũ =
(v0, v1, . . . ), where v0 := v′0 −∑∞

i=1 vi , and write x̃ := (ξ0, ξ1, . . . ). We have
u(x) = ξ0v0 +∑∞

i=1 viξi = ũ(x̃).
Conversely, if ũ ∈ �1 then the above rule gives a continuous linear functional u on

c with ‖u‖ ≤ ‖ũ‖, as |ũ(x̃)| ≤
(
∑∞

i=0 |vi |
)

sup
i≥0

|ξi | = ‖ũ‖ sup
i≥0

|ξi | = ‖ũ‖1‖x‖∞.

The inequality ‖ũ‖ ≤ ‖u‖ follows like this: Let ξi be such that |vi | = ξivi if
vi 	= 0 and ξi = 1 otherwise, i = 0, 1, . . . . Set xn = (ξ1, . . . , ξn, ξ0, ξ0, . . . ).
Then ‖xn‖∞ = 1 and |u(xn)| = |ũ(x̃n)| ≥ |v0| +∑n

i=1 |vi | −∑∞
i=n+1 |vi |. Since

|u(xn)| ≤ ‖u‖, we have ‖u‖ ≥ |v0| +∑n
i=1 |vi | −∑∞

i=n+1 |vi |. By letting n → ∞
we get ‖ũ‖ ≤ ‖u‖.

2.32 Let p ∈ (1,∞) and Xn be Banach spaces for n ∈ N. By X := (∑ Xn
)

p we
denote the normed linear space of all sequences x = {xi }∞i=1, xi ∈ Xi , such that
∑ ‖xi‖p

Xi
<∞, with the norm ‖x‖ := (∑ ‖xi‖p

Xi

) 1
p .

Show that X is a Banach space and that X∗ is isometric to
(∑

X∗
i

)

q (where
1
p + 1

q = 1) in the following sense: to f ∈ X∗ we assign { fi }∞i=1 such that fi ∈ X∗
i

and f
({xi }∞i=1

) =∑ fi (xi ).
Remark: Sometimes the notation

∑

�p
Xn will be used instead of

(∑
Xn
)

p.
Hint. Follow the proof for �p, which is the case of Xi = R.

2.33 Prove the open mapping theorem by using the concept of convex series
(Exercise 1.66) and the Baire category theorem.
Hint. Let T : X → Y be a bounded linear and onto mapping between Banach
spaces. According to Exercise 1.66, BX is a CS-compact set, so T BX is again CS-
compact, hence CS-closed. Since Y = ⋃∞

n=1 nT BX , the Baire category theorem
ensures that ∅ 	= Int(T BX ). According to Exercise 1.66, Int(T BX ) = Int(T BX ).
Again a “cone argument” (see Exercise 1.55) concludes that 0 ∈ Int(T BX ), so T is
an open mapping.

2.34 We proved the closed graph theorem using the open mapping theorem. Now
prove the open mapping principle using the closed graph theorem.
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Hint. First prove it for one-to-one mappings using the fact that {(y, T−1(y)
)} is

closed. For the general case, note that the quotient mapping is an open mapping by
the definition of the quotient topology.

2.35 Let X,Y be normed spaces, T ∈ B(X,Y ). Show that T̂ : X/Ker(T ) → Y
defined by T̂ (x̂) = T (x) is a bounded operator onto T (X).

2.36 (i) Prove directly that if X is a Banach space and f is a non-zero linear func-
tional on X , then f is an open mapping from X onto the scalars.

(ii) Let the operator T from c0 into c0 be defined by T
(

(xi )
) = ( 1

i xi ). Is T a
bounded operator? Is T an open map? Does T map c0 onto a dense subset in c0?
Hint. (i) If f (x) = δ > 0 for some x ∈ BO

X , then (−δ, δ) ⊂ f (BO
X ).

(ii) Yes. No. Yes (use finitely supported vectors).

2.37 Let T be an operator (not necessarily bounded) from a normed space X into a
normed space Y . Show that the following are equivalent:

(i) T is an open mapping.
(ii) There is δ > 0 such that δBY ⊂ T (BX ).
(iii) There is M > 0 such that for every y ∈ Y there is x ∈ T−1(y) satisfying

‖x‖X ≤ M‖y‖Y .
Hint. (i)�⇒(ii): T (BO

X ) is open and contains 0; hence it contains a closed ball
centered at 0.

(ii)�⇒(iii): Let 0 	= y ∈ Y . We have δ‖y‖−1
Y y ∈ δBY (⊂ T (BX )). We can

find then u ∈ BX such that δ‖y‖−1
Y y = T u, so y = T (x), where x := ‖y‖Y δ

−1u.
Certainly ‖x‖X ≤ M‖y‖Y , where M := δ−1.

(iii)�⇒(i): If y ∈ M−1 BY there exists x ∈ X such that T x = y and ‖x‖X ≤
M‖y‖Y (≤ 1), so y ∈ T (BX ). This proves that M−1 BY ⊂ T (BX ). By linearity, T
is open.

2.38 Let X,Y be normed spaces, T ∈ B(X,Y ). Show that if X is complete and T
is an open mapping, then Y is complete.
Hint. Use (iii) in the previous exercise and Exercise 1.26.

2.39 Let X,Y be Banach spaces, T ∈ B(X,Y ). Show that if T is one-to-one and
BO

Y ⊂ T (BX ) ⊂ BY , then T is an isometry onto Y .
Hint. Since BO

Y ⊂ T (BX ), T is onto (Exercise 2.37) and hence invertible. From
T (BX ) ⊂ BY we get ‖T ‖ ≤ 1. Assume that there is x ∈ SX such that ‖T (x)‖ <
‖x‖. Pick δ > 1 such that δ‖T (x)‖ < 1. Then T (δx) ∈ BO

Y ⊂ T (BX ). Thus there
must be z ∈ BX such that T (z) = T (δx) but it cannot be δx /∈ BX , a contradiction
with T being one-to-one.

2.40 Let X,Y be Banach spaces and T ∈ B(X,Y ). Show that the following are
equivalent:

(i) T (X) is closed.
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(ii) T is an open mapping when considered as a mapping from X onto T (X).
(iii) There is M > 0 such that for every y ∈ T (X) there is x ∈ T−1(y) satisfying

‖x‖X ≤ M‖y‖Y .
Hint. (i)�⇒(ii): Theorem 2.25. (ii)�⇒(iii): Exercise 2.37. (iii)�⇒(i): By Exercise
2.37, T : X → T (X) is an open mapping. Now use Exercise 2.38 and Fact 1.5.

2.41 Let X,Y be Banach spaces and T ∈ B(X,Y ). Show that if T maps bounded
closed sets in X onto closed sets in Y , then T (X) is closed in Y .
Hint. Assume T (xn) → y /∈ T (X). Put M = Ker(T ), set dn = dist(xn,M)
and find wn ∈ M such that dn ≤ ‖xn − wn‖ ≤ 2dn . If {xn − wn} is bounded then
T (xn−wn)→ y ∈ T (X), since the closure of {xn−wn} is mapped onto a closed set
containing y, a contradiction. Therefore we may assume that ‖xn−wn‖ → ∞. Since
T (xn − wn) → y, we have T ( xn−wn‖xn−wn‖ ) → 0. By the hypothesis, M must contain

a point w from the closure of { xn−wn‖xn−wn‖ } as 0 lies in the closure of the image of this

sequence. Fix n so that ‖ xn−wn‖xn−wn‖ − w‖ < 1/3. Then
∥
∥xn − wn − ‖xn − wn‖w

∥
∥ ≤

1
3‖xn − wn‖ < (2/3)dn and wn + ‖xn − wn‖w ∈ M , a contradiction.

2.42 Let X and Y be Banach spaces. Then K(X,Y ) contains isomorphic copies of
Y and X∗.
Hint. T (x) = f ∗(x)y.

2.43 Let X and Y be normed spaces. Prove that B(X,Y ) is an infinite-dimensional
space if X is infinite-dimensional and Y is not reduced to {0}.
Hint. The space B(X,Y ) contains an isometric copy of X∗. Use now Exercise 2.23.

2.44 Let T ∈ B(X,Y ). Prove the following:
(i) Ker(T ) = T ∗(Y ∗)⊥ and Ker(T ∗) = T (X)⊥.
(ii) T (X) = Ker(T ∗)⊥ and T ∗(Y ∗) ⊂ Ker(T )⊥.

Hint. (i) Assume x ∈ T ∗(Y ∗)⊥. Then for any g ∈ Y ∗ we have g
(

T (x)
) =

T ∗(g)(x) = 0, hence T (x) = 0. Thus x ∈ Ker(T ).
(ii) T (X) = span

(

T (X)
) = (T (X)⊥)⊥ = Ker(T ∗)⊥.

2.45 Let X,Y be normed spaces, T ∈ B(X,Y ). Consider T̂ (x̂) := T (x), where
x ∈ x̂ , as an operator from X/Ker(T ) into T (X). Then we get T̂ ∗ : T (X)

∗ →
(X/Ker(T ))∗. Using Proposition 2.6 and T (X)

⊥ = T (X)⊥ = Ker(T ∗) we may
assume that T̂ ∗ is a bounded operator from Y ∗/Ker(T ∗) into Ker(T )⊥ ⊂ X∗. On
the other hand, for T ∗ : Y ∗ → X∗ we may consider T̂ ∗ : Y ∗/Ker(T ∗)→ X∗. Show
that T̂ ∗ = T̂ ∗.
Hint. Take any ŷ ∈ Y ∗/Ker(T ∗) and x ∈ X . Then using the above identifications
we obtain

T̂ ∗(ŷ∗)(x̂) = ŷ∗
(

T̂ (x̂)
) = y∗

(

T (x)
) = T ∗(y∗)(x) = T̂ ∗(ŷ∗)(x̂).
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2.46 Let X,Y be Banach spaces and T ∈ B(X,Y ). Show that T maps X onto a
dense set in Y if and only if T ∗ maps Y ∗ one-to-one into X∗.

Also, if T ∗ maps onto a dense set, then T is one-to-one.
Hint. If T (X) 	= Y , let f ∈ Y ∗\{0} be such that f = 0 on T (X). Then T ∗( f ) = 0.
The other implications are straightforward.

2.47 Let X,Y be Banach spaces and T ∈ B(X,Y ). If T is one-to-one, is T ∗ neces-
sarily onto?
Hint. No, consider the identity mapping from �1 into �2.

2.48 Let X,Y be Banach spaces and T ∈ B(X,Y ). If T is an isomorphism into Y ,
is T ∗ necessarily an isomorphism into X∗?
Hint. No, embed R into R2.

2.49 Let X,Y be Banach spaces and T ∈ B(X,Y ). Show that:
(i) T ∗ is onto if and only if T is an isomorphism into Y .
(ii) T is onto if and only if T ∗ is an isomorphism into X∗.
(iii) T (X) is closed in Y if and only if T ∗(Y ∗) is closed in X∗.

Hint. (i) If T ∗ is onto, it is an open mapping (Theorem 2.25) and by Exercise 2.37
there is δ > 0 so that δBX∗ ⊂ T ∗(BY ∗). Then

‖T (x)‖Y = sup
y∗∈BY∗

y∗
(

T (x)
) = sup

y∗∈BY∗
T ∗(y∗)(x) = sup

x∗∈T ∗(BY∗ )

(

x∗(x)
)

≥ sup
x∗∈δBX∗

(

x∗(x)
) = δ‖x‖X

and use Exercise 1.73.
If T is an isomorphism into, then T−1 is a bounded operator from T (X) into X .

Given x∗ ∈ X∗, define y∗ on T (X) by y∗(y) = x∗
(

T−1(y)
)

. Clearly y∗ ∈ T (X)∗,
extend it to a functional in Y ∗. Then T ∗(y∗) = x∗.

(ii) If T is onto, as in (i) we find δ > 0 such that δBY ⊂ T (BX ), then
‖T ∗(y∗)‖X∗ ≥ δ‖y∗‖Y ∗ and use Exercise 1.73.

Assume T ∗ is an isomorphism into. By Exercise 2.37 and Lemma 2.24, it is
enough to find δ > 0 so that δBY ⊂ T (BX ). Assume by contradiction that no
such δ exists. Then find yn → 0 such that yn /∈ T (BX ). The set is closed, so
dn := dist(yn, T (BX )) > 0.

Fix n, set Vn = ⋃

y∈T (BX )

(

y + BO
Y (

dn
2 )
)

. Then Vn is an open convex set and yn /∈
Vn , so by Proposition 2.13 there is y∗ ∈ Y ∗ such that |y∗| < 1 on Vn and y∗(yn) =
1. Since T (BX ) ⊂ Vn , we get

‖T ∗(y∗)‖ = sup
x∈BX

T ∗(y∗)(x) = sup
x∈BX

y∗
(

T (x)
) = sup

y∈T (BX )

(

y∗(y)
) ≤ 1,

so ‖y∗‖ ≤ ‖(T ∗)−1‖ ‖T ∗(y∗)‖ ≤ ‖(T ∗)−1‖, 1 = y∗(yn) ≤ ‖(T ∗)−1‖ ‖yn‖. This
shows that ‖yn‖ ≥ 1/‖(T ∗)−1‖ for every n, contradicting yn → 0.
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(iii) If T (X) is closed and q : X → X/Ker(T ) is the canonical quo-
tient mapping, then T̂ such that T̂ ◦ q, is an operator from X/Ker(T ) onto a
Banach space T (X), hence by (ii) above, T̂ ∗ is an isomorphism into, in particu-
lar T̂ ∗(Y ∗/Ker(T ∗)) is closed. By Exercise 2.45, T̂ ∗(Y ∗/Ker(T ∗)) = T ∗(Y ∗) is
closed.

If T ∗(Y ∗) is closed, consider T̂ : X → T (X). Then T̂ ∗(Y ∗/Ker(T ∗)) =
T̂ ∗(Y ∗/Ker(T ∗)) = T ∗(Y ∗) is closed and T̂ ∗ is one-to-one, hence it is an iso-
morphism into. By (ii), T̂ must be onto, that is, T (X) = T (X).

2.50 Show that there is no T ∈ B(�2, �1) such that T is an onto mapping.
Hint. By Exercise 2.49, T ∗ would be an isomorphism of �∞ into �2, which is impos-
sible as �∞ is nonseparable and �2 is separable.

2.51 Let X,Y be Banach spaces, T ∈ B(X,Y ). Show that:
(i) T is an isomorphism of X onto Y if and only if T ∗ is an isomorphism of Y ∗

onto X∗.
(ii) T is an isometry of X onto Y if and only if T ∗ is an isometry of Y ∗ onto X∗.

Hint. (i) Follows from Exercise 2.49.
(ii) If T is an isometry, then by (i), T ∗ is an isomorphism. Also T (BX ) = BY , so

‖T ∗(y∗)‖ = sup
x∈BX

T ∗(y∗)(x) = ‖y∗‖. The other direction is similar.

2.52 We have ‖T ‖ = ‖T ∗‖ for a bounded operator on a Banach space. So, if for
a sequence of bounded operators Tn we have ‖Tn‖ → 0, then ‖T ∗

n ‖ → 0. Find
an example of a sequence of bounded operators Tn on a Banach space X such that
‖Tn(x)‖ → 0 for every x ∈ X but it is not true that ‖T ∗

n (x
∗)‖ → 0 for every

x∗ ∈ X∗.
Hint. Let Tn(x) = (xn, xn+1, . . . ) in �2. Then T ∗

n (x) = (0, . . . , 0, x1, x2, . . . ),
where x1 is on the nth place.

2.53 Let X be a normed space with two norms ‖ · ‖1 and ‖ · ‖2 such that X in both
of them is a complete space. Assume that ‖ · ‖1 is not equivalent to ‖ · ‖2. Let I1 be
the identity mapping from (X, ‖ · ‖1) onto (X, ‖ · ‖2) and I2 be the identity mapping
from (X, ‖ · ‖2) onto (X, ‖ · ‖1). Show that neither I1 nor I2 are continuous.
Hint. The Banach open mapping theorem.

2.54 Let L be a closed subset of a compact space K . Show that C(L) is isomorphic
to a quotient of C(K ).
Hint. Let T : C(K )→ C(L) be defined for f ∈ C(K ) by T ( f ) = f

∣
∣
L . Then T is

onto by Tietze’s theorem, use Corollary 2.26.

2.55 Let X,Y be Banach spaces and T ∈ B(X,Y ). Show that if Y is separable and
T is onto Y , then there is a separable closed subspace Z of X such that T (Z) = Y .
Hint. Let {yn} be dense in BY and take xn ∈ X such that T (xn) = yn and ‖xn‖ < K
for some K > 0 (Corollary 2.26). Set Z = span{xn}, clearly T (Z) ⊂ Y . By density
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of {yn}, BO
Y ⊂ T (K BO

Z ), hence by Lemma 2.24 we have BO
Y ⊂ T (K BO

Z ). Thus
Y ⊂ T (Z).

2.56 Let Y be a closed subspace of a Banach space X . Assume that X/Y is separa-
ble. Denote by q the canonical quotient mapping of X onto X/Y . Show that there is
a separable closed subspace Z ⊂ X such that q(Z) = X/Y .
Hint. Apply the previous exercise.

2.57 Let X be a Banach space and let Y be a separable closed subspace of X∗. Then
there is a separable closed subspace Z ⊂ X such that Y is isometric to a subspace
of Z∗.
Hint. Let { fn} be dense in SY ∗ . For every n, let {xk

n }k ⊂ SX be such that fn(xk
n )→ 1

as k → ∞. Put Z = span{xk
n : n, k ∈ N}.

2.58 Let X be the normed space of all real-valued functions on [0, 1] with continu-
ous derivative, endowed with the supremum norm. Define a linear mapping T from
X into C[0, 1] by T ( f ) = f ′. Show that T has closed graph. Prove that T is not
bounded. Explain why the closed graph theorem cannot be used here.
Hint. The graph of T is closed: let ( fn, f ′n)→ ( f, g) in X ⊕C[0, 1]. Then fn → f
uniformly on [0, 1] and f ′n → g uniformly. Hence by a standard result of real
analysis, f ′ = g.

T is not bounded: use { fn} bounded with { f ′n} unbounded. The space in question
is not complete.

2.59 Let X be a closed subspace of C[0, 1] such that every element of X is a con-
tinuously differentiable function on [0, 1]. Show that X is finite-dimensional.
Hint. Let T : X → C[0, 1] be defined for f ∈ X by T ( f ) = f ′. The graph of T
is closed (see the previous exercise). Therefore T is continuous by the closed graph
theorem.

Thus for some n ∈ N we have ‖ f ′‖∞ ≤ n whenever f ∈ X satisfies ‖ f ‖∞ ≤ 1.
Let xi = i

4n for i = 0, 1, . . . , 4n. Define an operator S : X → R
4n+1 by S( f ) =

{ f (xi )}. We claim that S is one-to-one. It is enough to show that if ‖ f ‖∞ = 1,
then for some i , S( f )(xi ) 	= 0. Assume that this is not true. If f (x) = 1 and
x ∈ ( i

4n ,
i+1
4n ), then by the Lagrange mean value theorem we have | f (x)− f ( i

4n )| =
| f ′(ξ)||x − i

4n | ≤ n · 1
4n , a contradiction. Therefore dim (X) ≤ 4n + 1.

2.60 (Grothendieck) Let X be a closed subspace of L2[0, 1] whose every element
belongs also to L∞[0, 1]. Show that dim (X) <∞.
Hint. The identity mapping from X to (L∞[0, 1], ‖ · ‖∞) has a closed graph, so
for some α we get ‖ f ‖∞ ≤ α‖ f ‖2 for every f ∈ X . Let { f1, . . . , fn} be an
orthonormal set in X . For every x := {x1, . . . xn} ∈ Cn we put fx =∑ xk fk . Then
| fx (t)| ≤ α‖ fx‖2 ≤ α‖x‖2 for almost all t ∈ [0, 1] and so ifΛ is a countable dense
set in Cn , there exists a set of measure zero N such that | fx (t)| ≤ α‖x‖2 for every
x ∈ Λ and every t ∈ [0, 1]\N . Each mapping x �→ fx (t) from C

n to C is linear
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and continuous, so | fx (t)| ≤ α‖x‖2 for all x ∈ Cn and t ∈ [0, 1]\N . In particular,
| fx (t)| ≤ α for x ∈ BCn and t ∈ [0, 1]\N . The choice x := ( f1(t), . . . , fn(t)) gives
us
∑ | fk(t)|2 ≤ α2. Integration then gives n = ‖∑ fk‖2

2 =∑∫ | fk(t)|2 dt ≤ α2.

2.61 Show that the bounded linear one-to-one mapping φ from L1[0, 2π ] into c0
defined by T ( f ) = f̂ (n), where f̂ (n) are Fourier coefficients of f , is not onto c0.
Hint. If T were onto c0, then by the Banach open mapping theorem, T−1 would be
bounded, which is not the case as the sequence {χ{1,...,n}} shows (note that we have
‖Dn‖1 → ∞, where Dn is the Dirichlet kernel).

2.62 Show that there is a linear functional L on �∞ with the following properties:
(1) ‖L‖ = 1,
(2) if x := (xi ) ∈ c, then L(x) = lim

i→∞ xi ,

(3) if x := (xi ) ∈ �∞ and xi ≥ 0 for all i , then L(x) ≥ 0,
(4) if x := (xi ) ∈ �∞ and x ′ = (x2, x3, . . . ), then L(x) = L(x ′).
This functional is called a Banach limit or a generalized limit.

Hint. We propose several approaches.
(a) For simplicity we consider only the real scalars setting. Let M be the subspace

of �∞ formed by elements x−x ′ for x ∈ �∞ and x ′ as above. Let 1 denote the vector
(1, 1, . . . ). We claim that dist(1,M) = 1. Note that 0 ∈ M and thus dist(1,M) ≤ 1.
Let x ∈ �∞. If (x−x ′)i ≤ 0 for any of i then ‖1−(x−x ′)‖∞ ≥ 1. If (x−x ′)i ≥ 0 for
all i , then xi ≥ xi+1 for all i , meaning that lim xi exists. Therefore lim(xi − x ′i ) = 0
and thus ‖1 − (x − x ′)‖ ≥ 1.

By the Hahn–Banach theorem, there is L ∈ �∗∞ with ‖L‖ = 1, L(1) = 1,
and L(m) = 0 for all m ∈ M . This functional satisfies (1) and (4). To prove (2),
it is enough to show that c0 ⊂ L−1(0). To see this, for x ∈ �∞ we inductively
define x (1) = x ′ and x (n+1) = (x (n))′ and note that by telescopic argument we have
x (n) − x ∈ M . Hence L(x) = L(x (n)) for every x ∈ �∞ and every n. If x ∈ c0 then
‖x (n)‖ → 0 and thus L(x) = 0. To show (3), assume that for some x = (xn) we
have xi ≥ 0 for all i and L(x) < 0. By scaling, we may assume that 1 ≥ xi ≥ 0
for all i . Then ‖1 − x‖∞ ≤ 1 and L(1 − x) = 1 − L(x) > 1, a contradiction with
‖L‖ = 1.

(b) For x := (xi ) ∈ �∞, k ∈ N and n1 < . . . < nk in N, put π(x; n1, . . . , nk) =
lim supn

1
k

∑k
i=1 xn+ni and p(x) = inf{π(x; n1, . . . , nk) : n1 < . . . < nk, k ∈ N}.

Then p is a convex function on �∞. Deduce the existence of a continuous linear
functional L : �∞ → R such that L ≤ p and check the sought properties of L .
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