
Chapter 2
Logic Synthesis by Signal-Driven Decomposition

Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa

Abstract This chapter investigates some restructuring techniques based on decom-
position and factorization, with the objective to move critical signals toward the
output while minimizing area. A speci c application is synthesis for minimum
switching activity (or high performance), with minimum area penalty, where decom-
positions with respect to speci c critical variables are needed (the ones of highest
switching activity, for example). In order to reduce the power consumption of the
circuit, the number of gates that are affected by the switching activity of critical
signals is maintained constant. This chapter describes new types of factorization that
extend Shannon cofactoring and are based on projection functions that change the
Hamming distance among the original minterms to favor logic minimization of the
component blocks. Moreover, the proposed algorithms generate and exploit don’t
care conditions in order to further minimize the nal circuit. The related implemen-
tations, called P-circuits, show experimentally promising results in area with respect
to classical Shannon cofactoring.

2.1 Introduction

In recent years, power has become an important factor during the design phase.
This trend is primarily due to the remarkable growth of personal computing devices,
embedded systems, and wireless communications systems that demand high-speed
computation and complex functionality with low power consumption. In these appli-
cations, average power consumption is a critical design concern.

Low-power design methodologies must consider power at all stages of the design
process. At the logic synthesis level, logic transformations proved to be an effective
technique to reduce power consumption by restructuring a mapped circuit through
permissible signal substitution or perturbation [1]. A fundamental step in VLSI
design is logic synthesis of high-quality circuits matching a given speci cation. The

A. Bernasconi (B)
Department of Computer Science, Università di Pisa, Pisa, Italy
e-mail: annab@di.unipi.it

Based on [5], pp.1464–1469, 20–24 April 2009 c© [2009] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,
Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_2,
C© Springer Science+Business Media, LLC 2011

9

10 A. Bernasconi et al.

performance of the circuit can be expressed in terms of several factors, such as area,
delay, power consumption, and testability properties. Unfortunately, these factors
often contradict each other, in the sense that it is very dif cult to design circuits
that guarantee very good performances with respect to all of them. In fact, power
consumption is often studied as a single minimization objective without taking into
account important factors such as area and delay.

In CMOS technology, power consumption is characterized by three components:
dynamic, short-circuit, and leakage power dissipation, of which dynamic power dis-
sipation is the predominant one. Dynamic power dissipation is due to the charge
and discharge of load capacitances, when the logic value of a gate output toggles;
switching a gate may trigger a sequence of signal changes in the gates of its output
cone, increasing dynamic power dissipation. So, reducing switching activity reduces
dynamic power consumption. Previous work proposed various transformations to
decrease power consumption and delay (for instance [11, 14, 16] for performance
and [1, 13, 15] for low power), whereby the circuit is restructured in various ways,
e.g., redeploying signals to avoid critical areas, bypassing large portions of a cir-
cuit. For instance, if we know the switching frequency of the input signals, a viable
strategy to reduce dynamic power is to move the signals with the highest switching
frequency closer to the outputs, in order to reduce the part of the circuit affected
by the switching activity of these signals. Similarly for performance, late-arriving
signals are moved closer to the outputs to decrease the worst-case delay.

The aim of our research is a systematic investigation of restructuring techniques
based on decomposition/factorization, with the objective to move critical signals
toward the output and avoid losses in area. A speci c application is synthesis for
minimum switching activity (or high performance), with minimum area penalty.
Differently from factorization algorithms developed only for area minimization, we
look for decompositions with respect to speci c critical variables (the ones of high-
est switching activity, for example). This is exactly obtained by Shannon cofactor-
ing, which decomposes a Boolean function with respect to a chosen splitting vari-
able; however, when applying Shannon cofactoring, the drawback is that too much
area redundancy might be introduced because large cubes are split between two
disjoint subspaces, whereas no new cube merging will take place as the Hamming
distance among the projected minterms do not change.

In this chapter we investigate thoroughly the more general factorization intro-
duced in [5], a decomposition that extends straightforward Shannon cofactoring;
instead of cofactoring a function f only with respect to single variables as Shan-
non does, we cofactor with respect to more complex functions, expanding f with
respect to the orthogonal basis xi ⊕ p (i.e., xi = p) and xi ⊕ p (i.e., xi �= p),
where p(x) is a function de ned over all variables except xi . We study different
functions p(x) trading-off quality vs. computation time. Our factorizations modify
the Hamming distance among the on-set minterms, so that more logic minimization
may be performed on the projection of f onto the two disjoint subspaces xi = p and
xi �= p, while signals are moved in the circuit closer to the output. We then introduce
and study another form of decomposition, called decomposition with intersection,
where a function f is projected onto three overlapping subspaces of the Boolean

2 Logic Synthesis by Signal-Driven Decomposition 11

space {0, 1}n in order to favor area minimization avoiding cube fragmentation (e.g.,
cube splitting for the cubes intersecting both subspaces xi = p and xi �= p).
More precisely, we partition the on-set minterms of f into three sets: f |xi=p and
f |xi �=p, representing the projections of f onto the two disjoint subspaces xi = p
and xi �= p, and a third set I = f |xi=p ∩ f |xi �=p, which contains all minterms of
f whose projections onto xi = p and xi �= p are identical. Observe that each point
in I corresponds to two different points of f that could be merged in a cube, but
are split into the two spaces xi = p and xi �= p. Thus, we can avoid cube fragmen-
tation keeping the points in I unprojected. Moreover, given that the points in the
intersection I must be covered, we can project them as don’t cares in the two spaces
f |xi=p and f |xi �=p to ease the minimization of f |xi=p \ I and f |xi �=p \ I . Observe
that, while classical don’t care sets are speci ed by the user or are derived from the
surrounding environment, our don’t cares are dynamically constructed during the
synthesis phase.

The circuits synthesized according to these decompositions are called Projected
Circuits, or P-circuits, without and with intersection. We provide minimization algo-
rithms to compute optimal P-circuits and argue how augmenting P-circuits with at
most a pair of multiplexers guarantees full testability under the single stuck-at-fault
model. We also show that the proposed decomposition technique can be extended
and applied to move all critical signals, and not just one, toward the output, still
avoiding losses in area.

The chapter is organized as follows. Section 2.2 describes the new theory of
decomposition based on generalized cofactoring, which is applied in Section 2.3 to
the synthesis of Boolean functions as P-circuits. Section 2.4 extends the decompo-
sition from single to multiple variables. Experiments and conclusions are reported
in Sections 2.5 and 2.6, respectively.

2.2 Decomposition Methods

How to decompose Boolean functions is an ongoing research area to explore alter-
native logic implementations. A technique to decompose Boolean functions is
based on expanding them according to an orthogonal basis (see, for example [8],
section 3.15), as in the following de nition, where a function f is decomposed
according to the basis (g, g).

Definition 2.1 Let f = (fon, fdc, foff) be an incompletely speci ed function and g
be a completely speci ed function, the generalized cofactor of f with respect to g
is the incompletely speci ed function co(f, g) = (fon.g, fdc + g, foff.g).

This de nition highlights that in expanding a Boolean function we have two degrees
of freedom: choosing the basis (in this case, the function g) and choosing one com-
pletely speci ed function included in the incompletely speci ed function co(f, g).
This e xibility can be exploited according to the purpose of the expansion. For
instance, when g = xi , we have co(f, xi) = (fon.xi , fdc + xi , foff.xi). Notice
that the well-known Shannon cofactor fxi = f (x1, . . . , (xi = 1), . . . , xn) is a

12 A. Bernasconi et al.

completely speci ed function contained in co(f, xi) = (fon.xi , fdc + xi , foff.xi)

(since fon.xi ⊆ fxi ⊆ fon.xi + fdc + xi = fon + fdc + xi); moreover, fxi is the
unique cover of co(f, xi) independent from the variable xi .

We introduce now two types of expansion of a Boolean function that yield
decompositions with respect to a chosen variable (as in Shannon cofactoring),
but are also area-ef cient because they favor minimization of the logic blocks so
obtained. Let f (X) = (fon(X), fdc(X), foff(X)) be an incompletely speci ed func-
tion depending on the set X = {x1, x2, . . . , xn} of n binary variables. Let X (i) be the
subset of X containing all variables but xi , i.e., X (i) = X \{xi }, where xi ∈ X . Con-
sider now a completely speci ed Boolean function p(X (i)) depending only on the
variables in X (i). We introduce two decomposition techniques based on the projec-
tions of the function f onto two complementary subsets of the Boolean space {0, 1}n
de ned by the function p. More precisely, we note that the space {0, 1}n can be
partitioned into two sets: one containing the points for which xi = p(X (i)) and the
other containing the points for which xi �= p(X (i)). Observe that the characteristic
functions of these two subsets are (xi ⊕ p) and (xi ⊕ p), respectively, and that these
two sets have equal cardinality. We denote by f |xi=p and f |xi �=p the projections
of the points of f (X) onto the two subsets where xi = p(X (i)) and xi �= p(X (i)),
respectively. Note that these two functions only depend on the variables in X (i).
The rst decomposition technique, already described in [12] and [6], is de ned as
follows.

Definition 2.2 Let f (X) be an incompletely speci ed function, xi ∈ X , and p(X (i))
be a completely speci ed function. The (xi , p)-decomposition of f is the algebraic
expression

f = (xi ⊕ p) f |xi=p + (xi ⊕ p) f |xi �=p.

First of all we observe that each minterm of f is projected onto one and
only one subset. Indeed, let m = m1m2 · · ·mn be a minterm of f ; if mi =
p(m1, . . . ,mi−1,mi+1, . . . ,mn), then m is projected onto the set where xi =
p(X (i)), otherwise m is projected onto the complementary set where xi �=
p(X (i)). The projection simply consists in eliminating mi from m. For exam-
ple, consider the function f shown on the left side of Fig. 2.1 with fon =
{0000, 0001, 0010, 0101, 1001, 1010, 1100, 1101} and fdc = {0111}. Let p be the
simple Boolean function x2, and xi be x1. The Boolean space {0, 1}4 can be par-
titioned into the two sets x1 = x2 and x1 �= x2 each containing 23 points. The
projections of f onto these two sets are fon|x1=x2 = {000, 001, 010, 100, 101} ,
fdc|x1=x2 = ∅, and fon|x1 �=x2 = {101, 001, 010}, fdc|x1 �=x2 = {111}.

Second, observe that these projections do not preserve the Hamming distance
among minterms, since we eliminate the variable xi from each minterm, and two
minterms projected onto the same subset could have different values for xi . The
Hamming distance is preserved only if the function p(X (i)) is a constant, that is
when the (xi , p)-decomposition corresponds to the classical Shannon decomposi-
tion. The fact that the Hamming distance may change could be useful when f is

2 Logic Synthesis by Signal-Driven Decomposition 13

Fig. 2.1 An example of projection of the incompletely speci ed function f onto the spaces x1 =
x2 and x1 �= x2

represented in SOP form, as bigger cubes could be built in the projection sets. For
example, consider again the function f shown on the left side of Fig. 2.1. The points
0000 and 1100 contained in fon have Hamming distance equal to 2, and thus cannot
be merged in a cube, while their projections onto the space fon|x1=x2 (i.e., 000 and
100, respectively) have Hamming distance equal to 1, and they form the cube x3x4.

On the other hand, the cubes intersecting both subsets xi = p(X (i)) and
xi �= p(X (i)) are divided into two smaller subcubes. For instance, in our running
example, the cube x3x4 of function fon is split into the two sets x1 = x2 and x1 �= x2
forming a cube in fon|x1=x2 and one in fon|x1 �=x2 , as shown on the right side of
Fig. 2.1.

Observe that the cubes that end up to be split may contain pairs of minterms,
whose projections onto the two sets are identical. In our example, x3x4 is the cube
corresponding to the points {0001, 0101, 1001, 1101}, where 0001 and 1101 are
projected onto fon|x1=x2 and become 001 and 101, respectively, and 0101 and 1001
are projected onto fon|x1 �=x2 and again become 101 and 001, respectively. Therefore,
we can characterize the set of these minterms as I = f |xi=p ∩ f |xi �=p. Note that
the points in I do not depend on xi . In our example Ion = fon|x1=x2 ∩ fon|x1 �=x2 ={001, 010, 101}, and Idc = ∅.

In order to overcome the splitting of some cubes, we could keep I unprojected
and project only the points in f |xi=p \ I and f |xi �=p \ I , obtaining the expression
f = (xi ⊕ p)(f |xi=p \ I)+ (xi ⊕ p)(f |xi �=p \ I)+ I .

However, we are left with another possible drawback: some points of I could
also belong to cubes covering points of f |xi=p and/or f |xi �=p, and their elimination
could cause the fragmentation of these cubes. Thus, eliminating these points from
the projected subfunctions would not be always convenient. On the other hand, some
points of I are covered only by cubes entirely contained in I . Therefore keeping
them both in I and in the projected subfunctions would be useless and expensive.
In our example, since Ion = {001, 010, 101}, in fon|x1=x2 the points 001 and 101

14 A. Bernasconi et al.

are useful for forming, together with 000 and 100, the cube x3; instead the point
010 is useless and must be covered with an additional cube. The solution to this
problem is to project the points belonging to I as don’t cares for f |xi=p and f |xi �=p,
in order to choose only the useful points. We therefore propose the following more
re ned second decomposition technique, using the notation h = (hon, hdc) for an
incompletely speci ed function h and its on-set hon and don’t care set hdc.

Definition 2.3 Let f (X) be an incompletely speci ed function, xi ∈ X , and p(X (i))
be a completely speci ed function. The (xi , p)-decomposition with intersection of
f = (fon, fdc) is the algebraic expression

f = (xi ⊕ p) f̃ |xi=p + (xi ⊕ p) f̃ |xi �=p + I,

where

f̃ |xi=p = (fon|xi=p \ Ion, fdc|xi=p ∪ Ion),

f̃ |xi �=p = (fon|xi �=p \ Ion, fdc|xi �=p ∪ Ion),

I = (Ion, Idc),

with Ion = fon|xi=p ∩ fon|xi �=p and Idc = fdc|xi=p ∩ fdc|xi �=p .

For our example, the projections of f become f̃ |x1=x2 = (fon|x1=x2\Ion, fdc|x1=x2∪
Ion) = ({000, 100}, {001, 010, 101}) and f̃ |x1 �=x2 = (fon|x1 �=x2 \ Ion, fdc|x1 �=x2 ∪
Ion) = (∅, {111} ∪ {001, 010, 101}). The Karnaugh maps of this decomposition are
shown in Fig. 2.2.

Fig. 2.2 An example of projection with intersection of the function f of Fig. 2.1 onto the spaces
x1 = x2, x1 �= x2, and I

2 Logic Synthesis by Signal-Driven Decomposition 15

Observe that, xing the function p and a variable x , these decompositions are
canonical. We now study these decomposition methods for some choices of the
function p.

Case p = 0.

As we have already observed, if p is a constant function, then the (xi , p)-
decomposition is indeed the classical Shannon decomposition: f = xi f |xi=0 +
xi f |xi=1. Recall that (xi ⊕ 0) is equivalent to xi , while (xi ⊕ 0) is equivalent to
xi . Also observe that choosing p = 1 we would get exactly the same form. For the
(xi , p)-decomposition with intersection we have the following particular form:

f = xi f̃ |xi=0 + xi f̃ |xi=1 + I.

Observe that in this particular case, the set I is

I = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∩ f (x1, . . . , xi−1, 1, xi+1, . . . , xn).

This implies the following property.

Proposition 2.1 The characteristic function χI of I is the biggest subfunction of f
that does not depend on xi .

Proof Let χ1, . . . , χk be the subfunctions of f that do not depend on xi , and let χ
be their union, i.e., χ = χ1 + χ2 + · · · + χk . Observe that χ is still a subfunction
of f and it does not depend on xi . Therefore χ is the biggest subfunction that does
not depend on xi . We must show that χ = χI . First note that χI is one of the
functions χ1, . . . , χk . Suppose χI = χ j , with 1 ≤ j ≤ k. By construction, χ j is a
subfunction of χ . On the other hand, if χ(X) = 1, then there exists an index h such
that χh(X) = 1. Since χh does not depend on xi , we have

χh(x1, . . . , xi−1, 1, xi+1, . . . , xn) = χh(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1.

Moreover, since χh is a subfunction of f , on the same input X we have that

f (x1, . . . , xi−1, 1, xi+1, . . . , xn) = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1.

This implies that

χ j = f (x1, . . . , xi−1, 1, xi+1, . . . , xn) ∩ f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1,

which means that χ is a subfunction of χ j . As χ j = χI , we nally have that χ = χI .

Note that if χI is equal to f , then f does not depend on xi . We conclude the
analysis of this special case observing how the (xi , 0)-decomposition, i.e., the clas-
sical Shannon decomposition, and the (xi , 0)-decomposition with intersection show

16 A. Bernasconi et al.

a different behavior when the subfunctions f |xi=0, f |xi=1, f̃ |xi=0, f̃ |xi=1 and the
intersection I are represented as sum of products. Consider a minimal sum of prod-
ucts SOP(f) for the function f . The number of products in SOP(f) is always less
than or equal to the overall number of products in the minimal SOP representations
for f |xi=0 and f |xi=1. This easily follows from the fact that each product in SOP(f)
that does not depend on xi is split into two products, one belonging to a minimal
SOP for f |xi=0 and the other belonging to a minimal SOP for f |xi=1. On the other
hand, the (xi , 0)-decomposition with intersection contains the same number of prod-
ucts as SOP(f), and its overall number of literals is less or equal to the number of
literals in SOP(f).

Theorem 2.1 An (xi , 0)-decomposition with intersection for a Boolean function f ,
where f̃ |xi=0, f̃ |xi=1, and I are represented as minimal sums of products, contains
an overall number of products equal to the number of products in a minimal SOP
for f and an overall number of literals less or equal to the number of literals in a
minimal SOP for f .

Proof First observe how we can build minimal SOP representations for f̃ |xi=0,
f̃ |xi=1, and I starting from a minimal SOP, SOP(f), for f . Indeed, the sum of
the projections of all products in SOP(f) containing the literal xi gives a minimal
SOP for f̃ |xi=1, the sum of the projections of all products in SO P(f) containing
the literal xi gives a minimal SOP for f̃ |xi=0, while all remaining products, that
do not depend on xi or xi , give a minimal SOP covering exactly the points in the
intersection I . The minimality of these SOPs follows from the fact that the (xi , 0)-
decomposition with intersection does not change the Hamming distance among the
minterms, so that no bigger cubes can be built in the projection sets.

Let us now analyze the overall number of literals in the (xi , 0)-decomposition
with intersection built from SOP(f). Let �SOP denote the number of literals in
SOP(f). The products in the SOP for I are left unchanged, so that their overall
number of literals �I is preserved. Suppose that r products in SOP(f) contain xi ,
and let �xi denote their overall number of literals. The projection of these r products
forms a SOP for f̃ |xi=1, whose number of literals is equal to �xi − r , as projecting
a product simply consists in eliminating xi from it. Analogously, if s products in
SOP(f) contain xi , and �xi is their overall number of literals, the SOP for f̃ |xi=0
contains �xi − s literals. Thus, the (xi , 0)-decomposition with intersection contains
exactly �I + �xi − r + �xi − s + 2 = �SOP − r − s + 2 literals, where the two
additional literals represent the characteristic functions of the projection sets.

Case p = x j .

For p = x j , with j �= i , the two decomposition techniques are based on the
projection of f onto the two complementary subspaces of {0, 1}n where xi = x j

and xi �= x j . For the (xi , x j)-decomposition we get the expression f = (xi ⊕
x j) f |xi=x j + (xi ⊕ x j) f |xi �=x j , while the (xi , x j)-decomposition with intersection

is given by f = (xi ⊕ x j) f̃ |xi=x j + (xi ⊕ x j) f̃ |xi �=x j + I , where

2 Logic Synthesis by Signal-Driven Decomposition 17

f̃ |xi=x j = (fon|xi=x j \ Ion, fdc|xi=x j ∪ Ion),

f̃ |xi �=x j = (fon|xi �=x j \ Ion, fdc|xi �=x j ∪ Ion),

with Ion = fon|xi=x j ∩ fon|xi �=x j and Idc = fdc|xi=x j ∩ fdc|xi �=x j . These expressions
share some similarities with the EXOR Projected Sum of Products studied in [3].
In particular, if we represent the subfunctions as sums of products, the (xi , x j)-
decomposition corresponds to an EP-SOP form, while the (xi , x j)-decomposition
with intersection is only partially similar to an EP-SOP with remainder form [3].
The differences between the two expressions are due to the presence of don’t cares
in f̃ |xi=x j and f̃ |xi �=x j and to the fact that the intersection I does not depend on
the variable xi , while the remainder in an EP-SOP may depend on all the n input
variables. Also observe that, thanks to the presence of don’t cares, the (xi , x j)-
decomposition with intersection has a cost less or equal to the cost of an EP-SOP
with remainder.

Cases p = x j ⊕ xk and p = x j xk .

In general the function p used to split the Boolean space {0, 1}n may depend on
all input variables, but xi . In this chapter we consider only two special cases, based
on the use of two simple functions: an EXOR and an AND of two literals. The
partition of {0, 1}n induced by the EXOR function does not depend on the choice of
the variable complementations. Indeed, since x j ⊕ xk = x j ⊕ xk , and (x j ⊕ xk) =
x j⊕xk = x j⊕xk , the choices p = x j⊕xk and p = x j⊕xk give the same partition
of the Boolean space. On the contrary, the partition of {0, 1}n induced by the AND
function changes depending on the choice of the variable complementations, so that
four different cases must be considered:

1. p = x j xk , corresponding to the partition into the sets where xi = x j xk and
xi �= x j xk , i.e., xi = x j + xk ;

2. p = x j xk , corresponding to the partition into the sets where xi = x j xk and
xi �= x j xk , i.e., xi = x j + xk ;

3. p = x j xk , corresponding to the partition into the sets where xi = x j xk and
xi �= x j xk , i.e., xi = x j + xk ;

4. p = x j xk , corresponding to the partition into the sets where xi = x j xk and
xi �= x j xk , i.e., xi = x j + xk .

When the subfunctions are represented as SOPs, the resulting decomposition forms
share some similarities with the Projected Sum of Products (P-SOP) introduced
in [2]. Again, the two forms are different thanks to the presence of don’t cares in the
subfunctions and to the fact that the intersection I does not depend on xi .

2.3 P-Circuits

We now show how the decomposition methods described in Section 2.2 can be
applied to the logic synthesis of Boolean functions. The idea for synthesis is simply

18 A. Bernasconi et al.

to construct a network for f using as building blocks networks for the projection
function p, for the subfunctions f |xi=p, f |xi �=p, f̃ |xi=p, and f̃ |xi �=p, and a network
for the intersection I . Observe that the overall network for f will require an EXOR
gate for computing the characteristic functions of the projection subsets, two AND
gates for the projections, and a nal OR gate.

The function p, the projected subfunctions, and the intersection can be synthe-
sized in any framework of logic minimization. In our experiments we focused on
the standard Sum of Products synthesis, i.e., we represented p, f |xi=p, f |xi �=p,
f̃ |xi=p, f̃ |xi �=p, and I as sums of products. In this way we derived networks
for f which we called Projected Circuit and Projected Circuit with Intersection,
in short P-circuits, see Fig. 2.3. If the SOPs representing p, f |xi=p, f |xi �=p,
f̃ |xi=p, f̃ |xi �=p, and I are minimal, the corresponding circuits are called Optimal
P-circuits. For instance, the function in Figs. 2.1 and 2.2 has minimal SOP form
x1x2x3 + x1x2x3 + x3x4 + x2x3x4, while its corresponding optimal P-circuit is
(x1 ⊕ x2)x3 + x3x4 + x2x3x4.

Fig. 2.3 P-circuit (left) and P-circuit with intersection (right)

The number of logic levels in a P-circuit varies from four to ve: it is equal
to four when the SOP for p consists in just one product and it is equal to ve
otherwise.

If we consider now the power consumption, we can observe in Fig. 2.3 that xi ,
i.e., the variable with the highest switching frequency, is connected near the output
of the overall logic network, thus triggering a sequence of switching events only for
the last four gates. In this way, the contribution of xi to the total power consumption
is limited. Finally, we observe that it is possible to apply this decomposition when
more than one variable switches with high frequency as shown in Section 2.4.

2 Logic Synthesis by Signal-Driven Decomposition 19

2.3.1 Synthesis Algorithms

We now describe two algorithms for computing optimal P-circuits, with and without
intersection. Both algorithms can be implemented using OBDD data structures [9]
for Boolean function manipulation and a classical SOP minimization procedure
(e.g., ESPRESSO [7]).

The heuristic that nds a P-circuit with intersection (in Fig. 2.4) rst computes
the projections of the on-set and dc-set of f onto xi �= p and xi = p and their
intersections Ion and Idc. The on-set of the intersection, Ion, is subtracted from the
two on-sets (fon|xi �=p and fon|xi=p), and it is inserted in the two dc-sets (fdc|xi �=p

and fdc|xi=p). This step guarantees that only the useful points of the intersection are
covered in the SOP form of f |xi �=p and f |xi=p. Finally, the algorithm synthesizes
the projected functions and the intersection with a SOP minimizer, and a P-circuit is
then returned. The algorithm that computes a P-circuit without intersection is similar
to the former but does not take into account the intersection, as shown in Fig. 2.5.

Synthesis of P-Circuits with intersection

INPUT: Functions f and p, and a variable xi
OUTPUT: An optimal P-circuit for the (xi,p)-decomposition with intersection of f
NOTATION: let f = (fon , fdc), i.e., fon is the on-set of f, and fdc is the don’t care-set of f,

Ion = fon|xi =p ∩ fon|xi=p;
Idc = fdc|xi=p ∩ fdc|xi=p;

f (=)
on = fon|xi=p \ Ion;

f (=)
on = fon|xi=p \ Ion;

f (=)
dc = fdc|xi=p ∪ Ion;

f (=)
dc = fdc|xi=p ∪ Ion;

MinSOP(=) = OptSOP(f (=)
on , f (=)

dc); // optimal SOP for f (=)

MinSOP(=) = OptSOP(f (=)
on , f (=)

dc); // optimal SOP for f (=)

MinSOPI = OptSOP(Ion,Idc); // optimal SOP for I = (Ion,Idc)
MinSOPp = OptSOP(p, /0); // optimal SOP for p
P-circuit = (xi ⊕MinSOPp)MinSOP(=)+(xi ⊕MinSOPp)MinSOP(=) +MinSOPI

return P-circuit

Fig. 2.4 Algorithm for the optimization of P-circuits with intersection

The complexity of the algorithms depends on two factors: the complexity of
OBDD operations, which is polynomial in the size of the OBDDs for the operands
f and p, and the complexity of SOP minimization. Exact SOP minimization is
superexponential in time, but ef cient heuristics are available (i.e., ESPRESSO in the
heuristic mode).

The algorithms compute correct covers as proved in the following theorem.

Theorem 2.2 (Correctness) Algorithms in Figs. 2.4 and 2.5 compute a P-circuit C
that covers the input function f .

Proof Overloading the notation, let us denote with C the Boolean function that
corresponds to the circuit C . In both cases we have to show that fon ⊆ C ⊆ fon ∪

20 A. Bernasconi et al.

Synthesis of P-Circuits

INPUT: Functions f and p, and a variable xi
OUTPUT: An optimal P-circuit for the (xi,p)-decomposition of f
NOTATION: let f = (fon,fdc), i.e.,fon is the on-set of f

fon fon
(=) = |xi=p;

fon fon
(=) = |

|

xi

xi

=p ;
fdc fdc
(=) = = p;

fdc
fdc

(=) = |xi=p ;
MinSOP(=) = OptSOP(fon

(=), fdc
(=)); // optimal SOP for

MinSOP(=) = OptSOP(fon
(=), fdc

(=)); // optimal SOP for
MinSOPp = OptSOP(p, /0) ; // optimal SOP for p
P-circuit = (xi ⊕MinSOPp)MinSOP(=)+(xi ⊕MinSOPp)MinSOP(=)

return P-circuit

f (=)

f (=)

and fdc is the don’t care-set of f,

Fig. 2.5 Algorithm for the optimization of P-circuits without intersection

fdc. We rst consider the algorithm in Fig. 2.4 for the (xi , p)-decomposition with
intersection of f that outputs the circuit C .

Let y ∈ fon be the minterm y = y1, y2, . . . , yn , we show that y ∈ C . We
have two cases: (1) if yi = p(y1, . . . , yi−1, yi+1, . . . , yn) we have that, for the
synthesis algorithm, y is covered by (xi ⊕MinSOPp)MinSOP(=) or by MinSOPI ;
(2) if yi �= p(y1, . . . , yi−1, yi+1, . . . , yn) we have that, for the synthesis algorithm,
y is covered by (xi ⊕MinSOPp)MinSOP(�=) or by MinSOPI . Thus y is in C .

From the other side, let y be a point of C , we have to show that y is also in
fon ∪ fdc. We have two cases: (1) if y is covered by MinSOPI , then y is in both
f |xi=p and f |xi �=p, and – given that MinSOPI is synthesized with ESPRESSO – y
is in fon ∪ fdc; (2) if y is not covered by MinSOPI , then it is covered by (xi ⊕
MinSOPp)MinSOP(=) or (xi ⊕MinSOPp)MinSOP(�=). In both cases y must be in a
projected space that is synthesized with ESPRESSO.

Consider now the algorithm in Fig. 2.5 for the computation of a (xi , p)-
decomposition without intersection. In this case the intersection is not computed
thus each point of the function is simply projected onto one of the projecting spaces.
The thesis immediately follows.

Considering the Stuck-At Fault Model (SAFM), we now brie y discuss the testa-
bility of P-circuits in the case where p is a constant function (i.e., p = 0). A fault
in the Stuck-At Fault Model x es exactly one input or one output pin of a node in a
combinatorial logic circuit C to constant value (0 or 1) independently of the values
applied to the primary inputs of the circuit. A node v in C is called fully testable, if
there does not exist a redundant fault with fault location v. If all nodes in C are fully
testable, then C is fully testable.

Theorem 2.3 From a given P-circuit we can obtain a circuit that is fully testable in
the SAFM by adding at most two more inputs and two multiplexers.

Proof The proof of this theorem follows directly from the testability proof in [4]
where the decomposed functions are synthesized in 2SPP form [10] instead of SOP
forms. 2SPP expressions are direct generalizations of SOP forms where we can

2 Logic Synthesis by Signal-Driven Decomposition 21

use EXORs of two literals instead of simple literals as inputs to the AND gates.
We note that the testability theorem in [4] still holds for any form that is prime and
irredundant. Since the SOP forms that we use for the synthesis of P-circuits have this
property, the thesis immediately follows. In the case of P-circuits with intersection,
the testable circuit that we obtain contains two MUXs before the inputs of the nal
OR gate. One is between the outputs of the decomposed parts and the second is after
the output of the intersection. The MUXs are used to test the three single blocks of
the circuit separately. In the case of P-circuits without intersection, just one MUX
(between the outputs of the decomposed parts before the OR gate) is needed. In this
case the proof still holds since we can consider a P-circuit without intersection as a
special case of a P-circuit with intersection where the intersection is empty.

2.4 Multivariable Decomposition

In this section we show how our new decomposition technique can be extended from
one to more variables, so that it could be applied to move all critical signals, and not
just one, toward the output, still avoiding losses in area. A rst naive solution for
extending our technique could be to apply recursively the decompositions, i.e.,

• compute a decomposition of the function under study with respect to the vari-
able with highest switching frequency among the variables in the set X =
{x1, . . . , xn}, say xi ;

• apply the same procedure to the functions f |xi=p and f |xi �=p or to the functions
f̃ |xi=p, f̃ |xi �=p and I (in case of decomposition with intersection), with respect
to the variable with highest switching frequency in the set X \ {xi };

• if needed, recursively repeat the same procedure on the subfunctions derived in
the previous decomposition step.

Observe that with this naive approach, the number of levels increases by three at
each decomposition step. Moreover, the critical signals have different distances from
the nal output gate and their switching activity affects different portions of the cir-
cuit. In particular, the rst variable selected is the one closest to the output, affecting
only the last four gates.

In order to keep the number of levels constant and independent from the number
of decomposition steps and to move all critical signals equally close to the output,
so that the number of gates affected by their switching activity can be maintained
constant, a different solution should be adopted. This solution is based on a “parallel
decomposition” in which the points of the function are simultaneously partitioned
and projected onto the 2k subspaces de ned by the k critical variables. For ease of
exposition, we explain in detail only the case k = 2. The general case k > 2 can be
easily derived from it, but at the expense of a quite heavy notation.

Definition 2.4 Let f (X) be an incompletely speci ed Boolean function, xi , x j ∈ X ,
and pi and p j be two completely speci ed Boolean functions depending on all
variables in X \{xi , x j }. The [(xi , pi), (x j , p j)]-decomposition of f is the algebraic
expression

22 A. Bernasconi et al.

f = (xi ⊕ pi)(x j ⊕ p j) f | xi=pi
x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f | xi=pi
x j �=p j

+(xi ⊕ pi)(x j ⊕ p j) f | xi �=pi
x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f | xi �=pi
x j �=p j

.

The extension of the notion of decomposition with intersection will require the intro-
duction of ve new subfunctions representing the overall intersection among the
four projections of f , and the four intersections between the projections of f |xi=pi

and f |xi �=pi w.r.t. x j , and between the projections of f |x j=p j and f |x j �=p j w.r.t. xi ,
respectively. As for the decomposition w.r.t. one variable, the intersection sets will
be added as don’t cares to the projected subfunctions, in order to possibly improve
their minimal SOP forms.

Definition 2.5 Let f (X) be an incompletely speci ed Boolean function, xi , x j ∈ X ,
and pi and p j be two completely speci ed Boolean functions depending on all
variables in X \ {xi , x j }. The [(xi , pi), (x j , p j)]-decomposition with intersection of
f = (fon, fdc) is the algebraic expression

f = (xi ⊕ pi)(x j ⊕ p j) f̃ | xi=pi
x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f̃ | xi=pi
x j �=p j

+
(xi ⊕ pi)(x j ⊕ p j) f̃ | xi �=pi

x j=p j

+ (xi ⊕ pi)(x j ⊕ p j) f̃ | xi �=pi
x j �=p j

+

(xi ⊕ pi)I
(i,=) + (xi ⊕ pi)I

(i,�=) + (x j ⊕ p j)I
(j,=) + (x j ⊕ p j)I

(j,�=) + I,

where

f̃ | xi=pi
x j=p j

= (fon| xi=pi
x j=p j

\ (I (i,=)on ∪ I (j,=)
on ∪ Ion), fdc| xi=pi

x j=p j
∪ I (i,=)on ∪ I (j,=)

on ∪ Ion),

f̃ | xi=pi
x j �=p j

= (fon| xi=pi
x j �=p j

\ (I (i,=)on ∪ I (j,�=)
on ∪ Ion), fdc| xi=pi

x j �=p j
∪ I (i,=)on ∪ I (j,�=)

on ∪ Ion),

f̃ | xi �=pi
x j=p j

= (fon| xi �=pi
x j=p j

\ (I (i,�=)on ∪ I (j,=)
on ∪ Ion), fdc| xi �=pi

x j=p j

∪ I (i,�=)on ∪ I (j,=)
on ∪ Ion),

f̃ | xi �=pi
x j �=p j

= (fon| xi �=pi
x j �=p j

\ (I (i,�=)on ∪ I (j,�=)
on ∪ Ion), fdc| xi �=pi

x j �=p j

∪ I (i,�=)on ∪ I (j,�=)
on ∪ Ion),

with

Ion = fon| xi=pi
x j=p j

∩ fon| xi=pi
x j �=p j

∩ fon| xi �=pi
x j=p j

∩ fon| xi �=pi
x j �=p j

,

Idc = fdc| xi=pi
x j=p j

∩ fdc| xi=pi
x j �=p j

∩ fdc| xi �=pi
x j=p j

∩ fdc| xi �=pi
x j �=p j

,

I (i,=)on = (fon| xi=pi
x j=p j

∩ fon| xi=pi
x j �=p j

) \ Ion , I (i,=)dc = (fdc| xi=pi
x j=p j

∩ fdc| xi=pi
x j �=p j

) ∪ Ion,

I (i,�=)on = (fon| xi �=pi
x j=p j

∩ fon| xi �=pi
x j �=p j

) \ Ion , I (i,�=)dc = (fdc| xi �=pi
x j=p j

∩ fdc| xi �=pi
x j �=p j

) ∪ Ion,

2 Logic Synthesis by Signal-Driven Decomposition 23

I (j,=)
on = (fon| xi=pi

x j=p j
∩ fon| xi �=pi

x j=p j

) \ Ion , I (j,=)
dc = (fdc| xi=pi

x j=p j
∩ fdc| xi �=pi

x j=p j

) ∪ Ion,

I (j,�=)
on = (fon| xi=pi

x j �=p j
∩ fon| xi �=pi

x j �=p j

) \ Ion , I (j,�=)
dc = (fdc| xi=pi

x j �=p j
∩ fdc| xi �=pi

x j �=p j

) ∪ Ion.

Observe that we do not consider the intersections between f | xi=pi
x j=p j

and f | xi �=pi
x j �=p j

and between f | xi=pi
x j �=p j

and f | xi �=pi
x j=p j

as these two pairs of projections belong to non-

adjacent subspaces and therefore there are no cubes split between them.
When the functions pi and p j , the four projected subfunctions, and the inter-

section sets are represented as minimal SOP forms, these two algebraic expressions
give rise to P-circuits without and with intersection, both of depth 5, exactly as in the
case of the decomposition w.r.t. a single variable. Moreover, the two critical signals
xi and x j are equally close to the output and their switching activity affects only a
constant number of gates, as pi , p j and the intersection sets do not depend on them.

The two circuits can be synthesized generalizing the algorithms shown in
Figs. 2.4 and 2.5 in a straightforward way.

For example, consider the function f shown on the left side of Fig. 2.1. Let
pi = 0, p j = 0, and xi and x j be x1 and x2, respectively. The Boolean space
{0, 1}4 can be partitioned into the four sets: (x1 = 0, x2 = 0), (x1 = 0, x2 = 1),
(x1 = 1, x2 = 0), and (x1 = 1, x2 = 1), each containing 22 points. The projections
of f onto these four sets are

fon| x1=0
x2=0
= {00, 01, 10} fdc| x1=0

x2=0
= ∅

fon| x1=0
x2 �=0
= {01} fdc| x1=0

x2 �=0
= {11}

fon| x1 �=0
x2=0
= {01, 10} fdc| x1 �=0

x2=0
= ∅

fon| x1 �=0
x2 �=0
= {00, 01} fdc| x1 �=0

x2 �=0
= ∅

The [(x1, 0), (x2, 0)]-decomposition of f thus determines the optimal P-circuit
x1x2(x3 + x4)+ x1x2x4 + x1x2(x3x4 + x3x4)+ x1x2x3, containing 16 literals.

Let us now consider the [(x1, 0), (x2, 0)]-decomposition with intersection. The
intersection sets are Ion = {01}, Idc = ∅, I (i,=)on = I (i,�=)on = I (j,�=)

on = ∅, I (j,=)
on =

{10}, I (i,=)dc = I (i,�=)dc = I (j,=)
dc = I (j,�=)

dc = {01}, and the projections become

f̃on| x1=0
x2=0
= {00} f̃dc| x1=0

x2=0
= {01, 10}

f̃on| x1=0
x2 �=0
= ∅ f̃dc| x1=0

x2 �=0
= {01, 11}

f̃on| x1 �=0
x2=0
= ∅ f̃dc| x1 �=0

x2=0
= {01, 10}

f̃on| x1 �=0
x2 �=0
= {00} f̃dc| x1 �=0

x2 �=0
= {01}

The corresponding P-circuit with intersection is now x1x2x3 + x1x2x3 + x2x3x4 +
x3x4, with 11 literals.

24 A. Bernasconi et al.

2.5 Experimental Results

In this section we report experimental results for the two decomposition methods
described in the previous sections. The methods have been implemented in C, using
the CUDD library for OBDDs to represent Boolean functions. The experiments have
been run on a Pentium 1.6 GHz CPU with 1 GB of main memory. The benchmarks
are taken from LGSynth93 [17]. We report in the following a signi cant subset of
the functions as representative indicators of our experiments.

In order to evaluate the performances of these new synthesis methods, we com-
pare area and delay of different versions of P-circuits with P-circuits based on the
classical Shannon decomposition, i.e., P-circuits representing (xi , 0)-decomposition
without intersection (referred as Shannon in Table 2.1). In particular we have con-
sidered P-circuits for the following choices of the projection function p:

• p = 0, decomposition with intersection (referred as Constant in Table 2.2);
• p = x j , decomposition without and with intersection (referred as VAR in

Tables 2.1 and 2.2);
• p = x j ⊕ xk , decomposition without and with intersection (referred as XOR in

Tables 2.1 and 2.2);
• p = x j xk , decomposition without and with intersection, choosing the com-

plementations of variables giving the best area (referred as AND in Tables 2.1
and 2.2).

After the projection, all SOP components of the P-circuits have been synthesized
with multioutput synthesis using ESPRESSO in the heuristic mode. Finally, to eval-
uate the obtained circuits, we ran our benchmarks using the SIS system with the
MCNC library for technology mapping and the SIS command map -W -f 3 -s.

In Tables 2.1 and 2.2 we compare the mapped area and the synthesis time
(in seconds) of P-circuits representing decomposition forms without intersection
(Table 2.1) and with intersection (Table 2.2) for a subset of the benchmarks. Due to
space limitation, the results shown refer only to decompositions with respect to the
 rst input variable, x0, of each benchmark. In the overall set of experiments we have
considered decompositions with respect to each input variable of each benchmark.

The results, reported in Fig. 2.6, are quite interesting: about 79% of P-circuits
based on the (xi , 0)-decomposition with intersection have an area smaller than
the P-circuits based on the classical Shannon decomposition, i.e., on the (xi , 0)-
decomposition without intersection; analogously, 32 and 59% of the P-circuits ben-
e t from the (xi , x j)-decomposition without and with intersection, respectively;
22 and 50% of the circuits bene t from the (xi , x j ⊕ xk)-decomposition without
and with intersection, respectively; and 28 and 58% of the circuits bene t from the
(xi , x j xk)-decomposition without and with intersection, respectively. These results
support the conclusion that decompositions with intersection provide better results,
and that the best choice for the projection function p is the simplest: p = 0.

Moreover synthesis for p = 0 with intersection is very ef cient in computational
time, as shown in Fig. 2.7; in fact, about 80% of P-circuits based on the (xi , 0)-
decomposition with intersection have a synthesis time smaller than the synthesis

2 Logic Synthesis by Signal-Driven Decomposition 25

Table 2.1 Comparison of area and synthesis time of P-circuits representing (x0, p)-decomposition
forms for different choices of the projection function p without intersection

(x0, p)-Decomposition without intersection

Shannon VAR XOR AND

Benchmark (in/out) Area Time Area Time Area Time Area Time

add6 (12/7) 908 0.65 507 5.19 669 24.58 524 90.84
adr4 (8/5) 284 0.05 172 0.14 223 0.45 237 1.76
alu2 (10/8) 355 0.45 382 0.79 416 3.60 356 12.93
alu3 (10/8) 256 0.34 330 0.67 402 2.54 354 9.22
amd (14/24) 162 0.17 1694 1.24 1800 8.65 1747 30.31
apla (10/1) 379 0.12 371 0.58 467 3.19 398 9.11
b9 (16/5) 436 0.15 463 1.08 492 8.30 472 29.36
b12 (15/9) 227 0.11 306 0.55 401 4.27 340 15.90
br1 (12/8) 347 0.05 381 0.19 435 0.88 418 3.53
br2 (12/8) 281 0.03 314 0.18 377 0.97 337 3.30
dc2 (8/7) 249 0.05 279 0.13 337 0.40 276 1.45
dist (8/7) 891 0.11 1266 0.34 1202 0.95 946 3.77
dk17 (10/11) 263 0.10 250 0.38 291 1.82 230 6.85
dk48 (15/17) 263 0.23 284 1.65 288 14.73 276 46.21
ex7 (16/5) 436 0.12 463 1.04 492 8.30 472 29.07
exp (8/18) 824 0.09 873 0.30 947 0.96 1011 3.15
f51m (8/8) 497 0.09 706 0.21 640 0.64 528 2.24
inc (7/9) 237 0.05 287 0.11 364 0.25 316 1.17
l8err (8/8) 301 0.08 328 0.30 356 0.70 311 2.43
life (9/1) 267 0.06 252 0.21 298 0.60 267 2.56
m181 (15/9) 227 0.42 308 0.58 404 4.44 341 16.39
m2 (8/16) 808 0.08 919 0.21 1282 0.55 1043 1.93
m3 (8/16) 1042 0.08 1392 0.24 1638 0.71 1184 2.92
m4 (8/16) 2766 0.19 3286 0.96 2846 2.10 2271 6.93
max1024 (10/6) 2534 0.34 2511 1.97 2973 8.74 2642 30.72
max128 (7/24) 2373 0.08 2711 0.35 3219 0.91 2391 3.14
max512 (9/6) 1470 0.15 1607 0.64 1116 2.27 1227 8.09
mlp4 (8/8) 1113 0.15 1031 0.36 1292 1.13 997 4.12
mp2d (14/14) 355 0.09 435 0.61 508 4.47 455 16.49
p1 (8/18) 724 0.18 781 0.96 821 3.07 842 10.77
p3 (8/14) 587 0.22 524 0.52 559 1.64 548 5.90
p82 (5/14) 244 0.02 321 0.06 394 0.11 370 0.33
rd73 (7/3) 312 0.05 437 0.60 355 9.12 388 35.82
root (8/5) 416 0.05 594 0.14 393 0.50 385 1.91
spla (8/5) 2239 0.79 2570 7.88 3142 74.99 2886 273.75
sqr6 (6/12) 443 0.05 656 6.05 561 43.76 532 170.62
sym10 (10/1) 559 0.30 414 0.64 309 2.92 416 14.31
t1 (21/23) 905 0.83 951 3.52 1186 41.02 982 155.28
t2 (17/16) 501 0.06 589 0.65 686 6.37 618 22.95
t3 (12/8) 156 0.14 212 0.74 275 5.21 236 20.77
tial (14/8) 3430 5.33 3337 23.68 4062 159.84 3823 557.19
tms (8/16) 670 0.03 787 23.00 904 161.92 737 548.21
vtx1 (27/6) 430 0.09 445 1.89 501 32.57 585 107.74
x9dn (27/7) 530 0.22 528 2.23 595 30.62 548 116.64
Z5xp1 (7/10) 479 0.08 593 0.12 743 0.33 547 1.24
Z9sym (9/1) 464 0.17 288 0.33 267 1.15 371 6.07

26 A. Bernasconi et al.

Table 2.2 Comparison of area and synthesis time of P-circuits representing (x0, p)-decomposition
forms for different choices of the projection function p with intersection

(x0, p)-Decomposition with intersection

Constant VAR XOR AND

Benchmark (in/out) Area Time Area Time Area Time Area Time

add6 (12/7) 672 0.51 814 4.44 759 23.70 651 80.93
adr4 (8/5) 203 0.03 125 0.18 161 0.40 175 1.58
alu2 (10/8) 283 0.18 308 1.03 310 4.72 298 16.79
alu3 (10/8) 263 0.16 276 0.42 295 1.67 283 5.91
amd (14/24) 1012 0.12 1085 1.55 1202 10.88 1180 37.65
apla (10/1) 379 0.08 371 0.38 470 1.42 398 6.11
b9 (16/5) 327 0.20 360 0.81 393 5.17 364 19.74
b12 (15/9) 199 0.18 248 0.65 367 5.25 292 18.13
br1 (12/8) 347 0.02 381 0.18 435 0.87 418 3.47
br2 (12/8) 281 0.01 314 0.18 377 0.86 337 3.16
dc2 (8/7) 238 0.02 281 0.14 355 0.28 268 1.46
dist (8/7) 1036 0.09 1507 0.26 1373 0.69 1048 3.24
dk17 (10/11) 263 0.06 250 0.46 291 1.99 230 7.21
dk48 (15/17) 263 0.17 284 0.69 288 4.34 276 17.89
ex7 (16/5) 327 0.09 360 1.56 393 10.39 364 38.51
exp (8/18) 838 0.05 877 0.22 930 0.66 1035 3.01
f51m (8/8) 277 0.09 290 0.28 314 0.85 323 4.11
inc (7/9) 270 0.02 134 0.10 372 0.22 348 0.85
l8err (8/8) 355 0.03 337 0.18 450 0.68 354 2.48
life (9/1) 197 0.05 227 0.12 216 0.43 224 2.03
m181 (15/9) 199 0.08 252 0.68 341 6.65 288 29.20
m2 (8/16) 808 0.05 919 0.24 1282 0.48 1043 2.23
m3 (8/16) 1042 0.05 1392 0.26 1638 0.76 1184 3.53
m4 (8/16) 2163 0.14 2981 0.38 3683 1.22 2496 4.77
max1024 (10/6) 2980 0.25 3043 2.12 2977 10.13 2829 34.28
max128 (7/24) 2155 0.06 2259 0.23 2704 0.58 1975 1.97
max512 (9/6) 1346 0.12 1533 0.39 1351 1.45 1265 5.02
mlp4 (8/8) 908 0.08 917 0.30 1081 0.98 938 3.34
mp2d (14/14) 276 0.16 357 0.75 411 6.82 359 22.56
p1 (8/18) 711 0.20 777 1.18 847 3.74 818 13.66
p3 (8/14) 520 0.12 552 0.37 554 0.79 504 2.68
p82 (5/14) 229 0.02 313 0.06 372 0.10 343 0.31
rd73 (7/3) 332 0.02 577 0.69 496 8.78 464 33.63
root (8/5) 417 0.02 536 0.17 602 0.55 446 1.94
spla (8/5) 2428 0.73 2761 8.82 3249 84.11 3107 336.30
sqr6 (6/12) 333 1.59 429 4.49 437 40.35 370 124.48
sym10 (10/1) 568 0.27 529 0.96 551 3.90 554 16.81
t1 (21/23) 463 0.61 510 6.06 655 78.07 585 277.38
t2 (17/16) 358 0.05 406 0.88 469 9.80 416 22.33
t3 (12/8) 218 0.08 270 0.74 336 3.77 295 14.03
tial (14/8) 3368 3.29 3319 31.12 3952 215.08 3827 741.85
tms (8/16) 670 3.00 787 14.06 904 103.07 737 317.65
vtx1 (27/6) 390 0.14 499 3.03 486 50.57 524 171.45
x9dn (27/7) 412 0.19 401 4.26 457 57.18 418 217.77
Z5xp1 (7/10) 324 0.03 369 0.19 441 0.41 302 1.29
Z9sym (9/1) 379 0.17 391 0.64 395 1.68 393 9.28

2 Logic Synthesis by Signal-Driven Decomposition 27

Fig. 2.6 Percentage of P-circuits, over all the benchmarks, having smaller area than the P-circuits
based on Shannon decomposition

time of P-circuits based on the classical Shannon decomposition. When p is not
constant, synthesis is time consuming, since the algorithm must choose the best
combination of variables for p. In particular, 3 and 5% of the P-circuits bene t from
the (xi , x j)-decomposition without and with intersection, respectively; 2% of the
circuits bene t from the (xi , x j ⊕ xk)-decomposition both without and with inter-
section; and only 1% of the circuits bene t from the (xi , x j xk)-decomposition both
without and with intersection. Altogether, only 14% of the P-circuits achieve the
smallest area when implemented according to the classical Shannon decomposition.
The subset of results shown in Tables 2.1 and 2.2 re ects these percentages.

Fig. 2.7 Percentage of P-circuits, over all the benchmarks, having smaller synthesis time than the
P-circuits based on Shannon decomposition

28 A. Bernasconi et al.

2.6 Conclusion

In conclusion, we presented a new method to decompose Boolean functions via
complex cofactoring in the presence of signals with high switching activity. Exper-
imental results show that this decomposition yields circuits more compact than
those obtained with Shannon decomposition. This decomposition has the advantage
to minimize the dynamic power dissipation with respect to a known input signal
switching with high frequency. In future work, we plan to verify this property with a
transistor-level simulation of the circuits. Widely used data structures (i.e., OBDDs)
are based on Shannon decomposition. Thus a future development of this work could
be the de nition of new data structures based on the proposed decomposition.

Acknowledgments Tiziano Villa gratefully acknowledges partial support from the COCONUT
EU project FP7-2007-IST-1-217069, and the CON4COORD EU Project FP7-ICT-2007.3.7.(c)
grant agreement nr. INFSO-ICT-223844.

References

1. Benini, L., Micheli, G.D.: Logic synthesis for low power. In: S. Hassoun, T. Sasao (eds.)
Logic Synthesis and Veri cation, pp. 197–223. Kluwer Academic Publishers Norwell, MA,
USA (2002)

2. Bernasconi, A., Ciriani, V., Cordone, R.: On projecting sums of products. In: 11th Euromicro
Conference on Digital Systems Design: Architectures, Methods and Tools. Parma, Italy (2008)

3. Bernasconi, A., Ciriani, V., Cordone, R.: The optimization of kEP-SOPs: Computational com-
plexity, approximability and experiments. ACM Transactions on Design Automation of Elec-
tronic Systems 13(2), 1–31 (2008)

4. Bernasconi, A., Ciriani, V., Trucco, G., Villa, T.: Logic Minimization and Testability of
2SPPP-Circuits. In: Euromicro Conference on Digital Systems Design (DSD). Patras, Greece
(2009)

5. Bernasconi, A., Ciriani, V., Trucco, G., Villa, T.: On decomposing Boolean functions via
extended cofactoring. In: Design Automation and Test in Europe. Nice, France (2009)

6. Bioch, J.C.: The complexity of modular decomposition of Boolean functions. Discrete Applied
Mathematics 149(1–3), 1–13 (2005)

7. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.L.: Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers Norwell, MA, USA (1984)

8. Brown, F.: Boolean Reasoning. Kluwer Academic Publishers, Boston (1990)
9. Bryant, R.: Graph based algorithm for Boolean function manipulation. IEEE Transactions on

Computers 35(9), 667–691 (1986)
10. Ciriani, V.: Synthesis of SPP three-level logic networks using af ne spaces. IEEE Transactions

on CAD of Integrated Circuits and Systems 22(10), 1310–1323 (2003)
11. Cortadella, J.: Timing-driven logic bi-decomposition. IEEE Transactions on CAD of Inte-

grated Circuits and Systems 22(6), 675–685 (2003)
12. Kerntopf, P.: New generalizations of Shannon decomposition. In: International Workshop on

Applications of Reed-Muller Expansion in Circuit Design, pp. 109–118. Starkville, Missis-
sippi, USA (2001)

13. Lavagno, L., McGeer, P.C., Saldanha, A., Sangiovanni-Vincentelli, A.L.: Timed Shannon cir-
cuits: A power-ef cient design style and synthesis tool. In: 32nd ACM/IEEE Conference on
Design automation, pp. 254–260. (1995)

2 Logic Synthesis by Signal-Driven Decomposition 29

14. McGeer, P.C., Brayton, R.K., Sangiovanni-Vincentelli, A.L., Sahni, S.: Performance enhance-
ment through the generalized bypass transform. In: ICCAD, pp. 184–187. Santa Clara, CA,
USA (1991)

15. Pedram, M.: Power estimation and optimization at the logic level. International Journal of
High Speed Electronics and Systems 5(2), 179–202 (1994)

16. Soviani, C., Tardieu, O., Edwards, S.A.: Optimizing sequential cycles through Shannon
decomposition and retiming. In: DATE ’06: Proceedings of the conference on Design,
Automation and Test in Europe, pp. 1085–1090. European Design and Automation Associ-
ation, 3001 Leuven, Belgium, Belgium (2006)

17. Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0. User Guide,
Microelectronics Center of North Carolina (1991)

http://www.springer.com/978-1-4419-7517-1

