Chapter 2
Genomics of Bacillus Species

Ole Andreas @kstad and Anne-Brit Kolstg

2.1 The Genus Bacillus

Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to
the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first
described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis
was defined as the type species (Soule, 1932). The genus is large, encompassing
more than 60 species with a great genetic diversity (Priest, 1993) (Fig. 2.1), most
of which are considered non-pathogenic. Bacillus species may be divided into five
or six groups (groups I-VI), based on 16S rRNA phylogeny or phenotypic features,
respectively (Priest, 1993).

The Bacillus genus includes a range of species of human interest. This is mostly
due to either (1) the use of the bacteria in industrial applications, such as for exam-
ple in the making of biotechnological products (insect toxins, peptide antibiotics,
enzymes for detergents, etc.) (Priest, 1993); (2) the employment of the spore as
a model system for studying bacterial cellular differentiation, and its resistance to
decontaminating agents or treatments; or (3) the role of certain Bacillus species
in causing human disease. The latter interest can be followed back to the late
nineteenth century and the studies of Louis Pasteur, using heat-attenuated cells of
Bacillus anthracis as the first anti-bacterial vaccine, and Robert Koch, elucidating
the role of a specific microorganism (B. anthracis) in causing a specific disease
(anthrax).

2.2 Pathogenicity of Bacillus Species

Several Bacilli may be linked to opportunistic infections, e.g. in post-surgical
wounds, cancer patients, or immunocompromised individuals. Pathogenicity among
Bacillus spp. is however mainly a feature of organisms belonging to the B. cereus
group, a subgroup of the B. subtilis group (group II) within the Bacillus genus
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Fig. 2.1 Phylogeny of species within the Bacillus genus, based on 16S rRNA sequence data. The
B. cereus group members are boxed in pink. The horizontal bar indicates a genetic distance of 0.02

(Fig. 2.1), and which are commonly found in the environment (reviewed by
Drobniewski, 1993). In line with this, although Bacillus licheniformis, Bacillus
pumilus, and B. mojavensis have all been implicated in food poisoning incidents
(Salkinoja-Salonen et al., 1999; Nieminen et al., 2007; Apetroaie-Constantin et al.,
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Fig. 2.2 Scanning electron
micrograph (Hitachi
HHS/2R) of B. cereus ATCC
10987

2009), the majority of reported cases of Bacillus food poisoning are caused by
B. cereus and its close relatives (Fig. 2.2). In this chapter, we will therefore dis-
cuss the genomics of Bacillus cereus group bacteria in relation to their roles as
etiological agents of two food poisoning syndromes.

2.3 The Bacillus cereus Group

The B. cereus group (B. cereus sensu lato) includes six approved species:
B. anthracis, B. cereus (sensu stricto), B. thuringiensis, B. mycoides, B. pseu-
domycoides, and B. weihenstephanensis. In addition, a remote cluster of three
thermophilic strains has been identified within the group (Lund et al., 2000;
Fagerlund et al., 2007; Auger et al., 2008). This cluster has been suggested as a
new species: B. cytotoxicus (or B. cytoxis) (Fig. 2.3) (Lapidus et al., 2008). The
phylogeny of the B. cereus group has been mapped extensively by various meth-
ods, including multilocus enzyme electrophoresis (MLEE; Helgason et al., 1998,
2000a, c), amplified fragment length polymorphism (AFLP; Keim et al., 1997a;
Jackson et al., 1999; Ticknor et al., 2001; Hill et al., 2004; Mignot et al., 2004),
and by what is currently considered the gold standard for such studies, multilo-
cus sequence typing (MLST; Helgason et al., 2004; Barker et al., 2005; Tourasse
et al., 2006). Altogether five MLST schemes exist for the group, based largely
on non-overlapping genes and strain sets. Strains from all five schemes have how-
ever been integrated into one phylogeny using supertree methodology (Tourasse and
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Fig. 2.3 Molecular phylogeny of Bacillus cereus group bacteria as analyzed by multilocus
sequence typing (MLST), employing supertree technology. The species displayed form a subtree of
91 isolates extracted from the supertree of 1,400 isolates available in the SuperCAT database pro-
vided at the University of Oslo typing website (http://mlstoslo.uio.no/). The supertree is based on a
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Kolstg, 2008), resulting in the hitherto most comprehensive view of the B. cereus
group population, encompassing more than 1,400 isolates (SuperCAT database;
http://mlstoslo.uio.no). By MLST analysis, the B. cereus group population can be
grouped into at least three main clusters of isolates (Fig. 2.3); cluster I contains
B. anthracis and related B. cereus and B. thuringiensis strains and carries mostly
isolates of clinical origin; cluster II harbours B. cereus and B. thuringiensis strains
from a variety of sources including food poisoning events; while cluster III contains
B. weihenstephanensis and B. mycoides isolates.

2.3.1 B. cereus, B. anthracis, and B. thuringiensis

The three most frequently studied species within the B. cereus group are
B. anthracis, B. thuringiensis, and B. cereus. B. cereus is a common bacterium of
the soil and can colonize invertebrate guts as a symbiont, an environment which
has been suggested to be its natural habitat (Margulis et al., 1998; Jensen et al.,
2003). It is however a frequent cause of human food poisoning, as well as various
opportunistic and nosocomial infections, e.g. in the immunocompromised or fol-
lowing trauma to the eye (reviewed by Drobniewski, 1993; Kotiranta et al., 2000;
Bottone, 2010). B. cereus can cause two types of food poisoning syndromes, namely,
the emetic syndrome, due to the synthesis of cereulide, a small, heat-stable non-
ribosomally synthesized dodecadepsipeptide, and the diarrhoeal syndrome, caused
by enterotoxins (Drobniewski, 1993; Stenfors Arnesen et al., 2008). Other potential
virulence factors include secreted phospholipases, haemolysins, proteases, and other
degradative enzymes. These proteins are extracellular virulence factors, and their
expression is under the control of the global pleiotropic transcriptional regulator
PIcR (Agaisse et al., 1999; Bkstad et al., 1999b). Genes encoding the proteinaceous
virulence factors, enterotoxins included, are located on the chromosome, while the
genes responsible for synthesis of the emetic toxin are located on a large (270 kb)
plasmid, pCER270 (Hoton et al., 2005; Ehling-Schulz et al., 2006).

B. thuringiensis is also frequent in soil, is an entomopathogenic bacterium, and
is the most commonly used commercial biopesticide worldwide (Soberon et al.,
2007). Its identification and classification are based on the production of insectici-
dal proteinaceous toxin crystals (Cry and Cyt proteins) during sporulation (Schnepf
et al., 1998; Aronson, 2002), a feature recognized by microscopy. The Cry and Cyt
toxins are of different classes and exhibit variable specificities towards the larvae of
different classes of insects (reviewed in Whiteley and Schnepf, 1986; Schnepf et al.,
1998).

<
<

Fig. 2.3 (continued) combination of sequence data from all five published MLST schemes avail-
able for the B. cereus group (Tourasse and Kolstg, 2008). Three main phylogenetic clusters of the
B. cereus group population are indicated by Roman numerals, and strains are coloured by source
of isolation, following their representation in SuperCAT (red, human; purple, animal; dark brown,
soil; orange, food; blue, dairy; grey, other)
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B. anthracis is a highly monomorphic species within the B. cereus group,
showing very little genetic variation (Fig. 2.3; Keim et al., 1997b; Van Ert et al.,
2007). In the environment, the bacterium primarily exists as a highly stable,
dormant spore in the soil. Nevertheless, it has been claimed that the organ-
ism can grow and persist outside the host, in the rhizosphere of plants (Saile
and Koehler, 2006). B. anthracis is the cause of anthrax, primarily a disease
of herbivores, but may also cause isolated cases of infections in man. In sev-
eral regions of the world, including parts of Africa and Asia, B. anthracis is
endemic or hyperendemic, while being sporadic in Australia and the United States
(http://www.vetmed.Isu.edu/whocc/mp_world.htm). Anthrax takes three forms:
cutaneous, gastro-intestinal, or inhalational (reviewed in Mock and Fouet, 2001).
While the cutaneous form is easily treatable with antimicrobials, the gastro-
intestinal and inhalational forms of the disease are more severe, as has been
demonstrated by human deaths following the ingestion of meat from animals that
died from anthrax disease (reviewed by Beatty et al., 2003), as well as in the
bioterror attacks against the United States in fall of 2001, when letters contain-
ing B. anthracis spores were distributed through the US Postal Service, killing five
people (Jernigan et al., 2001). Anthrax disease is primarily caused by two viru-
lence traits: (1) the synthesis of two A—B type toxins from three toxin components,
namely, lethal toxin (LT) being composed of protective antigen (PA) and lethal
factor (LF), and edema toxin (ET) which is composed of PA and edema factor
(EF) Mock and Fouet, 2001; Mock and Mignot, 2003; Young and Collier, 2007),
and (2) the presence of a poly-y-D-glutamic acid (polyglutamate) capsule which is
important for B. anthracis survival in a host, as it helps the bacterium evade the
host immune system by protecting vegetative cells from phagocytotic killing dur-
ing infection (Preisz, 1909; Drysdale et al., 2005; Candela and Fouet, 2006; Richter
et al., 2009).

Although the B. cereus group in general is phylogenetically heterogeneous,
strains of the same species, as well as of different species, may be very closely
related and phylogenetically intermixed, when employing genetic markers at the
chromosomal level (Fig. 2.3; a more complete representation of the B. cereus
group phylogeny can be found at http://mlstoslo.uio.no). Bacteria belonging to the
B. cereus group generally exhibit complex genomes; different strains may carry
plasmids in variable numbers (1->12) and sizes (2—600 kb; frequently >80 kb)
(reviewed in Kolstg et al., 2009), some of which are conjugative or mobilizable
and can host a number of different IS elements. Typically, strains also contain bac-
teriophages which may be integrated in the chromosome as prophages or which may
replicate as independent linear elements (Carlson et al., 1994a; Rasko et al., 2005;
Verheust et al., 2005; Sozhamannan et al., 2006; Lapidus et al., 2008). The tradi-
tional species distinctions of B. anthracis and B. thuringiensis were largely based
on their different pathogenic specificities towards vertebrates and insect larvae,
respectively. Interestingly, however, the genes coding for the typical species-specific
virulence properties of both B. anthracis and B. thuringiensis are plasmid-borne,
a fact unknown at the time of species designation; in B. thuringiensis the crystal
protein toxins (Cry or Cyt) causing pathogenicity to insects are almost exclusively
encoded by genes present on plasmids of various sizes and often associated with IS
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elements (Schnepf et al., 1998). Similarly, in B. anthracis two large plasmids, pXO1
(182 kb) and pXO2 (95 kb), are necessary for full B. anthracis virulence (Mock
and Fouet, 2001; Passalacqua and Bergman, 2006). pXO1 carries the genes coding
for the anthrax toxin components (pag, lef, and cya), all located within a 44.8 kb
pathogenicity island (PAI; Okinaka et al., 1999b) which also encodes the transcrip-
tional activator AtxA and the repressor PagR that regulate the expression of the toxin
genes (Uchida et al., 1993; Dai et al., 1995; Mignot et al., 2003; Fouet and Mock,
2006). pXO2 encodes the other major B. anthracis virulence factor, the poly-y-D-
glutamic acid (polyglutamate) capsule, in a five-gene operon (capBCADE). Capsule
expression is activated by the transcriptional regulators AcpA and AcpB, and the
capsule operon and its regulator genes are all located in a 35 kb PAI (Pannucci
et al., 2002b; Van der Auwera et al., 2005). Expression of acpA and acpB (located
on pXO?2) is under the control of AtxA (encoded on pXO1) (Fouet and Mock, 2006;
Perego and Hoch, 2008); thus cross-talk occurs between the two virulence plasmids.

The phylogenetic intermixing of strains of different species, in particular
B. cereus and B. thuringiensis isolates (Fig. 2.3; http://mlstoslo.uio.no), and the fact
that the main phenotypical traits classically used to define each of the B. cereus
group species are carried by plasmids, including the insect toxicity of B. thuringien-
sis and human pathogenicity of B. anthracis, have led to disputes regarding the
species definitions within the group (Helgason et al., 2000b; Rasko et al., 2005).
Hitherto, no species-specific property outside the plasmid-borne cry and cyt genes,
has been identified for B. thuringiensis, and B. thuringiensis strains can carry the
same chromosomally encoded virulence genes as B. cereus, including genes for
enterotoxins, phospholipases, haemolysins, and proteases (Han et al., 2006; Scarano
etal., 2009). These genes may in fact be important for the virulence of the bacterium,
following its entry into the insect larvae haemocol (Fedhila et al., 2002, 2003, 2004,
2006). Thus, a B. thuringiensis strain that has lost the cry- or cyf-containing plasmids
will be indistinguishable from B. cereus and will be identified as such. Therefore,
although the current nomenclature is kept, largely based on the well-established dif-
ferences observed in pathogenicity profiles of the two species towards insects, the
two bacterial species are indistinguishable when a chromosomal phylogeny is recon-
structed based on a sufficient number of isolates (http://mlstoslo.uio.no). B. cereus
and B. thuringiensis have therefore been suggested to constitute one species in
genetic terms (Helgason et al., 2000c).

Members of the B. cereus group are found in various habitats in the environ-
ment, including different types of soils, plant leaves, the rhizosphere, the intestinal
tract of soil invertebrates, as well as man-made settings such as food production
factories and hospital environments (Jensen et al., 2003), where they may constitute
reservoirs for disease. The ubiquitous presence of several B. cereus group mem-
bers in a great variety of natural habitats, combined with the ability to survive in
nutrient-poor and otherwise hostile environments due to spore-forming abilities,
contributes to their role as common polluter organisms (Drobniewski, 1993). The
presence of B. cereus in these habitats allows the organism to easily spread to
different foods, including milk and milk products (via the udders of grazing cows),
as well as rice and other carbohydrate-rich foodstuffs. From these locations it may
cause gastro-intestinal disease.
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2.3.2 Bacillus mycoides, Bacillus pseudomycoides,
B. weihenstephanensis, and “Bacillus cytotoxicus”

The three remaining species of the B. cereus group, Bacillus mycoides, Bacillus
pseudomycoides, and B. weihenstephanensis have been studied less extensively.
B. mycoides and B. pseudomycoides are characterized based on one morpholog-
ical property — rhizoidal growth on solid medium. Phylogenetically, B. mycoides
strains are widely distributed within the B. cereus group population, while B. pseu-
domycoides may appear to be limited to a remote cluster (Fig. 2.3). Only a very
low number of B. pseudomycoides strains have been identified, however, and there
is a need for more strains to be mapped by molecular phylogeny before firm con-
clusions about a possible clonal distribution pattern for this species can be reached.
Although both B. mycoides and B. pseudomycoides are generally regarded as non-
pathogenic, certain strains of B. mycoides have been linked to cases of food-borne
disease (MclIntyre et al., 2008).

B. weihenstephanensis is a psychrotolerant species in the B. cereus group and
carries specific 16S rRNA and cspA (major cold-shock protein) signatures (Thorsen
et al., 2006). Psychrotolerant B. cereus group members however do not necessarily
belong to B. weihenstephanensis, as psychrotolerant strains of B. cereus also exist
(Stenfors and Granum, 2001). B. weihenstephanensis may produce enterotoxins
even at refrigerator temperatures (Baron et al., 2007), and some B. weihenstepha-
nensis strains can produce emetic toxin (cereulide) (Thorsen et al., 2006), further
emphasizing the food-borne intoxication potential of this species.

The food poisoning strain B. cereus NVH391-98 was originally isolated from
cases of severe gastroenteritis linked to an outbreak in an elderly home in France,
in which three people were killed (Lund et al., 2000). Molecular typing identified
this strain as a remote member of the B. cereus group (Fagerlund et al., 2007), and
following the discovery of two novel B. cereus group strains forming a phylogenetic
cluster together with the NVH391-98 strain (Auger et al., 2008), the new species
name, B. cytotoxicus, was proposed (Lapidus et al., 2008). The species designation
however remains to be formally approved. These isolates are all thermotolerant, but
the degree of CytK and Nhe enterotoxin production, as well as cytotoxicity, was
variable between the strains in the cluster; while B. cereus NVH391-98 produced
high levels of the CytK cytotoxin, B. cereus 883/00 produced little or no CytK and
Nhe enterotoxin, and was not cytotoxic to Vero cells (Fagerlund et al., 2007).

2.4 Genome Sequencing of the Bacillus cereus Group

The first B. cereus group genome project, that of the B. anthracis Ames Porton
model strain, was initiated in 2000 at the Institute for Genomic Research (TIGR)
and published in 2003 (Read et al., 2003a). The bioterror events during the fall of
2001, involving the distribution of letters containing B. anthracis spores via the US
Postal System, have however spurred the sequencing of a multitude of B. cereus
group strains during the past decade. Following the sequencing of the bioterror
attack strain B. anthracis Ames Florida (Read et al., 2002) and the first B. cereus
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strain (ATCC 14579, type strain; Ivanova et al., 2003), 105 additional genomes have
been or are being sequenced (Entrez genome project: http://www.ncbi.nlm.nih.gov/
genomeprj; Genomes OnLine database: www.genomesonline.org), providing an
unprecedented reservoir for doing comparative genomics. The genome sequences
cover all six approved species within the group, in addition to the B. cereus
NVH391-98 strain from the remote “Bacillus cytotoxicus” cluster. In one of the
latest genome sequencing projects involving B. cereus group isolates, more than
50 strains have been sequenced to draft stage using next-generation sequenc-
ing technology. Strains were selected so as to provide the best possible cov-
erage of the group phylogeny (Timothy D. Read, personal communication), as
mapped by MLST (http://mlstoslo.uio.no). Among the 108 strains that have
been or are being sequenced (per 20 May 2010; http://www.ncbi.nlm.nih.gov/
genomeprj; www.genomesonline.org) (Kolstg et al., 2009), there are eight isolates
that were linked to cases of food-borne disease or were isolated from foodstuffs
(Table 2.1).

Table 2.1 Sequenced B. cereus group isolates linked to food-borne disease or isolated from con-
taminated food. Genome project and source information were obtained from the NCBI Entrez
Genome Project database (http://www.ncbi.nlm.nih.gov/genomeprj)

Isolate/strain Source Genome publication
B. cereus ATCC 10987 Spoiled cheese, Canada, 1930 Rasko et al. (2004)
B. cereus NVH 0597/99 Isolated from spice mix, believed to be ~ Not published

the cause of a food poisoning
outbreak in Norway, 1999

B. cereus m1293 Isolated from cream cheese Not published
B. cereus m1550 Isolated from uncooked chicken Not published
B. cereus MM3 Isolated from food Not published
B. cereus F4810/72 (AH187)  Emetic food poisoning outbreak, 1972 Not published

(emetic type strain)

B. cereus H3081.97 Emetic strain Not published
B. cereus NVH391/98 Outbreak of severe gastroenteritis, Lapidus et al. (2008)
(“B. cytotoxicus”) elderly home, France, 1998

2.4.1 The B. cereus Group from a Genomic Perspective

Prior to 2000, only sporadic genome sequence data had been produced from
B. cereus group organisms. The B. anthracis virulence plasmids, pXO1 and pXO2,
were sequenced in 1999 (Okinaka et al., 1999a, b), while more than 100 kb of
random genome sequence data was produced from B. cereus ATCC 10987 and
ATCC 14579 (type strain) in the late 1990s (@kstad et al., 1999a; b). Today, the
B. cereus group is one of the groups of closely related bacteria with the highest
number of sequenced genomes. The first genomes sequenced from the group, those
of B. anthracis Ames and B. cereus strains ATCC 14579 and ATCC 10987, were
all closed and serve as reference genomes for later projects. Although the current
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trend of sequencing genomes to high-quality draft format also applies to the current
B. cereus group projects, altogether 17 genomes have now been closed, showing
that chromosome sizes for B. cereus group members are in the range 5.2-5.4 Mb
(with the exception of B. cereus NVH391-98 which is 4.1 Mb), confirming previ-
ous pulsed-field gel electrophoresis-based estimations (Carlson et al., 1992; Carlson
and Kolstg, 1993; Carlson et al., 1996; Lovgren et al., 2002). Chromosomes have
a GC content of around 35.3-35.4%, and strains typically carry a large number of
rRNA operons (11 and 13 for B. anthracis Ames Porton and B. cereus ATCC 14579,
respectively). A comparison of B. anthracis Ames to 19 B. cereus and B. thuringien-
sis isolates by comparative genome hybridization (CGH) revealed that the 2-Mb
region surrounding the chromosomal replication terminus contained a significantly
higher proportion of strain-specific genes and was clearly of higher plasticity than
the rest of the chromosome (Read et al., 2003a), suggesting that gene mobility events
are probably more frequent in the terminus region. This is in line with studies in
other bacterial species, describing the region surrounding the replication terminus
as a high-plasticity region (Suyama and Bork, 2001).

Prior to the sequencing of the first representatives of the B. cereus group mem-
bers, many scientists in the field had viewed B. anthracis as more fundamentally
different from the other species in the group, based on several phenotypic character
differences such as p-lactamase sensitivity, lack of haemolytic activity, and sensi-
tivity to y-phage. Strikingly, however, comparison of B. cereus ATCC 14579 to the
draft sequence of B. anthracis Florida (A2012), and of B. anthracis Ames Porton to
the 19 B. cereus and B. thuringiensis strains by comparative genome hybridiza-
tion (CGH), revealed that only four regions of the chromosome were unique to
B. anthracis and that these regions corresponded to four prophages (Ivanova et al.,
2003; Read et al., 2003a). Thus, no candidates for unique chromosomal genes of
importance to B. anthracis virulence could be identified. Most of the toxicity specif-
ically linked to anthrax disease thus seems to be linked to the pXO1 and pXO2
plasmids, although mechanisms of cross-talk between the two plasmids and between
plasmids and chromosome seem to be of importance (Uchida et al., 1997; Mignot
et al., 2003; Chitlaru et al., 2006).

In addition to the four prophages, one other principle difference between
B. anthracis and the other B. cereus group members is the characteristic nonsense
mutation in the global pleiotropic transcriptional regulator of extracellular virulence
factors, PIcR, which renders the protein non-functional (Agaisse et al., 1999; Kolstg
et al., 2009). In most B. cereus and B. thuringiensis strains, PIcR is active and
important for expression of a range of chromosomally encoded virulence factors,
including phospholipases, proteases, haemolysins, and enterotoxin. PIcR is however
clearly not necessary for B. anthracis virulence (reviewed in Kolstg et al., 2009).

Given the fact that plasmid-borne factors are key elements for the toxicity of
B. thuringiensis towards insect larvae and for the virulence of B. anthracis towards
vertebrates, plasmid content and distribution has been a topic of considerable inter-
est to the scientific community studying B. cereus group organisms. In general,
B. cereus group strains are well known for having the potential for harbouring one
or more, often several, plasmids in the cell at the same time (reviewed in Kolstg
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et al., 2009). The discovery of pXO1 plasmid-like sequences in a large proportion
of 19 B. cereus and B. thuringiensis strains tested for pXO1 gene markers by CGH
(Read et al., 2003a) was at the time striking and indicated that plasmids with sim-
ilarity to pXO1 could potentially exist in species other than B. anthracis. This was
later confirmed by sequencing of B. cereus ATCC 10987 (Rasko et al., 2004) and by
Panucci and co-workers, who screened a large number of B. cereus group strains for
pXO1 gene markers by PCR (Pannucci et al., 2002a). Orthologs to the genes mak-
ing up the pXO1 PAI containing the anthrax toxin genes and their regulators, as well
as the gerX locus essential for germination within host macrophages, were however
generally not present in the non-B. anthracis strains. pXO2-like sequences seemed
to be occurring less frequently in B. cereus group species other than B. anthracis
(Pannucci et al., 2002b; Read et al., 2003a).

Many chromosomal features have been identified as being common among
B. cereus group isolates, unifying the various B. cereus group bacteria and empha-
sizing their relatedness; chromosomes are generally in the same size range for
sequenced isolates and are to a large extent syntenic, with common orthologous
genes being organized in a conserved order (Ivanova et al., 2003; Rasko et al., 2004).
Also, a core gene set has been identified, counting 3,000 £ 200 genes (Lapidus
et al., 2008) out of the in excess of 5,000 genes that make up a typical B. cereus
group chromosome (excluding B. cereus NVH391-98, which has an unusually small
genome; Lapidus et al., 2008). Furthermore, each strain characteristically has in the
order of 400800 strain-specific genes (Lapidus et al., 2008), which may potentially
be involved in niche adaptation processes, and which are contributing to a fairly
large B. cereus group pan-genome (20-25,000 genes estimated in Lapidus et al.,
2008). Another unifying feature for the B. cereus group bacteria is the presence of
several ubiquitous interspersed repeat elements in the size range 100-400 bp, many
of which seem to be unique to the group (Tourasse et al., 2006). These repeats,
named bcri-bcrl8, are non-protein coding, but some seem to be expressed at the
RNA level and are predicted to constitute non-autonomous mobile elements belong-
ing to the class ‘miniature inverted-repeat transposable elements’ (MITEs) (@kstad
et al., 2004; Tourasse et al., 2006; Klevan et al., 2007). Although no specific function
has yet been assigned to any of the bcr repeats, MITEs are known in other bacteria
to be involved in a variety of processes, including regulation of transcription and
mRNA degradation, DNA methylation, integration host factor (IHF) binding, and
creation of novel gene loci, to mention some (Delihas, 2008). Phylogenetic studies
of the B. cereus group had already prior to the genomics era shown that closely
related strains of B. cereus and B. anthracis exist, as do close strains of B. cereus
and B. thuringiensis, and that the two latter species are intermixed phylogenetically
based on chromosomal markers (Carlson et al., 1994b; Helgason et al., 2000c), lead-
ing to the suggestion that B. cereus and B. thuringiensis belong to the same species
in purely genetic terms (Helgason et al., 2000c). Also, the idea has been presented
that B. anthracis is in reality an over-sampled B. cereus (Rasko et al., 2005), which is
highly monomorphic and genetically constrained. For the moment, however, species
designations are kept, given the fundamental differences in pathogenicity profiles
between the different species in the group.
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2.4.2 Phages of the B. cereus Group

For several important pathogenic bacteria, including the ethiological agents of
cholera, diphtheria, and enterohaemorrhagic diarrhoeas, bacteriophages are impor-
tant vectors for the transfer of virulence factors. In general, phages constitute
important sources of gene flow in bacteria. B. cereus group bacteria can host a range
of phages; however, carriage of specific toxin genes has not yet been observed in
these elements; while B. anthracis ubiquitously carries the four unique prophages
(lambda0l-lambda04) in its chromosome, B. cereus ATCC 10987 carries three
chromosomal prophages, while the B. cereus type strain, ATCC 14579, has three
prophages integrated in its chromosome and in addition carries a linear extrachro-
mosomal phage-like element, pBClin15 (Carlson et al., 1992; Ivanova et al., 2003).
Similarly, B. thuringiensis 97-27 and B. cereus E33L (formerly known as zebra
killer, ZK) carry a variety of phages in their chromosome and plasmid(s) (Han et al.,
2006). The phages generally exhibit a host range which is limited to the species from
which they have been isolated. However, B. cereus strains that are very similar to
B. anthracis, such as B. cereus ATCC 4342, may be susceptible to B. anthracis
phages, such as Gamma and Cherry (reviewed in Rasko et al., 2005).

2.5 Genome Dynamics Related to Food-Borne Disease

B. cereus can cause food-borne disease by two mechanisms — either by intoxi-
cation, following the ingestion of foodstuffs containing pre-formed emetic toxin
(cereulide) produced by an emetic strain contaminating a food matrix environment,
or by gastro-intestinal infection of vegetative B. cereus strains thought to form one
or more enterotoxins in the intestine, following the ingestion of spores or viable
cells with food or milk products (reviewed in Stenfors Arnesen et al., 2008).

2.5.1 Enterotoxins

The identity of the proteins conferring the enterotoxic activity inherent to B. cereus
is still controversial. The three cytotoxins haemolysin BL (Hbl, three-component
toxin), non-haemolytic enterotoxin (Nhe, three-component toxin), and cytotoxin K
(CytK, single-component toxin of the f-barrel pore-forming toxin family) are how-
ever generally considered to be the causes of the B. cereus diarrhoeal syndrome
(Beecher and Macmillan, 1991; Lund and Granum, 1996; Lund et al., 2000) and are
specified by genes carried on the chromosome. In addition to the well-established
Hbl, Nhe, and CytK cytotoxins, several additional candidate proteins have been sug-
gested as potential contributors to the enterotoxic activity of B. cereus, including
haemolysin II and haemolysin III (Baida and Kuzmin, 1995; Baida et al., 1999),
EntFM (Shinagawa et al., 1991; Asano et al., 1997; Tran et al., 2010), phospholi-
pases C (Kuppe et al., 1989), cereolysin O (Kreft et al., 1983), and InhA?2 (Fedhila
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et al., 2003). Again, these proteins are chromosomally encoded, and the synthe-
sis of several of them is, like Hbl, Nhe, and CytK, subject to regulation by PIcR
(Gohar et al., 2008). Most likely, the toxins can act synergistically to cause B. cereus
food-borne disease (Stenfors Arnesen et al., 2008).

Nhe, originally characterized following a large food poisoning outbreak in
Norway in 1995 (Lund and Granum, 1996), is the most commonly found entero-
toxin gene complex and is probably ubiquitous in B. cereus group bacteria (reviewed
in Stenfors Arnesen et al., 2008). The complex, encoded by the nheA, nheB, and
nheC genes (Granum et al., 1999), is, with one recently discovered exception,
encoded chromosomally. In B. weihenstephanensis KBAB4, however, a second
copy of the nhe locus is hosted on a 400 kb plasmid, pBWB401 (Lapidus et al.,
2008). The identity of the nhe locus between strains is, with the exception of the
NVH391-98 strain which is phylogenetically remote, generally around 90%, but is
approaching 100% within clonal clusters such as the B. anthracis cluster and the
emetic clusters. The plasmid-borne nhe locus in B. weihenstephanensis KBAB4 is
however only around 58% identical to the chromosomal nhe copies. Whether this
locus gives rise to a functional enterotoxin is at present unknown. The maximal
cytotoxic activity of Nhe towards Vero cells was obtained when the ratio between
the Nhe components was 10:10:1 (NheA, NheB, NheC; Lindback et al., 2004), and
the enterotoxic activity of Nhe has recently been explained (Fagerlund et al., 2008);
exposure of plasma membrane to Nhe leads to rapid membrane lysis, and Nhe has
been shown to form pores in lipid bilayers, leading to colloidosmotic lysis. Indeed,
Nhe has more recently been shown, in spite of its name, to exhibit haemolytic
activity towards erythrocytes from several mammalian species (Fagerlund et al.,
2008).

The Hbl complex constitutes another pore-forming enterotoxin in the B. cereus
group and exhibits haemolytic activity towards erythrocytes from several animal
species. It is encoded by the hbIC, hbID, and hbIA genes, encoding components 1.2,
L1, and B, respectively. In addition to the three structural genes, the most common
variant of the hbl locus carries a fourth gene, hbIB, downstream of hbICDA. hblB,
which has probably originated by duplication of a large part of hbIA and fusion to
an ORF in the 3’ end (@kstad et al., 1999b), is however most probably a pseudo-
gene, since it has not been shown to be transcribed to a detectable level and the
hbICDA transcript seems to terminate within 2#bIB (Lindback et al., 1999). Other
variants of the ibl locus do however exist: in B. cereus 03BB108 and B. weihen-
stephanensis KBAB4 an hbl locus exists which consists of the 7bICDA genes only.
Like B. cereus MGBC145 (Beecher and Wong, 2000), the 03BB 108 strain also car-
ries a second &bl locus, which in the latter strain is of the #bICDA type. The hbl
locus is less frequently present in B. cereus group strains compared to nhe and was
identified in approximately 60% of strains in a PCR screening procedure (Pruss
etal., 1999).

The hbICDAB operon is located on the chromosome, in a conserved location
between strains, and is part of a 17.7 kb genome insertion bordered on one side
of a degenerate ISRso/] transposase fragment which has been suggested to have
been acquired as a mobile element (Han et al., 2006). The insertion also contains
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genes encoding germination proteins and a transcriptional regulator (frrA) and
putative histidine kinase that could have the potential for forming a two-component
system (@kstad et al., 1999b). In contrast, the hbICDA operon seems to exhibit
a less conserved genomic localization between strains; in B. weihenstephanensis
KBAB4 the locus is chromosomally encoded and is flanked by genes encoding a
putative B-lactamase and an S-layer domain protein, respectively. In the B. cereus
03BB108 draft genome sequence (GenBank entry: ABDMO00000000), however,
the corresponding hbICDA genes are flanked by sequences with similarity to the
B. anthracis pXO1 plasmid, possibly indicating that the 03BB108 hbICDA genes
are plasmid-borne (reviewed in Stenfors Arnesen et al., 2008).

The Hbl and Nhe proteins are related in sequence and have probably arisen
by several gene duplication events from a common ancestor locus. The crystal
structure of HbIB has been solved and shows high structural similarity to ClyA
(also known as HIyE or SheA), a pore-forming cytolysin from Escherichia coli,
Salmonella enterica serovars Typhi and Paratyphi, and Shigella flexneri (Oscarsson
et al., 1996; Wallace et al., 2000; Oscarsson et al., 2002). The HbIB structure
consists of five a-helix bundles wrapped around each other in a left-handed super-
coil and a hydrophobic B-hairpin flanked by two short a-helices (PDB entry 2nrj;
Fagerlund et al., 2008). Interestingly, NheB and NheC exhibit sufficient sequence
similarity to HbIB to allow modelling of their structures based on the HbIB crys-
tal structure, and although the toxin components exhibit a very limited primary
sequence identity, their conserved structure suggests that the Hbl/Nhe family and
the ClyA family constitute a new superfamily of toxins (Fagerlund et al., 2008).

Although much knowledge regarding the structure, function, and genetic organi-
zation of the Nhe and Hbl enterotoxins has accumulated over the past two decades,
still much remains to be discovered. Any potential effect of the heterogeneity in
genome organization and duplication of the nhe and hbl loci in different B. cereus
group strains remains to be solved. Furthermore, no host cell receptor has yet been
identified neither for Hbl nor for Nhe; while all three Hbl components can bind to
the surface of erythrocytes (Beecher and Wong, 1997), out of the three Nhe compo-
nents only NheB and NheC has been shown to exhibit surface binding to Vero cells
(Lindback et al., 2004; Lindbéck et al., 2010). Even though both Nhe and Hbl appear
to constitute tri-partite pore-forming toxins, details of the molecular interaction of
the various protein components of each complex are yet to be resolved, as is the
degree to which oligomerization occurs during formation of the transmembrane pore
in the plasma membrane of target cells (reviewed in Stenfors Arnesen et al., 2008).

CytK is a 34 kDa single-component protein toxin of the B-barrel pore-forming
toxin family. It was first identified following a gastroenteritis outbreak in a French
nursing home in 1998, in which B. cereus NVH391-98 (“B. cytotoxicus) was, as
already mentioned, identified as the agent causing the disease. In the course of the
outbreak, several patients presented with bloody diarrhoea, and three elderly peo-
ple died (Lund et al., 2000). CytK was originally identified as the prime virulence
factor, given its necrotic, haemolytic, and enterotoxic effects, and since no Hbl or
Nhe was apparently present in the NVH391-98 strain (Lund et al., 2000). Later,
however, the nhe genes have been identified in the B. cereus NVH391-98 strain,
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although with a lower sequence identity to Nhe from other B. cereus group strains
(Fagerlund et al., 2007). CytK was originally described to be divided into two gene
families in different B. cereus group isolates, CytK-1 and CytK-2, where CytK-1
corresponded to the variant identified in B. cereus NVH391-98, which was thought
to represent a particularly toxic variant of the protein. Later the sequence divergence
of the CytK protein (CytK-1) from this strain has, as is the case for Nhe, instead been
shown to reflect the general phylogenetic divergence of this strain from the rest of
the B. cereus group. The potent cytotoxicity of the B. cereus NVH391-98 strain is
probably rather due to an exceptionally high CytK expression level in this isolate
(Brillard and Lereclus, 2004).

It is important to note that the genes coding for the enterotoxin components
and degradative enzymes are often found in strains of several species within
the B. cereus group, B. thuringiensis and B. anthracis included, suggesting that
B. cereus group organisms in general may have the potential to be pathogenic
(Read et al., 2003b; Han et al., 2006; Hendriksen et al., 2006; MclIntyre et al.,
2008; Stenfors Arnesen et al., 2008). Using the term “non-pathogenic strain” for
environmental isolates of B. cereus that have not been linked to disease therefore
does not seem appropriate, as it is impossible to know whether these isolates could
cause infection in man, given the right dose and setting. B. anthracis is however
different from the other species in the group, in carrying a nonsense mutation in
PIcR which makes the protein non-functional (Agaisse et al., 1999). Therefore,
B. anthracis encodes a very limited extracellular proteome compared to the other
B. cereus group species (Gohar et al., 2005), and the chromosomal virulence factors
belonging to the PIcR regulon (Gohar et al., 2008) are not synthesized, enterotox-
ins included. B. anthracis virulence was not increased in a mouse infection model
(intranasal) by transfer of a functional plcR gene back into host cells, indicat-
ing that the pathogenicity of B. anthracis is not dependent on the chromosomal
virulence factors expressed as part of the PIcR regulon in other B. cereus group
bacteria.

2.5.2 Emetic toxin

The emetic toxin, cereulide, is a small (1.2. kDa) non-ribosomally synthesized
dodecadepsipeptide, produced by a non-ribosomal peptide synthetase system (ces)
found in emetic B. cereus strains (Ehling-Schulz et al., 2005a). The toxin is heat-
stable, acid and protease resistant and can be pre-formed in foodstuffs contaminated
with an emetic strain of B. cereus, leading to emesis within 0.5-6 h post inges-
tion (reviewed in Stenfors Arnesen et al., 2008), and occasionally more severe
intoxications such as liver failure and death (Mahler et al., 1997; Dierick et al.,
2005). Expression of the toxin is known to be induced towards the end of log-
arithmic growth, reaching a maximum during the early stationary growth phase
(reviewed in Stenfors Arnesen et al., 2008). Although the mechanisms regulating
emetic toxin production are not well characterized, its expression is affected by
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factors like oxygen, pH, and temperature and is regulated by the transitional state
regulator AbrB, but not by PIcR (Lucking et al., 2009). Among the sequenced strains
from the B. cereus group are two emetic isolates, including the reference emetic
strain B. cereus F4810/72, isolated in 1972 from human vomit following an emetic
food poisoning outbreak.

The peptide synthetase responsible for cereulide synthesis is encoded by a 24 kb
gene cluster (ces) on a 208 kb plasmid, pCER270, with similarity to B. anthracis
pXO1 and other pXOl-like plasmids (Hoton et al., 2005; Ehling-Schulz et al.,
2006; Rasko et al., 2007). The cluster is comprised of seven genes, including
typical non-ribosomal peptide synthetase (NRPS) genes such as a phosphopanteth-
einyl transferase and genes encoding modules for the activation and incorporation
of monomers in the growing peptide chain. Also, a potential hydrolase and an
ABC transporter are encoded by the ces cluster. Interestingly, the pPER270 plas-
mid is similar to pBC10987 from B. cereus ATCC 10987, isolated from spoiled
cheese in Canada in 1930 (Herron, 1930; Rasko et al., 2004), and pPER272, a
plasmid hosted by B. cereus strains AH820 and AH818 isolated from the peri-
odontal pocket and root canal, respectively, in patients with periodontal disease
(Helgason et al., 2000a; Rasko et al., 2007). The pXO1 pathogenicity island encod-
ing the anthrax toxin genes and associated regulators is however missing both
in pCER270 and in pPER272 and is replaced by a 77 kb insertion in pCER270
which is bordered by transposase and resolvase genes that could potentially have
been involved in the insertion of the region (Helgason et al., 2000a; Rasko et al.,
2007).

Cereulide production has been mapped to two phylogenetically separated clonal
clusters within the B. cereus group population, mostly consisting of B. cereus
isolates (Ehling-Schulz et al., 2005b; Vassileva et al., 2007). However, specific
B. weihenstephanensis strains have also been found that are capable of forming
emetic toxin, even at temperatures as low as 8°C (Thorsen et al., 2006). Given
that the genetic determinants of emetic toxin production are plasmid-borne, this
implies that acquisition of a plasmid encoding emetic toxin production has proba-
bly occurred more than once during evolution and that pCER270 may be subject to
lateral transfer between strains.

2.6 Potential for Causing Food-Borne Disease — A General
Feature of the B. cereus Group?

B. thuringiensis is an insect pathogen; however, isolates may also have the potential
to act as opportunistic pathogens in humans and animals, possibly causing tissue
necrosis, pulmonary infections, or food poisoning (Hernandez et al., 1999; Ghelardi
etal., 2007; Mclntyre et al., 2008). In line with this, the sequencing of B. thuringien-
sis strains Al-Hakam, 97-27 (var. konkukian) and ATCC 35646 (var. israelensis),
has shown that B. thuringiensis strains can carry the same chromosomal virulence
factors that are typical to B. cereus (i.e. enterotoxins, haemolysins, phospholipases,
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proteases (Han et al., 2006), as can other species in the B. cereus group. With what
frequency human infections by B. thuringiensis actually occur is however at present
unknown, since B. cereus group strains isolated from human infections (food poi-
soning included) are most often not tested for the presence of crystal toxin genes or
for the production of such toxins. Also, it is plausible that B. thuringiensis, during an
infection in man, may lose the plasmid encoding its entomopathogenic properties, as
these plasmids are often less stably maintained at 37°C than at lower growth temper-
atures. This would make the isolate practically indistinguishable from B. cereus. In
fact, the ability to cause the B. cereus diarrhoeal syndrome may be an inherent fea-
ture of all B. cereus group species carrying a functional PIcR regulator gene. Indeed,
B. thuringiensis was identified in food or clinical samples from four outbreaks, and
B. mycoides was identified in one outbreak, sampled in British Columbia, Canada,
in the period 1991-2005 (Mclntyre et al., 2008). Seemingly, contrary to the emetic
isolates which group into two clusters phylogenetically, isolates causing the diar-
rhoeal syndrome are located throughout the B. cereus group phylogeny and may
frequently share identical molecular typing data (based on chromosomal markers)
with environmental strains isolated from soil or plants (Fig. 2.3; Tourasse et al., in
press; http://mlstoslo.uio.no). Held together with the fact that genes encoding the
non-haemolytic enterotoxin complex (Nhe) are found ubiquitously among B. cereus
group organisms and that B. cereus group species other than B. cereus sensu stricto
have been characterized as the cause of gastroenteritis (Mclntyre et al., 2008), this
emphasizes the opportunistic nature of B. cereus group bacteria and the potential
for other B. cereus group species to cause food-borne disease. Also, notably, it
is not merely the presence or the absence of toxin and other virulence genes that
determines toxicity. Gene expression levels can clearly be highly variable between
isolates, exemplified by B. cereus NVH391-98, which as mentioned is highly toxic,
and has been shown to synthesize higher levels of the cytK mRNA compared to
other B. cereus group strains (Brillard and Lereclus, 2004).

2.7 Future Perspectives — Importance of Plasmids
to the Biology of B. cereus Group Bacteria

Plasmids are key elements in the encoding of several of the phenotypes charac-
teristic of each species in the B. cereus group, including B. thuringiensis ento-
mopathogenicity and B. anthracis virulence. With the discovery of B. cereus strains
which are able to cause severe disease symptoms resembling those of anthrax and
encode the anthrax toxins from variants of the pXO1 plasmid as well as producing
a capsule, the principle differences separating these species are getting increasingly
blurry. Such strains include B. cereus G9241, which was isolated from the sputum
and blood of a patient with life-threatening pneumonia, and carries a 191 kb plas-
mid (pBCXO01) with 99.6% identity to pXO1 in regions shared between the two
plasmids, as well as a second 218 kb plasmid, pBC218, which has a gene cluster
encoding a polysaccharide capsule (Hoffmaster et al., 2004). Perhaps even more
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striking, during recent years B. cereus strains causing anthrax-like disease in great
apes have been isolated in Cote d’Ivoire and Cameroon (Leendertz et al., 2004;
Klee et al., 2006; Leendertz et al., 2006). These strains (B. cereus CI and CA,
respectively) carry the B. anthracis toxin and capsule genes on plasmids of sizes
corresponding to pXO1 and pXO2 and have a frameshift mutation in the plcR gene,
however in a different position than the nonsense mutation universally found in
B. anthracis strains (Klee et al., 2006). The mutation would produce a PIcR protein
with a modified C-terminus, a part of the protein known to be involved in the spe-
cific interaction with PapR, its cognate peptide pheromone, which is necessary for
activation of the PIcR regulon (Slamti and Lereclus, 2002, 2005; Bouillaut et al.,
2008). It is therefore conceivable that as is the case in B. anthracis, expression of
the PIcR regulon could be abolished in the CI and CA strains (Klee et al., 20006),
and functional experiments performed in the CI strain point in this direction (Klee
et al., 2010). Further studies to investigate whether other B. cereus strains capable of
synthesizing anthrax toxins and capsule exist and may occur more frequently than
previously known would seem justified.

By comparative analysis to B. cereus strains, it is known that very few genes are
specific to B. anthracis (Read et al., 2003a). Taken together, it is thus apparent that
what principally separates B. anthracis from B. cereus is the following: (1) being
located to the B. anthracis cluster phylogenetically, (2) the presence of the four
unique prophages (lambda0l-lambda04) in the B. anthracis chromosome, and (3)
the unique nonsense mutation in plcR, which is found only in B. anthracis (reviewed
in Kolstg et al., 2009). B. cereus strains may harbour a range of plasmids of various
sizes and families, many of which are poorly characterized, as well as the pXO1-
and pXO2-like plasmids carrying anthrax toxin and capsule synthesis genes men-
tioned above, which was previously thought to be a specific and unique feature to
B. anthracis. There is to date, a lack of knowledge of what features B. cereus and
B. thuringiensis plasmids encode, such as novel putative virulence genes or genes
potentially involved in the adaptation to specific niches. B. cereus plasmids can be
mobile, or capable of mobilizing other plasmids in the group, e.g. pXO14 which
is efficient in mobilizing pXO1 and pXO2 (Reddy et al., 1987). It is however not
known to what extent horizontal transfer of pXO1 and pXO2 plasmids may occur
in the B. cereus population. Given the fact that newly emerging pathogens (CI/CA
strains) seem to arise from transfer of such plasmids, that B. cereus strains encod-
ing alternative capsules (G9241) and possibly other virulence traits from plasmid
elements exist, and that knowledge of plasmid diversity in the group is rather lim-
iting, a systematic sequencing approach targeting B. cereus group plasmids seems
warranted. Finally, it should be kept in mind that a considerable fraction of the
annotated genes in B. cereus group genomes are still categorized as hypothetical or
conserved hypothetical genes of unknown function and that these genes are repre-
sented both on the chromosome and on the plasmids. What contributions proteins
encoded by these genes make to B. cereus group biology is still enigmatic.
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