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2.1  �Data Structures

2.1.1  �Introduction to Data Structures

There are usually two major data structures in any information system. One struc-
ture stores and manages the received items in their normalized form and is the ver-
sion that is displayed to the user. The process supporting this structure is called the 
“document manager.” The other major data structure contains the processing tokens 
and associated data (e.g., index) to support search. Figure 2.1 shows the document 
file creation process which is a combination of the ingest and indexing processes. 
The results of a search are references to the items that satisfy the search statement, 
which are passed to the document manager for retrieval. This chapter focuses on 
data structures used to support the search function. It does not address the document 
management function nor the data structures and other related theory associated 
with the parsing of queries.

The Ingest and Indexing processes are described in Chaps. 3 and 4, but some of 
the lower level data structures to support the indices are described in this chapter. 
The most common data structure encountered in both data base and information 
systems is the inverted file system (discussed in Sect. 2.1.2). It minimizes second-
ary storage access when multiple search terms are applied across the total database. 
All commercial and most academic systems use inversion as the searchable data 
structure. A variant of the searchable data structure is the N-gram structure that 
breaks processing tokens into smaller string units (which is why it is sometimes 
discussed under stemming) and uses the token fragments for search. N-grams have 
demonstrated improved efficiencies and conceptual manipulations over full word 
inversion. PAT trees and arrays view the text of an item as a single long stream ver-
sus a juxtaposition of words. Around this paradigm search algorithms are defined 
based upon text strings. Signature files are based upon the idea of fast elimination 
of non-relevant items reducing the searchable items to a manageable subset. The 
subset can be returned to the user for review or other search algorithms may be ap-
plied to it to eliminate any false hits that passed the signature filter.
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The XML data structure is the most common structure used in sharing informa-
tion between systems and frequently how it is stored within a system. It is how 
items are received by the Ingest process and it is typically used if items are ex-
ported to other applications and systems. Given the commonality of XML there has 
been TREC conference experiments on how to optimize search systems whose data 
structure is XML.

The hypertext data structure is the basis behind URL references on the internet. 
But more importantly is the logical expansion of the definition of an item when hy-
pertext references are used and its potential impact on searches. The latest Internet 
search systems have started to make use of hypertext links to expand what infor-
mation is indexed associated with items. Most commonly it is used when indexing 
multimedia objects but there is a natural extension to textual items.

There are some mathematical notions that are frequently used in information 
retrieval systems. Bayesian mathematics has a variety of uses in information re-

Fig. 2.1   Major data 
structures
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trieval. Another important concept comes from Communications systems and In-
formation Theory based upon the work of Claude Shannon and is the basis behind 
most of the commonly used weighting algorithms. Hidden Markov models are used 
in both searching and also are a technical base behind multimedia information item 
processing. Latent Semantic Indexing is one of the few techniques that has been 
used commercially to create concept indices. Neural networks and Support Vector 
Machines are the most common learning algorithms used to automatically construct 
search structures from user examples used for example in Categorization.

2.1.2  �Inverted File Structure

The most common data structure used in both database management and Infor-
mation Retrieval Systems is the inverted file structure. Inverted file structures are 
composed of three basic files: the document file, the inversion lists (sometimes 
called posting files) and the dictionary. The name “inverted file” comes from its 
underlying methodology of storing an inversion of the documents: inversion of the 
documents from the perspective that instead of having a set of documents with 
words in them, you create a set of words that has the list of documents they are 
found in. Each document in the system is given a unique numerical identifier. It is 
that identifier that is stored in the inversion list. The way to locate the inversion list 
for a particular word is via the Dictionary. The Dictionary is typically a sorted list of 
all unique words (processing tokens) in the system and a pointer to the location of 
its inversion list (see Fig. 2.2). Dictionaries can also store other information used in 
query optimization such as the length of inversion lists. Additional information may 
be used from the item to increase precision and provide a more optimum inversion 
list file structure. For example, if zoning is used, the dictionary may be partitioned 
by zone. There could be a dictionary and set of inversion lists for the “Abstract” 
zone in an item and another dictionary and set of inversion lists for the “Main Body” 
zone. This increases the overhead when a user wants to search the complete item 
versus restricting the search to a specific zone. Another typical optimization occurs 
when the inversion list only contains one or two entries. Those entries can be stored 
as part of the dictionary. The inversion list contains the document identifier for 
each document in which the word is found. To support proximity, contiguous word 
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Fig. 2.2   Inverted file 
structure

DOCUMENTS DICTIONARY INVERSION LISTS
bit (2) bit - 1, 3DOC #1, computer,

bit, byte
DOC #2, memory,
byte
DOC #3, computer,
bit, memory
DOC #4, byte,
computer

byte (3) byte - 1, 2, 4

computer (3) computer - 1, 3, 4

memory (2) memory - 2, 3
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phrases and term weighting algorithms, all occurrences of a word are stored in the 
inversion list along with the word position. Thus if the word “bit” was the tenth, 
twelfth and eighteenth word in document #1, then the inversion list would appear:

bit—1(10), 1(12), 1(18)

Weights can also be stored in inversion lists. Words with special characteristics are 
frequently stored in their own dictionaries to allow for optimum internal representa-
tion and manipulation (e.g., dates which require date ranging and numbers).

When a search is performed, the inversion lists for the terms in the query are 
located and the appropriate logic is applied between inversion lists. The result is 
a final hit list of items that satisfy the query. For systems that support ranking, the 
list is reorganized into ranked order. The document numbers are used to retrieve the 
documents from the Document File. Using the inversion lists in Fig. 2.2, the query 
(bit AND computer) would use the Dictionary to find the inversion lists for “bit” 
and “computer.” These two lists would be logically ANDed: (1,3) AND (1,3,4) re-
sulting in the final Hit list containing (1,3).

Rather than using a dictionary to point to the inversion list, B-trees can be used. 
The inversion lists may be at the leaf level or referenced in higher level pointers. 
Fig. 2.3 shows how the words in Fig. 2.1 would appear. A B-tree of order m is de-
fined as:

•	 A root node with between 2 and 2m keys
•	 All other internal nodes have between m and 2m keys
•	 All keys are kept in order from smaller to larger
•	 All leaves are at the same level or differ by at most one level.

Cutting and Pedersen described use of B-trees as an efficient inverted file storage 
mechanism for data that undergoes heavy updates (Cutting-90).

The nature of information systems is that items are seldom if ever modified once 
they are produced. Most commercial systems take advantage of this fact by allow-
ing document files and their associated inversion lists to grow to a certain maximum 
size and then to freeze them, starting a new structure. Each of these databases of 
document file, dictionary, inversion lists is archived and made available for a user’s 
query. This has the advantage that for queries only interested in more recent infor-
mation; only the latest databases need to be searched. Since older items are seldom 

Fig. 2.3   B-tree inversion lists

b           m

computer - 1, 3, 4 memory - 2, 3byte - 1, 2, 4bit - 1, 3

m       to        zc         to       la        to        b
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deleted or modified, the archived databases may be permanently backed-up, thus 
saving on operations overhead. Starting a new inverted database has significant 
overhead in adding new words and inversion lists until the frequently found words 
are added to the dictionary and inversion lists. Previous knowledge of archived 
databases can be used to establish an existing dictionary and inversion structure at 
the start of a new database, thus saving significant overhead during the initial add-
ing of new documents. Other more scalable inversion list techniques are discussed 
in Chap. 8.

Inversion lists structures are used because they provide optimum performance 
in searching large databases. The optimality comes from the minimization of data 
flow in resolving a query. Only data directly related to the query are retrieved from 
secondary storage. Also there are many techniques that can be used to optimize the 
resolution of the query based upon information maintained in the dictionary.

Inversion list file structures are well suited to store concepts and their relation-
ships. Each inversion list can be thought of as representing a particular concept. 
Words are typically used to define an inversion list but in Chap. 3 when categoriza-
tion and entities are discussed, the inversion lists can easily be extended to include 
those as additional index for an item. The individual word may not be representative 
of a concept but by use of a proximity search the user can combine words all within 
a proximity (e.g., in the same sentence) and thus get closer to a concept. The inver-
sion list is then a concordance of all of the items that contain that concept. Finer 
resolution of concepts can additionally be maintained by storing locations with an 
item and weights of the item in the inversion lists. With this information, relation-
ships between concepts can be determined as part of search algorithms. Location 
of concepts is made easy by their listing in the dictionary and inversion lists. For 
Natural Language Processing algorithms, other structures may be more appropriate 
or required in addition to inversion lists for maintaining the required semantic and 
syntactic information.

2.1.3  �N-Gram Data Structures

N-Grams can be viewed as a special technique for conflation (stemming) and as a 
unique data structure in information systems. N-Grams are a fixed length consecu-
tive series of “n” characters. Unlike stemming that generally tries to determine the 
stem of a word that represents the semantic meaning of the word, n-grams do not 
care about semantics. Instead they are algorithmically based upon a fixed number of 
characters. The searchable data structure is transformed into overlapping n-grams, 
which are then used to create the searchable database. Examples of bigrams, tri-
grams and pentagrams are given in Fig. 2.4 for the word phrase “sea colony.”

For n-grams, with n greater than two, some systems allow interword symbols to 
be part of the n-gram set usually excluding the single character with interword sym-
bol option. The symbol # is used to represent the interword symbol which is anyone 
of a set of symbols (e.g., blank, period, semicolon, colon, etc.). Each of the n-grams 
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created becomes separate processing tokens and are searchable. It is possible that 
the same n-gram can be created multiple times from a single word.

2.1.3.1  �History

The first use of n-grams dates to World War II when it was used by cryptographers. 
Fletcher Pratt states that “with the backing of bigram and trigram tables any cryp-
tographer can dismember a simple substitution cipher” (Pratt-42). Use of bigrams 
was described by Adamson as a method for conflating terms (Adamson-74). It does 
not follow the normal definition of stemming because what is produced by creating 
n-grams are word fragments versus semantically meaningful word stems. It is this 
characteristic of mapping longer words into shorter n-gram fragments that seems 
more appropriately classified as a data structure process than a stemming process.

Another major use of n-grams (in particular trigrams) is in spelling error detec-
tion and correction (Angell-83, McIllroy-82, Morris-75, Peterson-80, Thorelli-62, 
Wang-77, and Zamora-81). Most approaches look at the statistics on probability of 
occurrence of n-grams (trigrams in most approaches) in the English vocabulary and 
indicate any word that contains non-existent to seldom used n-grams as a potential 
erroneous word. Damerau specified four categories of spelling errors (Damerau-64) 
as shown in Fig. 2.5.

Using the classification scheme, Zamora showed trigram analysis provided a 
viable data structure for identifying misspellings and transposed characters. This 
impacts information systems as a possible basis for identifying potential input er-
rors for correction as a procedure within the normalization process (see Chap. 1). 
Frequency of occurrence of n-gram patterns also can be used for identifying the 
language of an item (Damashek-95, Cohen-95).

Fig. 2.4   Bigrams, trigrams 
and pentagrams for “sea 
colony”

se  ea  co  ol  lo  on  ny Bigrams
(no interword symbols)

sea  col  olo  lon  ony Trigrams
(no interword symbols)

#se  sea  ea#  #co  col  olo  lon  ony  ny# Trigrams
(with interword symbol #)

#sea#  #colo  colon  olony  lony# Pentagrams
(with interword symbol #)

Fig. 2.5   Categories of 
spelling errors

Error Category Example

Single Character Insertion compuuter

Single Character Deletion compter

Single Character Substitution compiter

Transposition of two adjacent characters computer
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In information retrieval, trigrams have been used for text compression and to 
manipulate the length of index terms (Schek-78, Schuegraf-76). Some implemen-
tations used a variety of different n-grams as index elements for inverted file sys-
tems. They have also been the core data structure to encode profiles for the Logicon 
LMDS system (Yochum-95) used for Selective Dissemination of Information. For 
retrospective search, the Acquaintance System uses n-grams to store the searchable 
document file (Damashek-95, Huffman-95) for retrospective search of large textual 
databases.

2.1.3.2  �N-Gram Data Structure

As shown in Fig. 2.4, an n-gram is a data structure that ignores words and treats 
the input as a continuous data, optionally limiting its processing by interword 
symbols. The data structure consists of fixed length overlapping symbol segments 
that define the searchable processing tokens. These tokens have logical linkages 
to all the items in which the tokens are found. Inversion lists, document vectors 
(described in Chap. 4) and other proprietary data structures are used to store the 
linkage data structure and are used in the search process. In some cases just the 
least frequently occurring n-gram is kept as part of a first pass search process 
(Yochum-85).

The choice of the fixed length word fragment size has been studied in many 
contexts. Yochum investigated the impacts of different values for “n.” Other re-
searchers investigated n-gram data structures using an inverted file system for n = 2 
to n = 26. Trigrams (n-grams of length 3) were determined to be the optimal length, 
trading off information versus size of data structure. The Acquaintance System uses 
longer n-grams, ignoring word boundaries. The advantage of n-grams is that they 
place a finite limit on the number of searchable tokens.

The maximum number of unique n-grams that can be generated, MaxSeg, can be 
calculated as a function of n which is the length of the n-grams, and  which is the 
number of processable symbols from the alphabet (i.e., non-interword symbols).

Although there is a savings in the number of unique processing tokens and imple-
mentation techniques allow for fast processing on minimally sized machines, false 
hits can occur under some architectures. For example, a system that uses trigrams 
and does not include interword symbols or the character position of the n-gram in 
an item finds an item containing “retain detail” when searching for “retail” (i.e., 
all of the trigrams associated with “retail” are created in the processing of “retain 
detail”). Inclusion of interword symbols would not have helped in this example. 
Inclusion of character position of the n-gram would have discovered that the n-
grams “ret,” “eta,” “tai,” “ail” that define “retail” are not all consecutively starting 
within one character of each other. The longer the n-gram, the less likely this type 
error is to occur because of more information in the word fragment. But the longer 
the n-gram, the more it provides the same result as full word data structures since 

MaxSegn = (λ)n
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most words are included within a single n-gram. Another disadvantage of n-grams 
is the increased size of inversion lists (or other data structures) that store the linkage 
data structure. In effect, use of n-grams expands the number of processing tokens 
by a significant factor. The average word in the English language is between six 
and seven characters in length. Use of trigrams increases the number of processing 
tokens by a factor of five if interword symbols are not included. Thus the inversion 
lists increase by a factor of five.

Because of the processing token bounds of n-gram data structures, optimized 
performance techniques can be applied in mapping items to an n-gram searchable 
structure and in query processing. There is no semantic meaning in a particular n-
gram since it is a fragment of processing token and may not represent a concept. 
Thus n-grams are a poor representation of concepts and their relationships. But the 
juxtaposition of n-grams can be used to equate to standard word indexing, achiev-
ing the same levels of recall and within 85% precision levels with a significant im-
provement in performance (Adams-92). Vector representations of the n-grams from 
an item can be used to calculate the similarity between items. N-grams can be very 
useful when the items in the database are not typical textual items. For example a 
database of software programs would be far more searchable using n-grams as the 
tokenization data structure.

2.1.4  �PAT Data Structure

Using n-grams with interword symbols included between valid processing tokens 
equates to a continuous text input data structure that is being indexed in contigu-
ous “n” character tokens. A different view of addressing a continuous text input 
data structure comes from PAT trees and PAT arrays. The input stream is trans-
formed into a searchable data structure consisting of substrings. The original con-
cepts of PAT tree data structures were described as Patricia trees (Frakes-92) and 
have gained new momentum as a possible structure for searching text and images  
and applications in genetic databases. The name PAT is short for PATRICIA Trees  
(PATRICIA stands for Practical Algorithm To Retrieve Information Coded In 
Alphanumerics.)

In creation of PAT trees each position in the input string is the anchor point for 
a sub-string that starts at that point and includes all new text up to the end of the 
input. All substrings are unique. This view of text lends itself to many different 
search processing structures. It fits within the general architectures of hardware text 
search machines and parallel processors. A substring can start at any point in the 
text and can be uniquely indexed by its starting location and length. If all strings are 
to the end of the input, only the starting location is needed since the length is the 
difference from the location and the total length of the item. It is possible to have a 
substring go beyond the length of the input stream by adding additional null char-
acters. These substrings are called sistring (semi-infinite string). Figure 2.6 shows 
some possible sistrings for an input text.

2 Data Structures and Mathematical Algorithms
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A PAT tree is an unbalanced, binary digital tree defined by the sistrings. The 
individual bits of the sistrings decide the branching patterns with zeros branching 
left and ones branching right. PAT trees also allow each node in the tree to specify 
which bit is used to determine the branching via bit position or the number of bits to 
skip from the parent node. This is useful in skipping over levels that do not require 
branching.

The key values are stored at the leaf nodes (bottom nodes) in the PAT Tree. For a 
text input of size “n” there are “n” leaf nodes and “n − 1” at most higher level nodes. 
It is possible to place additional constraints on sistrings for the leaf nodes. We may 
be interested in limiting our searches to word boundaries. Thus we could limit our 
sistrings to those that are immediately after an interword symbol. Figure 2.7 gives 
an example of the sistrings used in generating a PAT tree. The example only goes 
down 9 levels. It shows the minimum binary prefixes that uniquely identify each 
row. If the binary representations of “h” is (100), “o” is (110), “m” is (001) and 
“e” is (101) then the word “home” produces the input 100110001101…. Using the 
sistrings, the full PAT binary tree is shown in Fig. 2.8. A more compact tree where 
skip (reduced PAT tree) values are in the intermediate nodes is shown in Fig. 2.9. 
In the compact tree, if only one branch of a tree is being extended by the sistrings, 
you can skip comparisons on those levels because the values are not optional (i.e., 
cannot be a 1 or a 0—but just one of those values) and thus there are not branches 
that you could take. The value in the intermediate nodes (indicated by rectangles) 
is the number of bits to skip until the next bit to compare that causes differences 
between similar terms. This final version saves space, but requires one additional 
comparison whenever you encounter a 1 and zero optional level to validate there 
were no errors in the positions that were jumped over. In the example provided it 
is at the leaf level but could occur at any level within the tree (in an oval). In the 

Fig. 2.6   Examples of 
sistrings

Text Economics for Warsaw is complex.

sistring 1 Economics for Warsaw is complex.
sistring 2 conomics for Warsaw is complex.
sistring 5 omics for Warsaw is complex.
sistring 10 for Warsaw is complex.
sistring 20 w is complex.
sistring 30 ex.

Fig. 2.7   Sistrings for input 
“0110111101101110”
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reduced PAT tree the node that has “111” in it could have alternatively been shown 
as a circle with a skip of 1 position.

To search, the search terms are also represented by their binary representation 
and the PAT trees for the sistrings are traveled down based upon the values in the 
search term to look for match(es).

Fig. 2.8   PAT Binary tree for input “0110111101101110”
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As noted in Chap. 1, one of the most common classes of searches is prefix search-
es. PAT trees are ideally constructed for this purpose because each sub-tree contains 
all the sistrings for the prefix defined up to that node in the tree structure. Thus all 
the leaf nodes after the prefix node define the sistrings that satisfy the prefix search 
criteria. This logically sorted order of PAT trees also facilitates range searches since 
it is easy to determine the sub-trees constrained by the range values. If the total in-
put stream is used in defining the PAT tree, then suffix, imbedded string, and fixed 
length masked searches (see Sect. 2.1.5) are all easy because the given characters 
uniquely define the path from the root node to where the existence of sistrings need 
to be validated. Fuzzy searches are very difficult because large number of possible 
sub-trees could match the search term.

A detailed discussion on searching PAT trees and their representation as an array 
is provided by Gonnet, Baeza-Yates and Snider (Gonnet-92). In their comparison to 
Signature and Inversion files, they concluded that PAT arrays have more accuracy 
than Signature files and provide the ability to string searches that are inefficient in 
inverted files (e.g., suffix searches, approximate string searches, longest repetition).

Fig. 2.9   Reduced PAT tree for “0110111101101110”
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Pat Trees (and arrays) provide an alternative structure if string searching is the 
goal. They store the text in an alternative structure supporting string manipulation. 
The structure does not have facilities to store more abstract concepts and their re-
lationships associated with an item. The structure has interesting potential applica-
tions, and was the original structure used in the BrightPlanet (http://www.bright-
planet.com) system that searches the deep web (discussed in Chap. 3). Additionally 
PAT trees have been used to index Chinese since they do not have word separators 
(see Chap. 3).

2.1.5  �Signature File Structure

The goal of a signature file structure is to provide a fast test to eliminate the majority 
of items that are not related to a query. The items that satisfy the test can either be 
evaluated by another search algorithm to eliminate additional false hits or delivered 
to the user to review. The text of the items is represented in a highly compressed 
form that facilitates the fast test. Because file structure is highly compressed and 
unordered, it requires significantly less space than an inverted file structure and new 
items can be concatenated to the end of the structure versus the significant inversion 
list update. Since items are seldom deleted from information data bases, it is typical 
to leave deleted items in place and mark them as deleted. Signature file search is 
a linear scan of the compressed version of items producing a response time linear 
with respect to file size.

The surrogate signature search file is created via superimposed coding (Falout-
sos-85). The coding is based upon words in the item. The words are mapped into a 
“word signature.” A word signature is a fixed length code with a fixed number of 
bits set to “1.” The bit positions that are set to one are determined via a hash func-
tion of the word. The word signatures are ORed together to create the signature 
of an item. To avoid signatures being too dense with “1”s, a maximum number of 
words is specified and an item is partitioned into blocks of that size. In Fig. 2.10 the 
block size is set at five words, the code length is 16 bits and the number of bits that 
are allowed to be “1” for each word is five.

Fig. 2.10   Superimposed 
coding

WORD Signature

Computer 0001  0110  0000  0110
Science 1001  0000  1110  0000
graduate 1000  0101  0100  0010
students 0000  0111  1000  0100
study 0000  0110  0110  0100

Block Signature 1001   0111  1110  0110

TEXT:  Computer Science graduate students study
(assume block size is five words)
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The words in a query are mapped to their signature. Search is accomplished by 
template matching on the bit positions specified by the words in the query.

The signature file can be stored as a signature with each row representing a 
signature block. Associated with each row is a pointer to the original text block. A 
design objective of a signature file system is trading off the size of the data structure 
versus the density of the final created signatures. Longer code lengths reduce the 
probability of collision in hashing the words (i.e., two different words hashing to 
the same value). Fewer bits per code reduce the effect of a code word pattern being 
in the final block signature even though the word is not in the item. For example, 
if the signature for the word “hard” is 1000 0111 0010 0000, it incorrectly matches 
the block signature in Fig. 2.10 (false hit). In a study by Faloutous and Christodou-
lakis (Faloutous-87) it was shown that if compression is applied to the final data 
structure, the optimum number of bits per word is one. This then takes on the ap-
pearance of a binary coded vector for each item, where each position in the vector 
represents the existence of a word in the item. This approach requires the maximum 
code length but ensures that there are not any false hits unless two words hash to 
the same value.

Search of the signature matrix requires O(N) search time. To reduce the search 
time the signature matrix is partitioned horizontally. One of the earliest techniques 
hashes the block signature to a specific slot. If a query has less than the number 
of words in a block it maps to a number of possible slots rather than just one. The 
number of slots decreases exponentially as the number of terms increases (Gus-
tafson-71). Another approach maps the signatures into an index sequential file, 
where, for example, the first “n” bits of the signature is used as the index to the 
block of signatures that will be compared sequentially to the query (Lee-89). Other 
techniques are two level signatures (Sacks-Davis-83) and use of B-tree structures 
with similar signatures clustered at leaf nodes (Deppisch-86).

Another implementation approach takes advantage of the fact that searches 
are performed on the columns of the signature matrix, ignoring those columns 
that are not indicated by hashing of any of the search terms. Thus the signature 
matrix may be stored in column order versus row order (Faloutsos-88, Lin-88, 
Roberts-79), called vertical partitioning. This is in effect storing the signature 
matrix using an inverted file structure. The major overhead comes from updates, 
since new “1”s have to be added to each inverted column representing a signature 
in the new item.

Signature files provide a practical solution for storing and locating information 
in a number of different situations. Faloutsos summarizes the environments that 
signature files have been applied as medium size databases, databases with low 
frequency of terms, WORM devices, parallel processing machines, and distributed 
environments (Faloutsos-92).

One of the first steps in ingesting items is to detect duplicate and near duplicate 
items (see Chap.  3). One way of representing the text in items is via signatures 
which could be used to detect near duplicates.

2.1 Data Structures
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2.1.6  �Hypertext and XML Data Structures

The advent of the Internet and its exponential growth and wide acceptance as a 
new global information network has introduced new mechanisms for representing 
information. This structure is called hypertext and differs from traditional informa-
tion storage data structures in format and use. The hypertext is stored in Hypertext 
Markup Language (HTML) and eXtensible Markup Language (XML). HTML is 
an evolving standard as new requirements for display of items on the Internet are 
identified and implemented. Both of these languages provide detailed descriptions 
for subsets of text similar to the zoning discussed previously. These subsets can be 
used the same way zoning is used to increase search accuracy and improve display 
of hit results.

In addition to using the HTML or XML to define zones, it also can be used to 
identify metadata to be extracted and associated with that item. For example there 
could be a date field or a source field. HTML also contains display information such 
as “bolding”. That information is also useful to indicate the importance of a word 
used in ranking (ordering) the hits from a search. Over the past few years a new 
standard called XHTML has been introduced that merges the XML data description 
with the HTML presentation.

2.1.6.1  �Definition of Hypertext Structure

The Hypertext data structure is used extensively in the Internet environment and 
requires electronic media storage for the item. Hypertext allows one item to refer-
ence another item via an imbedded pointer. Each separate item is called a node and 
the reference pointer is called a link. The referenced item can be of the same or a 
different data type than the original (e.g., a textual item references a photograph). 
Each node is displayed by a viewer that is defined for the file type associated with 
the node.

For example, Hypertext Markup Language (HTML) defines the internal structure 
for information exchange across the World Wide Web on the Internet. A document is 
composed of the text of the item along with HTML tags that describe how to display 
the document. Tags are formatting or structural keywords contained between less-
than, greater than symbols (e.g., <title>, <strong> meaning display prominently). 
The HTML tag associated with hypertext linkages is <a href= …#NAME /a> where 
“a” and “/a” are an anchor start tag and anchor end tag denoting the text that the user 
can activate. “href” is the hypertext reference containing either a file name if the ref-
erenced item is on this node or an address (Uniform Resource Locator—URL) and 
a file name if it is on another node. “#NAME” defines a destination point other than 
the top of the item to go to. The URL has three components: the access method the 
client used to retrieve the item, the Internet address of the server where the item is 
stored, and the address of the item at the server (i.e., the file including the directory 
it is in). For example, the URL for the HTML specification appears:

http://info.cern.ch/hypertext/WWW/MarkUp/HTML.html
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“HTTP” stands for the Hypertext Transfer Protocol which is the access protocol 
used to retrieve the item in HTML. Other Internet protocols are used for other 
activities such as file transfer (ftp://), remote logon (telnet://) and collaborative 
newsgroups (news://). The destination point is found in “info.cern.ch” which is 
the name of the “info” machine at CERN with “ch” being Switzerland, and “/hy-
pertext/WWW/MarkUP/HTML.html” defines where to find the file HTML.html. 
Figure 2.11 shows an example of a segment of a HTML document. Most of the for-
matting tags indicated by < > are not described, being out of the scope of this text, 
but detailed descriptions can be found in the hundreds of books available on HTML. 
The <a href= …> are the previously described hypertext linkages.

An item can have many hypertext linkages. Thus, from any item there are mul-
tiple paths that can be followed in addition to skipping over the linkages to continue 
sequential reading of the item. This is similar to the decision a reader makes upon 
reaching a footnote, whether to continue reading or skip to the footnote. Hypertext 
is sometimes called a “generalized footnote.” But that can be misleading because 
quite often the link is to a major extension of the current item.

In a conventional item the physical and logical structure are closely related. The 
item is sequential with imbedded citations to other distinct items or locations in the 
item. From the author’s perspective, the substantive semantics lie in the sequential 
presentation of the information. Hypertext is a non-sequential directed graph structure, 
where each node contains its own information. The author assumes the reader can 
follow the linked data as easily as following the sequential presentation. A node may 
have several outgoing links, each of which is then associated with some smaller part of 
the node called an anchor. When an anchor is activated, the associated link is followed 
to the destination node, thus navigating the hypertext network. There is text that the 
reader sees that is associated with the anchor (anchor text). This takes on importance 
in Information retrieval because it is quite often used as index text for the anchor when 
it is pointing to a multimedia file versus just another textual page. The organizational 
and reference structure of a conventional item is fixed at printing time while hypertext 
nodes and links can be changed dynamically. New linkages can be added and the in-
formation at a node can change without modification to the item referencing it.

Conventional items are read sequentially by a user. In a hypertext environment, 
the user “navigates” through the node network by following links. This is the defin-
ing capability that allows hypertext to manage loosely structured information. Each 

Fig. 2.11   Example of 
segment of HTML

<CENTER>
<IMG SC=”/images/home_iglo.jpg” WIDTH=468 HEIGHT=107
BORDER=0 ALT=”WELCOME TO NETSCAPE><BR>
<P>
<DL>
<A HREF=”/comprod/mirror/index.html”>
<DD>
The beta testing is over: please read our report <A
HREF=”http://www.charm.net/doc/charm/report/theme.html”> and
your can find more references at
HREF=”http://www.charm.net/doc/charm/results/tests.html”>
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thread through different nodes could represent a different concept with additional 
detail. In a small and familiar network the navigation works well, but in a large 
information space, it is possible for the user to become disoriented.

Quite often hypertext references are used to include information that is other 
than text (e.g., graphics, audio, photograph, video) in a text item. During the ingest 
process described in Chap. 3, the system can easily identify different multimedia 
modalities to assist in directing those items to the appropriate ingest and indexing 
software. The multiple different uses for hypertext references are evolving as more 
experience is gained with them. When the hypertext is logically part of the item, 
such as in a graphic, the referenced file is usually resident at the same physical 
location. When other items created by other users are referenced, they frequently 
are located at other physical sites. When items are deleted or moved, there is no 
mechanism to update other items that reference them. Linkage integrity is a major 
issue in use of hypertext linkages.

Dynamic HTML became available with Navigator 4.0 and Internet Explorer 4.0. 
It is a collective term for a combination of the latest HTML tags and options, style 
sheets and programming that will let you create WEB pages that are more animated 
and responsive to user interaction. Some of the features supported are an object-
oriented view of a WEB page and its elements, cascading style sheets, programming 
that can address most page elements add dynamic fonts. Object oriented views are 
defined by the Document Object Model—DOM (Micorsoft calls this the Dynamic 
HTML Object Model while Netscape calls it the HTML Object Model). For example 
every heading on a page can be named and given attributes of text style and color 
that can be manipulated by name in a small “program” or script included on the page. 
A style sheet describes the default style characteristics (page layout, font, text size, 
etc) of a document or portion of a document. Dynamic HTML allows the specifica-
tion of style sheets in a cascading fashion (linking style sheets to predefined levels 
of precedence within the same set of pages). As a result of a user interaction, a new 
style sheet can be applied changing the appearance of the display. Layering is the use 
of alternative style sheets to vary the content of a page by providing content layers 
that overlay and superimpose existing content sections. The existing HTML pro-
gramming capabilities are being expanded to address the additional data structures.

HTML prior to version 5 was based upon SGML (Standard Generalized Mark-up 
Language) and was a very simplified subset of it. With the increasing use of XML to 
define data structures it became sensible to define a new HTML structure that could 
work well with XML data and provide Internet displays of the XML data. This lead 
to XHTML (extensible hypertext mark-up language). Since it works with XML it 
also inherits the “well formed” structural constraints associated with XML. This 
makes the automated processing easier versus the more complex parsers needed for 
HTML based upon SGML. The other advantage is XHTML documents could in-
clude XML structures from other XML based languages. At this point changes from 
HTML to XHTML have been kept to a minimum primarily to adhere to the rules 
of XML. Since Internet Explorer has not accepted XHTML there remains major re-
sistance to its general usage. In July 2009 W3C announced that they will stop work 
on expanding XHTML and focus on HTML 5 that combines HTML and XHTML.

2 Data Structures and Mathematical Algorithms



43

2.1.6.2  �Hypertext History

Although information sciences is just starting to address the impact of the hypertext 
data structure, the concept of hypertext has been around for over 50 years. In 1945 
an article written by Vannevar Bush in 1933 was published describing the Memex 
(memory extender) system (Bush-67). It was a microfilm based system that would 
allow the user to store much of the information from the scientific explosion of the 
1940s on microfilm and retrieve it at multiple readers at the user’s desk via indi-
vidual links. The term “hypertext” came from Ted Nelson in 1965 (Nelson-74). Nel-
son’s vision of all the world’s literature being interlinked via hypertext references 
is part of his Xanadu System. The lack of cost effective computers with sufficient 
speed and memory to implement hypertext effectively was one of the main inhibi-
tors to its development. One of the first commercial uses of a hypertext system was 
the mainframe system, Hypertext Editing System, developed at Brown University 
by Andres van Dam and later sold to Houston Manned Spacecraft Center where 
it was used for Apollo mission documentation (van Dam-88). Other systems such 
as the Aspen system at MIT, the KMS system at Carnegie Mellon, the Hyperties 
system at the University of Maryland and the Notecards system developed at Xe-
rox PARC advanced the hypertext concepts providing hypertext (and hypermedia) 
systems. HyperCard, delivered with Macintosh computers, was the first widespread 
hypertext production product. It had a simple metalanguage (HyperTalk) that facili-
tated authoring hypertext items. It also provided a large number of graphical user 
interface elements (e.g., buttons, hands,) that facilitated the production of sophisti-
cated items.

Hypertext became more available in the early 1990s via its use in CD-ROMs 
for a variety of educational and entertainment products. Its current high level of 
popularity originated with it being part of the specification of the World Wide Web 
by the CERN (the European Center for Nuclear Physics Research) in Geneva, Swit-
zerland. The Mosaic browser, freely available from CERN on the Internet, gave 
everyone who had access the ability to receive and display hypertext documents.

2.1.7  �XML

The eXtensible Markup Language (XML) is also becoming a standard encoding 
structure for documents on the WEB and as a data exchange format for Web ser-
vices applications (e.g., used for web services). Its first recommendation (1.0) was 
issued on February 10, 1998. It is a middle ground between the simplicities but lack 
of flexibility of HTML and the complexity but richness of SGML (ISO 8879). Its 
objective is extending HTML with semantic information and removing the display 
specification from the data specification. The logical data structure within XML 
is defined by a Data Type Description (DTD) and is not constrained to the 70 de-
fined tags and 50 attributes in the single DTD for HTML. The original DTD did 
not allow for complex definition of data types within the data structure so it was 
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expanded to other ways of defining XML structures called schemas. The DTD is 
a very restricted version of an XML schema. Some of the other more common 
schemas are Schema W3C and RELAX NG. The user can create any tags needed to 
describe and manipulate their structure. The W3C (World Wide Web Consortium) 
is redeveloping HTML as a suite of XML tags. The following is a simple example 
of XML tagging:

<company>Widgets Inc.</company>
<city>Boston</city>
<state>Mass</state>
<product>widgets</product>

The W3C is also developing a Resource Description Format (RDF) for representing 
properties of WEB resources such as images, documents and relationships between 
them. This will include the Platform for Internet Content Selection (PICS) for at-
taching labels to material for filtering (e.g., unsuitable for children).

Hypertext links for XML were being defined in the Xlink (XML Linking Lan-
guage) but work stopped in this area. Xpoint (XML Pointer language) specifica-
tions. This would allow for distinction for different types of links to locations within 
a document and external to the document. This would allow an application to know 
if a link is just a repositioning reference within an item or link to another docu-
ment that is an extension of the existing document. This would help in determining 
what needs to be retrieved to define the total item to be indexed. But the standards 
committees could not get a critical mass following interested in implementing this 
concept.

Finally XML will include an XML Style Sheet Linking definition to define how 
to display items on a particular style sheet and handle cascading style sheets. This 
will allow designers to limit what is displayed to the user (saving on display screen 
space) and allow expansion to the whole item if desired. Cascading Style Sheets 
provide an easy way to dynamically manage the output display of XML to the user.

2.2  �Mathematical Algorithms

2.2.1  �Introduction

There are a number of mathematical concepts that form the basis behind a lot of 
the weighted indexing techniques used in creating the indices for information 
retrieval systems. The goal of this section is to provide a brief introduction to the 
important mathematical concepts. If the student wants to use the concepts in ei-
ther research or applications they are developing then significant additional read-
ing on the concepts is required. The two most important theories are the Bayes-
ian theory and Shannon’ Information theory. Bayesian models are a conditional 
model associated with probabilities that estimates the probability of one event 

2 Data Structures and Mathematical Algorithms



45

given another event takes place. This directly maps into the probability that a 
document is relevant given a specific query. It additionally can be used to define 
clustering relationships used in automatic creation of taxonomies associated with 
search results and item databases. Shannon’s information model describes the 
“information value” given the frequency of occurrence of an event. In this case it 
can be related to how many items contain a particular word and how that affects 
its importance (if a word is found in every item in the database it does not have 
much search vale).

Hidden Markov Models are the basis behind the transformation of audio into 
transcribed text that is one approach to indexing audio and video. In addition it is 
frequently used in the optical character processing of text in images to computer 
recognized text. It also has been proposed as a basis behind indexing and search for 
textual items. Latent semantic indexing is one of the best mathematical techniques 
to explain how a “concept” index is created and it has been used commercially to 
create concept indices. It is technique that allows for automatic mapping of millions 
of words used to create items into a small number (e.g. 300) concept vectors that 
represent the vocabulary of the language. The concept vectors are then like a meta-
language used to express both the items and the queries.

In addition to the algorithms used in creating the index, there is a need in in-
formation retrieval for learning algorithms that allow the system to learn what is 
of interest to a user and then be able to use the dynamically created and updated 
algorithms to automatically analyze new items to see if they satisfy the existing cri-
teria. This is used in techniques often labeled as “Categorization”. The two primary 
techniques used for the learning algorithms are neural networks and support vector 
machines.

The goal of this section is to introduce the mathematical basis behind the algo-
rithms used in information retrieval. To really understand the details on how the 
algorithms are used in information retrieval you should take courses in probability 
and machine learning.

2.2.2  �Bayesian Mathematics

The earliest mathematical foundation for information retrieval dates back to the 
early 1700s when Thomas Bayes developed a theorem that relates the conditional 
and marginal probabilities of two random events—called Baye’s Theorem. It can 
be used to compute the posterior probability (probability assigned “after” relevant 
evidence is considered) of random events. For example, it allows to consider the 
symptoms of a patient and use that information to determine the probability of what 
is causing the illness. Bayes’ theorem relates the conditional and marginal prob-
abilities of events A and B, where B cannot equal zero:

P(A|B) =
P(B|A)P(A)

P(B)
.
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P(A) is called the prior or marginal probability of A. It is called “prior” because 
it does not take into account any information about B. P(A|B) is the conditional 
probability of A, given B. It is sometimes named the posterior probability because 
the probability depends upon the probability of B. P(B|A) is the conditional prob-
ability of B given A. P(B) is the prior or marginal probability of B, and normalizes 
the result.

Putting the terms into words given our example helps in understanding the formula:

•	 The probability of a patient having the flu given the patient has a high tempera-
ture is equal to the probability that if you have a high temperature you have the 
flu times the probability you will have the flu. This is then normalized by divid-
ing times the probability that you have a high temperature.

To relate Bayesian Theory to information retrieval you need only to consider the 
search process. A user provides a query, consisting of words, which represent the 
user’s preconceived attempt to describe the semantics needed in an item to be re-
trieved for it to be relevant. Since each user submits these terms to reflect their own 
idea of what is important, they imply a preference ordering (ranking) among all of 
the documents in the database. Applying this to Bayes’s Theorem you have:

The major issues with using this to determine which items are most relevant to the 
query are Bayes Theorem assumes independence (i.e., each term is independent of 
every other term), and how to get the probability for some of the terms in the above 
formula. These issues will be discussed in Chap. 4 on indexing.

A Bayesian network is a directed acyclic graph in which each node represents 
a random variable and the arcs between the nodes represent a probabilistic depen-
dence between the node and its parents (Howard-81, Pearl-88). Figure 2.12 shows 
the basic weighting approach for index terms or associations between query terms 
and index terms.

The nodes C1 and C2 represent “the item contains concept Ci” and the F nodes 
represent “the item has feature (e.g., words) Fij.” The network could also be inter-

P(An item is relevant/Query) =
P(Query/Relevant item) P(An item is relevant)

P(Query)

Fig. 2.12   Two-level Bayesian network
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preted as C representing concepts in a query and F representing concepts in an item. 
The goal is to calculate the probability of Ci given Fij. To perform that calculation 
two sets of probabilities are needed:

1.	 The prior probability P(Ci) that an item is relevant to concept C
2.	 The conditional probability P(Fij/Ci) that the features Fij where j = 1, m are pres-

ent in an item given that the item contains topic Ci.

The automatic indexing task is to calculate the posterior probability P(Ci/Fi1, … , 
Fim), the probability that the item contains concept Ci given the presence of features 
Fij. The Bayes inference formula that is used is:

If the goal is to provide ranking as the result of a search by the posteriors, the Bayes 
rule can be simplified to a linear decision rule:

where I(Fik) is an indicator variable that equals 1 only if Fik is present in the item 
(equals zero otherwise) and w is a coefficient corresponding to a specific feature/
concept pair. A careful choice of w produces a ranking in decreasing order that 
is equivalent to the order produced by the posterior probabilities. Interpreting the 
coefficients, w, as weights corresponding to each feature (e.g., index term) and the 
function g as the sum of the weights of the features, the result of applying the for-
mula is a set of term weights (Fung-95).

2.2.3  �Shannon’s Theory of Information

In the late 1940s Claude Shannon, a research mathematician at Bell Telephone 
Laboratories, invented a mathematical theory of communication to be used in the 
design of telephone systems. The issues to be resolved were how to design tele-
phone systems to carry the maximum amount of information and how to cor-
rect for noise on the lines. He approached the problem by defining a simple ab-
straction of human communication called the channel. Shannon’s communication 
channel consisted of a sender (a source of information), a transmission medium 
(with noise), and a receiver (whose goal is to reconstruct the sender’s messages). 
In order to analyze the sending of the information through the channel, he de-
fined the concept of the amount of information in a message. In this concept he 
considered redundant information versus unique information. In this approach a 
message is very informative (has a high information value) if the chance of its oc-
currence is small because the loss of the message means the information will be 
lost. If, in contrast, a message is very predictable, then it has a small amount of 
information—one is not surprised to receive it and its loss is not as critical because 
it will be sent again.

Of less importance to information retrieval Shannon also defined the entropy 
rate that measured the production rate of information production and a measure of 

P(Ci/Fi1, . . . , Fim) = P(Ci) P(Fi1, . . . , Fim/Ci)\P(Fi1, . . . , Fim).

g(Ci/Fi1, . . . , Fim) = �kI(Fik)w(Fik,Ci)
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the channel capacity to carry information. He showed that if the amount of informa-
tion you want to send exceeds the capacity you will lose information. If the amount 
of information you want to send is less than the capacity you can encode the infor-
mation in a way that it will be received without errors.

Shannon adapted his theory to analyze ordinary human (written) language. He 
showed that it is quite redundant, using more symbols and words than necessary to 
convey messages. Presumably, this redundancy is used by us to improve our ability 
to recognize messages reliably and to communicate different types of information. 
The formula for the information value of an event is:

This lead to the interpretation of Shannon’s theory that the information value of a 
word is inversely proportional to how often it is used. A word that is found in every 
document has no information value because it will always be there. But a word that 
is found in few documents has high information value when you want to retrieve 
documents with that word in it. This theory is the basis for the “inverse document 
formula” (IDF) weighting formula used in many informational retrieval weighting 
algorithms. It is also used in many other ways such as by the Autonomy product 
in how it does concept searches—by applying this as a factor on the words it finds 
when it creates taxonomy for them. This will be discussed in detail in Chap. 4 on 
Indexing.

2.2.4  �Latent Semantic Indexing

Latent Semantic Indexing (LSI) was created to support information retrieval and 
solve the problem of the mismatch between a user’s vocabulary and that of the 
author. Its assumption is that there is an underlying or “latent” structure represented 
by interrelationships between words (Deerwester-90, Dempster-77, Dumais-95, 
Gildea-99, Hofmann-99). LSI starts with a “vector/matrix view of a set of docu-
ments. Just consider a vector where every position represents one word in a lan-
guage. Thus it will be a vector that will have millions of positions. A document can 
be represented by the vector by placing a “weight” in each word location as to the 
weight of that word in describing the semantics of the document. If you place the 
vector for each document in the database in rows you will have a matrix represent-
ing your documents.

Latent Semantic Indexing uses singular-value decomposition to model the asso-
ciative relationships between terms similar to eigenvector decomposition and factor 
analysis (see Cullum-85). This is a form of factor analysis. In SVD, a rectangular 
matrix is decomposed into the product of three other matrices. One matrix describes 
the original row entities as vectors of derived orthogonal factor values, another 
matrix describes the original column entities in the same way, and the final matrix 
is a diagonal matrix containing scaling values such that when the three components 
are matrix-multiplied, the original matrix is reconstructed. There is a mathematical 

Infok = −log(pk)
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proof that any matrix can be so decomposed perfectly, using no more factors than 
the smallest dimension of the original matrix.

When fewer than the necessary number of factors is used, the reconstructed ma-
trix is a least-squares best fit which minimizes the differences between the original 
and reduced matrix. One can reduce the dimensionality of the solution simply by 
deleting coefficients in the diagonal matrix, ordinarily starting with the smallest. 
Values. By having the values are sorted this will be the bottom rows of the matrix.

Mathematically, the rectangular matrix can be decomposed into the product of 
three matrices. Let X be a m × n matrix such that:

where T0 and D0 have orthogonal columns and are m × r and r × n matrices, S0 is 
an r × r diagonal matrix and r is the rank of matrix X. This is the singular value 
decomposition of X. The k largest singular values of S0 are kept along with their 
corresponding columns/rows in T0 and D0 matrices, the resulting matrix:

is the unique matrix of rank k that is closest in least squares sense to the original X. 
The matrix 

_
X, containing the first k independent linear components of the original 

X represents the major associations with noise eliminated.
If you consider X to be the term-document matrix (e.g., all possible terms being rep-

resented by columns and each item being represented by a row), then truncated singular 
value decomposition can be applied to reduce the dimensionality caused by all terms to 
a significantly smaller dimensionality that is an approximation of the original X:

where u1 … uk and v1… vk are left and right singular vectors and sv1 … svk are 
singular values. A threshold is used against the full SV diagonal matrix to determine 
the cutoff on values to be used for query and document representation (i.e., the di-
mensionality reduction). Hofmann has modified the standard LSI approach using ad-
ditional formalism via Probabilistic Latent Semantic Analysis (Hofmann-99). Chap-
ter 4 will relate this specifically to informational retrieval indexing with examples.

It is instructive to show how to calculate the different matrices. An example of 
how to calculate the three matrices follows (an online calculator for SVD is avail-
able at http://www.bluebit.gr/matrix-calculator/):

Perform Single Value Decomposition on the given matrix A such that A = USVT

X = T0 · S0 · D0
′

_
X = Tn · Sn · Dn

′

X = U · SV · V′

A =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1




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Step 1:  Calculate ATA.

Step 2:  Find the determinant such that |ATA  −  CI|  =  0—where I is the identity 
matrix and C is a scalar—to obtain the Eigenvalues and singular values which will 
be used to construct the S matrix.

AT A =




1 0 1 0 1 1 1 1 1 0 0
1 1 0 1 0 0 1 1 0 2 1
1 1 0 0 0 1 1 1 1 0 1



 ×





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





=




7 3 5
3 10 5
5 5 7





AT A − CI =




7 3 5
3 10 5
5 5 7



 −



C ∗




1 0 0
0 1 0
0 0 1









=




7 − c 3 5

3 10 − c 5
5 5 7 − c





∣∣ATA − CI
∣∣ = (7 − c)

[
(10 − c)(7 − c) − (5 ∗ 5)

]
− 3

[
3(7 − c) − (5 ∗ 5)

]

+ 5
[
(3 ∗ 5) − 5(10 − c)

]

= (7 − c)(70 − 10c − 7c + c2 − 25) − 3(21 − 3c − 25)

+ 5(15 − 50 + 5c)

= (7 − c)(c2 − 17c + 45) − 3(−3c − 4) + 5(5c − 35)

= 7c2 − 119c + 315 − c3 + 17c2 − 45c + 9c + 12 + 25c − 175

= −c3 + 24c2 − 130c + 152 = 0

c1 = 16.801
c2 = 5.577
c3 = 1.622




 Eigenvalues

|c1| > |c2| > |c3|
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The singular values would be:

Step 3:  Compute the Eigenvectors by evaluating (ATA – ciI) X1 = 0—where ci cor-
responds to each of the Eigenvalues that were computed in the previous step.

Calculating the Eigenvector for the Eigenvalue c1 = 16.801

� (1)

� (2)

� (3)

By subtracting Eq. (2) from Eq. (1) we get:

s1 =
√

16.801 = 4.0989

s2 =
√

5.577 = 2.3616

s3 =
√

1.622 = 1.2736

S =




s1 0 0
0 s2 0
0 0 s3



 =




4.0989 0 0

0 2.3616 0
0 0 1.2736





S−1 =




0.244 0 0

0 0.4234 0
0 0 0.7852





AT A − c1I =




7 − 16.801 3 5

3 10 − 16.801 5
5 5 7 − 16.801





=




−9.801 3 5

3 −6.801 5
5 5 −9.801





(AT A − c1I )X1 =




−9.801 3 5

3 −6.801 5
5 5 −9.801



 ×




x1

x2

x3



 =




0
0
0





−9.801x1 + 3x2 + 5x3 = 0

3x1 − 6.801x2 + 5x3 = 0

5x1 + 5x2 − 9.801x3 = 0

−12.801x1 + 9.801x2 = 0 → x1 = (−9.801/−12.801) x2 → x1 = 0.7656 x2

x1 −1

x2 −1.3061

x3 −1.1765
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Normalize the vector by the length

Using similar approach for calculating the Eigenvector for the Eigenvalue c2 = 5.577 
you get

Normalize the vector by the length

And calculating the Eigenvector for the Eigenvalue c3 = 1.622

Normalize the vector by the length

The Eigenvector for c1 =




−1

−1.3061
−1.1765





L =
√

(−1)2 + (−1.3061)2 + (−1.1765)2 =
√

4.0901 = 2.0224

The normalized Eigenvector for c1 =




−0.4945
−0.6458
−0.5817





The Eigenvector for c2 =




1

−1.1083
0.3805





L =
√

(1)2 + (−1.1083)2 + (0.3805)2 =
√

2.3731 = 1.5405

The normalized Eigenvector for c2 =




0.6491

−0.7194
0.247





The Eigenvector for c3 =




−1

−0.4422
1.3408





L =
√

(−1)2 + (−0.4422)2 + (1.3408)2 =
√

2.9932 = 1.7301

The normalized Eigenvector for c3 =




−0.5780
−0.2556

0.775




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Step 4:  Construct the V matrix by using the calculated Eigenvactors as columns 
in V.

Step 5:  Calculate the U matrix such that U = AVS−1.

V T =




0.4945 0.6491 0.5780
0.6458 −0.7194 0.2556

−0.5817 −0.247 0.775





U =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





×




−0.4945 0.6491 −0.5780
−0.6458 −0.7194 −0.2556
−0.5817 0.247 0.775





×




0.244 0 0

0 0.4234 0
0 0 0.7852





U =





0.4202
0.2995
0.1207
0.1576
0.1207
0.2626
0.4202
0.4202
0.2626
0.3152
0.2995

0.0748
−0.2
0.2748
−0.3046
0.2748
0.3794
0.0748
0.0748
0.3794
−0.6092
−0.2

−0.0461
0.4078
−0.4539
−0.2007
−0.4539
0.1546
−0.0461
−0.0461
0.1546
−0.4014
0.4078




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2.2.5  �Hidden Markov Models

Hidden Markov Models (HMM) have been applied for the last 20 years to solving 
problems in speech recognition and to a lesser extent in the areas locating named 
entities (Bikel-97), optical character recognition (Bazzi-98) and topic identification 
(Kubala-97). More recently HMMs have been applied more generally to informa-
tion retrieval search with good results. One of the first comprehensive and practi-
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cal descriptions of Hidden Markov Models was written by Dr. Lawrence Rabiner 
(Rabiner-89).

A HMM can best be understood by first defining a discrete Markov process. The 
easiest way to understand it is by an example. Let’s take the example of a three state 
Markov Model of the Stock Market. The states will be one of the following that is 
observed at the closing of the market:

State 1 (S1): market decreased
State 2 (S2): market did not change
State 3 (S3): market increased in value

The movement between states can be defined by a state transition matrix with state 
transitions (this assumes you can go from any state to any other state):

Given that the market fell on one day (State 1), the matrix suggests that the prob-
ability of the market not changing the next day is 0.1. This then allows questions 
such as the probability that the market will increase for the next 4 days then fall. 
This would be equivalent to the sequence of SEQ = {S3, S3, S3, S3, S1}. In order 
to simplify our model, lets assume that instead of the current state being dependent 
upon all the previous states, lets assume it is only dependent upon the last state 
(discrete, first order, Markov chain.) This would then be calculated by the formula:

In the equation we also assume the probability of the initial state of S3 is S3(init) = 1. 
The Fig. 2.13 depicts the model. The directed lines indicate the state transition prob-
abilities ai,j. There is also an implicit loop from every state back to itself. In the 
example every state corresponded to an observable event (change in the market).

A =
{
aI,i

}
=

0.5 0.3 0.4
0.1 0.6 0.3
0.6 0.7 0.5

P(SEQ) = P[S3, S3, S3, S3, S1]

= P[S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S1/S3]

= S3(init) ∗ a3,3 ∗ a3,3 ∗ a3,3 ∗ a1,3

= (1.0) ∗ (.5) ∗ (.5) ∗ (.5) ∗ (.4)

= .05

Fig. 2.13   Diagram of 
Markov model

S1 S2

S3
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When trying to apply this model to less precise world problems such as in speech 
recognition, this model was too restrictive to be applicable. To add more flexibility 
a probability function was allowed to be associated with the state. The result is 
called the Hidden Markov Model. It gets its name from the fact that there are two 
stochastic processes with the underlying stochastic process not being observable 
(hidden), but can only be analyzed by observations which originate from another 
stochastic process. Thus the system will have as input a series of results, but it will 
not know the number of states that were associated with generating the results nor 
the probability of the states. So part of the HMM process is in determining which 
model of states best explains the results that are being observed.

A more formal definition of a discrete Hidden Markov Model is summarized by 
consists of the following:

1.	 S = {s0, … , sn−1} as a finite set of states where s0 always denotes the initial state. 
Typically the states are interconnected such that any state can be reached from 
any other state.

2.	 V = {v0, … , vm−1} is a finite set of output symbols. This will correspond to the 
physical output from the system being modeled.

3.	 A = S × S a transition probability matrix where ai,j represents the probability of 
transitioning from state i to state j such that 

∑n−1
j=0 ai,j = 1  for all i = 0, …, n − 1. 

Every value in the matrix is a positive value between 0 and 1. For the case where 
every state can be reached from every other state every value in the matrix will 
be non-zero.

4.	 B = S × V is an output probability matrix where element bj,k is a function deter-
mining the probability and 

∑m−1
k=0 bj ,k = 1  for all j = 0, … , n − 1.

5.	 The initial state distribution.

The HMM will generate an output symbol at every state transition. The transition 
probability is the probability of the next state given the current state. The output 
probability is the probability that a given output is generated upon arriving at the 
next state.

Given the HMM definition, it can be used as both a generator of possible se-
quences of outputs and their probabilities (as shown in example above), or given a 
particular out sequence it can model its generation by an appropriate HMM model. 
The complete specification of a HMM requires specification of the states, the output 
symbols and three probability measures for the state transitions, output probability 
functions and the initial states. The distributions are frequently called A, B, and π, 
and the following notation is used to define the model:

One of the primary problems associated with HMM is how to efficiently calculate 
the probability of a sequence of observed outputs given the HMM model. This can 
best be looked at as how to score a particular model given a series of outputs. Or 
another way to approach it is how to determine which of a number of competing 
models should be selected given an observed set of outputs. This is in effect uncov-

λ = (A, B, π ).

2.2 Mathematical Algorithms
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ering the hidden part of the model. They typical approach is to apply an “optimality 
criterion” to select the states. But there are many such algorithms to choose from. 
Once you have selected the model that you expect corresponds to the output, then 
there is the issue of determining which set of state sequences best explains the out-
put. The final issue is how best to tune the  model to maximize the probability of 
the output sequence given . This is called the training sequence and is crucial to 
allow the models to adapt to the particular problem being solved. More details can 
be found in Rabiner’s paper (Rabiner-89).

2.2.6  �Neural Networks

An artificial neural network is based upon biological neural networks and is gen-
erally simplified to a directed multilevel network of that uses weighted additive 
values coupled with non-linear transfer functions and a final output layer. One 
of the first neural networks created was the Perceptron network created by Frank 
Rosenblatt in 1958. It had an analogy to how the visual system works. Thus, the 
first input layer was called the “retina” that distributed inputs to the second layer 
composed of association units that combined the inputs with weights and triggered 
a step function that would send the results to the final output layer. The output layer 
would do the final combination of the inputs and output the results. This model was 
a simple approximation of the neurons in the human system. But the use of a step 
function, where a functions value increases in steps versus is continuous and each 
step would be a different category, made the mathematics very difficult to allow the 
system to train itself based upon inputs. By 1969 the problems with this model were 
documented by papers by Marvin Minsky and Seymore Papert. The mathemati-
cal approach was revived in 1986 by Rumelhart, Hinton and Williames when they 
expanded the concept to include a multilayer model that used nonlinear transfer 
functions in lieu of the step functions.

There are many different types and approaches to neural networks. One of 
the more common approaches continues with the Perceptron multilayer network 
which is presented below. The simplest network is a three layer feed forward net-
work that has an input layer, middle layer (often called hidden layer) and an output 
layer. Figure 2.14 shows the network. In the Input Function (IF), normalizes the 

Fig. 2.14   Neural network

X1

Y1

Y1

Tm(∑Ui * Wj)

Tm(∑Ui * Wj)

U1

Un

V1

V1

X1
OF(∑Vi * Zj)

OF(∑Vi * Zj)

IF(X1)

IF(Xn)
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input values by subtracting the median and dividing by the interquartile range and 
presents the resultant value Ui to the middle layer. The interquartile range (IQR) is 
a measure of the variability of the distribution and is less sensitive to errors, being 
equal to the difference between the third and first quartiles. If you divide the sorted 
list into four parts, the quartiles are the three values from the list that separate each 
section—the median is the second quartile. Every value goes to very function in 
the middle layer. Each value is multiplied by a weight W and then summed creat-
ing a new vaue that then has the transfer function T applied to it producing the out-
put Vi. The V values are then multiplied by a weight Z and summed. The summed 
value has the Output Transfer function (OF) applied to it producing the final output 
from the network, Y. This is a feed forward network because none of the values are 
fed back to previous layers. All neural networks have an Input and Output layer. 
The number of middle layers can vary. But in general only one middle layer is 
needed for most problems.

Training is a critical aspect of a neural network. In the training process a set of 
known data is used that the ideal outputs (Yi) are known. In the training process the 
objective is to modify the weight values (W and Z) to match the output as closely 
as possible. This leads to some of the problems that have to be monitored in the 
training process. Additional middle layers may help improve the results although 
as noted above usually one or two middle layers are sufficient. It may be useful to 
not feed all of the outputs from one layer into all of the nodes at the next layer (the 
number of nodes at one layer can be different than the previous layer—in the above 
example they appear to be the same). The biggest issue is to be careful that the solu-
tion is not a local maximum versus a more general global maximum that will apply 
as new inputs are processed causing over fitting of the solution.

Selecting the number of nodes (neurons) at each layer is very complex. If too few 
are selected it will be difficult to model complex problems. If too many are selected 
the computation time increases expontentially and the result can more likely be 
overfitted to the training data. For this reason two sets of test data are used. The first 
for the training and the second to validate that the system has not been overfitted to 
just the original data set.

Trying to find the optimum weights is also a very difficult problem. There 
can be hundreds of weights that need to be estimated. But the estimation is not 
linear to produce the desired outputs. In the process of finding the weights there 
will be many cases of local minima and maxima that need to be avoided. To 
avoid local minima the easiest technique is to try a number of random starting 
points in the estimation and choose the one that works best. A more sophisticated 
technique uses widely separated random values and then gradually reduces the 
widely separated to closer values to produce the weight. By starting with widely 
varying values the system is more likely to avoid a particular minima that drives 
to a local solution.

In a typical training scenario Backward propagation is used. The current set of 
weights will produce a set of outputs. These outputs are then used with the known 
expected outputs to calculate the error difference. The errors are then averaged 
across the outputs and then is propagated back through the network in reverse di-
rection where the adjustments to the weights are made to minimize the error.

2.2 Mathematical Algorithms
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2.2.7  �Support Vector Machines

Support Vector Machines (SVM) is recently becoming the technical base for learn-
ing systems. SVMs are a type of machine learning algorithms used to classify items. 
A Support Vector Machine (SVM) assigns an item to a category by constructing an 
N-dimensional hyperplane that optimally separates the data into two categories. The 
SVM approach maps the set of attributes that make up the vector representing an 
item into a set of features. The features are then used to determine the hyperplane 
that distinguishes between the two categories an item could go into. One of the chal-
lenges is to find an optimal feature representation. The goal of SVM is to find the 
optimal hyperplane that separates clusters of vector in such a way that items with 
one category of the target variable are on one side of the plane and items with the 
other category are on the other side of the plane. The vectors near the hyperplane 
are the support vectors. The optimal hyperplane will have the maximum distance 
from the support vectors of each category to the plane that classifies them. This will 
reduce the errors in miss classifying a new item.

To understand the SVM process lets take a simple two dimensional example. 
Let’s assume we have a number of items that are discussing biology and Physics. 
Let’s assume that we have one feature on the X axis and another feature on the 
Y axis. Figure 2.15a, b shows the graphical layout of each category with circles 
being Biology and squares being Physics. The SVM process tries to determine a 
1-dimensional hyperplane (i.e., a line) that maximally separates the two groups of 
items. This is sometimes referred to as maximizing the “fatness” and gives the best 
classification since it has the maximum difference to help in determining which 
class an items is assigned to. The diagram shows two options—one being a vertical 
line and the other a line at an angle. It’s obvious by observation that the hyperplane 

Fig. 2.15   a Vertical separator. b Optimal separator
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for the diagonal line is better in that it has the maximum distance between items 
in each group and the hyperplane. The dashed lines in each figure are showing the 
specific items (support vectors) from each group that are closest to the hyperplane. 
The distance between the dashed lines is called the margin and the goal is to find 
the hyperplane that maximizes the margin. The specific items that are closest to the 
dashed lines are called the support vectors because they drive the size of the margin. 
Even though they appear as points in the diagram they are called support vectors be-
cause each point defines a vector from the original to that point. As the hyperplane 
changes, the support vectors (items) that drive the margin change. The Support Vec-
tor Machine finds the hyperplane that has support vectors that maximize the margin.

In the example we took the simplest case of a two dimension set of items. This 
can easily expand to a multidimensional case with a multidimensional hyperplane. 
The more complex case is when the items are not separated by a plane but some 
sort of non-linear region (e.g. a curved line). In this case SVM uses a kernel func-
tion that maps the items into a different space where they can now be separated by a 
hyperplane. In some cases additional dimensionality needs to be added in the kernel 
mapping process. SVM models can be related to neural networks. A SVM model 
using a sigmoid kernel function is equivalent to a two-layer, perceptron neural net-
work.

In addition to the use of mapping to higher dimensionality for the non-linear 
problem, the real world problem of trying to categorize items based upon text is 
never statistically pure. There will always be exceptions that come from the vari-
ances of language. This is referred to as problems due to the high dimensionality 
(i.e., lots of unique processing tokens) of text categorization. The approach to solv-
ing this is called soft margin classification. In this case instead of trying to raise 
the dimensionality to account for the data points that are categorized in the wrong 
category, we ignore them. The way to handle them is to introduce slack variables 
and by adjusting them minimize the impact by moving those points. The goal is to 
tradeoff moving points to fit within the current “fat”.

2.3  �Summary

Data structures provide the implementation basis of search techniques in Informa-
tion Retrieval Systems. They may be searching the text directly, as in use of signa-
ture and possibly PAT trees, or providing the structure to hold the searchable data 
structure created by processing the text in items. The most important data structure 
to understand is the inverted file system. It has the greatest applicability in informa-
tion systems. The use of n-grams has also found successes in a limited number of 
commercial systems. Even though n-grams have demonstrated successes in finding 
information, it is not a structure that lends itself to representing the concepts in an 
item. There is no association of an n-gram with a semantic unit (e.g., a word or 
word stem). Judging the relative importance (ranking) of items is much harder to 
accomplish under this data structure and the algorithmic options are very limited.

2.3 Summary
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PAT and Signature data file structures have found successful implementations 
in certain bounded search domains. Both of these techniques encounter significant 
problems in handling very large databases of textual items. The Hypertext data 
structure is the newest structure to be considered from an Information Retrieval 
System perspective. It certainly can be mathematically mapped to linked lists and 
networks. But the model of how dependencies between items as hyperlinks are 
resolved is just being considered. The future high usage of this structure in informa-
tion systems makes its understanding important in finding relevant information on 
the Internet. Marchionini and Shneiderman believe that hypertext will be used in 
conjunction with full text search tools (Marchionini-88).

Information retrieval algorithms from basic indexing to learning algorithms for 
categorization are based upon a number of mathematical models. A general un-
derstanding of the models and how they apply to information retrieval provide 
a foundation for develop of new algorithms. Baysean conditional probabilities, 
Shannon’s Information theory and Latent Semantic Indexing are useful in different 
approaches to defining the ranked index for items. Hidden Marjkov Models can 
be used for indices but have greater application in multimedia indexing. Neural 
networks and Support vector Machines provide a foundation for categorization 
algorithms and learning how to filter items based upon training examples provided 
by the users.

2.4  �Exercises

1.	 Describe the similarities and differences between term stemming algorithms and 
n-grams. Describe how they affect precision and recall.

2.	 a.	� Compare advantages and disadvantages of Porter Stemming algorithm, Dic-
tionary stemming algorithm and Success Variety stemming algorithm.

b.	 Create the symbol tree for the following words (bag, barn, boss, bot any, box, 
bottle, botch and both). Using successor variety and the Peak and Plateau 
algorithm, determine if there are any stems for the above set of words.

c.	 If there are stems created explain if they make any sense as a stem and why.
3.	 a.	� Create the PATRICIA Tree and Reduced PATRICIA for the following binary 

input. Take it to 9 levels of sistrings: 011100111001111111010
b.	 Given the query 111000 show how it would be executed against each tree 

with the number of decisions.
4.	 Assuming a term is on the average 6 characters long, calculate the size of the 

inversion lists for each of the sources in Table 1.1, Distribution of words in TREC 
Database. Assume that 30% of the words in any item are unique. What is the 
impact on the calculation if the system has to provide proximity versus no prox-
imity. Assume 4 bytes is needed for the unique number assigned to each item.

5.	 Describe how a bigram data structure would be used to search for the search 
term “computer science” (NOTE: the search term is a contiguous word phrase). 
What are the possible sources of errors that could cause non-relevant items to 
be retrieved?

2 Data Structures and Mathematical Algorithms
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6.	 Perform Single value decomposition on the following matrix:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 1

1 0 2

0 2 3

1 2 1

2 1 1

0 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2.4 Exercises
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