
27

2.1  �Data Structures

2.1.1  �Introduction to Data Structures

There are usually two major data structures in any information system. One struc-
ture stores and manages the received items in their normalized form and is the ver-
sion that is displayed to the user. The process supporting this structure is called the
“document manager.” The other major data structure contains the processing tokens
and associated data (e.g., index) to support search. Figure 2.1 shows the document
file creation process which is a combination of the ingest and indexing processes.
The results of a search are references to the items that satisfy the search statement,
which are passed to the document manager for retrieval. This chapter focuses on
data structures used to support the search function. It does not address the document
management function nor the data structures and other related theory associated
with the parsing of queries.

The Ingest and Indexing processes are described in Chaps. 3 and 4, but some of
the lower level data structures to support the indices are described in this chapter.
The most common data structure encountered in both data base and information
systems is the inverted file system (discussed in Sect. 2.1.2). It minimizes second-
ary storage access when multiple search terms are applied across the total database.
All commercial and most academic systems use inversion as the searchable data
structure. A variant of the searchable data structure is the N-gram structure that
breaks processing tokens into smaller string units (which is why it is sometimes
discussed under stemming) and uses the token fragments for search. N-grams have
demonstrated improved efficiencies and conceptual manipulations over full word
inversion. PAT trees and arrays view the text of an item as a single long stream ver-
sus a juxtaposition of words. Around this paradigm search algorithms are defined
based upon text strings. Signature files are based upon the idea of fast elimination
of non-relevant items reducing the searchable items to a manageable subset. The
subset can be returned to the user for review or other search algorithms may be ap-
plied to it to eliminate any false hits that passed the signature filter.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_2, © Springer Science+Business Media, LLC 2011

Chapter 2
Data Structures and Mathematical Algorithms

28

The XML data structure is the most common structure used in sharing informa-
tion between systems and frequently how it is stored within a system. It is how
items are received by the Ingest process and it is typically used if items are ex-
ported to other applications and systems. Given the commonality of XML there has
been TREC conference experiments on how to optimize search systems whose data
structure is XML.

The hypertext data structure is the basis behind URL references on the internet.
But more importantly is the logical expansion of the definition of an item when hy-
pertext references are used and its potential impact on searches. The latest Internet
search systems have started to make use of hypertext links to expand what infor-
mation is indexed associated with items. Most commonly it is used when indexing
multimedia objects but there is a natural extension to textual items.

There are some mathematical notions that are frequently used in information
retrieval systems. Bayesian mathematics has a variety of uses in information re-

Fig. 2.1   Major data
structures

2 Data Structures and Mathematical Algorithms

29

trieval. Another important concept comes from Communications systems and In-
formation Theory based upon the work of Claude Shannon and is the basis behind
most of the commonly used weighting algorithms. Hidden Markov models are used
in both searching and also are a technical base behind multimedia information item
processing. Latent Semantic Indexing is one of the few techniques that has been
used commercially to create concept indices. Neural networks and Support Vector
Machines are the most common learning algorithms used to automatically construct
search structures from user examples used for example in Categorization.

2.1.2  �Inverted File Structure

The most common data structure used in both database management and Infor-
mation Retrieval Systems is the inverted file structure. Inverted file structures are
composed of three basic files: the document file, the inversion lists (sometimes
called posting files) and the dictionary. The name “inverted file” comes from its
underlying methodology of storing an inversion of the documents: inversion of the
documents from the perspective that instead of having a set of documents with
words in them, you create a set of words that has the list of documents they are
found in. Each document in the system is given a unique numerical identifier. It is
that identifier that is stored in the inversion list. The way to locate the inversion list
for a particular word is via the Dictionary. The Dictionary is typically a sorted list of
all unique words (processing tokens) in the system and a pointer to the location of
its inversion list (see Fig. 2.2). Dictionaries can also store other information used in
query optimization such as the length of inversion lists. Additional information may
be used from the item to increase precision and provide a more optimum inversion
list file structure. For example, if zoning is used, the dictionary may be partitioned
by zone. There could be a dictionary and set of inversion lists for the “Abstract”
zone in an item and another dictionary and set of inversion lists for the “Main Body”
zone. This increases the overhead when a user wants to search the complete item
versus restricting the search to a specific zone. Another typical optimization occurs
when the inversion list only contains one or two entries. Those entries can be stored
as part of the dictionary. The inversion list contains the document identifier for
each document in which the word is found. To support proximity, contiguous word

2.1 Data Structures

Fig. 2.2   Inverted file
structure

DOCUMENTS DICTIONARY INVERSION LISTS
bit (2) bit - 1, 3DOC #1, computer,

bit, byte
DOC #2, memory,
byte
DOC #3, computer,
bit, memory
DOC #4, byte,
computer

byte (3) byte - 1, 2, 4

computer (3) computer - 1, 3, 4

memory (2) memory - 2, 3

30

phrases and term weighting algorithms, all occurrences of a word are stored in the
inversion list along with the word position. Thus if the word “bit” was the tenth,
twelfth and eighteenth word in document #1, then the inversion list would appear:

bit—1(10), 1(12), 1(18)

Weights can also be stored in inversion lists. Words with special characteristics are
frequently stored in their own dictionaries to allow for optimum internal representa-
tion and manipulation (e.g., dates which require date ranging and numbers).

When a search is performed, the inversion lists for the terms in the query are
located and the appropriate logic is applied between inversion lists. The result is
a final hit list of items that satisfy the query. For systems that support ranking, the
list is reorganized into ranked order. The document numbers are used to retrieve the
documents from the Document File. Using the inversion lists in Fig. 2.2, the query
(bit AND computer) would use the Dictionary to find the inversion lists for “bit”
and “computer.” These two lists would be logically ANDed: (1,3) AND (1,3,4) re-
sulting in the final Hit list containing (1,3).

Rather than using a dictionary to point to the inversion list, B-trees can be used.
The inversion lists may be at the leaf level or referenced in higher level pointers.
Fig. 2.3 shows how the words in Fig. 2.1 would appear. A B-tree of order m is de-
fined as:

•	 A root node with between 2 and 2m keys
•	 All other internal nodes have between m and 2m keys
•	 All keys are kept in order from smaller to larger
•	 All leaves are at the same level or differ by at most one level.

Cutting and Pedersen described use of B-trees as an efficient inverted file storage
mechanism for data that undergoes heavy updates (Cutting-90).

The nature of information systems is that items are seldom if ever modified once
they are produced. Most commercial systems take advantage of this fact by allow-
ing document files and their associated inversion lists to grow to a certain maximum
size and then to freeze them, starting a new structure. Each of these databases of
document file, dictionary, inversion lists is archived and made available for a user’s
query. This has the advantage that for queries only interested in more recent infor-
mation; only the latest databases need to be searched. Since older items are seldom

Fig. 2.3   B-tree inversion lists

b m

computer - 1, 3, 4 memory - 2, 3byte - 1, 2, 4bit - 1, 3

m to zc to la to b

2 Data Structures and Mathematical Algorithms

31

deleted or modified, the archived databases may be permanently backed-up, thus
saving on operations overhead. Starting a new inverted database has significant
overhead in adding new words and inversion lists until the frequently found words
are added to the dictionary and inversion lists. Previous knowledge of archived
databases can be used to establish an existing dictionary and inversion structure at
the start of a new database, thus saving significant overhead during the initial add-
ing of new documents. Other more scalable inversion list techniques are discussed
in Chap. 8.

Inversion lists structures are used because they provide optimum performance
in searching large databases. The optimality comes from the minimization of data
flow in resolving a query. Only data directly related to the query are retrieved from
secondary storage. Also there are many techniques that can be used to optimize the
resolution of the query based upon information maintained in the dictionary.

Inversion list file structures are well suited to store concepts and their relation-
ships. Each inversion list can be thought of as representing a particular concept.
Words are typically used to define an inversion list but in Chap. 3 when categoriza-
tion and entities are discussed, the inversion lists can easily be extended to include
those as additional index for an item. The individual word may not be representative
of a concept but by use of a proximity search the user can combine words all within
a proximity (e.g., in the same sentence) and thus get closer to a concept. The inver-
sion list is then a concordance of all of the items that contain that concept. Finer
resolution of concepts can additionally be maintained by storing locations with an
item and weights of the item in the inversion lists. With this information, relation-
ships between concepts can be determined as part of search algorithms. Location
of concepts is made easy by their listing in the dictionary and inversion lists. For
Natural Language Processing algorithms, other structures may be more appropriate
or required in addition to inversion lists for maintaining the required semantic and
syntactic information.

2.1.3  �N-Gram Data Structures

N-Grams can be viewed as a special technique for conflation (stemming) and as a
unique data structure in information systems. N-Grams are a fixed length consecu-
tive series of “n” characters. Unlike stemming that generally tries to determine the
stem of a word that represents the semantic meaning of the word, n-grams do not
care about semantics. Instead they are algorithmically based upon a fixed number of
characters. The searchable data structure is transformed into overlapping n-grams,
which are then used to create the searchable database. Examples of bigrams, tri-
grams and pentagrams are given in Fig. 2.4 for the word phrase “sea colony.”

For n-grams, with n greater than two, some systems allow interword symbols to
be part of the n-gram set usually excluding the single character with interword sym-
bol option. The symbol # is used to represent the interword symbol which is anyone
of a set of symbols (e.g., blank, period, semicolon, colon, etc.). Each of the n-grams

2.1 Data Structures

32

created becomes separate processing tokens and are searchable. It is possible that
the same n-gram can be created multiple times from a single word.

2.1.3.1  �History

The first use of n-grams dates to World War II when it was used by cryptographers.
Fletcher Pratt states that “with the backing of bigram and trigram tables any cryp-
tographer can dismember a simple substitution cipher” (Pratt-42). Use of bigrams
was described by Adamson as a method for conflating terms (Adamson-74). It does
not follow the normal definition of stemming because what is produced by creating
n-grams are word fragments versus semantically meaningful word stems. It is this
characteristic of mapping longer words into shorter n-gram fragments that seems
more appropriately classified as a data structure process than a stemming process.

Another major use of n-grams (in particular trigrams) is in spelling error detec-
tion and correction (Angell-83, McIllroy-82, Morris-75, Peterson-80, Thorelli-62,
Wang-77, and Zamora-81). Most approaches look at the statistics on probability of
occurrence of n-grams (trigrams in most approaches) in the English vocabulary and
indicate any word that contains non-existent to seldom used n-grams as a potential
erroneous word. Damerau specified four categories of spelling errors (Damerau-64)
as shown in Fig. 2.5.

Using the classification scheme, Zamora showed trigram analysis provided a
viable data structure for identifying misspellings and transposed characters. This
impacts information systems as a possible basis for identifying potential input er-
rors for correction as a procedure within the normalization process (see Chap. 1).
Frequency of occurrence of n-gram patterns also can be used for identifying the
language of an item (Damashek-95, Cohen-95).

Fig. 2.4   Bigrams, trigrams
and pentagrams for “sea
colony”

se ea co ol lo on ny Bigrams
(no interword symbols)

sea col olo lon ony Trigrams
(no interword symbols)

#se sea ea# #co col olo lon ony ny# Trigrams
(with interword symbol #)

#sea# #colo colon olony lony# Pentagrams
(with interword symbol #)

Fig. 2.5   Categories of
spelling errors

Error Category Example

Single Character Insertion compuuter

Single Character Deletion compter

Single Character Substitution compiter

Transposition of two adjacent characters computer

2 Data Structures and Mathematical Algorithms

33

In information retrieval, trigrams have been used for text compression and to
manipulate the length of index terms (Schek-78, Schuegraf-76). Some implemen-
tations used a variety of different n-grams as index elements for inverted file sys-
tems. They have also been the core data structure to encode profiles for the Logicon
LMDS system (Yochum-95) used for Selective Dissemination of Information. For
retrospective search, the Acquaintance System uses n-grams to store the searchable
document file (Damashek-95, Huffman-95) for retrospective search of large textual
databases.

2.1.3.2  �N-Gram Data Structure

As shown in Fig. 2.4, an n-gram is a data structure that ignores words and treats
the input as a continuous data, optionally limiting its processing by interword
symbols. The data structure consists of fixed length overlapping symbol segments
that define the searchable processing tokens. These tokens have logical linkages
to all the items in which the tokens are found. Inversion lists, document vectors
(described in Chap. 4) and other proprietary data structures are used to store the
linkage data structure and are used in the search process. In some cases just the
least frequently occurring n-gram is kept as part of a first pass search process
(Yochum-85).

The choice of the fixed length word fragment size has been studied in many
contexts. Yochum investigated the impacts of different values for “n.” Other re-
searchers investigated n-gram data structures using an inverted file system for n = 2
to n = 26. Trigrams (n-grams of length 3) were determined to be the optimal length,
trading off information versus size of data structure. The Acquaintance System uses
longer n-grams, ignoring word boundaries. The advantage of n-grams is that they
place a finite limit on the number of searchable tokens.

The maximum number of unique n-grams that can be generated, MaxSeg, can be
calculated as a function of n which is the length of the n-grams, and  which is the
number of processable symbols from the alphabet (i.e., non-interword symbols).

Although there is a savings in the number of unique processing tokens and imple-
mentation techniques allow for fast processing on minimally sized machines, false
hits can occur under some architectures. For example, a system that uses trigrams
and does not include interword symbols or the character position of the n-gram in
an item finds an item containing “retain detail” when searching for “retail” (i.e.,
all of the trigrams associated with “retail” are created in the processing of “retain
detail”). Inclusion of interword symbols would not have helped in this example.
Inclusion of character position of the n-gram would have discovered that the n-
grams “ret,” “eta,” “tai,” “ail” that define “retail” are not all consecutively starting
within one character of each other. The longer the n-gram, the less likely this type
error is to occur because of more information in the word fragment. But the longer
the n-gram, the more it provides the same result as full word data structures since

MaxSegn = (λ)n

2.1 Data Structures

34

most words are included within a single n-gram. Another disadvantage of n-grams
is the increased size of inversion lists (or other data structures) that store the linkage
data structure. In effect, use of n-grams expands the number of processing tokens
by a significant factor. The average word in the English language is between six
and seven characters in length. Use of trigrams increases the number of processing
tokens by a factor of five if interword symbols are not included. Thus the inversion
lists increase by a factor of five.

Because of the processing token bounds of n-gram data structures, optimized
performance techniques can be applied in mapping items to an n-gram searchable
structure and in query processing. There is no semantic meaning in a particular n-
gram since it is a fragment of processing token and may not represent a concept.
Thus n-grams are a poor representation of concepts and their relationships. But the
juxtaposition of n-grams can be used to equate to standard word indexing, achiev-
ing the same levels of recall and within 85% precision levels with a significant im-
provement in performance (Adams-92). Vector representations of the n-grams from
an item can be used to calculate the similarity between items. N-grams can be very
useful when the items in the database are not typical textual items. For example a
database of software programs would be far more searchable using n-grams as the
tokenization data structure.

2.1.4  �PAT Data Structure

Using n-grams with interword symbols included between valid processing tokens
equates to a continuous text input data structure that is being indexed in contigu-
ous “n” character tokens. A different view of addressing a continuous text input
data structure comes from PAT trees and PAT arrays. The input stream is trans-
formed into a searchable data structure consisting of substrings. The original con-
cepts of PAT tree data structures were described as Patricia trees (Frakes-92) and
have gained new momentum as a possible structure for searching text and images
and applications in genetic databases. The name PAT is short for PATRICIA Trees
(PATRICIA stands for Practical Algorithm To Retrieve Information Coded In
Alphanumerics.)

In creation of PAT trees each position in the input string is the anchor point for
a sub-string that starts at that point and includes all new text up to the end of the
input. All substrings are unique. This view of text lends itself to many different
search processing structures. It fits within the general architectures of hardware text
search machines and parallel processors. A substring can start at any point in the
text and can be uniquely indexed by its starting location and length. If all strings are
to the end of the input, only the starting location is needed since the length is the
difference from the location and the total length of the item. It is possible to have a
substring go beyond the length of the input stream by adding additional null char-
acters. These substrings are called sistring (semi-infinite string). Figure 2.6 shows
some possible sistrings for an input text.

2 Data Structures and Mathematical Algorithms

35

A PAT tree is an unbalanced, binary digital tree defined by the sistrings. The
individual bits of the sistrings decide the branching patterns with zeros branching
left and ones branching right. PAT trees also allow each node in the tree to specify
which bit is used to determine the branching via bit position or the number of bits to
skip from the parent node. This is useful in skipping over levels that do not require
branching.

The key values are stored at the leaf nodes (bottom nodes) in the PAT Tree. For a
text input of size “n” there are “n” leaf nodes and “n − 1” at most higher level nodes.
It is possible to place additional constraints on sistrings for the leaf nodes. We may
be interested in limiting our searches to word boundaries. Thus we could limit our
sistrings to those that are immediately after an interword symbol. Figure 2.7 gives
an example of the sistrings used in generating a PAT tree. The example only goes
down 9 levels. It shows the minimum binary prefixes that uniquely identify each
row. If the binary representations of “h” is (100), “o” is (110), “m” is (001) and
“e” is (101) then the word “home” produces the input 100110001101…. Using the
sistrings, the full PAT binary tree is shown in Fig. 2.8. A more compact tree where
skip (reduced PAT tree) values are in the intermediate nodes is shown in Fig. 2.9.
In the compact tree, if only one branch of a tree is being extended by the sistrings,
you can skip comparisons on those levels because the values are not optional (i.e.,
cannot be a 1 or a 0—but just one of those values) and thus there are not branches
that you could take. The value in the intermediate nodes (indicated by rectangles)
is the number of bits to skip until the next bit to compare that causes differences
between similar terms. This final version saves space, but requires one additional
comparison whenever you encounter a 1 and zero optional level to validate there
were no errors in the positions that were jumped over. In the example provided it
is at the leaf level but could occur at any level within the tree (in an oval). In the

Fig. 2.6   Examples of
sistrings

Text Economics for Warsaw is complex.

sistring 1 Economics for Warsaw is complex.
sistring 2 conomics for Warsaw is complex.
sistring 5 omics for Warsaw is complex.
sistring 10 for Warsaw is complex.
sistring 20 w is complex.
sistring 30 ex.

Fig. 2.7   Sistrings for input
“0110111101101110”

2.1 Data Structures

36

reduced PAT tree the node that has “111” in it could have alternatively been shown
as a circle with a skip of 1 position.

To search, the search terms are also represented by their binary representation
and the PAT trees for the sistrings are traveled down based upon the values in the
search term to look for match(es).

Fig. 2.8   PAT Binary tree for input “0110111101101110”

2 Data Structures and Mathematical Algorithms

37

As noted in Chap. 1, one of the most common classes of searches is prefix search-
es. PAT trees are ideally constructed for this purpose because each sub-tree contains
all the sistrings for the prefix defined up to that node in the tree structure. Thus all
the leaf nodes after the prefix node define the sistrings that satisfy the prefix search
criteria. This logically sorted order of PAT trees also facilitates range searches since
it is easy to determine the sub-trees constrained by the range values. If the total in-
put stream is used in defining the PAT tree, then suffix, imbedded string, and fixed
length masked searches (see Sect. 2.1.5) are all easy because the given characters
uniquely define the path from the root node to where the existence of sistrings need
to be validated. Fuzzy searches are very difficult because large number of possible
sub-trees could match the search term.

A detailed discussion on searching PAT trees and their representation as an array
is provided by Gonnet, Baeza-Yates and Snider (Gonnet-92). In their comparison to
Signature and Inversion files, they concluded that PAT arrays have more accuracy
than Signature files and provide the ability to string searches that are inefficient in
inverted files (e.g., suffix searches, approximate string searches, longest repetition).

Fig. 2.9   Reduced PAT tree for “0110111101101110”

2.1 Data Structures

38

Pat Trees (and arrays) provide an alternative structure if string searching is the
goal. They store the text in an alternative structure supporting string manipulation.
The structure does not have facilities to store more abstract concepts and their re-
lationships associated with an item. The structure has interesting potential applica-
tions, and was the original structure used in the BrightPlanet (http://www.bright-
planet.com) system that searches the deep web (discussed in Chap. 3). Additionally
PAT trees have been used to index Chinese since they do not have word separators
(see Chap. 3).

2.1.5  �Signature File Structure

The goal of a signature file structure is to provide a fast test to eliminate the majority
of items that are not related to a query. The items that satisfy the test can either be
evaluated by another search algorithm to eliminate additional false hits or delivered
to the user to review. The text of the items is represented in a highly compressed
form that facilitates the fast test. Because file structure is highly compressed and
unordered, it requires significantly less space than an inverted file structure and new
items can be concatenated to the end of the structure versus the significant inversion
list update. Since items are seldom deleted from information data bases, it is typical
to leave deleted items in place and mark them as deleted. Signature file search is
a linear scan of the compressed version of items producing a response time linear
with respect to file size.

The surrogate signature search file is created via superimposed coding (Falout-
sos-85). The coding is based upon words in the item. The words are mapped into a
“word signature.” A word signature is a fixed length code with a fixed number of
bits set to “1.” The bit positions that are set to one are determined via a hash func-
tion of the word. The word signatures are ORed together to create the signature
of an item. To avoid signatures being too dense with “1”s, a maximum number of
words is specified and an item is partitioned into blocks of that size. In Fig. 2.10 the
block size is set at five words, the code length is 16 bits and the number of bits that
are allowed to be “1” for each word is five.

Fig. 2.10   Superimposed
coding

WORD Signature

Computer 0001 0110 0000 0110
Science 1001 0000 1110 0000
graduate 1000 0101 0100 0010
students 0000 0111 1000 0100
study 0000 0110 0110 0100

Block Signature 1001 0111 1110 0110

TEXT: Computer Science graduate students study
(assume block size is five words)

2 Data Structures and Mathematical Algorithms

39

The words in a query are mapped to their signature. Search is accomplished by
template matching on the bit positions specified by the words in the query.

The signature file can be stored as a signature with each row representing a
signature block. Associated with each row is a pointer to the original text block. A
design objective of a signature file system is trading off the size of the data structure
versus the density of the final created signatures. Longer code lengths reduce the
probability of collision in hashing the words (i.e., two different words hashing to
the same value). Fewer bits per code reduce the effect of a code word pattern being
in the final block signature even though the word is not in the item. For example,
if the signature for the word “hard” is 1000 0111 0010 0000, it incorrectly matches
the block signature in Fig. 2.10 (false hit). In a study by Faloutous and Christodou-
lakis (Faloutous-87) it was shown that if compression is applied to the final data
structure, the optimum number of bits per word is one. This then takes on the ap-
pearance of a binary coded vector for each item, where each position in the vector
represents the existence of a word in the item. This approach requires the maximum
code length but ensures that there are not any false hits unless two words hash to
the same value.

Search of the signature matrix requires O(N) search time. To reduce the search
time the signature matrix is partitioned horizontally. One of the earliest techniques
hashes the block signature to a specific slot. If a query has less than the number
of words in a block it maps to a number of possible slots rather than just one. The
number of slots decreases exponentially as the number of terms increases (Gus-
tafson-71). Another approach maps the signatures into an index sequential file,
where, for example, the first “n” bits of the signature is used as the index to the
block of signatures that will be compared sequentially to the query (Lee-89). Other
techniques are two level signatures (Sacks-Davis-83) and use of B-tree structures
with similar signatures clustered at leaf nodes (Deppisch-86).

Another implementation approach takes advantage of the fact that searches
are performed on the columns of the signature matrix, ignoring those columns
that are not indicated by hashing of any of the search terms. Thus the signature
matrix may be stored in column order versus row order (Faloutsos-88, Lin-88,
Roberts-79), called vertical partitioning. This is in effect storing the signature
matrix using an inverted file structure. The major overhead comes from updates,
since new “1”s have to be added to each inverted column representing a signature
in the new item.

Signature files provide a practical solution for storing and locating information
in a number of different situations. Faloutsos summarizes the environments that
signature files have been applied as medium size databases, databases with low
frequency of terms, WORM devices, parallel processing machines, and distributed
environments (Faloutsos-92).

One of the first steps in ingesting items is to detect duplicate and near duplicate
items (see Chap. 3). One way of representing the text in items is via signatures
which could be used to detect near duplicates.

2.1 Data Structures

40

2.1.6  �Hypertext and XML Data Structures

The advent of the Internet and its exponential growth and wide acceptance as a
new global information network has introduced new mechanisms for representing
information. This structure is called hypertext and differs from traditional informa-
tion storage data structures in format and use. The hypertext is stored in Hypertext
Markup Language (HTML) and eXtensible Markup Language (XML). HTML is
an evolving standard as new requirements for display of items on the Internet are
identified and implemented. Both of these languages provide detailed descriptions
for subsets of text similar to the zoning discussed previously. These subsets can be
used the same way zoning is used to increase search accuracy and improve display
of hit results.

In addition to using the HTML or XML to define zones, it also can be used to
identify metadata to be extracted and associated with that item. For example there
could be a date field or a source field. HTML also contains display information such
as “bolding”. That information is also useful to indicate the importance of a word
used in ranking (ordering) the hits from a search. Over the past few years a new
standard called XHTML has been introduced that merges the XML data description
with the HTML presentation.

2.1.6.1  �Definition of Hypertext Structure

The Hypertext data structure is used extensively in the Internet environment and
requires electronic media storage for the item. Hypertext allows one item to refer-
ence another item via an imbedded pointer. Each separate item is called a node and
the reference pointer is called a link. The referenced item can be of the same or a
different data type than the original (e.g., a textual item references a photograph).
Each node is displayed by a viewer that is defined for the file type associated with
the node.

For example, Hypertext Markup Language (HTML) defines the internal structure
for information exchange across the World Wide Web on the Internet. A document is
composed of the text of the item along with HTML tags that describe how to display
the document. Tags are formatting or structural keywords contained between less-
than, greater than symbols (e.g., <title>, meaning display prominently).
The HTML tag associated with hypertext linkages is where
“a” and “/a” are an anchor start tag and anchor end tag denoting the text that the user
can activate. “href” is the hypertext reference containing either a file name if the ref-
erenced item is on this node or an address (Uniform Resource Locator—URL) and
a file name if it is on another node. “#NAME” defines a destination point other than
the top of the item to go to. The URL has three components: the access method the
client used to retrieve the item, the Internet address of the server where the item is
stored, and the address of the item at the server (i.e., the file including the directory
it is in). For example, the URL for the HTML specification appears:

http://info.cern.ch/hypertext/WWW/MarkUp/HTML.html

2 Data Structures and Mathematical Algorithms

41

“HTTP” stands for the Hypertext Transfer Protocol which is the access protocol
used to retrieve the item in HTML. Other Internet protocols are used for other
activities such as file transfer (ftp://), remote logon (telnet://) and collaborative
newsgroups (news://). The destination point is found in “info.cern.ch” which is
the name of the “info” machine at CERN with “ch” being Switzerland, and “/hy-
pertext/WWW/MarkUP/HTML.html” defines where to find the file HTML.html.
Figure 2.11 shows an example of a segment of a HTML document. Most of the for-
matting tags indicated by < > are not described, being out of the scope of this text,
but detailed descriptions can be found in the hundreds of books available on HTML.
The are the previously described hypertext linkages.

An item can have many hypertext linkages. Thus, from any item there are mul-
tiple paths that can be followed in addition to skipping over the linkages to continue
sequential reading of the item. This is similar to the decision a reader makes upon
reaching a footnote, whether to continue reading or skip to the footnote. Hypertext
is sometimes called a “generalized footnote.” But that can be misleading because
quite often the link is to a major extension of the current item.

In a conventional item the physical and logical structure are closely related. The
item is sequential with imbedded citations to other distinct items or locations in the
item. From the author’s perspective, the substantive semantics lie in the sequential
presentation of the information. Hypertext is a non-sequential directed graph structure,
where each node contains its own information. The author assumes the reader can
follow the linked data as easily as following the sequential presentation. A node may
have several outgoing links, each of which is then associated with some smaller part of
the node called an anchor. When an anchor is activated, the associated link is followed
to the destination node, thus navigating the hypertext network. There is text that the
reader sees that is associated with the anchor (anchor text). This takes on importance
in Information retrieval because it is quite often used as index text for the anchor when
it is pointing to a multimedia file versus just another textual page. The organizational
and reference structure of a conventional item is fixed at printing time while hypertext
nodes and links can be changed dynamically. New linkages can be added and the in-
formation at a node can change without modification to the item referencing it.

Conventional items are read sequentially by a user. In a hypertext environment,
the user “navigates” through the node network by following links. This is the defin-
ing capability that allows hypertext to manage loosely structured information. Each

Fig. 2.11   Example of
segment of HTML

<CENTER>
<IMG SC=”/images/home_iglo.jpg” WIDTH=468 HEIGHT=107
BORDER=0 ALT=”WELCOME TO NETSCAPE>

<P>
<DL>

<DD>
The beta testing is over: please read our report and
your can find more references at
HREF=”http://www.charm.net/doc/charm/results/tests.html”>

2.1 Data Structures

42

thread through different nodes could represent a different concept with additional
detail. In a small and familiar network the navigation works well, but in a large
information space, it is possible for the user to become disoriented.

Quite often hypertext references are used to include information that is other
than text (e.g., graphics, audio, photograph, video) in a text item. During the ingest
process described in Chap. 3, the system can easily identify different multimedia
modalities to assist in directing those items to the appropriate ingest and indexing
software. The multiple different uses for hypertext references are evolving as more
experience is gained with them. When the hypertext is logically part of the item,
such as in a graphic, the referenced file is usually resident at the same physical
location. When other items created by other users are referenced, they frequently
are located at other physical sites. When items are deleted or moved, there is no
mechanism to update other items that reference them. Linkage integrity is a major
issue in use of hypertext linkages.

Dynamic HTML became available with Navigator 4.0 and Internet Explorer 4.0.
It is a collective term for a combination of the latest HTML tags and options, style
sheets and programming that will let you create WEB pages that are more animated
and responsive to user interaction. Some of the features supported are an object-
oriented view of a WEB page and its elements, cascading style sheets, programming
that can address most page elements add dynamic fonts. Object oriented views are
defined by the Document Object Model—DOM (Micorsoft calls this the Dynamic
HTML Object Model while Netscape calls it the HTML Object Model). For example
every heading on a page can be named and given attributes of text style and color
that can be manipulated by name in a small “program” or script included on the page.
A style sheet describes the default style characteristics (page layout, font, text size,
etc) of a document or portion of a document. Dynamic HTML allows the specifica-
tion of style sheets in a cascading fashion (linking style sheets to predefined levels
of precedence within the same set of pages). As a result of a user interaction, a new
style sheet can be applied changing the appearance of the display. Layering is the use
of alternative style sheets to vary the content of a page by providing content layers
that overlay and superimpose existing content sections. The existing HTML pro-
gramming capabilities are being expanded to address the additional data structures.

HTML prior to version 5 was based upon SGML (Standard Generalized Mark-up
Language) and was a very simplified subset of it. With the increasing use of XML to
define data structures it became sensible to define a new HTML structure that could
work well with XML data and provide Internet displays of the XML data. This lead
to XHTML (extensible hypertext mark-up language). Since it works with XML it
also inherits the “well formed” structural constraints associated with XML. This
makes the automated processing easier versus the more complex parsers needed for
HTML based upon SGML. The other advantage is XHTML documents could in-
clude XML structures from other XML based languages. At this point changes from
HTML to XHTML have been kept to a minimum primarily to adhere to the rules
of XML. Since Internet Explorer has not accepted XHTML there remains major re-
sistance to its general usage. In July 2009 W3C announced that they will stop work
on expanding XHTML and focus on HTML 5 that combines HTML and XHTML.

2 Data Structures and Mathematical Algorithms

43

2.1.6.2  �Hypertext History

Although information sciences is just starting to address the impact of the hypertext
data structure, the concept of hypertext has been around for over 50 years. In 1945
an article written by Vannevar Bush in 1933 was published describing the Memex
(memory extender) system (Bush-67). It was a microfilm based system that would
allow the user to store much of the information from the scientific explosion of the
1940s on microfilm and retrieve it at multiple readers at the user’s desk via indi-
vidual links. The term “hypertext” came from Ted Nelson in 1965 (Nelson-74). Nel-
son’s vision of all the world’s literature being interlinked via hypertext references
is part of his Xanadu System. The lack of cost effective computers with sufficient
speed and memory to implement hypertext effectively was one of the main inhibi-
tors to its development. One of the first commercial uses of a hypertext system was
the mainframe system, Hypertext Editing System, developed at Brown University
by Andres van Dam and later sold to Houston Manned Spacecraft Center where
it was used for Apollo mission documentation (van Dam-88). Other systems such
as the Aspen system at MIT, the KMS system at Carnegie Mellon, the Hyperties
system at the University of Maryland and the Notecards system developed at Xe-
rox PARC advanced the hypertext concepts providing hypertext (and hypermedia)
systems. HyperCard, delivered with Macintosh computers, was the first widespread
hypertext production product. It had a simple metalanguage (HyperTalk) that facili-
tated authoring hypertext items. It also provided a large number of graphical user
interface elements (e.g., buttons, hands,) that facilitated the production of sophisti-
cated items.

Hypertext became more available in the early 1990s via its use in CD-ROMs
for a variety of educational and entertainment products. Its current high level of
popularity originated with it being part of the specification of the World Wide Web
by the CERN (the European Center for Nuclear Physics Research) in Geneva, Swit-
zerland. The Mosaic browser, freely available from CERN on the Internet, gave
everyone who had access the ability to receive and display hypertext documents.

2.1.7  �XML

The eXtensible Markup Language (XML) is also becoming a standard encoding
structure for documents on the WEB and as a data exchange format for Web ser-
vices applications (e.g., used for web services). Its first recommendation (1.0) was
issued on February 10, 1998. It is a middle ground between the simplicities but lack
of flexibility of HTML and the complexity but richness of SGML (ISO 8879). Its
objective is extending HTML with semantic information and removing the display
specification from the data specification. The logical data structure within XML
is defined by a Data Type Description (DTD) and is not constrained to the 70 de-
fined tags and 50 attributes in the single DTD for HTML. The original DTD did
not allow for complex definition of data types within the data structure so it was

2.1 Data Structures

44

expanded to other ways of defining XML structures called schemas. The DTD is
a very restricted version of an XML schema. Some of the other more common
schemas are Schema W3C and RELAX NG. The user can create any tags needed to
describe and manipulate their structure. The W3C (World Wide Web Consortium)
is redeveloping HTML as a suite of XML tags. The following is a simple example
of XML tagging:

<company>Widgets Inc.</company>
<city>Boston</city>
<state>Mass</state>
<product>widgets</product>

The W3C is also developing a Resource Description Format (RDF) for representing
properties of WEB resources such as images, documents and relationships between
them. This will include the Platform for Internet Content Selection (PICS) for at-
taching labels to material for filtering (e.g., unsuitable for children).

Hypertext links for XML were being defined in the Xlink (XML Linking Lan-
guage) but work stopped in this area. Xpoint (XML Pointer language) specifica-
tions. This would allow for distinction for different types of links to locations within
a document and external to the document. This would allow an application to know
if a link is just a repositioning reference within an item or link to another docu-
ment that is an extension of the existing document. This would help in determining
what needs to be retrieved to define the total item to be indexed. But the standards
committees could not get a critical mass following interested in implementing this
concept.

Finally XML will include an XML Style Sheet Linking definition to define how
to display items on a particular style sheet and handle cascading style sheets. This
will allow designers to limit what is displayed to the user (saving on display screen
space) and allow expansion to the whole item if desired. Cascading Style Sheets
provide an easy way to dynamically manage the output display of XML to the user.

2.2  �Mathematical Algorithms

2.2.1  �Introduction

There are a number of mathematical concepts that form the basis behind a lot of
the weighted indexing techniques used in creating the indices for information
retrieval systems. The goal of this section is to provide a brief introduction to the
important mathematical concepts. If the student wants to use the concepts in ei-
ther research or applications they are developing then significant additional read-
ing on the concepts is required. The two most important theories are the Bayes-
ian theory and Shannon’ Information theory. Bayesian models are a conditional
model associated with probabilities that estimates the probability of one event

2 Data Structures and Mathematical Algorithms

45

given another event takes place. This directly maps into the probability that a
document is relevant given a specific query. It additionally can be used to define
clustering relationships used in automatic creation of taxonomies associated with
search results and item databases. Shannon’s information model describes the
“information value” given the frequency of occurrence of an event. In this case it
can be related to how many items contain a particular word and how that affects
its importance (if a word is found in every item in the database it does not have
much search vale).

Hidden Markov Models are the basis behind the transformation of audio into
transcribed text that is one approach to indexing audio and video. In addition it is
frequently used in the optical character processing of text in images to computer
recognized text. It also has been proposed as a basis behind indexing and search for
textual items. Latent semantic indexing is one of the best mathematical techniques
to explain how a “concept” index is created and it has been used commercially to
create concept indices. It is technique that allows for automatic mapping of millions
of words used to create items into a small number (e.g. 300) concept vectors that
represent the vocabulary of the language. The concept vectors are then like a meta-
language used to express both the items and the queries.

In addition to the algorithms used in creating the index, there is a need in in-
formation retrieval for learning algorithms that allow the system to learn what is
of interest to a user and then be able to use the dynamically created and updated
algorithms to automatically analyze new items to see if they satisfy the existing cri-
teria. This is used in techniques often labeled as “Categorization”. The two primary
techniques used for the learning algorithms are neural networks and support vector
machines.

The goal of this section is to introduce the mathematical basis behind the algo-
rithms used in information retrieval. To really understand the details on how the
algorithms are used in information retrieval you should take courses in probability
and machine learning.

2.2.2  �Bayesian Mathematics

The earliest mathematical foundation for information retrieval dates back to the
early 1700s when Thomas Bayes developed a theorem that relates the conditional
and marginal probabilities of two random events—called Baye’s Theorem. It can
be used to compute the posterior probability (probability assigned “after” relevant
evidence is considered) of random events. For example, it allows to consider the
symptoms of a patient and use that information to determine the probability of what
is causing the illness. Bayes’ theorem relates the conditional and marginal prob-
abilities of events A and B, where B cannot equal zero:

P(A|B) =
P(B|A)P(A)

P(B)
.

2.2 Mathematical Algorithms

46

P(A) is called the prior or marginal probability of A. It is called “prior” because
it does not take into account any information about B. P(A|B) is the conditional
probability of A, given B. It is sometimes named the posterior probability because
the probability depends upon the probability of B. P(B|A) is the conditional prob-
ability of B given A. P(B) is the prior or marginal probability of B, and normalizes
the result.

Putting the terms into words given our example helps in understanding the formula:

•	 The probability of a patient having the flu given the patient has a high tempera-
ture is equal to the probability that if you have a high temperature you have the
flu times the probability you will have the flu. This is then normalized by divid-
ing times the probability that you have a high temperature.

To relate Bayesian Theory to information retrieval you need only to consider the
search process. A user provides a query, consisting of words, which represent the
user’s preconceived attempt to describe the semantics needed in an item to be re-
trieved for it to be relevant. Since each user submits these terms to reflect their own
idea of what is important, they imply a preference ordering (ranking) among all of
the documents in the database. Applying this to Bayes’s Theorem you have:

The major issues with using this to determine which items are most relevant to the
query are Bayes Theorem assumes independence (i.e., each term is independent of
every other term), and how to get the probability for some of the terms in the above
formula. These issues will be discussed in Chap. 4 on indexing.

A Bayesian network is a directed acyclic graph in which each node represents
a random variable and the arcs between the nodes represent a probabilistic depen-
dence between the node and its parents (Howard-81, Pearl-88). Figure 2.12 shows
the basic weighting approach for index terms or associations between query terms
and index terms.

The nodes C1 and C2 represent “the item contains concept Ci” and the F nodes
represent “the item has feature (e.g., words) Fij.” The network could also be inter-

P(An item is relevant/Query) =
P(Query/Relevant item) P(An item is relevant)

P(Query)

Fig. 2.12   Two-level Bayesian network

2 Data Structures and Mathematical Algorithms

47

preted as C representing concepts in a query and F representing concepts in an item.
The goal is to calculate the probability of Ci given Fij. To perform that calculation
two sets of probabilities are needed:

1.	 The prior probability P(Ci) that an item is relevant to concept C
2.	 The conditional probability P(Fij/Ci) that the features Fij where j = 1, m are pres-

ent in an item given that the item contains topic Ci.

The automatic indexing task is to calculate the posterior probability P(Ci/Fi1, … ,
Fim), the probability that the item contains concept Ci given the presence of features
Fij. The Bayes inference formula that is used is:

If the goal is to provide ranking as the result of a search by the posteriors, the Bayes
rule can be simplified to a linear decision rule:

where I(Fik) is an indicator variable that equals 1 only if Fik is present in the item
(equals zero otherwise) and w is a coefficient corresponding to a specific feature/
concept pair. A careful choice of w produces a ranking in decreasing order that
is equivalent to the order produced by the posterior probabilities. Interpreting the
coefficients, w, as weights corresponding to each feature (e.g., index term) and the
function g as the sum of the weights of the features, the result of applying the for-
mula is a set of term weights (Fung-95).

2.2.3  �Shannon’s Theory of Information

In the late 1940s Claude Shannon, a research mathematician at Bell Telephone
Laboratories, invented a mathematical theory of communication to be used in the
design of telephone systems. The issues to be resolved were how to design tele-
phone systems to carry the maximum amount of information and how to cor-
rect for noise on the lines. He approached the problem by defining a simple ab-
straction of human communication called the channel. Shannon’s communication
channel consisted of a sender (a source of information), a transmission medium
(with noise), and a receiver (whose goal is to reconstruct the sender’s messages).
In order to analyze the sending of the information through the channel, he de-
fined the concept of the amount of information in a message. In this concept he
considered redundant information versus unique information. In this approach a
message is very informative (has a high information value) if the chance of its oc-
currence is small because the loss of the message means the information will be
lost. If, in contrast, a message is very predictable, then it has a small amount of
information—one is not surprised to receive it and its loss is not as critical because
it will be sent again.

Of less importance to information retrieval Shannon also defined the entropy
rate that measured the production rate of information production and a measure of

P(Ci/Fi1, . . . , Fim) = P(Ci) P(Fi1, . . . , Fim/Ci)\P(Fi1, . . . , Fim).

g(Ci/Fi1, . . . , Fim) = �kI(Fik)w(Fik,Ci)

2.2 Mathematical Algorithms

48

the channel capacity to carry information. He showed that if the amount of informa-
tion you want to send exceeds the capacity you will lose information. If the amount
of information you want to send is less than the capacity you can encode the infor-
mation in a way that it will be received without errors.

Shannon adapted his theory to analyze ordinary human (written) language. He
showed that it is quite redundant, using more symbols and words than necessary to
convey messages. Presumably, this redundancy is used by us to improve our ability
to recognize messages reliably and to communicate different types of information.
The formula for the information value of an event is:

This lead to the interpretation of Shannon’s theory that the information value of a
word is inversely proportional to how often it is used. A word that is found in every
document has no information value because it will always be there. But a word that
is found in few documents has high information value when you want to retrieve
documents with that word in it. This theory is the basis for the “inverse document
formula” (IDF) weighting formula used in many informational retrieval weighting
algorithms. It is also used in many other ways such as by the Autonomy product
in how it does concept searches—by applying this as a factor on the words it finds
when it creates taxonomy for them. This will be discussed in detail in Chap. 4 on
Indexing.

2.2.4  �Latent Semantic Indexing

Latent Semantic Indexing (LSI) was created to support information retrieval and
solve the problem of the mismatch between a user’s vocabulary and that of the
author. Its assumption is that there is an underlying or “latent” structure represented
by interrelationships between words (Deerwester-90, Dempster-77, Dumais-95,
Gildea-99, Hofmann-99). LSI starts with a “vector/matrix view of a set of docu-
ments. Just consider a vector where every position represents one word in a lan-
guage. Thus it will be a vector that will have millions of positions. A document can
be represented by the vector by placing a “weight” in each word location as to the
weight of that word in describing the semantics of the document. If you place the
vector for each document in the database in rows you will have a matrix represent-
ing your documents.

Latent Semantic Indexing uses singular-value decomposition to model the asso-
ciative relationships between terms similar to eigenvector decomposition and factor
analysis (see Cullum-85). This is a form of factor analysis. In SVD, a rectangular
matrix is decomposed into the product of three other matrices. One matrix describes
the original row entities as vectors of derived orthogonal factor values, another
matrix describes the original column entities in the same way, and the final matrix
is a diagonal matrix containing scaling values such that when the three components
are matrix-multiplied, the original matrix is reconstructed. There is a mathematical

Infok = −log(pk)

2 Data Structures and Mathematical Algorithms

49

proof that any matrix can be so decomposed perfectly, using no more factors than
the smallest dimension of the original matrix.

When fewer than the necessary number of factors is used, the reconstructed ma-
trix is a least-squares best fit which minimizes the differences between the original
and reduced matrix. One can reduce the dimensionality of the solution simply by
deleting coefficients in the diagonal matrix, ordinarily starting with the smallest.
Values. By having the values are sorted this will be the bottom rows of the matrix.

Mathematically, the rectangular matrix can be decomposed into the product of
three matrices. Let X be a m × n matrix such that:

where T0 and D0 have orthogonal columns and are m × r and r × n matrices, S0 is
an r × r diagonal matrix and r is the rank of matrix X. This is the singular value
decomposition of X. The k largest singular values of S0 are kept along with their
corresponding columns/rows in T0 and D0 matrices, the resulting matrix:

is the unique matrix of rank k that is closest in least squares sense to the original X.
The matrix

_
X, containing the first k independent linear components of the original

X represents the major associations with noise eliminated.
If you consider X to be the term-document matrix (e.g., all possible terms being rep-

resented by columns and each item being represented by a row), then truncated singular
value decomposition can be applied to reduce the dimensionality caused by all terms to
a significantly smaller dimensionality that is an approximation of the original X:

where u1 … uk and v1… vk are left and right singular vectors and sv1 … svk are
singular values. A threshold is used against the full SV diagonal matrix to determine
the cutoff on values to be used for query and document representation (i.e., the di-
mensionality reduction). Hofmann has modified the standard LSI approach using ad-
ditional formalism via Probabilistic Latent Semantic Analysis (Hofmann-99). Chap-
ter 4 will relate this specifically to informational retrieval indexing with examples.

It is instructive to show how to calculate the different matrices. An example of
how to calculate the three matrices follows (an online calculator for SVD is avail-
able at http://www.bluebit.gr/matrix-calculator/):

Perform Single Value Decomposition on the given matrix A such that A = USVT

X = T0 · S0 · D0
′

_
X = Tn · Sn · Dn

′

X = U · SV · V′

A =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





2.2 Mathematical Algorithms

50

Step 1:  Calculate ATA.

Step 2:  Find the determinant such that |ATA − CI| = 0—where I is the identity
matrix and C is a scalar—to obtain the Eigenvalues and singular values which will
be used to construct the S matrix.

AT A =




1 0 1 0 1 1 1 1 1 0 0
1 1 0 1 0 0 1 1 0 2 1
1 1 0 0 0 1 1 1 1 0 1



 ×





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





=




7 3 5
3 10 5
5 5 7





AT A − CI =




7 3 5
3 10 5
5 5 7



 −



C ∗




1 0 0
0 1 0
0 0 1









=




7 − c 3 5

3 10 − c 5
5 5 7 − c





∣∣ATA − CI
∣∣ = (7 − c)

[
(10 − c)(7 − c) − (5 ∗ 5)

]
− 3

[
3(7 − c) − (5 ∗ 5)

]

+ 5
[
(3 ∗ 5) − 5(10 − c)

]

= (7 − c)(70 − 10c − 7c + c2 − 25) − 3(21 − 3c − 25)

+ 5(15 − 50 + 5c)

= (7 − c)(c2 − 17c + 45) − 3(−3c − 4) + 5(5c − 35)

= 7c2 − 119c + 315 − c3 + 17c2 − 45c + 9c + 12 + 25c − 175

= −c3 + 24c2 − 130c + 152 = 0

c1 = 16.801
c2 = 5.577
c3 = 1.622




 Eigenvalues

|c1| > |c2| > |c3|

2 Data Structures and Mathematical Algorithms

51

The singular values would be:

Step 3:  Compute the Eigenvectors by evaluating (ATA – ciI) X1 = 0—where ci cor-
responds to each of the Eigenvalues that were computed in the previous step.

Calculating the Eigenvector for the Eigenvalue c1 = 16.801

� (1)

� (2)

� (3)

By subtracting Eq. (2) from Eq. (1) we get:

s1 =
√

16.801 = 4.0989

s2 =
√

5.577 = 2.3616

s3 =
√

1.622 = 1.2736

S =




s1 0 0
0 s2 0
0 0 s3



 =




4.0989 0 0

0 2.3616 0
0 0 1.2736





S−1 =




0.244 0 0

0 0.4234 0
0 0 0.7852





AT A − c1I =




7 − 16.801 3 5

3 10 − 16.801 5
5 5 7 − 16.801





=




−9.801 3 5

3 −6.801 5
5 5 −9.801





(AT A − c1I)X1 =




−9.801 3 5

3 −6.801 5
5 5 −9.801



 ×




x1

x2

x3



 =




0
0
0





−9.801x1 + 3x2 + 5x3 = 0

3x1 − 6.801x2 + 5x3 = 0

5x1 + 5x2 − 9.801x3 = 0

−12.801x1 + 9.801x2 = 0 → x1 = (−9.801/−12.801) x2 → x1 = 0.7656 x2

x1 −1

x2 −1.3061

x3 −1.1765

2.2 Mathematical Algorithms

52

Normalize the vector by the length

Using similar approach for calculating the Eigenvector for the Eigenvalue c2 = 5.577
you get

Normalize the vector by the length

And calculating the Eigenvector for the Eigenvalue c3 = 1.622

Normalize the vector by the length

The Eigenvector for c1 =




−1

−1.3061
−1.1765





L =
√

(−1)2 + (−1.3061)2 + (−1.1765)2 =
√

4.0901 = 2.0224

The normalized Eigenvector for c1 =




−0.4945
−0.6458
−0.5817





The Eigenvector for c2 =




1

−1.1083
0.3805





L =
√

(1)2 + (−1.1083)2 + (0.3805)2 =
√

2.3731 = 1.5405

The normalized Eigenvector for c2 =




0.6491

−0.7194
0.247





The Eigenvector for c3 =




−1

−0.4422
1.3408





L =
√

(−1)2 + (−0.4422)2 + (1.3408)2 =
√

2.9932 = 1.7301

The normalized Eigenvector for c3 =




−0.5780
−0.2556

0.775





2 Data Structures and Mathematical Algorithms

53

Step 4:  Construct the V matrix by using the calculated Eigenvactors as columns
in V.

Step 5:  Calculate the U matrix such that U = AVS−1.

V T =




0.4945 0.6491 0.5780
0.6458 −0.7194 0.2556

−0.5817 −0.247 0.775





U =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





×




−0.4945 0.6491 −0.5780
−0.6458 −0.7194 −0.2556
−0.5817 0.247 0.775





×




0.244 0 0

0 0.4234 0
0 0 0.7852





U =





0.4202
0.2995
0.1207
0.1576
0.1207
0.2626
0.4202
0.4202
0.2626
0.3152
0.2995

0.0748
−0.2
0.2748
−0.3046
0.2748
0.3794
0.0748
0.0748
0.3794
−0.6092
−0.2

−0.0461
0.4078
−0.4539
−0.2007
−0.4539
0.1546
−0.0461
−0.0461
0.1546
−0.4014
0.4078





2.2 Mathematical Algorithms

2.2.5  �Hidden Markov Models

Hidden Markov Models (HMM) have been applied for the last 20 years to solving
problems in speech recognition and to a lesser extent in the areas locating named
entities (Bikel-97), optical character recognition (Bazzi-98) and topic identification
(Kubala-97). More recently HMMs have been applied more generally to informa-
tion retrieval search with good results. One of the first comprehensive and practi-

54

cal descriptions of Hidden Markov Models was written by Dr. Lawrence Rabiner
(Rabiner-89).

A HMM can best be understood by first defining a discrete Markov process. The
easiest way to understand it is by an example. Let’s take the example of a three state
Markov Model of the Stock Market. The states will be one of the following that is
observed at the closing of the market:

State 1 (S1): market decreased
State 2 (S2): market did not change
State 3 (S3): market increased in value

The movement between states can be defined by a state transition matrix with state
transitions (this assumes you can go from any state to any other state):

Given that the market fell on one day (State 1), the matrix suggests that the prob-
ability of the market not changing the next day is 0.1. This then allows questions
such as the probability that the market will increase for the next 4 days then fall.
This would be equivalent to the sequence of SEQ = {S3, S3, S3, S3, S1}. In order
to simplify our model, lets assume that instead of the current state being dependent
upon all the previous states, lets assume it is only dependent upon the last state
(discrete, first order, Markov chain.) This would then be calculated by the formula:

In the equation we also assume the probability of the initial state of S3 is S3(init) = 1.
The Fig. 2.13 depicts the model. The directed lines indicate the state transition prob-
abilities ai,j. There is also an implicit loop from every state back to itself. In the
example every state corresponded to an observable event (change in the market).

A =
{
aI,i

}
=

0.5 0.3 0.4
0.1 0.6 0.3
0.6 0.7 0.5

P(SEQ) = P[S3, S3, S3, S3, S1]

= P[S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S1/S3]

= S3(init) ∗ a3,3 ∗ a3,3 ∗ a3,3 ∗ a1,3

= (1.0) ∗ (.5) ∗ (.5) ∗ (.5) ∗ (.4)

= .05

Fig. 2.13   Diagram of
Markov model

S1 S2

S3

2 Data Structures and Mathematical Algorithms

55

When trying to apply this model to less precise world problems such as in speech
recognition, this model was too restrictive to be applicable. To add more flexibility
a probability function was allowed to be associated with the state. The result is
called the Hidden Markov Model. It gets its name from the fact that there are two
stochastic processes with the underlying stochastic process not being observable
(hidden), but can only be analyzed by observations which originate from another
stochastic process. Thus the system will have as input a series of results, but it will
not know the number of states that were associated with generating the results nor
the probability of the states. So part of the HMM process is in determining which
model of states best explains the results that are being observed.

A more formal definition of a discrete Hidden Markov Model is summarized by
consists of the following:

1.	 S = {s0, … , sn−1} as a finite set of states where s0 always denotes the initial state.
Typically the states are interconnected such that any state can be reached from
any other state.

2.	 V = {v0, … , vm−1} is a finite set of output symbols. This will correspond to the
physical output from the system being modeled.

3.	 A = S × S a transition probability matrix where ai,j represents the probability of
transitioning from state i to state j such that

∑n−1
j=0 ai,j = 1 for all i = 0, …, n − 1.

Every value in the matrix is a positive value between 0 and 1. For the case where
every state can be reached from every other state every value in the matrix will
be non-zero.

4.	 B = S × V is an output probability matrix where element bj,k is a function deter-
mining the probability and

∑m−1
k=0 bj ,k = 1 for all j = 0, … , n − 1.

5.	 The initial state distribution.

The HMM will generate an output symbol at every state transition. The transition
probability is the probability of the next state given the current state. The output
probability is the probability that a given output is generated upon arriving at the
next state.

Given the HMM definition, it can be used as both a generator of possible se-
quences of outputs and their probabilities (as shown in example above), or given a
particular out sequence it can model its generation by an appropriate HMM model.
The complete specification of a HMM requires specification of the states, the output
symbols and three probability measures for the state transitions, output probability
functions and the initial states. The distributions are frequently called A, B, and π,
and the following notation is used to define the model:

One of the primary problems associated with HMM is how to efficiently calculate
the probability of a sequence of observed outputs given the HMM model. This can
best be looked at as how to score a particular model given a series of outputs. Or
another way to approach it is how to determine which of a number of competing
models should be selected given an observed set of outputs. This is in effect uncov-

λ = (A, B, π).

2.2 Mathematical Algorithms

56

ering the hidden part of the model. They typical approach is to apply an “optimality
criterion” to select the states. But there are many such algorithms to choose from.
Once you have selected the model that you expect corresponds to the output, then
there is the issue of determining which set of state sequences best explains the out-
put. The final issue is how best to tune the  model to maximize the probability of
the output sequence given . This is called the training sequence and is crucial to
allow the models to adapt to the particular problem being solved. More details can
be found in Rabiner’s paper (Rabiner-89).

2.2.6  �Neural Networks

An artificial neural network is based upon biological neural networks and is gen-
erally simplified to a directed multilevel network of that uses weighted additive
values coupled with non-linear transfer functions and a final output layer. One
of the first neural networks created was the Perceptron network created by Frank
Rosenblatt in 1958. It had an analogy to how the visual system works. Thus, the
first input layer was called the “retina” that distributed inputs to the second layer
composed of association units that combined the inputs with weights and triggered
a step function that would send the results to the final output layer. The output layer
would do the final combination of the inputs and output the results. This model was
a simple approximation of the neurons in the human system. But the use of a step
function, where a functions value increases in steps versus is continuous and each
step would be a different category, made the mathematics very difficult to allow the
system to train itself based upon inputs. By 1969 the problems with this model were
documented by papers by Marvin Minsky and Seymore Papert. The mathemati-
cal approach was revived in 1986 by Rumelhart, Hinton and Williames when they
expanded the concept to include a multilayer model that used nonlinear transfer
functions in lieu of the step functions.

There are many different types and approaches to neural networks. One of
the more common approaches continues with the Perceptron multilayer network
which is presented below. The simplest network is a three layer feed forward net-
work that has an input layer, middle layer (often called hidden layer) and an output
layer. Figure 2.14 shows the network. In the Input Function (IF), normalizes the

Fig. 2.14   Neural network

X1

Y1

Y1

Tm(∑Ui * Wj)

Tm(∑Ui * Wj)

U1

Un

V1

V1

X1
OF(∑Vi * Zj)

OF(∑Vi * Zj)

IF(X1)

IF(Xn)

2 Data Structures and Mathematical Algorithms

57

input values by subtracting the median and dividing by the interquartile range and
presents the resultant value Ui to the middle layer. The interquartile range (IQR) is
a measure of the variability of the distribution and is less sensitive to errors, being
equal to the difference between the third and first quartiles. If you divide the sorted
list into four parts, the quartiles are the three values from the list that separate each
section—the median is the second quartile. Every value goes to very function in
the middle layer. Each value is multiplied by a weight W and then summed creat-
ing a new vaue that then has the transfer function T applied to it producing the out-
put Vi. The V values are then multiplied by a weight Z and summed. The summed
value has the Output Transfer function (OF) applied to it producing the final output
from the network, Y. This is a feed forward network because none of the values are
fed back to previous layers. All neural networks have an Input and Output layer.
The number of middle layers can vary. But in general only one middle layer is
needed for most problems.

Training is a critical aspect of a neural network. In the training process a set of
known data is used that the ideal outputs (Yi) are known. In the training process the
objective is to modify the weight values (W and Z) to match the output as closely
as possible. This leads to some of the problems that have to be monitored in the
training process. Additional middle layers may help improve the results although
as noted above usually one or two middle layers are sufficient. It may be useful to
not feed all of the outputs from one layer into all of the nodes at the next layer (the
number of nodes at one layer can be different than the previous layer—in the above
example they appear to be the same). The biggest issue is to be careful that the solu-
tion is not a local maximum versus a more general global maximum that will apply
as new inputs are processed causing over fitting of the solution.

Selecting the number of nodes (neurons) at each layer is very complex. If too few
are selected it will be difficult to model complex problems. If too many are selected
the computation time increases expontentially and the result can more likely be
overfitted to the training data. For this reason two sets of test data are used. The first
for the training and the second to validate that the system has not been overfitted to
just the original data set.

Trying to find the optimum weights is also a very difficult problem. There
can be hundreds of weights that need to be estimated. But the estimation is not
linear to produce the desired outputs. In the process of finding the weights there
will be many cases of local minima and maxima that need to be avoided. To
avoid local minima the easiest technique is to try a number of random starting
points in the estimation and choose the one that works best. A more sophisticated
technique uses widely separated random values and then gradually reduces the
widely separated to closer values to produce the weight. By starting with widely
varying values the system is more likely to avoid a particular minima that drives
to a local solution.

In a typical training scenario Backward propagation is used. The current set of
weights will produce a set of outputs. These outputs are then used with the known
expected outputs to calculate the error difference. The errors are then averaged
across the outputs and then is propagated back through the network in reverse di-
rection where the adjustments to the weights are made to minimize the error.

2.2 Mathematical Algorithms

58

2.2.7  �Support Vector Machines

Support Vector Machines (SVM) is recently becoming the technical base for learn-
ing systems. SVMs are a type of machine learning algorithms used to classify items.
A Support Vector Machine (SVM) assigns an item to a category by constructing an
N-dimensional hyperplane that optimally separates the data into two categories. The
SVM approach maps the set of attributes that make up the vector representing an
item into a set of features. The features are then used to determine the hyperplane
that distinguishes between the two categories an item could go into. One of the chal-
lenges is to find an optimal feature representation. The goal of SVM is to find the
optimal hyperplane that separates clusters of vector in such a way that items with
one category of the target variable are on one side of the plane and items with the
other category are on the other side of the plane. The vectors near the hyperplane
are the support vectors. The optimal hyperplane will have the maximum distance
from the support vectors of each category to the plane that classifies them. This will
reduce the errors in miss classifying a new item.

To understand the SVM process lets take a simple two dimensional example.
Let’s assume we have a number of items that are discussing biology and Physics.
Let’s assume that we have one feature on the X axis and another feature on the
Y axis. Figure 2.15a, b shows the graphical layout of each category with circles
being Biology and squares being Physics. The SVM process tries to determine a
1-dimensional hyperplane (i.e., a line) that maximally separates the two groups of
items. This is sometimes referred to as maximizing the “fatness” and gives the best
classification since it has the maximum difference to help in determining which
class an items is assigned to. The diagram shows two options—one being a vertical
line and the other a line at an angle. It’s obvious by observation that the hyperplane

Fig. 2.15   a Vertical separator. b Optimal separator

2 Data Structures and Mathematical Algorithms

59

for the diagonal line is better in that it has the maximum distance between items
in each group and the hyperplane. The dashed lines in each figure are showing the
specific items (support vectors) from each group that are closest to the hyperplane.
The distance between the dashed lines is called the margin and the goal is to find
the hyperplane that maximizes the margin. The specific items that are closest to the
dashed lines are called the support vectors because they drive the size of the margin.
Even though they appear as points in the diagram they are called support vectors be-
cause each point defines a vector from the original to that point. As the hyperplane
changes, the support vectors (items) that drive the margin change. The Support Vec-
tor Machine finds the hyperplane that has support vectors that maximize the margin.

In the example we took the simplest case of a two dimension set of items. This
can easily expand to a multidimensional case with a multidimensional hyperplane.
The more complex case is when the items are not separated by a plane but some
sort of non-linear region (e.g. a curved line). In this case SVM uses a kernel func-
tion that maps the items into a different space where they can now be separated by a
hyperplane. In some cases additional dimensionality needs to be added in the kernel
mapping process. SVM models can be related to neural networks. A SVM model
using a sigmoid kernel function is equivalent to a two-layer, perceptron neural net-
work.

In addition to the use of mapping to higher dimensionality for the non-linear
problem, the real world problem of trying to categorize items based upon text is
never statistically pure. There will always be exceptions that come from the vari-
ances of language. This is referred to as problems due to the high dimensionality
(i.e., lots of unique processing tokens) of text categorization. The approach to solv-
ing this is called soft margin classification. In this case instead of trying to raise
the dimensionality to account for the data points that are categorized in the wrong
category, we ignore them. The way to handle them is to introduce slack variables
and by adjusting them minimize the impact by moving those points. The goal is to
tradeoff moving points to fit within the current “fat”.

2.3  �Summary

Data structures provide the implementation basis of search techniques in Informa-
tion Retrieval Systems. They may be searching the text directly, as in use of signa-
ture and possibly PAT trees, or providing the structure to hold the searchable data
structure created by processing the text in items. The most important data structure
to understand is the inverted file system. It has the greatest applicability in informa-
tion systems. The use of n-grams has also found successes in a limited number of
commercial systems. Even though n-grams have demonstrated successes in finding
information, it is not a structure that lends itself to representing the concepts in an
item. There is no association of an n-gram with a semantic unit (e.g., a word or
word stem). Judging the relative importance (ranking) of items is much harder to
accomplish under this data structure and the algorithmic options are very limited.

2.3 Summary

60

PAT and Signature data file structures have found successful implementations
in certain bounded search domains. Both of these techniques encounter significant
problems in handling very large databases of textual items. The Hypertext data
structure is the newest structure to be considered from an Information Retrieval
System perspective. It certainly can be mathematically mapped to linked lists and
networks. But the model of how dependencies between items as hyperlinks are
resolved is just being considered. The future high usage of this structure in informa-
tion systems makes its understanding important in finding relevant information on
the Internet. Marchionini and Shneiderman believe that hypertext will be used in
conjunction with full text search tools (Marchionini-88).

Information retrieval algorithms from basic indexing to learning algorithms for
categorization are based upon a number of mathematical models. A general un-
derstanding of the models and how they apply to information retrieval provide
a foundation for develop of new algorithms. Baysean conditional probabilities,
Shannon’s Information theory and Latent Semantic Indexing are useful in different
approaches to defining the ranked index for items. Hidden Marjkov Models can
be used for indices but have greater application in multimedia indexing. Neural
networks and Support vector Machines provide a foundation for categorization
algorithms and learning how to filter items based upon training examples provided
by the users.

2.4  �Exercises

1.	 Describe the similarities and differences between term stemming algorithms and
n-grams. Describe how they affect precision and recall.

2.	 a.	� Compare advantages and disadvantages of Porter Stemming algorithm, Dic-
tionary stemming algorithm and Success Variety stemming algorithm.

b.	 Create the symbol tree for the following words (bag, barn, boss, bot any, box,
bottle, botch and both). Using successor variety and the Peak and Plateau
algorithm, determine if there are any stems for the above set of words.

c.	 If there are stems created explain if they make any sense as a stem and why.
3.	 a.	� Create the PATRICIA Tree and Reduced PATRICIA for the following binary

input. Take it to 9 levels of sistrings: 011100111001111111010
b.	 Given the query 111000 show how it would be executed against each tree

with the number of decisions.
4.	 Assuming a term is on the average 6 characters long, calculate the size of the

inversion lists for each of the sources in Table 1.1, Distribution of words in TREC
Database. Assume that 30% of the words in any item are unique. What is the
impact on the calculation if the system has to provide proximity versus no prox-
imity. Assume 4 bytes is needed for the unique number assigned to each item.

5.	 Describe how a bigram data structure would be used to search for the search
term “computer science” (NOTE: the search term is a contiguous word phrase).
What are the possible sources of errors that could cause non-relevant items to
be retrieved?

2 Data Structures and Mathematical Algorithms

61

6.	 Perform Single value decomposition on the following matrix:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 1

1 0 2

0 2 3

1 2 1

2 1 1

0 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2.4 Exercises

http://www.springer.com/978-1-4419-7715-1

	2
	Data Structures and Mathematical Algorithms
	2.1 Data Structures
	2.1.1 Introduction to Data Structures
	2.1.2 Inverted File Structure
	2.1.3 N-Gram Data Structures
	2.1.3.1 History
	2.1.3.2 N-Gram Data Structure

	2.1.4 PAT Data Structure
	2.1.5 Signature File Structure
	2.1.6 Hypertext and XML Data Structures
	2.1.6.1 Definition of Hypertext Structure
	2.1.6.2 Hypertext History

	2.1.7 XML

	2.2 Mathematical Algorithms
	2.2.1 Introduction
	2.2.2 Bayesian Mathematics
	2.2.3 Shannon’s Theory of Information
	2.2.4 Latent Semantic Indexing
	2.2.5 Hidden Markov Models
	2.2.6 Neural Networks
	2.2.7 Support Vector Machines

	2.3 Summary
	2.4 Exercises

