
Chapter 2

Radiation of Electromagnetic Waves

by Impedance Vibrators in Free Space

and Material Medium

2.1 Asymptotic Solution of Integral Equations for Vibrator

Current in Free Space

Let us rewrite (1.22) ðziðsÞ ¼ const; e1 ¼ m1 ¼ 1Þ, using the approximate kernel

(1.21), the quasi-unidimensional analog of the exact integral equation with the

kernel (1.20), as

d2

ds2
þ k2

� � ðL
�L

Jðs0Þ e
�ikRðs;s0Þ

Rðs; s0Þ ds0 ¼ �ioE0sðsÞ þ ioziJðsÞ; (2.1)

where Rðs; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ r2

q
. It is obvious that F0½s; JðsÞ� � 0. We isolate the

logarithmic kernel singularity as in (1.45):

ðL
�L

Jðs0Þ e
�ikRðs;s0Þ

Rðs; s0Þ ds0 ¼ OðsÞJðsÞ þ
ðL
�L

Jðs0Þe�ikRðs;s0Þ � JðsÞ
Rðs; s0Þ ds0: (2.2)

Here

OðsÞ ¼
ðL
�L

ds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ r2

q ¼ Oþ gðsÞ; (2.3)

and

gðsÞ ¼ ln

ðLþ sÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ sÞ2 þ r2

q� �
ðL� sÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� sÞ2 þ r2

q� �
4L2

is a function equal to zero in the vibrator center which attains its largest value on

the vibrator’s ends, where the current equals zero. In view of boundary conditions
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(1.18), O ¼ 2 lnð2L=rÞ is a large parameter. Then, with (2.3), (2.1) is transformed

into the following integrodifferential equation:

d2JðsÞ
ds2

þ k2JðsÞ ¼ afioE0sðsÞ þ F½s; JðsÞ� � ioziJðsÞg; (2.4)

where a ¼ 1=ð2 ln½r=ð2LÞ�Þ is a natural small parameter ðjaj � 1Þ and

F½s; JðsÞ� ¼ � dJðs0Þ
ds0

e�ikRðs;s0Þ

Rðs; s0Þ
����
L

�L

þ d2JðsÞ
ds2

þ k2JðsÞ
� �

gðsÞ

þ
ðL
�L

d2Jðs0Þ
ds02 þ k2Jðs0Þ

h i
e�ikRðs;s0Þ � d2JðsÞ

ds2 þ k2JðsÞ
h i

Rðs; s0Þ ds0 (2.5)

is the vibrator’s self-field in free space.

Let us apply the asymptotic averaging method outlined in Sect. 1.5 to obtain the

approximate analytical solution of (2.4). To reduce (2.4) to the standard form (1.62)

with small parameter in accordance with the method of arbitrary constants varia-

tion, we change variables and get

JðsÞ ¼ AðsÞcosksþBðsÞ sinks;
dJðsÞ
ds

¼�AðsÞk sinksþBðsÞk cosks; dAðsÞ
ds

cosksþ dBðsÞ
ds

sinks¼ 0

� �
d2JðsÞ
ds2

þ k2JðsÞ ¼�dAðsÞ
ds

sinksþ dBðsÞ
ds

cosks

; (2.6)

where A(s) and B(s) are the new unknown functions. Then (2.4) is converted into

the following system of the integrodifferential equations:

dAðsÞ
ds

¼ � a
k

ioE0sðsÞ þ F s;AðsÞ; dAðsÞ
ds ;BðsÞ; dBðsÞ

ds

h i
�iozi½AðsÞ cos ksþ BðsÞ sin ks�

( )
sin ks;

dBðsÞ
ds

¼ þ a
k

ioE0sðsÞ þ F s;AðsÞ; dAðsÞ
ds ;BðsÞ; dBðsÞ

ds

h i
�iozi½AðsÞ cos ksþ BðsÞ sin ks�

( )
cos ks:

(2.7)

The obtained equations are equivalent to (2.4) and represent the standard system

of integrodifferential equations (1.62), unresolved relative to the derivative. The

right-hand sides in (2.7) are proportional to the small parameter a, so the functions

A(s) and B(s) on the right-hand sides of (2.7) are slowly changing functions, and the

averaging asymptotic method can be used for its solution. Then putting into corre-

spondence the simplified system (1.63) with dAðsÞ=ds ¼ 0 and dBðsÞ=ds ¼ 0 on the
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right-hand sides and the system (2.7), after performing partial averaging over

s explicitly (here the term “partial” means that the averaging operator (1.54) acts

on all summands except those containing E0sðsÞ, which is possible ([22] in Chap. 1)

for system (2.7)), we obtain the equations of first approximation

d �AðsÞ
ds

¼ �a
io
k
E0sðsÞ þ �F½s; �AðsÞ; �BðsÞ�

� 	
sin ksþ w �BðsÞ;

d �BðsÞ
ds

¼ þa
io
k
E0sðsÞ þ �F½s; �AðsÞ; �BðsÞ�

� 	
cos ks� w �AðsÞ;

(2.8)

where w ¼ aðio=2kÞzi, and

�F½s; �AðsÞ; �BðsÞ� ¼ ½ �Aðs0Þ sin ks0 � �Bðs0Þ cos ks0�e
�ikRðs;s0Þ

Rðs; s0Þ
����
L

�L

(2.9)

is the self-field of the vibrator (2.5), averaged along its length.

We shall obtain the solution of the system (2.8) in the form [1]

�AðsÞ ¼ C1ðsÞ cos wsþ C2ðsÞ sin ws;
�BðsÞ ¼ �C1ðsÞ sin wsþ C2ðsÞ cos ws;

(2.10)

transforming (2.8) into

dC1ðsÞ
ds

¼ �a
io
k
E0sðsÞ þ �F½s;C1;C2�

� 	
sinðk þ wÞs;

dC2ðsÞ
ds

¼ þa
io
k
E0sðsÞ þ �F½s;C1;C2�

� 	
cosðk þ wÞs:

(2.11)

Then we obtain C1(s), C2(s) from (2.11), and �AðsÞ, �BðsÞ from (2.10), and use these

functions as the approximating functions for the current in (2.6). As a result, we

obtain the most general asymptotic expression in the parameter a for the current in

the thin impedance vibrator with arbitrary excitation:

JðsÞ ¼ �Að�LÞ cosð~ksþ wLÞ þ �Bð�LÞ sinð~ksþ wLÞ

þ a
ðs
�L

io
k
E0sðs0Þ þ �F½s0; �A; �B�

� 	
sin ~kðs� s0Þds0; (2.12)

where ~k ¼ k þ w ¼ k þ iða=rÞZS.
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To find the constants �Að�LÞ and �Bð�LÞ, it is necessary to use the boundary

conditions (1.18) and the conditions of symmetry ([11] in Chap. 1) related to the

method of vibrator excitation. If E0sðsÞ ¼ Es
0sðsÞ, then JðsÞ ¼ Jð�sÞ ¼ JsðsÞ and

�Að�LÞ ¼ �AðþLÞ, �Bð�LÞ ¼ � �BðþLÞ; if E0sðsÞ ¼ Ea
0sðsÞ, then JðsÞ ¼ �Jð�sÞ ¼

JaðsÞ and �Að�LÞ ¼ � �AðþLÞ, Bð�LÞ ¼ BðþLÞ. Then for symmetric (index “s”)

and antisymmetric (index “a”) current components, we finally obtain, for arbitrary

excitation E0sðsÞ ¼ Es
0sðsÞ þ Ea

0sðsÞ;

JðsÞ ¼ JsðsÞ þ JaðsÞ ¼ a
io
k

ðs
�L

E0sðs0Þ sin ~kðs� s0Þds0
8<
:

� sin ~kðLþ sÞ þ aPs½kr; ~kðLþ sÞ�
sin 2~kLþ aPsðkr; 2~kLÞ

ðL
�L

Es
0sðs0Þ sin ~kðL� s0Þds0

� sin ~kðLþ sÞ þ aPa½kr; ~kðLþ sÞ�
sin 2~kLþ aPaðkr; 2~kLÞ

ðL
�L

Ea
0sðs0Þ sin ~kðL� s0Þds0

9=
;; (2.13)

where Ps and Pa are the vibrator self-field functions, given by

Ps½kr; ~kðLþ sÞ� ¼
ðs
�L

e�ikRðs0;�LÞ

Rðs0;�LÞ þ e�ikRðs0;LÞ

Rðs0; LÞ
� �

sin ~kðs� s0Þds0
����
s¼L

¼ Psðkr; 2~kLÞ;
(2.14a)

Pa½kr; ~kðLþ sÞ� ¼
ðs
�L

e�ikRðs0;�LÞ

Rðs0;�LÞ � e�ikRðs0;LÞ

Rðs0; LÞ
� �

sin ~kðs� s0Þds0
����
s¼L

¼ Paðkr; 2~kLÞ:
(2.14b)

2.2 Vibrator Excitation in the Center by Concentrated EMF

To validate the accuracy and to find the limits of applicability of (2.13), we shall

discuss the classical problem of vibrator excitation in the geometrical center by

lump EMF with amplitude V0. The mathematical model of excitation may be

represented as

E0sðsÞ ¼ Es
0sðsÞ ¼ V0dðs� 0Þ; (2.15)

where dðs� 0Þ ¼ dðsÞ is Dirac’s delta function. Then the expression for the current
has the form
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JðsÞ ¼ �aV0

io

2~k

� �
sin ~kðL� jsjÞ þ aPs

dðkr; ~ksÞ
cos ~kLþ aPs

Lðkr; ~kLÞ
: (2.16)

Here Ps
dðkr; ~ksÞ ¼ Ps½kr; ~kðLþ sÞ� � ðsin ~ksþ sin ~kjsjÞPs

Lðkr; ~kLÞ;Ps½kr; ~kðLþ sÞ�
is defined by (2.14a), and Ps

Lðkr; ~kLÞ ¼
ÐL
�L

ðe�ikRðs;LÞ=Rðs; LÞÞ cos ~ks ds:
It is possible to obtain Ps

dðkr; ~ksÞ and Ps
Lðkr; ~kLÞ in explicit form by the technique

of generalized integral functions (see Appendix C). Here we give an expression for

Ps
Lðkr; ~kLÞ:

Ps
Lðkr; ~kLÞ ¼ cos ~kLf2 ln 2� gðLÞ� 1

2
½Cinð2~kLþ 2kLÞþCinð2~kL� 2kLÞ�

� i

2
½Sið2~kLþ 2kLÞ�Sið2~kL� 2kLÞ�g

þ sin ~kL
1

2
½Sið2~kLþ 2kLÞþ Sið2~kL� 2kLÞ�

�

� i

2
½Cinð2~kLþ 2kLÞ�Cinð2~kL� 2kLÞ�

	
; (2.17)

where Si(x) and Cin(x) are the integral sine and cosine of the complex argument.

Expression (2.16), in contrast to the solution of the integrodifferential equation

(2.4) for the vibrator current by the small parameter method, is given in [2] as

(a) For a tuned vibrator (
~~kL ¼ nðp=2Þ, where n is the integer),

J0ðsÞ ¼ C1 cos
~~ksþ C2 sin

~~ks; (2.18a)

(b) For an untuned vibrator (
~~kL 6¼ nðp=2Þ),

JðsÞ ¼ aJ1ðsÞ ¼ �a
io=~~k

sin 2
~~kL

sin
~~kðL� sÞ

ðs
�L

E0sðs0Þ sin ~~kðLþ s0Þds0
8<
:

þ sin
~~kðLþ sÞ

ðL
s

E0sðs0Þ sin ~~kðL� s0Þds0
9=
;; (2.18b)

or after substituting E0sðsÞ ¼ V0dðsÞ,

JðsÞ ¼ �aV0

io

2
~~k

sin
~~kðL� jsjÞ
cos

~~kL
; (2.18c)
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where

~~k ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iaozi

k2

r
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i2aZS

ðkrÞ

s �����
ji2aZS=ðkrÞjffff1

� k þ i
a
r
ZS ¼ ~k: (2.19)

Solution of (2.4) by the iterations method (see Sect. 1.4.2) for the current in the

zeroth and first approximations (with accuracy a2 inclusive) has the form

J0ðsÞ ¼ �aV0

io
2k

sin kðL� jsjÞ
cos kL

; (2.20a)

J1ðsÞ ¼ �aV0

io
2k

sin kðL� jsjÞ þ aF1ðkr; ks; ziÞ
cos kLþ aFðkr; kL; ziÞ : (2.20b)

In addition to the above-mentioned solutions, King and Wu have obtained the

so-called trinomial formula for the current on a vibrator centrally excited by the

d-generator [3, 4],

JðsÞ ¼ �aKV0

io

2
~~k

sin
~~kðL� jsjÞ þ FK1ðcos ~~ks� cos

~~kLÞ þ FK2 cos ks
2
� cos kL

2


 �
cos

~~kL
;

(2.21)

with
~~k defined in (2.19) and

aK ¼ 1

OK
; OK ¼

jOKð0Þj
sin kL

; kLbp=2;

OK



L�l
4

��� ��; kLrp=2;

8><
>: (2.22a)

OKðsÞ ¼
ðL
�L

e�ikRðs;s0Þ

Rðs; s0Þ sin kðL� js0jÞds0: (2.22b)

Coefficients FK1 and FK2have been found approximately by transforming (2.1) into

the Hallen linearized equation (1.42) using its kernel properties. It should be noted

that (2.21) coincides with (2.18c) when FK1 ¼ 0 and FK2 ¼ 0.

Thus, the solution of integrodifferential equation (2.1) by the averaging method

is given by (2.13), valid (in contrast to the solution by the small parameter method)

both for tuned ðsin 2~kL ¼ 0Þ and untuned ðsin 2~kL 6¼ 0Þ vibrators under arbitrary
excitation. The solution of (2.1) by the iterations method requires that the impressed

sources field be specified at the initial stage of problem solution. What is more,

the distributed vibrator impedance begins to exhibit itself, as follows from (2.20)

(in contrast to the solutions by the averaging and the small parameter methods), in

the first and succeeding approximations in the small parameter. And finally, the
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King–Wu trinomial formula requires different current representations for the tuned

and untuned vibrators as in the small parameter method.

The true current distribution (2.16) allows one to calculate the electrodynamic

characteristics of the impedance vibrator. Thus, we may obtain the following

expression for the vibrator input impedance at the feed point Zin ¼ Rin þ iXin (or

the input admittance Yin ¼ Gin þ iBin ¼ 1=Zin):

Zin½ohm� ¼ V0

Jð0Þ ¼
60i~k

ak

� �
cos ~kLþ aPs

Lðkr; ~kLÞ
sin ~kLþ aPdLðkr; ~kLÞ

; (2.23)

where

PdLðkr; ~kLÞ ¼
ðL
�L

e�ikRðs;LÞ

Rðs; LÞ sin ~kjsjds

¼ sin ~kL �gðLÞ þ 1

2
½Cinð2~kLþ 2kLÞ

�
�Cinð2~kL� 2kLÞ� � Cinð~kLþ kLÞ þ Cinð~kL� kLÞ

þ i

2
½Sið2~kLþ 2kLÞ � Sið2~kL� 2kLÞ� � i½Sið~kLþ kLÞ � Sið~kL� kLÞ�

	

þ cos ~kL
1

2
½Sið2~kLþ 2kLÞ þ Sið2~kL� 2kLÞ� � Sið~kLþ kLÞ � Sið~kL� kLÞ

�

� i

2
½Cinð2~kLþ 2kLÞ þ Cinð2~kL� 2kLÞ� þ i½Cinð~kLþ kLÞ þ Cinð~kL� kLÞ�

	
:

(2.24)

Then the voltage standing wave ratio (VSWR) in the feeder line with characteristic

impedance W equals

VSWR ¼ 1þ jS11j
1� jS11j ; S11 ¼ Zin �W

Zin þW
; (2.25)

where S11 is the reflection coefficient in the feeder.

Let us present some numerical results. Figures 2.1–2.5 show the current ampli-

tude–phase distributions JðsÞ ¼ jJðsÞjei arg JðsÞ in thin (r/l ¼ 0.007022) perfectly

conducting vibrators with different electrical lengths, calculated with (2.16), in

comparison with the experimental data from [5]. As can be seen, the trend of

theoretical curves follows that of experimental results quite satisfactorily, with

some differences in the absolute values. Such differences are also present in the

vibrator input characteristics Yin ¼ f ð2L=lÞ and jS11j ¼ f ðkLÞ, calculated by (2.23)

and (2.25) and shown in Figs. 2.6 and 2.7. In Fig. 2.7 the theoretical curves corres-

ponding to the King–Middleton solution of Hallen’s equation by the iterations

method in the second approximation ([11, 12] in Chap. 1) are also plotted, namely
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Fig. 2.1 The current ampli-

tude–phase distribution on a

perfectly conducting vibrator

(r/l ¼ 0.007022 and 2L/l ¼
0.5): 1 the calculation (2.16);

2 the experimental data [5]
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Fig. 2.2 The current ampli-

tude–phase distribution on a

perfectly conducting vibrator

(r/l ¼ 0.007022 and 2L/l ¼
0.75): 1 the calculation (2.16);
2 the experimental data [5]
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Fig. 2.3 The current ampli-

tude–phase distribution on a

perfectly conducting vibrator

(r/l ¼ 0.007022 and 2L/l ¼
1.0): 1 the calculation (2.16);

2 the experimental data [5]
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Fig. 2.4 The current amplitu-

de–phase distribution on a

perfectly conducting vibrator

(r/l ¼ 0.007022 and 2L/l ¼
1.25): 1 the calculation (2.16);
2 the experimental data [5]
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Fig. 2.5 The current ampli-

tude–phase distribution on a

perfectly conducting vibrator

(r/l ¼ 0.007022 and 2L/l ¼
1.5): 1 the calculation (2.16);

2 the experimental data [5]
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YK
in 2½millimhos� ¼ iaK

60

sin kLþ aKF1sðkr; kLÞ þ a2KF2sðkr; kLÞ
cos kLþ aKF1ðkr; kLÞ þ a2KF2ðkr; kLÞ ; (2.26)

where aK is defined by (2.22).
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Fig. 2.6 The input admittance of a perfectly conducting vibrator versus electrical length

(r/l ¼ 0.007022): 1 the calculation (2.23); 2 the calculation (2.27); 3 the experimental data [5]

2.2 Vibrator Excitation in the Center by Concentrated EMF 33



An analogous situation is observed for the input characteristics of impedance

vibrators. The plots of input admittance for two different surface impedances are

represented in Figs. 2.8 and 2.9: (1) a metallic conductor (radius ri ¼ 0:3175 cm)
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Fig. 2.7 The reflection coefficient in the feeder with W ¼ 75 ohm versus electrical length of a

perfectly conducting vibrator: 1 the calculation (2.23); 2 the calculation (2.27); 3 the calculation

(2.26)
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covered by a dielectric ðe ¼ 9:0Þ shell (radius r ¼ 0:635 cm), where Fig. 2.8 shows

experimental data from [6]; (2) a metallic conductor (radius ri ¼ 0:5175 cm)

covered by a ferrite ðm ¼ 4:7Þ shell (radius r ¼ 0:6 cm), where Fig. 2.9 shows

experimental data from [7].

Differences among the theoretical curves obtained from solution of the integral

equation by the averaging method, the experimental data, and the graphs plotted by
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Fig. 2.8 Input admittance of a metallic conductor of radius ri ¼ 0:3175 cm, covered by a

dielectric ðe ¼ 9:0Þ shell with radius r ¼ 0:635 cm versus electrical length at 600 MHz: 1 the

calculation (2.23); 2 the experimental data [6]
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higher approximations of the iterations method may be explained by errors in

averaging of the self-field of the vibrator (2.5). However, the resonant character-

istics of the vibrators

ð2L=lÞres for Bin ¼ 0 and ðkLÞres for jS11j ¼ jS11jmin

�
are

defined rather precisely, and the calculated curves for the normalized current

amplitudes ðjJðsÞj=jJjmaxÞ agree with the experimental data within acceptable

limits. Thus, the formulas for the current obtained by a first approximation of the

averaging method are applicable to the calculation of vibrator integral characteristics
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Fig. 2.9 Input admittance of a metallic conductor of radius ri ¼ 0:5175 cm covered by a ferrite

ðm ¼ 4:7Þ shell with radius r ¼ 0:6 cm versus frequency at L ¼ 30 cm: 1 the calculation (2.23);

2 the experimental data [7]
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such as the radiated (scattered) electromagnetic field in all field zones, and to the

investigation of the resonant properties of the vibrator.

As was indicated in Sect. 1.5, the solution of (2.7) can be obtained by an

improved first approximation. This means that the transition from (2.7) to (2.8)

is accomplished by the substitution � ðd �AðsÞ=dsÞ sin ksþ ðd �BðsÞ=dsÞ cos ks ¼
aioE0sðsÞ. Then the input impedance of the vibrator is

Zimp
in ¼ 60i~k

ak

� �
cos ~kLþ aPs

Lðkr; ~kLÞ
sin ~kLþ aPdLðkr; ~kLÞ þ ½sin ~kLþ aPd1ðkr; ~kLÞ þ a2Pd2ðkr; ~kLÞ�

:

(2.27)

Here

Pd1ðkr; ~kLÞ ¼ PdLðkr; ~kLÞ þ sin ~kLPs
0ðkr; ~kLÞ � cos ~kLPd0ðkr; ~kLÞ;

Pd2ðkr; ~kLÞ ¼ PdLðkr; ~kLÞPs
0ðkr; ~kLÞ � Ps

Lðkr; ~kLÞPd0ðkr; ~kLÞ;

Ps
0ðkr; ~kLÞ ¼

ðL
�L

e�ikRðs;0Þ

Rðs; 0Þ cos ~ks ds; Pd0ðkr; ~kLÞ ¼
ðL
�L

e�ikRðs;0Þ

Rðs; 0Þ sin ~kjsjds:

(2.28)

The curves calculated by (2.27) are given in Figs. 2.6 and 2.7 as dotted lines, well

correlated with the solution (2.26). The cumbersome formulas derived by solving

(2.7) by the averaging method to second approximation improve the accuracy of the

results but are useless in practice. However, the accuracy of a mathematical model

may be enhanced by other methods, as will be demonstrated below.

2.2.1 Impedance Vibrator with Lumped Load in the Center

The problem of impedance vibrator excitation by an EMF d-generator can be used

for analysis of passive vibrators with lumped load. The current in a symmetric

vibrator loaded by lumped impedance ZcL at s ¼ 0 and located in the field of a plane

electromagnetic wave is defined by a combination of two current distributions ([11]

in Chap. 1):

JrðsÞ ¼ JscðsÞ � JtrðsÞ; (2.29)

where Jsc(s) is the current in the gapless vibrator and Jtr(s) is the current in

the vibrator excited by the d-generator. The current Jsc(s) in the gapless

scattering vibrator with accuracy to the terms of order a2 is given, according

to (2.13), by
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JscðsÞ ¼ �aE0 cosc sin y
io=ðk~kÞ

1� ðq=~kÞ2

	 cos ~ks cos qL� cos ~kL cos qs

cos ~kLþ aPs
Lðkr; ~kLÞ

þ i
sin ~ks sin qL� sin ~kL sin qs

sin ~kLþ aPa
Lðkr; ~kLÞ

" #
;

(2.30)

where E0sðsÞ ¼ E0 cosc sin y eiks cos y. Here q ¼ k cos y, E0 is the incident wave

amplitude, c is the angle between the vibrator axis and the polarization plane of the

incident wave, the angle y is measured from the vibrator axis, and

Pa
Lðkr; ~kLÞ¼�

ðL
�L

Gðs;LÞsin ~ksds

¼ sin ~kL 2 ln 2� gðLÞ�1

2
½Cinð2~kLþ2kLÞþCinð2~kL�2kLÞ�

�

� i

2
½Sið2~kLþ2kLÞ�Sið2~kL�2kLÞ�

	

� cos ~kL
1

2
½Sið2~kLþ2kLÞþSið2~kL�2kLÞ�

�

� i

2
½Cinð2~kLþ2kLÞ�Cinð2~kL�2kLÞ�

	
: (2.31)

The current Jtr(s) is calculated by (2.16) if V0 is replaced by VcL,

VcL ¼ Jscð0Þ ZinZcL
Zin þ ZcL

: (2.32)

Then the current in the load of the receiving antenna has the form

Jrð0Þ ¼ Jscð0Þ Zin
Zin þ ZcL

¼ aE0 cosc sin y
io=ðk~kÞ

1� ðq=~kÞ2

	 ðcos ~kL� cos qLÞ þ aPs
Lðkr; ~kLÞ

cos ~kLþ aPs
Lðkr; ~kLÞ

" #
Zin

Zin þ ZcL
:

(2.33)

2.2.2 Surface Impedance of Thin Vibrators

As discussed above, in comparative numerical calculations for perfectly conducting

vibrators the value of the distributed surface impedance ZS is set equal to zero.
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However, the analysis of certain vibrators requires formulas for the numerical

estimation of the surface impedance. Let us consider the problem of axisymmetric

excitation of an infinite double-layer cylinder with outer radius r and inner radius ri
by a converging cylindrical wave. Let us introduce the cylindrical coordinate sys-

tem r, ’, z with z-axis directed along the cylinder’s axis. By symmetry, the electro-

magnetic field has only Ez and H’ components, depending only on r. The medium

has permittivity e and permeability m in the region r � ri, and ei; mi when rbri.
The surface impedance ZS ¼ Ez=H’ at r ¼ r may be found as a solution of

Maxwell’s equations expressed in terms of Bessel function I0;1 and Neumann

function N0;1 as

iEz

H’

� 	
¼ I0 k

ffiffiffiffiffi
em
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(2.34)

Assuming ri ¼ 0 and ej j 
 1 ðe ¼ e0 þ 4ps=ioÞ, we obtain the familiar formula for

the impedance of a cylindrical conductor [3, 4], with the skin effect

ZS ¼ k0

120ps
I0ðk0rÞ
I1ðk0rÞ ; (2.35)

where k0 ¼ ð1� iÞ=D0;D0 ¼ o=k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psom

p
is the skin-layer thickness, and s is the

conductivity of the metal.

Consider corrugated (L1 � L2) or ribbed ðL1 � L2Þ conductors (here L1 is the
ridge thickness, where ZS ¼ 0, and L2 is the cavity width, where ZS 6¼ 0) with cell

periods ðL1 þ L2Þ � l=
ffiffiffiffiffi
em

p
and eij j 
 1. Averaging the impedances over the cell

period and taking into account (2.34), we have

ZS ¼ �i
L2

L1 þ L2

ffiffiffi
m
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ffiffiffiffiffi
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p
r


 � ; (2.36)

which is valid for conductors with an isolating covering made of a magneto-

dielectric [2] ðL1 ¼ 0Þ, and also for metallic cylinders ðri ¼ 0Þ with transverse

dielectric insertions ðL2 � L1Þ.
For thin vibrators


j
k ffiffiffiffiffi
em

p
r
�2

lnðk ffiffiffiffiffi
em

p
riÞj � 1Þ, the surface impedance does not

depend on the excitation mode, and the corresponding boundary conditions become

impressed [8], that is, they do not depend upon the structure of exciting field. Then

with (2.34)–(2.36) we find that the complex impedances ZS ¼ RS þ iXS for vibrators

in thin-wire approximation equal
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ZS ¼ 1þ i

120psD0
(2.37)

for a solid metallic cylinder if r 
 D0; note that ZS ¼ 0 for a perfect conductor

ðs ! 1Þ;

ZS ¼ 1

120psh0 þ ikrðe� 1Þ=2 (2.38)

for a dielectric cylinder with thin metal covering ðh0 � D0; e ¼ 1Þ;

ZS ¼ 1

120psh0
(2.39)

for a metallic tubular cylinder r � D0 (“nanoradius” vibrator [4] h0 ¼ r, r � D0);

and after substitution h0 ¼ 0 in (2.38),

ZS ¼ �i
2

krðe� 1Þ (2.40)

for a dielectric cylinder;

ZS ¼ �i
L2

L1 þ L2

2

kre
(2.41)

for a metal-dielectric cylinder;

ZS ¼ 1

120psh0 � i=krm lnðr=riÞ (2.42)

for a magnetodielectric metalized cylinder with inner conducting cylinder r ¼ ri
(2.39); and if h0 ¼ 0, then

ZS ¼ ikrm ln
r

ri
(2.43)

for a metallic cylinder with magnetodielectric covering (thickness r � ri [2]) or a
ribbed cylinder;

ZS ¼ i

2
kr cot2 c (2.44)

for a metallic monofilar helix with radius rðkr � 1Þ and winding angle c.
Formulas (2.37)–(2.44) have been obtained in the framework of impedance

conception ([3] in Chap. 1, [8]), and they are valid for thin cylinders both with finite

and infinite extension located in free space. If the vibrator is situated in a material
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medium with parameters e1 and m1, then all formulas must be multiplied by
ffiffiffiffiffiffiffiffiffiffiffi
m1=e1

p
.

Since the surface impedance often depends on the parameters e and m, it is possible to
alter the characteristics of antennas with fixed geometric dimensions by varying these

parameters if they depend on the external static electrical and/or magnetic fields. It

also follows from (2.43) and (2.44) that it is possible for vibrators with pure inductive

surface impedance to define a term known as effective vibrator length 2Leff [9]:

2Leff ¼ 1þ m lnðr=riÞ
2 lnð2L=rÞ

� �
2L; 2Leff ¼ 1þ cot2 c

4 lnð2L=rÞ
� �

2L; (2.45)

that is, the impedance vibrator length 2L is “equivalent” to the perfectly conducting

vibrator with the length 2Leff with 2Leff > 2L.

2.2.3 Resonant Properties of Impedance Vibrators in Free Space

Near the resonance, when ~kL � p=2 and sin ~kL � 1, it is possible to neglect the

second summand in the denominator of (2.33), proportional to the small parameter

a. If vibrator impedance is purely reactive, i.e., RS ¼ 0, then defining the resonant

condition as Xin ¼ 0, we obtain the transcendental equation, allowing us to find the

length (frequency) of the resonant vibrator,

cos ð~kLÞres þ aRePs
Lðkr; ð~kLÞresÞ ¼ 0; (2.46)

where RePs
L is the real part of P

s
L, defined by (2.17). Let us remark that, as it will be

shown below, the real part of the impedance vibrator has no considerable influence

on its resonant properties.

Let us obtain an approximate solution of (2.46), expanding the unknown value

ð~kLÞres in a power series in the small parameter a:

ð~kLÞres ¼ ð~kLÞ0 þ að~kLÞ1 þ a2ð~kLÞ2 þ . . . : (2.47)

Substituting (2.47) into (2.46) and equating summands with equal powers, we have

ð~kLÞres �
p
2
þ aRePs

L

pr
2L

;
p
2

� 

; (2.48)

with accuracy to terms of order a2. With (2.17), (2.48) may be transformed into

ð~kLÞres �
p
2
þ a

1

2
Sið2p� 2wLÞ þ 1

2
Sið2wLÞ

� �
; (2.49)
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where w ¼ �aðXS=rÞ. Assuming ð2LÞres � l=2 and taking into consideration that

a ¼ 1=ð2 lnð2r=lÞÞ, 2wL ¼ �aðlXS=2rÞ, ~k ¼ kð1� aðXS=krÞÞ, we obtain the for-

mula for the vibrator resonant length as a function of its radius r, wavelength l, and
surface impedance XS:

ð2LÞres �
l
2

1

1� a XS

kr

þ a
1

k 1� a XS

kr

� 
 Si 2pþ a
lXS

2r

� �
� Si a

lXS

2r

� �� �
: (2.50)

Expression (2.50) may be simplified for relatively small values of the normal-

ized surface impedance ðXS � krÞ and represented as

ð2LÞres �
l
2
� l
4p ln l

2r

Sið2pÞ þ lXS

2r

� �
: (2.51)

We note that (2.51) was derived by the power series expansion

1

1� a XS

kr

� 
 ¼ 1þ a
XS

kr

� �
� a2

XS

kr

� �2

þ � � � � 1þ a
XS

kr

� �
:

It was shown in Sect. 2.2.2 that if XS>0 (the inductive impedance has, for

example, a metallic conductor covered by a magnetodielectric layer, a corrugated

cylindrical conductor, or a monofilar metallic helix), then the surface impedance of

a thin vibrator can be represented as XS ¼ krCL; and if XS < 0 (capacitive imped-

ance has, for example, a dielectric or a layered metal-dielectric cylinder), then

XS ¼ �kr½CC=ðkrÞ2�, where the constants CL and CC are defined by the geometric

dimension and electrophysical parameters of the vibrator material. Bearing this in

mind, we transform (2.51) into

ð2LÞres �
l
2
� l
4 ln l

2r

Sið2pÞ
p

þ XS

kr

� �
: (2.52)

As follows from (2.52), the resonant length of a thin vibrator in free space can be

either shorter or longer than l=2 (vibrator shortening or lengthening, respectively),

depending on the distributed surface impedance type. Note the principal difference

for perfect conductivity (ZS ¼ 0), where ð2LÞres<ðl=2Þ for any finite r=l. This is
illustrated in Fig. 2.10a, where the normalized resonant length in dependence on

the vibrator radius for capacitive and inductive impedances, and also for a perfectly

conducting vibrator, is shown. For comparison, results obtained by the iterations

method to a second approximation in [12] in Chap. 1 (the formula (2.26)) are

presented. For the capacitive impedance (curves 1 and 2), lengthening ð2LÞres
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transits to shortening as the radius increases, reaching for some r=l the value

ð2LÞres ¼ l=2 (a half-wave vibrator). For a perfectly conducting vibrator (curve 3

and the circles) and for inductive impedance (curves 4 and 5), the resonant tuning
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Fig. 2.10 The relative resonant length and the input conductance versus vibrator radius: 1

ZS ¼ �iXSðCC ¼ 0:002Þ; 2 ZS ¼ �iXSðCC ¼ 0:001Þ; 3 ZS ¼ 0 (the circles correspond to calcu-

lation [12] in Chap. 1); 4 ZS ¼ iXSðCL ¼ 1:0Þ; 5 ZS ¼ iXSðCL ¼ 2:0Þ
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requires that vibrator length be decreased as compared to that of a half-wave

vibrator, and such shortening grows with an increase in the distributed surface

impedance.

It is interesting to observe how the radius of the resonant impedance vibrator

influences the real part of the input admittance (Fig. 2.10b). The input conductance

Ginfð2LÞresg increases monotonically with increase in the radius (small windows in

Fig. 2.10b) for the half-wave (kL ¼ p=2, 2L ¼ l=2) perfectly conducting vibrator,

but it remains practically constant (curve 3) for the resonant vibrator. The dis-

tributed surface impedance influences in an essential way the radial dependence of

the real part of input admittance of the vibrator.

2.3 Impedance Vibrators in an Infinite Homogeneous

Lossy Medium

In some important practical applications such as underground and underwater radio

communication, geophysical investigations, medical diagnostics and hyperthermia,

a vibrator antenna must work in a medium with electrophysical parameters that

differ significantly from those of air. Theoretical and experimental works con-

cerning antennas in different medium are covered, systemized, and generalized in

the monograph [10], where original results for “nonisolated” and “isolated” vibrator

antennas in a lossy medium are presented. The terms “isolated” and “nonisolated”

are related to antennas with or without a multilayered dielectric shell, respectively.

The integral equations for the current in these two cases coincide formally, but their

kernels differ essentially. Therefore, the solution of the integral equations for

“nonisolated” and the “isolated” antennas requires separate considerations, and

moreover, the choice of solution method depends on environmental parameters.

Approximate expressions for the vibrator current, obtained in [10], are valid for

electrical length ð2L=l1Þb1:25, where l1 is the wavelength in the medium. It was

also noted in [10, 11] that the rate of field amplitude decrease when the distance

from the dipole increases in a material medium is essentially greater than in free

space, and moreover, it is substantially different for the near, intermediate, and far

antenna zones. At the same time, the characteristics of real vibrators with finite

dimensions comparable with the wavelength in the material medium differ essen-

tially from the corresponding parameters of electrically short dipoles. Hence, taking

into account possible fields of application of vibrator antennas located in different

medium a thorough analysis of the spatial field distribution in a near-field zone of

the vibrator (especially when it has complex distributed impedance) is of real

practical interest.

In this section we will consider thin impedance vibrators located in an infinite

homogeneous medium with sufficiently arbitrary parameters, including those for a

conducting medium without any restrictions on vibrator lengths and excitation

methods.
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The analysis is based on the integrodifferential equation

d2

ds2
þ k21

� � ðL
�L

Jðs0Þ e
�ik1Rðs;s0Þ

Rðs; s0Þ ds0 ¼ �ioe1E0sðsÞ þ ioe1ziJðsÞ; (2.53)

where k1 ¼ k
ffiffiffiffiffiffiffiffiffi
e1m1

p ¼ k01 � ik001 is the wave number in the medium and e1 6¼ 1,

m1 6¼ 1, ziðsÞ ¼ const. We obtain the solution of (2.53) as we did that of (2.1),

i.e., by the change of variables

JðsÞ ¼ AðsÞ cos k1sþ BðsÞ sin k1s;
dJðsÞ
ds

¼ �AðsÞk1 sin k1sþ BðsÞk1 cos k1s:
(2.54)

Using the methods described in Sect. 2.1, we obtain an approximate expression for the

current in a thin impedance vibrator located in an infinite homogeneous lossymedium:

JðsÞ ¼ a
ioe1
k1

ðs
�L

E0sðs0Þ sin ~k1ðs� s0Þds0
8<
:

� sin ~k1ðLþ sÞ þ aPs½k1r; ~k1ðLþ sÞ�
sin 2~k1Lþ aPsðk1r; 2~k1LÞ

ðL
�L

Es
0sðs0Þ sin ~k1ðL� s0Þds0

� sin ~k1ðLþ sÞ þ aPa½k1r; ~k1ðLþ sÞ�
sin 2~k1Lþ aPaðk1r; 2~k1LÞ

ðL
�L

Ea
0sðs0Þ sin ~k1ðL� s0Þds0

9=
;:

(2.55)

Here ~k1 ¼ k1 þ iða=rÞZS

ffiffiffiffiffiffiffiffiffiffiffi
e1=m1

p
, Gðs; s0Þ ¼ e

�ik1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ r2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ r2

q ,

Ps½k1r; ~k1ðLþ sÞ� ¼
ðs
�L

½Gðs0;�LÞ þ Gðs0; LÞ� sin ~k1ðs� s0Þds0��
s¼L

¼ Psðk1r; 2~k1LÞ;

Pa½k1r; ~k1ðLþ sÞ� ¼
ðs
�L

½Gðs0;�LÞ � Gðs0; LÞ� sin ~k1ðs� s0Þds0��
s¼L

¼ Paðk1r; 2~k1LÞ: (2.56)

If the vibrator is excited by a lumped EMF at the center, the expression for the

current (2.55) has the form

JðsÞ ¼ �aV0

ioe1
2~k1

� �
sin ~k1ðL� jsjÞ þ aPs

dðk1r; ~k1sÞ
cos ~k1Lþ aPs

Lðk1r; ~k1LÞ
: (2.57)
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Here the equality Ps
dðk1r; ~k1sÞ¼Ps½k1r; ~k1ðLþ sÞ��ðsin ~k1sþ sin ~k1jsjÞPs

Lðk1r; ~k1LÞ;
Ps½k1r; ~k1ðLþ sÞ� is defined by (2.56), and Ps

Lðk1r; ~k1LÞ¼
ÐL
�L

Gðs;LÞ cos ~k1sds.
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Fig. 2.11 The amplitude–phase distributions of the current for the vibrator in saltwater with dif-

ferent salt concentrations (D ¼ l=l1). (a) e01¼83:46; ðtandÞ1¼0:662; k001=k
0
1¼0:301; f ¼28MHz;

r=l1¼0:0028; D¼9:58 (b) e01¼102:14; ðtandÞ1¼1:823; k001=k
0
1¼0:592; f¼28MHz; r=l1¼

0:0037; D¼12:54 (c) e01¼139:3; ðtandÞ1¼32:83; k001=k
0
1¼0:97; f¼14MHz; r=l1¼0:0072;

D¼48:75
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To validate approximate analytical solution for the current (2.57), Fig. 2.11

shows the amplitude–phase distributions of the current for the perfectly conduct-

ing vibrator ðZS ¼ 0Þ, calculated and plotted for different vibrator lengths and

medium absorption coefficients, together with the experimental values from [5]

(the circles). Since theoretical and experimental curves agree well, we may

conclude that the proposed mathematical model corresponds to the real electro-

magnetic process.

As we may suppose, the electrophysical parameters of the environment influence

sufficiently the amplitude–phase distributions of the current in the vibrator. This

can be proved by the plots in Fig. 2.12, where are shown curves for the normalized

amplitude jJðsÞj=jJjmaxand the current phase arg JðsÞ along the arm of a symmetric

perfectly conducting half-wave vibrator located in a biological medium with the

electrophysical parameters given in Table 2.1.

Figure 2.12 demonstrates the variation in the electrical length of a vibrator 2L=l1
in a material medium, proved by additional extrema and the sections with opposite

phases in the distributions of the current along the vibrator, and this variation

increases with the density of the medium.

2.4 Radiation Fields of Impedance Vibrators in InfiniteMedium

Expressions (2.57), (1.3), and (1.12) define the radiation fields of a thin impedance

vibrator in a material medium. These fields may be written in spherical coordinates

r; y; ’ (y is the angle measured from the vibrator axis) as

Erðr;yÞ ¼ k1
oe1

ðL
�L

JðsÞe
�ik1RðsÞ

R3ðsÞ
2RðsÞ 1þ 1

ik1RðsÞ

h i
cosy

�ik1r 1þ 3

ik1RðsÞ �
3

k2
1
R2ðsÞ

h i
s sin2 y

8><
>:

9>=
>;ds;

Eyðr;yÞ ¼�k1 siny
oe1

ðL
�L

JðsÞe
�ik1RðsÞ

R3ðsÞ
2RðsÞ 1þ 1

ik1RðsÞ

h i
�ik1r 1þ 3

ik1RðsÞ �
3

k2
1
R2ðsÞ

h i
ðr� s cosyÞ

8><
>:

9>=
>;ds;

H’ðr;yÞ ¼ ik1k siny
o

ðL
�L

JðsÞe
�ik1RðsÞ

R2ðsÞ 1þ 1

ik1RðsÞ
� �

rds;

E’ðr;yÞ ¼Hrðr;yÞ ¼Hyðr;yÞ ¼ 0; RðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� 2rs cosyþ s2

p
;

(2.58)

and the power absorbed in a unit volume of dielectric is given by

�Pðr; yÞ � j~Eðr; yÞj2oe001; (2.59)
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Table 2.1 The electrophysical

parameters ðe1 ¼ e01 � ie001 ; ðtan dÞ1 ¼
e001=e

0
1Þ for human body tissues (the

wavelength is l ¼ 10 cm and the

temperature is 37
C [12])

Medium e01 e001 ðtan dÞ1
Free space 1.0 0.0 0.0

Fat layer 6.5 1.6 0.246

Muscular tissue 46.5 18.0 0.387

Skin 43.5 16.5 0.379

Liver 42.5 12.2 0.287

Whole blood 53.0 15.0 0.283
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Fig. 2.12 The amplitude–phase distributions of the current for a perfectly conducting vibrator

in different medium for r/l ¼ 0.007022 and 2L/l ¼ 0.5: 1 free space; 2 fat layer; 3 muscular

tissue; 4 skin; 5 liver; 6 whole blood
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where ~Eðr; yÞ ¼~erErðr; yÞ þ~eyEyðr; yÞ, e001 ¼ 4ps1=o, s1 is the medium conduc-

tivity, and ~er and ~ey are unit vectors.
Expressions for the fields of an electrically short vibrator (dipole) in a homoge-

neous isotropic lossy medium for jk1Lj � 1 may be derived from (2.58) with

JðsÞ ¼ J0 and RðsÞ � r:

Erðr; yÞ ¼ �i2LJ0
2k21 cos y e�ik1r

oe1r
1

k21r2
þ i

k1r

� �
; (2.60a)

Eyðr; yÞ ¼ �i2LJ0
k21 sin y e�ik1r

oe1r
1

k21r2
þ i

k1r
� 1

� �
; (2.60b)

H’ðr; yÞ ¼ �i2LJ0
k1k sin y e�ik1r

or
i

k1r
� 1

� �
: (2.60c)

The structure of the electromagnetic field in the immediate vicinity of the vibrator

is rather complex. However, for r ! 1 and r 
 2L (RðsÞ ffi r� s cos y) we may

substitute in (2.58)

1

RðsÞ ffi
1

r
; e�ik1RðsÞ ffi e�ik1r eik1s cos y; (2.61)

and for jk1rj ! 1, the radiation field has the form

Eyðr; yÞ ¼ ik21
oe1

sin y
e�ik1r

r

ðL
�L

JðsÞeik1s cos y ds;

H’ðr; yÞ ¼ ik1k

o
sin y

e�ik1r

r

ðL
�L

JðsÞeik1s cos y ds;
(2.62)

and the characteristic impedance of the medium becomes Ey=H’ ¼ ffiffiffiffiffiffiffiffiffiffiffi
m1=e1

p
.

In Fig. 2.13 (here and below, l ¼ 10 cm, r=l ¼ 0:0033) are shown the nor-

malized amplitudes jEsj2 ¼ jEsj2=jEsj2max for the field parallel to the axis of a half-

wave vibrator, Esðr; yÞ ¼ Erðr; yÞ cos y� Eyðr; yÞ sin y; as a function of surface

impedance for different environmental parameters. As may be seen, the resonant

tuning ð~k1L ffi p=2Þ requires that the distributed impedance of the vibrator in

the lossy material should transit from capacitive ðXS < 0Þ to inductive ðXS > 0Þ
type and that resonance should occur for higher values XS when e01 and e001 are

increased.
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Figure 2.14 represents the dependencies of the far-zone radiation field of a half-

wave vibrator in free space upon XS for different real impedances RS. As expected,

the field decreases in comparison to that of a perfectly conducting vibrator when

RS is increased. Note that the vibrator could not be tuned for large values of

RSðRSr0:1Þ.
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The electrophysical parameters of the environment influence considerably

the spatial distribution of the electromagnetic field radiated by the vibrator, and

thus the absorbed power in the unit volume. This conclusion can be reached by

analyzing the plots in Figs. 2.15–2.17, where the distributions of the radiation field

for a half-wave impedance vibrator at different distances from its axis are presented

for the resonant ~k1L values in free space, the fat layer, and human muscular tissue

at 37
C.
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The wire antennas are usually made of lossy materials, that is, the surface

impedance is really complex, ZS ¼ RS þ iXS. The values ZS depend on the

operating wavelength l and the vibrator radius r, as shown in Sect. 2.2.2. Figure 2.18
demonstrates the dependence of the normalized field jEj2 for the vibrator radius
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Fig. 2.16 The field distribution of the vibrator in the fat layer: XS ¼ �0:129ð~k1L ¼ 0:47pÞ
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r ¼ 0.00127 cm at distance r ¼ l along the vibrator normal ðy ¼ p=2Þ at wave-
length l ¼ 10 cm upon the electrical length of vibrators made of different materi-

als. As is evident from the graph, the vibrator material does not practically influence

its resonant length, while the vibrator radiation efficiency decreases substantially as

the active component of impedance RS increases.

This is also proved by the surface and contour plots in Fig. 2.19a, b, where the

values, normalized by the maximal value of jEj2, for a half-wave vibrator versus
the active RS and the reactive XS parts of its surface impedance are presented. Let

us note that as RS increases, the bandwidth of the value XS where the vibrator is

efficiently excited widens, reducing the requirements to the specification of RS

and XS for an antenna with artificial complex impedance. In our calculations, the

active part of the vibrator impedance was equated to RS ¼ 0:001, since this value
gives good coincidence between our formulas and real electrodynamic processes.

Since the resonant length of the vibrator essentially depends on the imaginary

part of the impedance XS (Fig. 2.19c, d), a quarter-wave (kL ¼ p=4, 2L ¼ l=4) may

be used instead of a half-wave vibrator by choosing XS for the material medium so

that ~k1L ¼ p=2 (Fig. 2.20), thus allowing antenna miniaturization for some applica-

tions. The spatial distribution of the normalized near fields for half-wave and

quarter-wave vibrators in free space are shown in Fig. 2.21. As can be seen, the

radiation field of the quarter-wave vibrator is more homogeneous than that of

the half-wave vibrator at small distances. However, it decreases faster when the

distance is increased.
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In conclusion, it may be emphasized that the model of infinite space may be

applied to the analysis of impedance vibrators in real medium having finite dimen-

sions, since excited fields in lossy medium rapidly decay as distance from the vibrator

increases. A vibrator field near a metallic plane has quite different properties, and its

analysis is the subject of the next chapter.

a

b

10

Fig. 2.21 The field distribution of a vibrator in free space: (a) kL ¼ p/2, XS ¼ �0:013; (b)
kL ¼ p/4, XS ¼ 0:121
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