Chapter 2

Radiation of Electromagnetic Waves
by Impedance Vibrators in Free Space
and Material Medium

2.1 Asymptotic Solution of Integral Equations for Vibrator
Current in Free Space

Let us rewrite (1.22) (z;(s) = const,&; = u; = 1), using the approximate kernel
(1.21), the quasi-unidimensional analog of the exact integral equation with the
kernel (1.20), as

42 L efikR(s,s’)
(ds2+ kz) J I Ry & = 0B +ioalls), @D
"L ’

where R(s,s) (s — )% + r2. 1t is obvious that Fos,J(s)] = 0. We isolate the
logarithmic kernel singularity as in (1.45):

r —ikR(s,s) r s —ikR(s,s') __ s

J J(s’)eR(Sis/)ds’ = Q(s)J(5) + [ J(s)e Re) Oae @2
Here

Q(s) = J N =Q+(s), (2.3)
ERVACERI e
and
{(L +5)+ /(L +s)+ rz} {(L — )+ /(L -5+ 1‘2]
7(s) =In

412

is a function equal to zero in the vibrator center which attains its largest value on
the vibrator’s ends, where the current equals zero. In view of boundary conditions
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22 2 Radiation of Electromagnetic Waves by Impedance Vibrators in Free Space

(1.18), Q = 21n(2L/r) is a large parameter. Then, with (2.3), (2.1) is transformed
into the following integrodifferential equation:

d?J(s)
ds?

+ K2 (s) = afiwEo(s) + Fls,J (s)] — iwz:J (s)}, (2.4)
where o = 1/(21n[r/(2L)]) is a natural small parameter (Jo| < 1) and

d[(sl) e—ikR(s,s’) L

2 S
Fls,J(s)] = — 3 RET| +[d£2 ) +k2j(s)}7’(s)
+ [ S es )}e;:t))_ [+ 2900 s’ (25)

is the vibrator’s self-field in free space.

Let us apply the asymptotic averaging method outlined in Sect. 1.5 to obtain the
approximate analytical solution of (2.4). To reduce (2.4) to the standard form (1.62)
with small parameter in accordance with the method of arbitrary constants varia-
tion, we change variables and get

J(s) =A(s)cosks + B(s) sinks,

dJ(s) . dA(s) dB(s) . .

P A(s)k sinks + B(s)k cosks, ( % cosks+ P sinks =0 26
2
dJ(s) + K2 (s) = 4l sinks + dB(s) cosks

ds? s s

where A(s) and B(s) are the new unknown functions. Then (2.4) is converted into
the following system of the integrodifferential equations:

dA(S)g{inm( )+ Fls,A), 42 B(s), 4] }SM

ds k| —iwzA(s) cosks + B(s )smks] ,

dB—(S): _’_g{leOs( )+F[S A( )7 dv s (S)adi(:} }COSkS‘
—iwz;[A(s) cos ks + B(s) sin ks]

2.7)

ds k

The obtained equations are equivalent to (2.4) and represent the standard system
of integrodifferential equations (1.62), unresolved relative to the derivative. The
right-hand sides in (2.7) are proportional to the small parameter «, so the functions
A(s) and B(s) on the right-hand sides of (2.7) are slowly changing functions, and the
averaging asymptotic method can be used for its solution. Then putting into corre-
spondence the simplified system (1.63) with dA(s)/ds = 0 and dB(s)/ds = 0 on the
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right-hand sides and the system (2.7), after performing partial averaging over
s explicitly (here the term “partial” means that the averaging operator (1.54) acts
on all summands except those containing Eos(s), which is possible ([22] in Chap. 1)
for system (2.7)), we obtain the equations of first approximation

dIZES) = —OC{iEEOS(S> + F[S’A(S)7E(S)]} sin ks + XB_(S)7

2.8)

a4 — Eos(s) —|—F[s,A(s),B(s)]} cos ks — yA(s),

where y = a(iw/2k)z;, and

L

Fls, A(s), B(s)] = [A(s') sinks' — B(s') cos ks/}efikR(x.s’)

R(s,s")

(2.9)
-L

is the self-field of the vibrator (2.5), averaged along its length.
We shall obtain the solution of the system (2.8) in the form [1]

A(s) = C;(s) cos gs + Ca(s) sin ys,

- , (2.10)
B(s) = —C(s) sin s + Ca(s) cos ys,

transforming (2.8) into

dC (s) = —oc{i%Eos(s) + F[s,Cy, Cz]} sin(k + y)s,
2.11)
dCz(S)

ds

= +a{%EOS(s) + Fls,Cy, Cz]} cos(k + y)s.

Then we obtain C,(s), Cx(s) from (2.11), and A(s), B(s) from (2.10), and use these
functions as the approximating functions for the current in (2.6). As a result, we
obtain the most general asymptotic expression in the parameter « for the current in
the thin impedance vibrator with arbitrary excitation:

J(s) = A(—L) cos(ks + yL) + B(—L) sin(ks + yL)

v [ {FEal) 4 A A8 sinkGs - )¢, @ad

where k = k + y = k +i(ot/r)Zs.
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To find the constants A(£L) and B(=L), it is necessary to use the boundary
conditions (1.18) and the conditions of symmetry ([11] in Chap. 1) related to the
method of vibrator excitation. If Eos(s) = Ej (s), then J(s) = J(—s) = J(s) and
A(=L) = A(+L), B(—L) = —B(+L); if Eps(s) = E3.(s), then J(s) = —J(—s) =
J3(s) and A(—L) = —A(+L), B(~L) = B(+L). Then for symmetric (index “s”)
and antisymmetric (index “a”) current components, we finally obtain, for arbitrary
excitation Eos(s) = Ej(s) + E}(s),

. N
, , iw .-
J(s) =T(s) +J%(s) = v J Eos(s') sink(s — s")ds’
L

. ~ L
ink(L Ps[lr, k(L -
— Slnk(. +:Y) + o [k' ) k(~ + S)] J ESS(S/) Slnk(L _ S/)ds/
sin 2kL + oPs(kr, 2kL)

smk(L +5) + P [kr, k(L + 5)]
sin 2kL + oP?(kr ZkL

J EA(s)sink(L —s")ds' 3, (2.13)

where P° and P? are the vibrator self-field functions, given by

Pl ) = [ [ + gy | ks = a8
T, +35)| = + sink(s — s )ds
J LR, =L)  R(sL) e (2.14a)
= PS(kr, 2KkL),

o IkR(s, L) o—ikR(s L)

R(s’,—L) R(s,L)

Pilkr, k(L + 5)] = j [ }sinlé(s—s’)ds’

s=L  (2.14b)

= P*(kr,2kL).

2.2 Vibrator Excitation in the Center by Concentrated EMF

To validate the accuracy and to find the limits of applicability of (2.13), we shall
discuss the classical problem of vibrator excitation in the geometrical center by
lump EMF with amplitude V. The mathematical model of excitation may be
represented as

Eos(s) = E}(s) = Voo(s — 0), (2.15)

where d(s — 0) = d(s) is Dirac’s delta function. Then the expression for the current
has the form
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(2.16)

J(s) = —aVs (12a)k> sink(L — |s|) + aPS(kr, ks) .

2k cos kL + oP} (kr, kL)
Here P3(kr,ks) = P*[kr, k(L + 5)] — (Si{l ks + sink|s| )P} (kr, kL), PS[kr, k(L + s)]
is defined by (2.14a), and P} (kr, kL) = [ (e *RL) /R(s,L)) cos ks ds.

- L .
It is possible to obtain P§(kr, ks) and P; (kr, kL) in explicit form by the technique
of generalized integral functions (see Appendix C). Here we give an expression for
P; (kr,kL):

- . 1 ~ -
P} (ke RL) = cos RL{2 In 2 = (L) — 3 [Cin(2RL + 2KL) + Cin(24L — 24L)]
- % [Si(2KL + 2kL) — Si(2kL — 2kL)]}
~ 1 ~ ~
+ sinkL{5 [Si(24L + 2kL) + Si(2kL — 2kL)]

i

5 [Cin(2kL + 2kL) — Cin(2kL — 2kL)] } : (2.17)

where Si(x) and Cin(x) are the integral sine and cosine of the complex argument.
Expression (2.16), in contrast to the solution of the integrodifferential equation
(2.4) for the vibrator current by the small parameter method, is given in [2] as

(a) For a tuned vibrator (I:<L = n(n/2), where n is the integer),

Jo(s) = C; cosks + C, sinks, (2.18a)

(b) For an untuned vibrator (l:<L # n(n/2)),

)

J(s) = aly(s) = —o 1/ g&@_gJEMﬁm&@+ww
sin 2kL
)
L
+sink(L + s) JE()S(S/) sink(L — s')ds’ p, (2.18b)
N

or after substituting Eos(s) = Vd(s),

i sink(L - |s|)

J(s) = —aVy— -
2k cos kL

, (2.18¢)
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x 1 + ioewz; 1 +i20Zg
k=k =k
k? (kr)

Solution of (2.4) by the iterations method (see Sect. 1.4.2) for the current in the
zeroth and first approximations (with accuracy o inclusive) has the form

zk+i§75212. (2.19)

[i20Zs / (kr)| /21

iw sink(L — |s|)
— oy, 2 AR Z B 22
Jo(s) Vo cosil (2.20a)

iw sink(L — |s|) + aF (kr, ks, z;)

J =—oVo— 2.20b

1(s) "% T coskL + oF (kr,kL,z;) ( )

In addition to the above-mentioned solutions, King and Wu have obtained the

so-called trinomial formula for the current on a vibrator centrally excited by the
o-generator [3, 4],

i sinl:cL— s|)+F cosI:cs—coslzL + Fxa(cos’ — cos’L
J(s) = —ocVo s (L~ ls) + F{ = )+ Fa(cos ) )
2k cos kL

2.21)
with & defined in (2.19) and
Qk (0

1 2O kL<7/2,
ox = o Qx = sin kL (2.22a)

K |k (L52)|, kL=m/2,
Q(s) = J e O k(L — ¥ ) (2.22b)

R(s,s")

Coefficients Fg; and Fxyhave been found approximately by transforming (2.1) into
the Hallen linearized equation (1.42) using its kernel properties. It should be noted
that (2.21) coincides with (2.18c) when Fg; = 0 and Fg, = 0.

Thus, the solution of integrodifferential equation (2.1) by the averaging method
is given by (2.13), valid (in contrast to the solution by the small parameter method)
both for tuned (sin2kL = 0) and untuned (sin 2kL # 0) vibrators under arbitrary
excitation. The solution of (2.1) by the iterations method requires that the impressed
sources field be specified at the initial stage of problem solution. What is more,
the distributed vibrator impedance begins to exhibit itself, as follows from (2.20)
(in contrast to the solutions by the averaging and the small parameter methods), in
the first and succeeding approximations in the small parameter. And finally, the
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King—Wu trinomial formula requires different current representations for the tuned
and untuned vibrators as in the small parameter method.

The true current distribution (2.16) allows one to calculate the electrodynamic
characteristics of the impedance vibrator. Thus, we may obtain the following
expression for the vibrator input impedance at the feed point Z;, = Ry, + iXj, (or
the input admittance Y;, = Gy, + iBin = 1/Zpy):

Znohm] — Vo <601/€) C.OS ~lgL + oP§ (kr, I{L) 7
ak ) sinkL + oPsy (kr, kL)

7(0) (2.23)

where

—ikR(s,L)

P (kr, kL) = J ¢ sin k|s|ds

R(s,L)

- 1 -
= sin kL{ —yp(L) + 3 [Cin(2kL + 2kL)
—Cin(2kL — 2kL)] — Cin(kL + kL) + Cin(kL — kL)

+% [Si(2kL + 2kL) — Si(2kL — 2kL)] — i[Si(kL + kL) — Si(kL — kL)]}

- (1 - - . -
+ cos kL{E [Si(2KL + 2kL) + Si(2kL — 2kL)] — Si(kL + kL) — Si(kL — kL)

i

5 [Cin(2kL + 2kL) + Cin(2kL — 2kL)] + i[Cin(kL + kL) + Cin(kL — kL)] }
(2.24)

Then the voltage standing wave ratio (VSWR) in the feeder line with characteristic
impedance W equals

1+ [Si] S, _Zn—W
| =

VSWR = ———, )
1—|Su Zin +W

(2.25)

where S, is the reflection coefficient in the feeder.

Let us present some numerical results. Figures 2.1-2.5 show the current ampli-
tude—phase distributions J(s) = |J/(s)|e'*2’®®) in thin (/2 = 0.007022) perfectly
conducting vibrators with different electrical lengths, calculated with (2.16), in
comparison with the experimental data from [5]. As can be seen, the trend of
theoretical curves follows that of experimental results quite satisfactorily, with
some differences in the absolute values. Such differences are also present in the
vibrator input characteristics Yi, = f(2L/2) and |S;| = f(kL), calculated by (2.23)
and (2.25) and shown in Figs. 2.6 and 2.7. In Fig. 2.7 the theoretical curves corres-
ponding to the King—Middleton solution of Hallen’s equation by the iterations
method in the second approximation ([11, 12] in Chap. 1) are also plotted, namely
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Fig. 2.2 The current ampli-
tude—phase distribution on a
perfectly conducting vibrator
(r/A = 0.007022 and 2L/A =
0.75): 1 the calculation (2.16);
2 the experimental data [5]

Normalized current amplitude 1J1/1J1,,,,

Current phase argJ, deg

Current amplitude IJI, mA/V
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Fig. 2.3 The current ampli-
tude—phase distribution on a
perfectly conducting vibrator
(r/A = 0.007022 and 2L/A =
1.0): I the calculation (2.16);
2 the experimental data [5]

Normalized current amplitude 1J1/1d] ;.4

Current phase argJ, deg
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Fig. 2.4 The current amplitu-
de—phase distribution on a
perfectly conducting vibrator
(r/A = 0.007022 and 2L/J. =
1.25): I the calculation (2.16);
2 the experimental data [5]

Normalized current amplitude 1JI/1J] .,

Current phase argJ, deg
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Fig. 2.5 The current ampli- 8 (At
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Fig. 2.6 The input admittance of a perfectly conducting vibrator versus electrical length
(r/A = 0.007022): I the calculation (2.23); 2 the calculation (2.27); 3 the experimental data [5]

io Sin kL + axF (kr, kL) + og Fas (kr, kL)

2.26
60 coskL + axF(kr kL) + o2 F(kr kL) ’ (2.26)

YK, [millimhos] =

where oy is defined by (2.22).
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Fig. 2.7 The reflection coefficient in the feeder with W = 75 ohm versus electrical length of a
perfectly conducting vibrator: / the calculation (2.23); 2 the calculation (2.27); 3 the calculation
(2.26)

An analogous situation is observed for the input characteristics of impedance
vibrators. The plots of input admittance for two different surface impedances are
represented in Figs. 2.8 and 2.9: (1) a metallic conductor (radius r; = 0.3175 cm)



2.2 Vibrator Excitation in the Center by Concentrated EMF 35

40 T T T T T T T T T T

35 ]
sl _'
25L _'
20l _'

15 -

Conductance G;,, millimhos

0 L L Il Il L T L
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Electrical vibrator length L/A

30 T T T T T T T T T T

a4 A
o o
T T
(@)
N

Susceptance B;,, millimhos
I
o o
——
C
1

L
o
T
1

L L Il L Il L Il L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Electrical vibrator length L/A

Fig. 2.8 Input admittance of a metallic conductor of radius r; = 0.3175cm, covered by a
dielectric (¢ = 9.0) shell with radius » = 0.635cm versus electrical length at 600 MHz: [ the
calculation (2.23); 2 the experimental data [6]

covered by a dielectric (¢ = 9.0) shell (radius » = 0.635 cm), where Fig. 2.8 shows
experimental data from [6]; (2) a metallic conductor (radius r; = 0.5175cm)
covered by a ferrite (u =4.7) shell (radius r = 0.6cm), where Fig. 2.9 shows
experimental data from [7].

Differences among the theoretical curves obtained from solution of the integral
equation by the averaging method, the experimental data, and the graphs plotted by
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Fig. 2.9 Input admittance of a metallic conductor of radius 7; = 0.5175 cm covered by a ferrite
(u = 4.7) shell with radius » = 0.6 cm versus frequency at L = 30 cm: / the calculation (2.23);
2 the experimental data [7]

higher approximations of the iterations method may be explained by errors in
averaging of the self-field of the vibrator (2.5). However, the resonant character-
istics of the vibrators ((2L/2),., for By, = 0 and (kL),., for [Sii| = |Si1]pn) are
defined rather precisely, and the calculated curves for the normalized current
amplitudes (|J(s)|/|/],.x) agree with the experimental data within acceptable
limits. Thus, the formulas for the current obtained by a first approximation of the
averaging method are applicable to the calculation of vibrator integral characteristics
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such as the radiated (scattered) electromagnetic field in all field zones, and to the
investigation of the resonant properties of the vibrator.

As was indicated in Sect. 1.5, the solution of (2.7) can be obtained by an
improved first approximation. This means that the transition from (2.7) to (2.8)
is accomplished by the substitution — (dA(s)/ds)sinks + (dB(s)/ds) cos ks =
aiwEs(s). Then the input impedance of the vibrator is

imp <60ik> cos kL + aP; (kr, kL)
"\ ak ) sinkL + aPyy (kr, kL) + [sin kL + aPyy (kr, kL) + 02 P (kr, kL))

(2.27)
Here

Py (kr, kL) = Py (kr, kL) + sin kLP§(kr, kL) — cos kLPso(kr, kL),

Py (kr, kL) = Py (kr, kL)P(kr, kL) — P} (kr, kL)Pso(kr, kL),

. e~ IkR(5.0) B ~ i e IkR(5,0) ~
Py(kr kL) = J R(.0) cosksds, Pgso(kr,kL) = JW sin k|s|ds.
L —L
(2.28)

The curves calculated by (2.27) are given in Figs. 2.6 and 2.7 as dotted lines, well
correlated with the solution (2.26). The cumbersome formulas derived by solving
(2.7) by the averaging method to second approximation improve the accuracy of the
results but are useless in practice. However, the accuracy of a mathematical model
may be enhanced by other methods, as will be demonstrated below.

2.2.1 Impedance Vibrator with Lumped Load in the Center

The problem of impedance vibrator excitation by an EMF J-generator can be used
for analysis of passive vibrators with lumped load. The current in a symmetric
vibrator loaded by lumped impedance Z.; at s = 0 and located in the field of a plane
electromagnetic wave is defined by a combination of two current distributions ([11]
in Chap. 1):

Jo(8) = Jse(s) = T (s), (2.29)

where Ji.(s) is the current in the gapless vibrator and J,(s) is the current in
the vibrator excited by the o-generator. The current J.(s) in the gapless
scattering vibrator with accuracy to the terms of order o is given, according
to (2.13), by
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iw/ (kk
Jse(s) = —aEg cosy siné)%?2
1—(q/k)
o |08 ks cos gL — coskL cosgs . sinks singL — sin kL sin gs
cos kL + oP} (kr, kL) sin kL + P2 (kr, kL) 7

(2.30)

where Egs(s) = Eq cos sin0e** ©s? Here g = k cos 0, E, is the incident wave
amplitude, i is the angle between the vibrator axis and the polarization plane of the
incident wave, the angle 0 is measured from the vibrator axis, and

L
P2 (kr kL) = — J G(s,L)sinksds
“L

= sin/SL{z In2—y(L)— % [Cin(2kL +2kL) + Cin(2kL — 2kL))]
—% [Si(2KL + 2kL) — Si(2kL — 2KkL)] }

- coslgL{% [Si(2KL +2kL) + Si(2kL — 2kL)]

—% [Cin(2kL + 2kL) — Cin(2kL — 2kL))] } (2.31)

The current Jy,(s) is calculated by (2.16) if Vj, is replaced by V.,

ZianL

Vo = Jse(0) 5———. 2.32
cL ‘c( )Zin“!‘ZcL ( )

Then the current in the load of the receiving antenna has the form

Z i/ (kk
J:(0) = Jsc(0) =———— = aE(cos ¥ sin 0%?2
Zin+ 2 1—(q/k)

(2.33)

(cos kL — cos gL) + oP} (kr, kL) Z
cos kL + oP; (kr, kL) Zin+Zo

2.2.2 Surface Impedance of Thin Vibrators

As discussed above, in comparative numerical calculations for perfectly conducting
vibrators the value of the distributed surface impedance Zg is set equal to zero.
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However, the analysis of certain vibrators requires formulas for the numerical
estimation of the surface impedance. Let us consider the problem of axisymmetric
excitation of an infinite double-layer cylinder with outer radius » and inner radius r;
by a converging cylindrical wave. Let us introduce the cylindrical coordinate sys-
tem p, ¢, z with z-axis directed along the cylinder’s axis. By symmetry, the electro-
magnetic field has only E. and H,, components, depending only on p. The medium
has permittivity ¢ and permeability u in the region r — r;, and ¢;, u; when p<r;.

The surface impedance Zs = E. /H, at p =r may be found as a solution of
Maxwell’s equations expressed in terms of Bessel function /p; and Neumann
function Ny as

{115} Io (ky/2gir) + No (ky/2gir)
H, § 7\ (k) + Ny (k)
\/,le ky/epr; Io(k a,u,r) \/;ZiNg(k\/Eﬁr,-)Il(k\/@Tir,-)
s i) = [ ey )
(2.34)

Assuming r; = 0 and |¢| > 1 (¢ = ¢ + 4no/iw), we obtain the familiar formula for
the impedance of a cylindrical conductor [3, 4], with the skin effect
— kK Ly(K'r)
ZS = )
120me I (k'r)

(2.35)

where k' = (1 —1)/A%, A’ = w/kv/2rowmu is the skin-layer thickness, and ¢ is the
conductivity of the metal.

Consider corrugated (L; =~ L,) or ribbed (L; < L,) conductors (here L, is the
ridge thickness, where Zg = 0, and L, is the cavity width, where Zg # 0) with cell
periods (L; + L) < 4/,/ejt and |g;| > 1. Averaging the impedances over the cell
period and taking into account (2.34), we have

S b \[Io(kf') o (ki) ok /i No (ki) o
Ly + Ly \ &1y (ky/eur)No (ky/emri) — Lo (ky/epri)Ny (kyfear)

which is valid for conductors with an isolating covering made of a magneto-
dielectric [2] (L; =0), and also for metallic cylinders (r; = 0) with transverse
dielectric insertions (L, < Ly).

For thin vibrators (| (k\/@r)2 In(k/eur;)| < 1), the surface impedance does not
depend on the excitation mode, and the corresponding boundary conditions become
impressed [8], that is, they do not depend upon the structure of exciting field. Then
with (2.34)—(2.36) we find that the complex impedances Zs = Rs + iXs for vibrators
in thin-wire approximation equal
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_ 1 1
Z +i

= 2.37
S 12076 A° ( )

for a solid metallic cylinder if > A°; note that Zs = 0 for a perfect conductor
(6 — o0);

— 1
Zs = 2.38
S 7 120n0hy + ikr(e —1)/2 (2.38)
for a dielectric cylinder with thin metal covering (hy < A° ¢ = 1);
Zs = ! (2.39)
>~ 120mahy '

for a metallic tubular cylinder r < A (“nanoradius” vibrator [4] hy = r, r < A°);
and after substitution 4y = 0 in (2.38),

Zs = —iﬁ (2.40)
for a dielectric cylinder;
Zs = _lLll—sz % (2.41)
for a metal-dielectric cylinder;
Zs ! (2.42)

~ 120m0hy — i/krp In(r/r;)

for a magnetodielectric metalized cylinder with inner conducting cylinder r = r;
(2.39); and if iy = 0, then

Zs = ikrp In (2.43)
Ti

for a metallic cylinder with magnetodielectric covering (thickness r — r; [2]) or a
ribbed cylinder;

Zs = %kr cot® i (2.44)

for a metallic monofilar helix with radius r(kr < 1) and winding angle .
Formulas (2.37)—(2.44) have been obtained in the framework of impedance

conception ([3] in Chap. 1, [8]), and they are valid for thin cylinders both with finite

and infinite extension located in free space. If the vibrator is situated in a material
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medium with parameters ¢; and yy, then all formulas must be multiplied by /u; /¢;.
Since the surface impedance often depends on the parameters ¢ and , it is possible to
alter the characteristics of antennas with fixed geometric dimensions by varying these
parameters if they depend on the external static electrical and/or magnetic fields. It
also follows from (2.43) and (2.44) that it is possible for vibrators with pure inductive
surface impedance to define a term known as effective vibrator length 2L [9]:

1 i
MUosr = [1 + £ n(r/r)}ZL, Ui = {1 +

cot? s
W } 2L, (2.45)

41n(2L/r)

that is, the impedance vibrator length 2L is “equivalent” to the perfectly conducting
vibrator with the length 2L.¢ with 2L > 2L.

2.2.3 Resonant Properties of Impedance Vibrators in Free Space

Near the resonance, when kL ~ 7/2 and sin kL ~ 1, it is possible to neglect the
second summand in the denominator of (2.33), proportional to the small parameter
o.. If vibrator impedance is purely reactive, i.e., Rg = 0, then defining the resonant
condition as X;, = 0, we obtain the transcendental equation, allowing us to find the
length (frequency) of the resonant vibrator,

cos (kL),,, + aRe P} (kr, (kL),,,) = O, (2.46)

res res

where Re Py} is the real part of P , defined by (2.17). Let us remark that, as it will be
shown below, the real part of the impedance vibrator has no considerable influence
on its resonant properties.

Let us obtain an approximate solution of (2.46), expanding the unknown value

(kL),., in a power series in the small parameter o

(kL),oy = (KL)y + o(kL), + o*(kL)y + .. .. (2.47)

Substituting (2.47) into (2.46) and equating summands with equal powers, we have

~ Y mr T
(RL) o 5 + 2 Re P} (i , E) , (2.48)

with accuracy to terms of order o®. With (2.17), (2.48) may be transformed into

~ 1 1
(L),., ~ g Ty [5 Si(2 — 24L) + 3 Si(zxL)} , (2.49)



42 2 Radiation of Electromagnetic Waves by Impedance Vibrators in Free Space

where 7 = —o(Xs/r). Assuming (2L),. ~ 4/2 and taking into consideration that
a=1/(21n(2r/2)), 2yL = —a()Xs/2r), k = k(1 — a(Xs/kr)), we obtain the for-
mula for the vibrator resonant length as a function of its radius r, wavelength A, and
surface impedance Xs:

(2L)mz% ! +o 1, [Si(Zn—#ocA)(S)—Si(ocAXS)]. (2.50)
21—« k(l —a&) 2r 2r

Xs
kr kr

Expression (2.50) may be simplified for relatively small values of the normal-
ized surface impedance (Xs ~ kr) and represented as

<Si(2n) + iXs) . 2.51)

(L) s

res

o
T2

.
4r lnﬂ

We note that (2.51) was derived by the power series expansion

J— J— 2 J—

1 X X X
4_:1%(_5) —az(—s> +---%1+oc(—s>.
1_05(&) kr kr kr

kr

It was shown in Sect. 2.2.2 that if Xs>0 (the inductive impedance has, for
example, a metallic conductor covered by a magnetodielectric layer, a corrugated
cylindrical conductor, or a monofilar metallic helix), then the surface impedance of
a thin vibrator can be represented as Xs = krCp; and if X5 < 0 (capacitive imped-
ance has, for example, a dielectric or a layered metal-dielectric cylinder), then
Xs = —kr[Cc/(kr)?], where the constants Cy_ and Cc are defined by the geometric
dimension and electrophysical parameters of the vibrator material. Bearing this in
mind, we transform (2.51) into

A A
2L) .~ —— .
( )TCS 2 4 l (

4
n 2r

2.52
b kr (2.52)

Si(2n) N Xs > .

As follows from (2.52), the resonant length of a thin vibrator in free space can be
either shorter or longer than //2 (vibrator shortening or lengthening, respectively),
depending on the distributed surface impedance type. Note the principal difference
for perfect conductivity (Zs = 0), where (2L),,<(4/2) for any finite r/A. This is
illustrated in Fig. 2.10a, where the normalized resonant length in dependence on
the vibrator radius for capacitive and inductive impedances, and also for a perfectly
conducting vibrator, is shown. For comparison, results obtained by the iterations
method to a second approximation in [12] in Chap. 1 (the formula (2.26)) are
presented. For the capacitive impedance (curves 1 and 2), lengthening (2L)

res
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Fig. 2.10 The relative resonant length and the input conductance versus vibrator radius: /
Zs = —iXs5(Cc = 0.002); 2 Zs = —iXs(Cc = 0.001); 3 Zs = 0 (the circles correspond to calcu-
lation [12] in Chap. 1); 4 Zs = iXs(CL = 1.0); 5 Zs = iXs(CL = 2.0)

transits to shortening as the radius increases, reaching for some r/A the value
(2L),., = 4/2 (a half-wave vibrator). For a perfectly conducting vibrator (curve 3
and the circles) and for inductive impedance (curves 4 and 5), the resonant tuning
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requires that vibrator length be decreased as compared to that of a half-wave
vibrator, and such shortening grows with an increase in the distributed surface
impedance.

It is interesting to observe how the radius of the resonant impedance vibrator
influences the real part of the input admittance (Fig. 2.10b). The input conductance
Gin{(2L),.} increases monotonically with increase in the radius (small windows in
Fig. 2.10b) for the half-wave (kL = n/2, 2L = 1/2) perfectly conducting vibrator,
but it remains practically constant (curve 3) for the resonant vibrator. The dis-
tributed surface impedance influences in an essential way the radial dependence of
the real part of input admittance of the vibrator.

2.3 Impedance Vibrators in an Infinite Homogeneous
Lossy Medium

In some important practical applications such as underground and underwater radio
communication, geophysical investigations, medical diagnostics and hyperthermia,
a vibrator antenna must work in a medium with electrophysical parameters that
differ significantly from those of air. Theoretical and experimental works con-
cerning antennas in different medium are covered, systemized, and generalized in
the monograph [10], where original results for “nonisolated” and “isolated” vibrator
antennas in a lossy medium are presented. The terms “isolated” and “nonisolated”
are related to antennas with or without a multilayered dielectric shell, respectively.
The integral equations for the current in these two cases coincide formally, but their
kernels differ essentially. Therefore, the solution of the integral equations for
“nonisolated” and the “isolated” antennas requires separate considerations, and
moreover, the choice of solution method depends on environmental parameters.
Approximate expressions for the vibrator current, obtained in [10], are valid for
electrical length (2L//1)<1.25, where 4, is the wavelength in the medium. It was
also noted in [10, 11] that the rate of field amplitude decrease when the distance
from the dipole increases in a material medium is essentially greater than in free
space, and moreover, it is substantially different for the near, intermediate, and far
antenna zones. At the same time, the characteristics of real vibrators with finite
dimensions comparable with the wavelength in the material medium differ essen-
tially from the corresponding parameters of electrically short dipoles. Hence, taking
into account possible fields of application of vibrator antennas located in different
medium a thorough analysis of the spatial field distribution in a near-field zone of
the vibrator (especially when it has complex distributed impedance) is of real
practical interest.

In this section we will consider thin impedance vibrators located in an infinite
homogeneous medium with sufficiently arbitrary parameters, including those for a
conducting medium without any restrictions on vibrator lengths and excitation
methods.
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The analysis is based on the integrodifferential equation

d2 L efiklR(s,s')
<d 5 + kz) J J(S,) stl = —i(JJE‘I]EOS(S) + i(US]Zl‘J(S), (253)

where ki = k,/e i) = k| — ik] is the wave number in the medium and & # 1,
u; # 1, zi(s) = const. We obtain the solution of (2.53) as we did that of (2.1),

i.e., by the change of variables
J(s) = A(s) coskys + B(s) sinkys,
a7 (2.54)
d(sS) = —A(8)ky sinkys + B(s)ky cos kys.

Using the methods described in Sect. 2.1, we obtain an approximate expression for the
current in a thin impedance vibrator located in an infinite homogeneous lossy medium:

s

J(s) = alczi J Eos(s') sin k (s —s")ds'
o
ink (L Pkyr, k(L [
_sinki(L+s) + oPlkir k(L +s J Nsinky(L —s)ds (2.55)
sin 2k,L + oPs(kyr, 2k1L
L
smkl (L+s) + aPfkyr, ki (L + 5)] J N sinki (L — )’
sin 2k, L + oP(kyr, 2k1L
(s =) +r2

Here k; = ky +i(a/r)Zs~/e1 /1, G(s,5') = ¢ ,
\/(s — ) + 2

Skyr, ki (L + 5)] = J [G(s',—L) + G(s',L)] sink, (s — s’)ds"S:L
“L
= PS(kyr,2k\L),
N
Pilkyr k(L +5)] = J [G(s',—L) — G(s',L)] sink, (s — s’)ds’|X:L
“L
= P(kyr, 2k, L). (2.56)
If the vibrator is excited by a lumped EMF at the center, the expression for the

current (2.55) has the form

J(s) = —aV, (1”81> sinky (L~ |s]) + Py (karis) | (2.57)
2ky coskiL + oP§ (kyr, kiL)
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Here the equality P (k7 kis) = PS[kyr, ki (L+s)] — (sinkys+sinky|s|) P} (kir, kL),

~ ~ L ~
PSlkyr,ky (L +s)] is defined by (2.56), and P; (kyr,kiL) = [ G(s,L) cosk;sds.
“L
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Fig. 2.11 The amplitude—phase distributions of the current for the vibrator in saltwater with dif-
ferent salt concentrations (A = 1/4;). (a) ¢; =83.46, (tand), =0.662, k| /k; =0.301, f=28MHz,
r/21=0.0028, A=9.58 (b) ¢ =102.14, (tand),=1.823, k{/k;=0.592, f=28MHz, r/i =
0.0037, A=12.54 (c) & =139.3, (tand),=32.83, k{/k{=0.97, f=14MHz, r/2;=0.0072,
A=48.75
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To validate approximate analytical solution for the current (2.57), Fig. 2.11
shows the amplitude—phase distributions of the current for the perfectly conduct-
ing vibrator (Zs = 0), calculated and plotted for different vibrator lengths and
medium absorption coefficients, together with the experimental values from [5]
(the circles). Since theoretical and experimental curves agree well, we may
conclude that the proposed mathematical model corresponds to the real electro-
magnetic process.

As we may suppose, the electrophysical parameters of the environment influence
sufficiently the amplitude—phase distributions of the current in the vibrator. This
can be proved by the plots in Fig. 2.12, where are shown curves for the normalized
amplitude |J(s)|/|/|,,.xand the current phase argJ(s) along the arm of a symmetric
perfectly conducting half-wave vibrator located in a biological medium with the
electrophysical parameters given in Table 2.1.

Figure 2.12 demonstrates the variation in the electrical length of a vibrator 2L/,
in a material medium, proved by additional extrema and the sections with opposite
phases in the distributions of the current along the vibrator, and this variation
increases with the density of the medium.

2.4 Radiation Fields of Impedance Vibrators in Infinite Medium

Expressions (2.57), (1.3), and (1.12) define the radiation fields of a thin impedance
vibrator in a material medium. These fields may be written in spherical coordinates
p, 0, ¢ (0 is the angle measured from the vibrator axis) as

kl j e-ikiR(s) PR(s) [1 +11<1R( J cost

Ep(Pv >_ dS,
we R3(s . 3 .
1 (s) —1k1p{1 +ik,R(s)_k%R2(s)]ssm 0
L 1
£ sing —ikiR(s) 2R(S)[1+-I }
Ey(p,0) = — =~ JJ eR3(> 1aR(s) ds,
wer s —1k1p[1+uR() m}(p—scosé))
1k1k sin6 e ihiR(s) 1
H 1 d
(p:6) J +i/qR(s) pas,
E(p,0) = Hy(p,0) = Holp,0) =0, R(s) = /p?—2pscos0+ 57,
(2.58)

and the power absorbed in a unit volume of dielectric is given by

P(p,0) ~ |E(p, ) we!, (2.59)
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Fig. 2.12 The amplitude—phase distributions of the current for a perfectly conducting vibrator
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Table 2.1 The electrophysical Medium g o (tan o)
ol gl _ 1
p/?ra/meters (&1 =2 1 (tan ), Free space 1.0 0.0 0.0
&} /¢}) for human body tissues (the
. Fat layer 6.5 1.6 0.246
wavelength is £ = 10 cm and the Muscular tissue ~ 46.5 180 0387
temperature is 37°C [12]) Skin 43'5 16.5 0'379
Liver 425 12.2 0.287

Whole blood 53.0 15.0 0.283




2.4 Radiation Fields of Impedance Vibrators in Infinite Medium 49

where E(p,0) = &,E,(p, 0) + &Eq(p,0), ¢! = 4nc1/w, o, is the medium conduc-
tivity, and €, and €y are unit vectors.

Expressions for the fields of an electrically short vibrator (dipole) in a homoge-
neous isotropic lossy medium for |k;L| < | may be derived from (2.58) with
J(s) =Jo and R(s) =~ p:

2k? cos O e ke 1 i
E,(p,0) = —i2LJy = — 2.60
p(p, ) 1 0 e p <k%p2 + k1,0>7 ( a)
k? sin Qe ke 1 i
Ep(p,0) = —i2LJy - ——1 2.60b
o(p,0) i2LJy werp (k%p2+k1p >7 ( )
kik sinfe kP [/ j
H,(p, 0) — —ioLy, Kk simn0e " (; - 1). (2.600)
wp kip

The structure of the electromagnetic field in the immediate vicinity of the vibrator
is rather complex. However, for p — oo and p > 2L (R(s) =2 p — s cos 0) we may
substitute in (2.58)

b
R(s)

o~

, e HkiR(S) o g—ikip gikis cost (2.61)

SR

and for |k;p| — oo, the radiation field has the form

L
ik> —ikip _
Eo(p, 0) = 1_1 sin 06 J ](S)e]kls cos 0 ds,
weq p
. (2.62)
ik k —ikip .
Htﬂ(pve) :%Sil’lee JJ(S)elkls COSOdS,
—L

and the characteristic impedance of the medium becomes Eg/H, = /1, /¢1.

In Fig. 2.13 (here and below, 4 = 10 cm, /4 = 0.0033) are shown the nor-
malized amplitudes |E|* = |E,|*/|E,|?,, for the field parallel to the axis of a half-
wave vibrator, E¢(p,0) = E,(p,0) cos 0 — Eg(p,0)sin0, as a function of surface
impedance for different environmental parameters. As may be seen, the resonant
tuning (kL = 11/2) requires that the distributed impedance of the vibrator in
the lossy material should transit from capacitive (Xs < 0) to inductive (X5 > 0)
type and that resonance should occur for higher values Xs when ¢| and ¢/ are
increased.
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Fig. 2.14 The field amplitude in the far zone versus the surface impedance of the vibrator for
kL =7/2,p/4 =10.0,0 =90°: I Rs = 0.0; 2 Rs = 0.002; 3 Rs = 0.01; 4 Rs = 0.1

Figure 2.14 represents the dependencies of the far-zone radiation field of a half-
wave vibrator in free space upon Xs for different real impedances Rs. As expected,
the field decreases in comparison to that of a perfectly conducting vibrator when
Rs is increased. Note that the vibrator could not be tuned for large values of

1_35(1_?520.1).
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The electrophysical parameters of the environment influence considerably
the spatial distribution of the electromagnetic field radiated by the vibrator, and
thus the absorbed power in the unit volume. This conclusion can be reached by
analyzing the plots in Figs. 2.15-2.17, where the distributions of the radiation field
for a half-wave impedance vibrator at different distances from its axis are presented
for the resonant lglL values in free space, the fat layer, and human muscular tissue
at 37°C.
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Fig. 2.15 The distribution of the radiation field of a vibrator in free space: (a)
Xs = —0.013(k,L = 0.477), (b) Xs = 0.39(k,L = 1.447)
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Fig. 2.16 The field distribution of the vibrator in the fat layer: Xs = —0.129(k;L = 0.477)
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Fig. 2.17 The field distribution of the vibrator in muscular tissue: Xs = —0.18(k;L = 0.47x)

The wire antennas are usually made of lossy materials, that is, the surface
impedance is really complex, Zs = Rs + iXs. The values Zs depend on the
operating wavelength 4 and the vibrator radius r, as shown in Sect. 2.2.2. Figure 2.18
demonstrates the dependence of the normalized field |E|2 for the vibrator radius
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Fig. 2.18 The radiation field of the vibrator |E|2 versus electrical length 2L/2 for different
materials for p =/, 0 =n/2: 1 z; = 0 [ohm/m] for a perfect conductor; 2 z; = 189 + 1180
[ohm/m] for copper; 3 z; = 527 + 1458 [ohm/m] for platinum; 4 z; = 2940 + 1700 [ohm/m] for
bismuth. The impedance values are taken from [13]

r = 0.00127 cm at distance p = A along the vibrator normal (6 = n/2) at wave-
length 4 = 10 cm upon the electrical length of vibrators made of different materi-
als. As is evident from the graph, the vibrator material does not practically influence
its resonant length, while the vibrator radiation efficiency decreases substantially as
the active component of impedance Rg increases.

This is also proved by the surface and contour plots in Fig. 2.19a, b, where the
values, normalized by the maximal value of \E|2, for a half-wave vibrator versus
the active Rs and the reactive Xs parts of its surface impedance are presented. Let
us note that as Ry increases, the bandwidth of the value Xg where the vibrator is
efficiently excited widens, reducing the requirements to the specification of Rg
and X5 for an antenna with artificial complex impedance. In our calculations, the
active part of the vibrator impedance was equated to Ry = 0.001, since this value
gives good coincidence between our formulas and real electrodynamic processes.

Since the resonant length of the vibrator essentially depends on the imaginary
part of the impedance Xs (Fig. 2.19¢, d), a quarter-wave (kL = n/4,2L = 1/4) may
be used instead of a half-wave vibrator by choosing Xg for the material medium so
that k| = /2 (Fig. 2.20), thus allowing antenna miniaturization for some applica-
tions. The spatial distribution of the normalized near fields for half-wave and
quarter-wave vibrators in free space are shown in Fig. 2.21. As can be seen, the
radiation field of the quarter-wave vibrator is more homogeneous than that of
the half-wave vibrator at small distances. However, it decreases faster when the
distance is increased.
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Fig. 2.19 The value of |E|* for a vibrator in unbounded space versus active Rs and reactive Xs

components of the surface impedance

-
o

0.8

0.6

0.4

0.2

Normalized field amplitude IEI%/IEI?,,,,

0.0

0.0
Surface impedance Xg

Fig. 2.20 |E|2 as a function of Xs for a quarter-wave vibrator in different medium: 7 free space;

2 fat layer; 3 muscular tissue
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Fig. 2.21 The field distribution of a vibrator in free space: (a) kL = n/2, Xs = —0.013; (b)
kL = m/4, Xs = 0.121

In conclusion, it may be emphasized that the model of infinite space may be
applied to the analysis of impedance vibrators in real medium having finite dimen-
sions, since excited fields in lossy medium rapidly decay as distance from the vibrator
increases. A vibrator field near a metallic plane has quite different properties, and its
analysis is the subject of the next chapter.
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