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Inductive Properties of Electric Circuits

Characterizing the inductive properties of the power and ground inter-
connect is essential in determining the impedance characteristics of a
power distribution system. Several of the following chapters are ded-
icated to the inductive properties of on-chip power distribution net-
works. The objective of this chapter is to introduce the concepts used
in these chapters to describe the inductive characteristics of complex
interconnect structures.

The magnetic properties of circuits are typically introduced using
circuits with inductive coils. The inductive characteristics of such cir-
cuits are dominated by the self and mutual inductances of these coils.
The inductance of a coil is well described by the classical definition
of inductance based on the magnetic flux through a current loop. The
situation is more complex in circuits with no coils where no part of the
circuit is inductively dominant and the circuit elements are strongly in-
ductively coupled. The magnetic properties in this case are determined
by the physical structure of the entire circuit, resulting in complex
inductive behavior. The loop inductance formulation is inconvenient
to represent the inductive characteristics of these circuits. The objec-
tive of this chapter is to describe various ways to represent a circuit
inductance, highlighting specific assumptions. Intuitive interpretations
are offered to develop a deeper understanding of the limitations and
interrelations of these approaches. The variation of inductance with
frequency and the relationship between the absolute inductance and
the inductive behavior are also discussed in this chapter.

These topics are discussed in the following order. Several formula-
tions of the circuit inductive characteristics as well as advantages and
limitations of these formulations are described in Section 2.1. Mecha-
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nisms underlying the variation of inductance with frequency are exam-
ined in Section 2.2. The relationship between the absolute inductance
and the inductive behavior of circuits is discussed in Section 2.3. The
inductive properties of on-chip interconnect structures are analyzed in
Section 2.4. The chapter is summarized in Section 2.5.

2.1 Definitions of inductance

There are several ways to represent the magnetic characteristics of a cir-
cuit. Understanding the advantages and limitations of these approaches
presents the opportunity to choose the approach most suitable for a
particular task. Several representations of the inductive properties of
a circuit are presented in this section. The field energy formulation of
inductive characteristics is described in Section 2.1.1. The loop flux
definition of inductance is discussed in Section 2.1.2. The concept of a
partial inductance is introduced in Section 2.1.3. The net inductance
formulation is introduced in Section 2.1.4.

2.1.1 Field energy definition

Inductance represents the capability of a circuit to store energy in
the form of a magnetic field. Specifically, the inductance relates the
electrical current to the magnetic flux and magnetic field energy. The
magnetic field is interrelated with the electric field and current, as de-
termined by Maxwell’s equations and constitutive relations,!

VD =p, (2.1)

VB =0,
oD
VxH=J+ o (2.3)
0B

VxE=-"" (2.4)

D =¢E, (2.5)

B = uH, (2.6)

J=0F, (2.7)

assuming a linear media. The domain of circuit analysis is typically
confined to those operational conditions where the electromagnetic ra-
diation phenomena are negligible. The direct effect of the displacement

! Vector quantities are denoted with bold italics, such as H.
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current %’? on the magnetic field, as expressed by (2.3), can be ne-
glected under these conditions (although the displacement current can
be essential to determine the current density J). The magnetic field
is therefore determined only by the circuit currents. The local current
density determines the local behavior of the magnetic field, as expressed
by Ampere’s law in the differential form,

VxH=J. (2.8)

Equivalently, the elemental contribution to the magnetic field dH is
expressed in terms of an elemental current dJ, according to the Biot-

Savart law,
dJ xr
dH = ) 2.9
43 (2.9)
where 7 is the distance vector from the point of interest to the current
element dJ and r = |r|.
It can be demonstrated that the magnetic energy in a linear media

can be expressed as [40]

Wm:;/J-Adr, (2.10)

where A is the magnetic vector potential of the system, determined as
(2.11)

Substituting (2.11) into (2.10) yields the expression of the magnetic
energy in terms of the current distribution in a system,

e AT
Wm—&r// e dr dr'. (2.12)

If the system is divided into several parts, each contained in a volume
Vi, the magnetic energy expression (2.12) can be rewritten as

_H J(r)-J)
Wm_gﬂzi:%:v/v/ " dr dr'. (2.13)

Assuming that the relative distribution of the current in each volume
V; is independent of the current magnitude, the current density distri-
bution J can be expressed in terms of the overall current magnitude
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I and current distribution function w(r), so that J(r) = Iu(r). The
magnetic field energy can be expressed in terms of the overall current

magnitudes I;,
1
Win =, Z Z Li;jI;1;, (2.14)
i

W[ [T e
Vi v

is a mutual inductance between the system parts ¢ and j. In a matrix
formulation, the magnetic energy of a system consisting of N parts can
be expressed as a positively defined binary form? L of a current vector

I={I,... Iy},

where

1 1 N N
— T _ T T,
W= J'LI= ;_1 ?_1: Li L. (2.16)

Each diagonal element L;; of the binary form L is a self inductance
of the corresponding current I; and each non-diagonal element L;; is
a mutual inductance between currents I; and I;. Note that according
to the definition of (2.15), the inductance matrix is symmetric, i.e.,
Lz’j = sz

While the field approach is general and has no limitations, determin-
ing the circuit inductance through this approach is a laborious process,
requiring numerical field analysis except for the simplest structures.
The goal of circuit analysis is to provide an efficient yet accurate de-
scription of the system in those cases where the detail and accuracy of
a full field analysis are unnecessary. Resorting to a field analysis to de-
termine specific circuit characteristics greatly diminishes the efficiency
of the circuit analysis formulation.

2.1.2 Magnetic flux definition

The concept of inductance is commonly introduced as a constant L
relating a magnetic flux @ through a circuit loop to a current I’ in
another loop,

¢ =1LI (2.17)

2 Matrix entities are denoted with bold roman symbols, such as L.
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In the special case where the two circuit loops are the same, the coeffi-
cient is referred to as a loop self inductance; otherwise, the coefficient
is referred to as a mutual loop inductance.

For example, consider two isolated complete current loops ¢ and ¢,
as shown in Fig. 2.1. The mutual inductance M between these two

4 4

Fig. 2.1. Two complete current loops. The relative position of two differential loop
elements dl and dl’ is determined by the vector r — 7’.

loops is a coefficient relating a magnetic flux @ through a loop ¢ due to

a current I’ in loop ¢/,
@://B'-nds, (2.18)
S

where S is a smooth surface bounded by the loop ¢, B’ is the magnetic
flux created by the current in the loop ¢/, and m is a unit vector normal
to the surface element ds. Substituting B’ = V x A’ and using Stokes’s
theorem, the loop flux is expressed as

@:é/(VxA')-nds:Z{A'dl, (2.19)

where A’ is the vector potential created by the current I’ in the loop
¢'. The magnetic vector potential of the loop ¢ A’ is
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J' () dl'
A = = 2.20
(r) = 471'/ |r —r’| 7{ |r — (220)
\%

where |7 —7'| is the distance between the loop element dl’ and the point
of interest r. Substituting (2.20) into (2.19) yields

l ’
o=T1 4“ 7{7{ |d &y (2.21)
i
v v

r—7r|

dld’
=) f{f{ R (2.22)

is a mutual inductance between the loops £ and ¢'. As follows from the
derivation, the integration in (2.20)—(2.22) is performed in the direction
of the current flow. The mutual inductance (2.22) and associated mag-
netic flux (2.21) can therefore be either positive or negative, depending
on the relative direction of the current flow in the two loops.

Note that the finite cross-sectional dimensions of the loop conduc-
tors are neglected in the transition between the general volume integra-
tion to a more constrained but simpler contour integration in (2.20). An
entire loop current is therefore confined to an infinitely thin filament.

The thin filament approximation of a mutual inductance is accept-
able where the cross-sectional dimensions of the conductors are much
smaller than the distance |r — /| between any two points on loop ¢ and
loop ¢'. This approximation becomes increasingly inaccurate as the two
loops are placed closer together. More importantly, the thin filament
approach cannot be used to determine a self inductance by assuming ¢
to be identical to ¢/, as the integral (2.22) diverges at the points where
r=r.

To account for the finite cross-sectional dimensions of the conduc-
tors, both (2.19) and (2.20) are amended to include an explicit integra-
tion over the conductor cross-sectional area a,

1
o=, j{/A’ Jdl da, (2.23)
/¢ a

;o J'dl da!
A= 47T7§/ S (2.24)
o a

where

and
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where a and a’ are the cross sections of the elemental loop segments dl
and dl’, da and da’ are the differential elements of the respective cross
sections, |r — 7’| is the distance between da and da’, and J is a current
density distribution over the wire cross section a, dJ = Jdlda, and
I = [ Jda. These expressions are more general than (2.19) and (2.20);
the only constraint on the current flow imposed by formulations (2.23)
and (2.24) is that the current flow has the same direction across the
cross-sectional areas a and a’. This condition is satisfied in relatively
thin conductors without sharp turns. Formulas (2.23) and (2.24) can
be significantly simplified assuming a uniform current distribution (i.e.,
J = const and I = aJ) and a constant cross-sectional area a,

1
= CL?{/A’ dl da, (2.25)
¢ a

A r dl’ da’
= 2.2
CAmd 7{ / |r — /| (2.26)
The magnetic flux through loop ¢ is transformed into

/ / /
o 7{ 7{ / /dada_dl/dl o 227
 Armoad |r — /|

el a a/

and

The mutual loop inductance is therefore defined as

dadad" dLdl!
= {4 [ e

o a a

The loop self inductance Ly is a special case of the mutual loop induc-
tance where the loop ¢ is the same as loop ¢,

dada’ dl dl’
LgEMM 4 o2 ff// "I‘—’I‘/‘ . (2.29)

While straightforward and intuitive, the definition of the loop in-
ductance as expressed by (2.17) cannot be applied to most practical
circuits. Only the simplest circuits consist of a single current loop. In
practical circuits with branch points, the current is not constant along
the circumference of the conductor loops, as shown in Fig. 2.2. This
difficulty can be circumvented by employing Kirchhoff’s voltage law
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Iy

I

Fig. 2.2. A circuit with branch points. The current in each loop is not uniform
along the circumference of the loop.

and including an inductive voltage drop within each loop equation. For
example, two independent current loops carrying circular currents 14
and Ip can be identified in the circuit shown in Fig. 2.2. The inductive
voltage drops V4 and Vg in loops A and B are

Va Laa LAB] [IA]
= . 2.30
[VB:| |:LAB Lpp| |IB (2:30)
The magnetic energy of the system is, analogous to (2.16),

1 1 Laa Lap| |14
= I"LI= [I41I . 2.31
W 2 2 |74 1s] |:LAB Lpp| |IB (2:31)

Note that in a circuit with branch points, two current loops can share
common parts, as illustrated in Fig. 2.2. The inductance between these
two loops is therefore a hybrid between the mutual and self loop induc-
tance, as defined by (2.28) and (2.29).

The flux formulation of the inductive characteristics, as expressed by
(2.29) and (2.31), is a special case of the field formulation, as expressed
by (2.15) and (2.16). The magnetic field expressions (2.16) and (2.31)
are the same, while the definition of the loop inductance as expressed
by (2.29) is obtained from (2.15) by assuming that the current flows in
well formed loops; the thin filament definition of the mutual inductance
(2.22) is the result of further simplification of (2.15). The magnetic
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energy and field flux derivations of the inductance are equivalent; both
(2.15) and (2.29) can be obtained from either the energy formulation
expressed by (2.31) or the flux formulation expressed by (2.22).

The loop inductance approach provides a more convenient descrip-
tion of the magnetic properties of the circuit with little loss of accuracy
and generality, as compared to the field formulation as expressed by
(2.16). Nevertheless, significant disadvantages remain. In the magnetic
flux formulation of the circuit inductance, the basic inductive element
is a closed loop. This aspect presents certain difficulties for a traditional
circuit analysis approach. In circuit analysis, the impedance character-
istics are described in terms of the circuit elements connecting two cir-
cuit nodes. Circuit analysis tools also use a circuit representation based
on two-terminal elements. Few circuit elements are manufactured in a
loop form. In a strict sense, a physical inductor is also a two terminal
element. The current flowing through a coil does not form a complete
loop, therefore, the definition of the loop inductance does not apply.
The loop formulation does not provide a direct link between the imped-
ance characteristics of the circuit and the impedance of the comprising
two terminal circuit elements.

It is therefore of practical interest to examine how the inductive
characteristics can be described by a network of two terminal elements
with self and mutual impedances, without resorting to a multiple loop
representation. This topic is the subject of the next section.

2.1.3 Partial inductance

The loop inductance, as defined by (2.28), can be deconstructed into
more basic elements if the two loops are broken into segments, as shown
in Fig. 2.3. The loop £ is broken into IV segments Sy, ..., Sy and loop
¢" is broken into N’ segments S7,...,S%,. The definition of the loop
inductance (2.28) can be rewritten as

da; dd dldl’ N N
eSS [ S e

S’aza =1 j5=1

da; da dl dl’ 533
47Taz 7{?{// T—T’l ' (2:33)

S’aa

where
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The integration along segments S; and S} in (2.32) and (2.33) is per-
formed in the direction of the current flow.

S5

7N\ |

N ) —~
( )
& |

!/
SX\J}SN’l N

S, Sy Sy
¢ ¢

Fig. 2.3. Two complete current loops broken into segments.

Equation (2.33) defines the mutual partial inductance between two
arbitrary segments S; and S;-. Similar to the loop inductance, the mu-
tual partial inductance can be either positive or negative, depending on
the direction of the current flow in the two segments. In the special case
where S; is identical to S;-, (2.33) defines the partial self inductance of
S;. The partial self inductance is always positive.

The partial inductance formulation, as defined by (2.33), is more
suitable for circuit analysis as the basic inductive element is a two
terminal segment of interconnect. Any circuit can be decomposed into
a set of interconnected two terminal elements. For example, the circuit
shown in Fig. 2.2 can be decomposed into three linear segments instead
of two loops as in the case of a loop analysis. The magnetic properties
of the circuit are described by a partial inductance matrix L = {L;;}.
Assigning to each element S; a corresponding current I;, the vector of
magnetic electromotive forces V' across each segment is

dI
V=L_. 2.34
dt (2.34)
The magnetic energy of the circuit in terms of the partial inductance
is determined, analogously to the loop inductance formulation (2.31),
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as

1, 1 L&
W=, I'LI = >N LiLi;. (2.35)
i=1 j=1
The partial inductance has another practical advantage. If the self
and mutual partial inductance of a number of basic segment shapes is
determined as a function of the segment dimensions and orientations,
the partial inductance matrix of any circuit composed of these basic
shapes can be readily constructed according to the segment connectiv-
ity, permitting the efficient analysis of the magnetic properties of the
circuit. In this regard, the partial inductance approach is more flexible
than the loop inductance approach, as loops exhibit a greater variety
of shapes and are difficult to precharacterize in an efficient manner.
For the purposes of circuit characterization, it is convenient to sep-
arate the sign and the absolute magnitude of the inductance. During
precharacterization, the absolute magnitude of the mutual partial in-
ductance L?jbs between basic conductor shapes (such as straight seg-
ments) is determined. During the process of analyzing a specific circuit
structure, the absolute magnitude is multiplied by a sign function s;;,
resulting in the partial inductance as defined by (2.33), L;; = sijL‘?JbS.
The sign function equals either 1 or —1, depending upon the sign of
the scalar product of the segment currents: s;; = sign (I; - I ;)
The case of a straight wire is of particular practical importance.
A conductor of any shape can be approximated by a number of short
straight segments. The partial self inductance of a straight round wire

is [41] l y
Lijne = 57_‘_ <1n , - 4> s (236)

where [ is the length of the wire and r is the radius of the wire cross
section, as shown in Fig. 2.4. The precise analytic expressions for the
partial inductance are generally not available for straight conductors
with a radially asymmetric cross section. The partial inductance of a
straight line with a square cross section can be evaluated with good
accuracy using approximate analytic expressions augmented with ta-
bles of correction coefficients [41], or expressions suitable for efficient
numerical evaluation [42].

The partial self inductance, as expressed by (2.33), depends only on
the shape of the conductor segment. It is therefore possible to assign
a certain partial self inductance to an individual segment of the con-
ductor. It should be stressed, however, that the partial self inductance
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l

( OIE;

Fig. 2.4. A straight round wire.

of the comprising conductors by itself provides no information on the
inductive properties of the circuit. For example, a loop of wire can have
a loop inductance that is much greater than the sum of the partial self
inductance of the comprising segments (where the wire is coiled) or
much smaller than the sum of the comprising partial self inductances
(where the wire forms a narrow long loop). The inductive properties
of a circuit are described by all partial inductances in the circuit, nec-
essarily including all mutual partial inductances between all pairs of
elements, as expressed in (2.32) for the specific case of a current loop.

Unlike the loop inductance, the partial inductance cannot be mea-
sured experimentally. The partial inductance is, essentially, a conve-
nient mathematical construct used to describe the inductive properties
of a circuit. This point is further corroborated by the fact that the
partial inductance is not uniquely defined. An electromagnetic field is
described by an infinite number of vector potentials. If a specific field is
described by a vector potential A, any vector potential A’ differing from
A by a gradient of an arbitrary scalar function ¥, i.e., A’ = A+ VU,
also describes the field.> The magnetic field is determined through the
curl operation of the vector potential and is not affected by the VW
term, Vx A =V x A’ as V x V¥ = 0. The choice of a specific vector
potential is inconsequential. The vector potential definition (2.11) is
therefore not unique. The choice of a specific vector potential is also
immaterial in determining the loop inductance as expressed by (2.28),
as the integration of a gradient of any function over a closed contour
yields a null value. The choice of the vector potential, however, affects
the value of the partial inductance, where the integration is performed
over a conductor segment. Equation (2.33) therefore defines only one
of many possible partial inductance matrices. This ambiguity does not
present a problem as long as all of the partial inductances in the cir-
cuit are consistently determined using the same vector potential. The
contributions of the function gradient to the partial inductance cancel

3 This property of the electromagnetic field is referred to in electrodynamics as
gauge invariance.
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out, where the partial inductances are combined to describe the loop
currents.

In the case of straight line segments, the partial inductance defini-
tion expressed by (2.33) has an intuitive interpretation.For a straight
line segment, the partial self inductance is a coefficient of proportion-
ality between the segment current and the magnetic flux through the
infinite loop formed by a line segment S and two rays perpendicular to
the segment, as illustrated in Fig. 2.5.

Fig. 2.5. Self and mutual partial inductance of a straight segment of wire. The
partial self inductance of a segment S, as introduced by Rosa [43], is determined
using the magnetic flux created by current I in segment S through an infinite contour
formed by wire segment S (the bold arrow) and two rays perpendicular to the
segment (the dashed lines). Similarly, the partial mutual inductance with another
wire segment S’ is determined using the flux created by current I through the
contour formed by the segment S’ and straight lines originating from the ends of
the segment S’ and perpendicular to segment S.

This flux is henceforth referred to as a partial flux. This statement
can be proved as follows. The flux through the aforementioned infi-
nite loop is determined by integrating the vector potential A along
the loop contour, according to (2.25). The magnetic vector potential
A of a straight segment, as determined by (2.11), is parallel to the
segment. The integration of the vector potential along the rays perpen-
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dicular to the segment is zero. The integration of the vector potential
along the segment completing the loop at infinity is also zero as the
vector potential decreases inversely proportionally with distance. Sim-
ilarly, the mutual partial inductance between segments S and S’ can
be interpreted in terms of the magnetic flux through the infinite loop
formed by segment S’ and two rays perpendicular to the segment S, as
illustrated in Fig. 2.5.

This interpretation of the partial inductance in terms of the par-
tial flux is in fact the basis for the original introduction of the partial
inductance by Rosa in 1908 in application to linear conductors [43].
Attempts to determine the inductance of a straight wire segment using
the total magnetic flux were ultimately unsuccessful as the total flux
of a segment is infinite. Rosa made an intuitive argument that only
the partial magnetic flux, as illustrated in Fig. 2.5, should be associ-
ated with the self inductance of the segment. The concept of partial
inductance proved useful and was utilized in the inductance calcula-
tion formulee and tables developed by Rosa and Cohen [44], Rosa and
Grover [45], and Grover [41]. A rigorous theoretical treatment of the
subject was first developed by Ruehli in [42], where a general definition
of the partial inductance of an arbitrarily shaped conductor (2.33) is
derived. Ruehli also coined the term “partial inductance.”

Connections between the loop and partial inductance can also be
established in terms of the magnetic flux. The magnetic flux through
a specific loop is a sum of all of the partial fluxes of the comprising
segments. The contribution of a magnetic field created by a specific
loop segment to the loop flux is also the sum of all of the partial induc-
tances of this segment with respect to all segments of the loop. This
relationship is illustrated in Fig. 2.6.

2.1.4 Net inductance

The inductance of a circuit without branch points (i.e., where the cur-
rent flowing in all conductor segments is the same) can also be expressed
in a form with no explicit mutual inductances. Consider a current loop
consisting of N segments. As discussed in the previous section, the loop
inductance Ljyop can be described in terms of the partial inductances
L;; of the segments,

N N
Lloop = Z Z LZ] (237)

i=1 j=1
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Fig. 2.6. The contribution of a current in a specific loop segment (shown with a
bold arrow) to the total flux of the current loop is composed of the partial flux of this
segment with all other segments of the loop; (a) a piecewise linear loop, (b) partial
flux of the segment with all other segments carrying current in the same direction
(i.e., the scalar product of the two segment vectors is positive) — this flux is positive,
(c) the partial flux of the segment with all other segments carrying current in the
opposite direction (i.e., the scalar product of the two segment vectors is negative)
— this flux is negative, (d) the sum of the positive and negative fluxes, shown in (b)
and (c) [i.e., the geometric difference between the contours (b) and (c)], is the overall
contribution of the segment to the magnetic flux of the loop — this contribution is
expressed as the net inductance of the segment.
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This sum can be rearranged as

N
Lloop = Z L§H7 (238)
=1
where
N
L?H = Z LZJ (239)
ij=1

The inductance LS, as defined by (2.39), is often referred to as the
net inductance [46], [47], [48]. The net inductance also has an intuitive
interpretation in terms of the magnetic flux. As illustrated in Fig. 2.6, a
net inductance (i.e., the partial self inductance plus the partial mutual
inductances with all other segments) of the segment determines the
contribution of the segment current to the overall magnetic flux through
the circuit.

The net inductance describes the behavior of coupled circuits with-
out using explicit mutual inductance terms, simplifying the circuit anal-
ysis process. For example, consider a current loop consisting of a signal
current path with inductance Ly, and return current path with induc-
tance Lyet, as shown in Fig. 2.7. The mutual inductance between the
two paths is M. The net inductance of the two paths is ng = Lge—M
and Lﬁg = Lot — M. The loop inductance in terms of the net induc-
tance is Ligop = ng—l—Lfg:. The inductive voltage drop along the return
current path is Ve = Lﬁg ‘fé .

The net inductance has another desirable property. Unlike the par-
tial inductance, the net inductance is independent of the choice of
the magnetic vector potential, because, similar to the loop inductance,
the integration of the vector potential is performed along a complete
loop, as implicitly expressed by (2.39). The net inductance is therefore
uniquely determined.

Note that the net inductance of a conductor depends on the struc-
ture of the overall circuit as indicated by the mutual partial inductance
terms in (2.39). Modifying the shape of a single segment in a circuit
changes the net inductance of all of the segments. The net inductance
is, in effect, a specialized form of the partial inductance and should
only be used in the specific circuit where the net inductance terms are
determined according to (2.39).
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( —> 0

(a) The physical structure of the current loop

L ret

(b) The equivalent partial inductance model

Lret -M

(c) The equivalent net inductance model

Fig. 2.7. The signal and return current paths.

2.2 Variation of inductance with frequency

A circuit inductance, either loop or partial, depends upon the current
distribution across the cross section of the conductors, as expressed
by (2.23) and (2.24). The current density is assumed constant across
the conductor cross sections in the inductance formulas described in
Section 2.1, as is commonly assumed in practice. This assumption is
valid where the magnetic field does not appreciably change the path of
the current flow. The conditions where this assumption is accurate are
discussed in Section 2.2.1. Where the effect of the magnetic field on the
current path is significant, the current density becomes non-uniform
and the magnetic properties of the circuit vary significantly with fre-
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quency. The mechanisms causing the inductance to vary with frequency
are described in Section 2.2.2. A circuit analysis of the variation of in-
ductance with frequency is performed in Section 2.2.3 based on a simple
circuit model. The section concludes with a discussion of the relative
significance of the different inductance variation mechanisms.

2.2.1 Uniform current density approximation

The effect of the magnetic field on the current distribution can be ne-
glected in two general cases. First, the current density is uniform where
the magnetic impedance L‘Cié is much smaller than the resistive imped-
ance R of the interconnect structure. Under this condition, however,
the magnetic properties of the circuit do not significantly affect the cir-
cuit behavior and are typically of little practical interest. The second
case is of greater practical importance, where the magnetic impedance
to the current flow, although greater than R, is uniform across the cross
section of a conductor. This condition is generally satisfied where the
separation between conductors is significantly greater that the cross-
sectional dimensions. It can be shown by inspecting (2.11) that at a
distance d much greater than the conductor cross-sectional dimension
a, a non-uniform current distribution within the conductor contributes
only a second order correction to the magnetic vector potential A.
The significance of this correction as compared to the primary term
decreases with distance as a/d.

Where the separation of two conductors is comparable to the cross-
sectional dimensions, the magnetic field significantly affects the current
distribution within the conductors. The current density distribution
across the cross section becomes non-uniform and varies with the sig-
nal frequency. In this case, the magnetic properties of an interconnect
structure cannot be accurately represented by a constant value. Alter-
natively stated, the inductance varies with the signal frequency.

The frequency variation of the current density distribution and, con-
sequently, of the conductor inductance can be explained from a circuit
analysis point of view if the impedance characteristics of different paths
within the same conductor are considered, as described in Section 2.2.2.
The resistive properties of alternative parallel paths within the same
conductors are identical, provided the conductivity of the conductor
material is uniform. The magnetic properties of the paths however can
be significantly different. At low frequencies, the impedance of the cur-
rent paths is dominated by the resistance. The current density is uni-
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form across the cross section, minimizing the overall impedance of the
conductor. At sufficiently high frequencies, the impedance of the cur-
rent paths is dominated by the inductive reactance. As the resistive
impedance becomes less significant (as compared to the inductive im-
pedance) at higher frequencies, the distribution of the current density
asymptotically approaches the density profile that yields the minimum
overall inductance of the interconnect structure. The inductance of the
on-chip interconnect structures can therefore decrease significantly with
signal frequency.

2.2.2 Inductance variation mechanisms

As discussed, the variation of inductance is the result of the variation
of the current density distribution. The variation of the current distri-
bution with frequency can be loosely classified into several categories.

Skin effect

With the onset of the skin effect, the current becomes increasingly
concentrated near the line surface, causing a decrease in the magnetic
field within the line core, as illustrated in Fig. 2.8. The magnetic field
outside the conductor is affected relatively little. It is therefore conve-
nient to divide the circuit inductance into “internal” and “external”
parts, L = Linternal + Lexternal, Where Lexternal 18 the inductance asso-
ciated with the magnetic field outside the conductors and Linternal 1S
the inductance associated with the magnetic field inside the conduc-
tors. In these terms, a well developed skin effect produces a significant
decrease in the internal inductance Liyternal. For a round wire at low fre-
quency (where the current distribution is uniform across the line cross
section), the internal inductance is 0.05 ™! | independent of the radius
(see the derivation in [49]). The external inductance of the round wire
is unaffected by the skin effect.

Proximity effect

The current distribution also varies with frequency due to the prox-
imity effect. At high frequencies, the current in the line concentrates
along the side of the line facing an adjacent current return path, thereby
reducing the effective area of the current loop and thus the loop induc-
tance, as illustrated in Fig. 2.9.

The skin and proximity effects are closely related. These effects rep-
resent basically the same phenomenon — the tendency of the current
to move closer to the current return path in order to minimize the
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(a) (b)

Fig. 2.8. Internal magnetic flux of a round conductor; (a) at low frequencies, the
current density, as shown by the shades of gray, is uniform, resulting in the maximum
magnetic flux inside the conductor, as shown by the circular arrows, and the asso-
ciated internal inductance, (b) at high frequencies, the current flow is redistributed
to the surface of the conductor, reducing the magnetic flux inside the conductor.

interconnect inductance at high frequencies. When a conductor is sur-
rounded by several alternative current return paths, leading to a rel-
atively symmetric current distribution at high frequency, the effect is
typically referred to as the skin effect. The classical example of such
an interconnect structure is a coaxial cable, where the shield provides
equivalent current return paths along all sides of the core conductor. In
the case where the current distribution is significantly asymmetric due
to the close proximity of a dominant return path, the effect is referred
to as the proximity effect.

Fig. 2.9. Proximity effect in two closely spaced lines. Current density distribution in
the cross section of two closely spaced lines at high frequencies is shown in shades of
gray. Darker shades of gray indicate higher current densities. In lines carrying current
in the same direction (parallel currents), the current concentration is shifted away
from the parallel current. In lines carrying current in opposite directions (antiparallel
currents), the current concentrates toward the antiparallel current, minimizing the
circuit inductance.
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Multi-path current redistribution

The concept of current density redistribution within a conductor
can be extended to redistribution of the current among several sepa-
rate parallel conductors. This mechanism is henceforth referred to as
multi-path current redistribution. For example, in standard single-ended
digital logic, the forward current path is typically composed of a sin-
gle line. No redistribution of the forward current occurs. The current
return path, though, is not explicitly specified (although local shield-
ing for particularly sensitive nets is becoming more common [50], [51]).
Adjacent signal lines, power lines, and the substrate provide several
alternative current return paths. A significant redistribution of the re-
turn current among these return paths can occur as signal frequencies
increase. At low frequencies, the line impedance Z(w) = R(w)+jwL(w)
is dominated by the interconnect resistance R. In this case, the distribu-
tion of the return current over the available return paths is determined
by the path resistance, as shown in Fig. 2.10(a). The return current
spreads out far from the signal line to reduce the resistance of the re-
turn path and, consequently, the impedance of the current loop. At high
frequencies, the line impedance Z(w) = R(w) + jwL(w) is dominated
by the reactive component jwL(w). The minimum impedance path is
primarily determined by the inductance L(w), as shown in Fig. 2.10(b).
Multi-path current redistribution, as described in Fig. 2.10, is essen-
tially a proximity effect extended to several separate lines connected in
parallel. In power grids, both the forward and return currents undergo
multi-path redistribution as both the forward and return paths consist
of multiple conductors connected in parallel.

The general phenomenon underlying these three mechanisms is, as
viewed from a circuit perspective, the same. Where several parallel
paths with significantly different electrical properties are available for
current flow, the current is distributed among the paths so as to min-
imize the total impedance. As the frequency increases, the circuit in-
ductance changes from the low frequency limit, determined by the ratio
of the resistances of the parallel current paths, to the high frequency
value, determined by the inductance ratios of the current paths. At
high signal frequencies, the inductive reactance dominates the inter-
connect impedance; therefore, the path of minimum inductance carries
the largest share of the current, minimizing the overall impedance (see
Fig. 2.10). Note that parallel current paths can be formed either by sev-
eral physically distinct lines, as in multi-path current redistribution, or



48 Chapter 2. Inductive Properties of Electric Circuits

I Forward current

I | Return 1, low Ly, high Ry |

I | Retum 2, high Lo, low Ry |

o~ Ro o~ Ry
L= 1Io Ri+R2 Iy = Iy Ri+R»

(a) Low frequency, R > jwL

Iy Forward current

1y [Tt 1 Tow L, Wigh By ]

Iy | Return 2, high Lo, low Rs |

~ Lo ~ Ly
I = Io Li+Lo I = Io Li+Lo

(b) High frequency, R < jwL

Fig. 2.10. Current loop with two alternative current return paths. The forward
current Ip returns both through return path one with resistance R; and inductance
L1, and return path two with resistance Rz and inductance L. In this structure,
Ly < Lz and R1 > Ra. At low frequencies (a), the path impedance is dominated
by the line resistance and the return current is distributed between two return
paths according to the resistance of the lines. Thus, at low frequencies, most of the
return current flows through the return path of lower resistance, path two. At high
frequencies (b), however, the path impedance is dominated by the line inductance
and the return current is distributed between two return paths according to the
inductance of the lines. Most of the return current flows through the path of lower
inductance, path one, minimizing the overall inductance of the circuit.

by different paths within the same line, as in skin and proximity ef-
fects, as shown in Fig. 2.11. The difference is merely in the physical
structure, the electrical behavior is fully analogous. A thick line can be
thought of as being composed of multiple thin lines bundled together
in parallel. The skin and proximity effects in such a thick line can be
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considered as a special case of current redistribution among multiple
thin lines forming a thick line.

L e e G

Fig. 2.11. A cross-sectional view of two parallel current paths (dark gray) sharing
the same current return path (light gray circles). The path closest to the return path,
path 1, has a lower inductance than the other path, path 2. The parallel paths can
be either two physically distinct lines, as shown by the dotted line, or two different
paths within the same line, as shown by the dashed line.

2.2.3 Simple circuit model

A simple model of current redistribution provides deeper insight into
the process of inductance variation. This approach can be used to
estimate the relative significance of the different current distribution
mechanisms in various interconnect structures as well as the frequency
characteristics of the inductance. Consider a simple case of two cur-
rent paths with different inductive properties (for example, as shown
in Fig. 2.11). The impedance characteristics are represented by the cir-
cuit diagram shown in Fig. 2.12, where the inductive coupling between
the two paths is neglected for simplicity. Assume that L; < Lo and
Ry > Rs.

AN Ll

000
Ry 2 Lo

Fig. 2.12. A circuit model of two current paths with different inductive properties.

For the purpose of evaluating the variation of inductance with fre-
quency, the electrical properties of the interconnect are characterized
by the inductive time constant 7 = L/R. The impedance magnitude
of these two paths is schematically shown in Fig. 2.13. The impedance
of the first path is dominated by the inductive reactance above the
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frequency f; = 217T fi = 27r171 . The impedance of the second path is pre-

dominantly inductive above the frequency fo = 217r 12; = 2#172, such that
fo < f1. At low frequencies, i.e., from DC to the frequency f1, the ra-
tio of the two impedances is constant. The effective inductance at low
frequencies is therefore also constant, determining the low frequency
inductance limit. At high frequencies, i.e., frequencies exceeding fo,
the ratio of the impedances is also constant, determining the high fre-
quency inductance limit, LLllJFLLQQ. At intermediate frequencies from f; to
fo2, the impedance ratio changes, resulting in a variation of the overall
inductance from the low frequency limit to the high frequency limit.
The frequency range of inductance variation is therefore determined by
the two time constants, 71 and 7». The magnitude of the inductance
variation depends upon both the difference between the time constants
71 and 79 and on the inductance ratio Lj/Ls. Analogously, in the case
of multiple parallel current paths, the frequency range and the magni-
tude of the variation in inductance is determined by the minimum and
maximum time constants as well as the difference in inductance among
the current paths.

Impedance, log Z
=

&

| |
2 fi
Frequency, log f

Fig. 2.13. Impedance magnitude versus frequency for two paths with dissimilar
impedance characteristics.

The decrease in inductance begins when the inductive reactance jwL
of the path with the lowest R/L ratio becomes comparable to the path
resistance R, R ~ jwL. The inductance, therefore, begins to decrease
at a lower frequency if the minimum R/L ratio of the current paths is
lower.
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Due to this behavior, the proximity effect becomes significant at
higher frequencies than the frequencies at which multi-path current re-
distribution becomes significant. Significant proximity effects occur in
conductors containing current paths with significantly different induc-
tive characteristics. That is, the inductive coupling of one edge of the
line to the “return” current (i.e., the current in the opposite direction)
is substantially different from the inductive coupling of the other edge
of the line to the same “return” current. In geometric terms, this char-
acteristic means that the line width is larger than or comparable to the
distance between the line and the return current. Consequently, the line
with significant proximity effects is typically the immediate neighbor
of the current return line. A narrower current loop is therefore formed
with the current return path as compared to the other lines participat-
ing in the multi-path current redistribution. A smaller loop inductance
L results in a higher R/L ratio. Referring to Fig. 2.10, current redistri-
bution between paths one and two develops at frequencies lower than
the onset frequency of the proximity effect in path one.

Efficient and accurate lumped element models are necessary to in-
corporate skin and proximity effects into traditional circuit simulation
tools. Developing such models is an area of ongoing research [52], [53],
[54], [55], [56], [57], [58]. The resistance and internal inductance of con-
ductors are typically modeled with RL ladder circuits [52], as shown
in Fig. 2.14. The sections of the RL ladder represent the resistance
and inductance of the conductor parts at different distances from the
current return path. Different methods for determining the value of the
R and L elements have been proposed [53], [54], [55]. Analogously, RL
ladders can also be extended to describe multi-path current redistribu-
tion [56], [57]. Techniques for reducing the order of a transfer function
of an interconnect structure have also been proposed [58].

Ly Ly Ly Ly
% RO % R1 % R2 % RN
Fig. 2.14. An RL ladder circuit describing the variation of inductance with fre-
quency.
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2.3 Inductive behavior of circuits

The strict meaning of the term “inductance” is the absolute inductance,
as defined in Section 2.1. The absolute inductance is measured in hen-
rys. Sometimes, however, the same term “inductance” is loosely used to
denote the inductive behavior of a circuit; namely, overshoots, ringing,
signal reflections, etc. The inductive behavior of a circuit is character-
ized by such quantities as a damping factor and the magnitude of the
overshoot and reflections of the signals. While any circuit structure car-
rying an electrical current has a finite absolute inductance, as defined
in Section 2.1, not every circuit exhibits inductive behavior. Generally,
a circuit exhibits inductive behavior if the absolute inductance of the
circuit is sufficiently high. The relationship between the inductive be-
havior and the absolute inductance is, however, circuit specific and no
general metrics for the onset of inductive behavior have been developed.

Specific metrics have been developed to evaluate the onset of in-
ductive behavior in high speed digital circuits [59], [60], [61]. A digital
signal that is propagating in an underdriven uniform lossy transmission
line exhibits significant inductive effects if the line length [ satisfies the
following condition [60],

ty 2 /L
W LC << R\/C’ (2.40)
where R, L, and C are the resistance, inductance, and capacitance per
line length, respectively, and ¢, is the rise time of the signal waveform.
The two inequalities comprising condition (2.40) have an intuitive
circuit interpretation. The velocity of the electromagnetic signal prop-
agation along a line is v, = \/é o The left inequality of (2.40) therefore

transforms into ol
< (2.41)

Ve

i.e., the signal rise time should be smaller than the round trip time
of flight. Alternatively stated, the line length [ should be a signifi-
cant fraction of the shortest wavelength of significant signal frequen-
cies \;. The spectral content of the signal with rise time ¢, rolls off at
—20 dB/decade above the frequency f; = 1/7t;. The shortest effective
wavelength of the signal is therefore A\, = v,/ f; = mv.t;. The condition
(2.41) can be rewritten as

> . (2.42)
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The dimensionless ratio of the physical size of a circuit to the signal
wavelength, [/, is referred to as the electrical size in high speed inter-
connect design [48], [62]. Circuits with an electrical size much smaller
than unity are commonly called electrically small (or short), other-
wise circuits are called electrically large (or long) [48], [62]. Electrically
small circuits belong to the realm of classical circuit analysis and are
well described by lumped circuits. Electrically large circuits require
distributed circuit models and belong to the domain of high speed in-
terconnect analysis techniques. The left inequality of condition (2.40)
therefore restricts significant inductive effects to electrically long lines.

With the notion that the damping factor of the transmission line

is ¢ = 130 \/gg, where Ry = RIl, Lo = LI, and Cy = CI are the total
resistance, inductance, and capacitance of the line, respectively, the
right inequality in condition (2.40) transforms into

¢ <1, (2.43)

constraining the damping factor to be sufficiently small. Given a line
with a specific R, L, and C, the inductive behavior is confined to a
certain range of line length, as shown in Fig. 2.15. The upper bound of
this range is determined by the damping factor of the line, while the
lower bound is determined by the electrical size of the line.

Alternatively, condition (2.40) can be interpreted as a bound on
the overall line inductance Ly = LI. The signal transmission exhibits
inductive characteristics if the overall line inductance satisfies both of
the following conditions,

2
L ' 2.44
0> 4C, ( )
and
L
Lo > 4ROC() . (2.45)

Conditions (2.44) and (2.45) thereby quantify the term “inductance
sufficiently large to cause inductive behavior” as applied to transmission

lines. The design space for a line inductance with the region of inductive
behavior, as determined by (2.44) and (2.45), is illustrated in Fig. 2.16.
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Fig. 2.15. The range of transmission line length where the signal propagation ex-
hibits significant inductive behavior. The area of inductive behavior (the unshaded
area) is bounded by the conditions of large electrical size (the dashed line) and
insufficient damping (the solid line), as determined by (2.40). In the region where
either of these conditions is not satisfied (the shaded area), the inductive effects are
insignificant.

2.4 Inductive properties of on-chip interconnect

The distinctive feature of on-chip interconnect structures is the small
cross-sectional dimensions and, consequently, a relatively high line re-
sistance. For example, the resistance of a copper line with a 1 ym x 3 ym
cross section is approximately 7 €2/mm. The loop inductance of on-chip
lines is typically between 0.4nH/mm and 1nH/mm. At frequencies
lower than several gigahertz, the magnetic characteristics do not sig-
nificantly affect the behavior of on-chip circuits.

As the switching speed of digital integrated circuits increases with
technology scaling, the magnetic properties have become essential for
accurately describing on-chip circuit operation. The density and com-
plexity of the on-chip interconnect structures preclude exploiting com-
monly assumed circuit simplifications, rendering the accurate analy-
sis of inductive properties particularly challenging. Large integrated
circuits contain many tens of millions of interconnect segments while
the segment spacing is typically either equal to or less than the cross-
sectional dimensions. Accurate treatment of magnetic coupling in these
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Fig. 2.16. The design space characterizing the overall transmission line inductance
is divided into a region of inductive behavior and a region where inductive effects
are insignificant. The region of inductive behavior (the unshaded area) is bounded
by the conditions of large electrical size (the dashed line) and low damping (the
solid line), as determined by (2.44) and (2.45). In the region where either of these
conditions is not satisfied (the shaded area), the inductive effects are insignificant.

conditions is especially important. Neither the loop nor the partial in-
ductance formulation can be directly applied to an entire circuit as the
size of the resulting inductance matrices makes the process of circuit
analysis computationally infeasible. Simplifying the inductive proper-
ties of a circuit is also difficult. Simply omitting relatively small partial
inductance terms can significantly change the circuit behavior, possibly
causing instability in an originally passive circuit. Techniques to sim-
plify the magnetic characteristics so as to allow an accurate analysis of
separate circuit parts is currently an area of focused research [63], [64],
[65], [66].

The problem is further complicated by the significant variation of
inductance with frequency. As discussed in Section 2.2, the inductance
variation can be described in terms of the skin effect, proximity effect,
and multi-path current redistribution. For a line with a rectangular
cross section, the internal inductance is similar to the internal induc-
tance of a round line, i.e., 0.05nH/mm, decreasing with the aspect
ratio of the cross section. Over the frequency range of interest, up to
100 GHz, the skin effect reduces the internal inductance by only a small
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fraction. The reduction in the internal inductance due to the skin effect
is, therefore, relatively insignificant, as compared to the overall induc-
tance. Due to the relatively high resistance of on-chip interconnect,
the proximity effect is significant only in immediately adjacent wide
lines that carry high frequency current. Where several parallel lines are
available for current flow, redistribution of the current among the lines
is typically the primary cause in integrated circuits of the decrease in
inductance with frequency. The proximity effect and multi-path cur-
rent redistribution are therefore two mechanisms that can produce a
significant change in the on-chip interconnect inductance with signal
frequency.

Note that the statement “sufficiently high inductance causes induc-
tive behavior” does not necessarily mean “any change in the intercon-
nect physical structure that increases the line inductance increases the
inductive behavior of the line.” In fact, the opposite is often the case
in an integrated circuit environment, where varying a single physical
interconnect characteristic typically affects many electrical character-
istics. The relationship between the physical structure of interconnect
and the inductive behavior of a circuit is highly complex.

Consider a 3mm long copper line with a 1 ym x 1 ym cross section.
The resistance, inductance, and capacitance per length of the current
loop (including both the line itself and the current return path) are
R = 25Q/mm, L = 0.8nH/mm, and C = 100 fF /mm, respectively.
The velocity of the electromagnetic wave propagation along the line is
0.11 mm/ps. This velocity is somewhat smaller than the speed of light,
0.15mm/ps, in the media with an assumed dielectric constant of 4 and
is due to the additional capacitive load of the orthogonal lines in the
lower layer. For a signal with a 30 ps rise time, the line is electrically

long. The line damping factor, however, is ( = 1;1 \/ g =1.33 > 1. The
line is therefore overdamped and, according to the metrics expressed
by (2.44) and (2.45), does not exhibit inductive behavior, as shown in
Fig. 2.17(a).

Assume now that the line width is changed to 4 um and the resis-
tance, inductance, and capacitance of the line change to R = 10 Q/mm,
L = 0.65nH/mm, and C' = 220 fF/mm, respectively. The decrease in
the loop resistance and inductance are primarily due to the smaller
resistance and partial self inductance of the line. The increase in the
line capacitance is primarily due to the greater parallel plate capaci-
tance between the signal line and the perpendicular lines in the lower
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Fig. 2.17. A signal line within an integrated circuit. The power and ground lines
(shaded gray) parallel to the signal line serve as a current return path. The lines in
the lower metal layer increase the capacitive load of the line. The inductive behavior
of a wide line, as shown in (b), is more significant as compared to a narrow line, as
shown in (a).

layer. This capacitive load becomes more significant, as compared to
the capacitance between the line and the return path, further slowing
the velocity of the electromagnetic wave propagation to 0.084 mm/ps.
For the same signal with a 30ps transition time, the signal line be-
comes underdamped, ¢ = 0.87 < 1, and exhibits significant inductive
behavior, as shown in Fig. 2.17(b).

The inductive behavior has become significant while the absolute
inductance has decreased from 3mm X 0.8;[111;1 = 2.40nH to 1.95nH.
The reason for this seeming contradiction is that the inductance is a
weak function of the cross-sectional dimensions, as compared to the
resistance and capacitance. In integrated circuits, the signal lines that
exhibit inductive behavior are the lowest resistance lines, i.e., the wide
lines in the thick upper metalization layers. These lines typically have a
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lower absolute inductance than other signal lines. It would therefore be
misleading to state that the inductive behavior of on-chip interconnect
has become important due to the increased inductance. This trend
is due to the shorter signal transition times and longer line lengths,
while maintaining approximately constant the resistive properties of
the upper metal layers.

2.5 Summary

The preceding discussion of the inductive characteristics of electric cir-
cuits and different ways to represent these characteristics can be sum-
marized as follows.

e The thin filament approximation is valid only for determining the
mutual inductance of relatively thin conductors

e The partial inductance formulation is better suited to describe the
inductive properties of circuits with branch points

e The partial inductance is a mathematical construct, not a physically
observable property, and should only be used as part of a complete
description of the circuit inductance

e The circuit inductance varies with frequency due to current redis-
tribution within the circuit conductors. The current redistribution
mechanisms can be classified as the skin effect, proximity effect, and
multi-path current redistribution

e Signal propagation along a transmission line exhibits inductive be-
havior if the line is both electrically long and underdamped

e Characterizing on-chip inductance in both an efficient and accurate
manner is difficult due to the density and complexity of on-chip
interconnect structures

e The relationship between the physical structure of on-chip intercon-
nect and the inductive behavior of a circuit is complex, as many
electrical properties can be affected by changing a specific physical
characteristic of an interconnect line
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