
Chapter 2
Analysis of Planar Linkages

In this chapter we consider assemblies of links that move in parallel planes. Any
one of these planes can be used to examine the movement since the trajectories of
points in any link can be projected onto this plane without changing their properties.
Our focus is on linkages constructed from revolute joints with axes perpendicular to

RR, PR, and RP open chains and the closed chains constructed from them, as well
as the 3R and RPR planar robots. We determine the configuration of the linkage as
a function of the independent joint parameters and the physical dimensions of the
links.

2.1 Coordinate Planar Displacements

A revolute joint in a planar linkage allows rotation about a point, and a prismatic
joint allows translation along a line. These movements are represented by transfor-
mations of point coordinates in the plane.

Consider the rotation of a link about the revolute joint O located at the origin of
the fixed coordinate frame F . Let x = (x,y)T be the coordinates of a point measured
in the frame M of the link. If the moving frame has its origin also located at O,
and the angle between the x-axes of these two frames is θ , then the coordinates
X = (X ,Y )T of this point in F are given by the matrix equationX

Y
1

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

x
y
1

 . (2.1)

We introduce the extra column in this matrix to accommodate translations typical
of prismatic joints as part of the matrix operation.

In particular, consider a prismatic joint that has the x-axis of F as its line of
action. Let the distance between the origins of M and F along this line be s. Then
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we have X
Y
1

=

1 0 s
0 1 0
0 0 1

x
y
1

 . (2.2)

A translation along a prismatic joint parallel to the y-axis is defined in the same way
as X

Y
1

=

1 0 0
0 1 s
0 0 1

x
y
1

 . (2.3)

The matrices in these equations define the three coordinate displacements of planar
movement. Planar displacements are constructed from these three basic transforma-
tions.

We now introduce the notation [Z(θ)], [X(s)], and [Y (s)] for these coordinate
displacements, so we have

X = [Z(θ)]x, X = [X(s)]x, and X = [Y (s)]x, (2.4)

respectively. Notice that we do not distinguish symbolically between the coordi-
nates X that are two-dimensional and those that have 1 as a third component. Some
authors to refer to the former as vectors and the latter as affine points. We do not
need this general distinction, and therefore will take the time to make the difference
clear when needed in the context of our calculations.

2.1.1 The PR Open Chain

The benefit of this matrix formulation can be seen in considering the movement of a
PR open chain. This chain consists of a link that slides along the linear guide of a P-
joint relative to the ground. An end-link is attached to the slider by a revolute joint,
Figure 2.1. We now determine the movement of a coordinate frame M attached to
the end-link relative to a fixed frame F .

Fig. 2.1 The PR and RR open chain robots.

O

A

AO

F

s

F

θ θ1

θ2

a



2.1 Coordinate Planar Displacements 17

First, locate F so that its x-axis is parallel to the slide of the P-joint and denote its
origin by O. Locate M in the end-link so that its origin is centered on the revolute
joint, which we denote by A, and with its x-axis aligned initially with the x-axis of
F .

The configuration of the PR chain is defined by the slide s from O to A, and the
rotation angle θ about O measured from the x-axis of F to the x-axis of M. The
transformation of coordinates from M to F is given by the matrix product

X = [X(s)][Z(θ)]x, (2.5)

or X
Y
1

=

cosθ −sinθ s
sinθ cosθ 0

0 0 1

x
y
1

 . (2.6)

The set of planar displacements [D], given by

[D] = [X(s)][Z(θ)], (2.7)

is the workspace of the PR open chain. This matrix equation defines the kinematics
equations for the chain.

An important question in the analysis of an open chain is what parameter values
s and θ are needed to reach a given displacement [D] in the workspace of the chain.
Assuming the elements of the matrix

[D] =

a11 a21 px
a21 a22 py
0 0 1

 (2.8)

are known, equation (2.7) can be solved to determine these parameters. Notice that
py = 0 is required for the displacement [D] to be in the workspace reachable by the
PR chain. It is now easy to see that s and θ can be determined from the elements of
[D] by the formulas

s = px and θ = arctan
a21

a11
. (2.9)

Its important to note here that the arctan function must keep track of the signs of
both a21 and a11 so the correct value for θ is obtained in the range 0 to 2π .

The arctan function in calculators often incorporates the assumption that the de-
nominator of the fraction a21/a11 is positive. If this denominator is actually negative,
as occurs when θ is in the second and third quadrants, then π must be added to the
angle returned by the calculator in order to obtain the correct result.
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2.1.2 The RR Open Chain

A planar RR open chain has a fixed revolute joint O that connects a rotating link,
or crank, to the ground link. A second revolute joint A connects the crank to the
end-link, or floating link, Figure 2.1.

Position the fixed frame F so that its origin is the fixed pivot O and its x-axis is
directed toward A when the crank OA is in the zero position. Introduce the moving
frame M in the end-link, so that its origin is located at A and its x-axis is also
directed, initially, along the segment OA.

Let θ1 be the angle measured from F to OA as the linkage moves, and let θ2 be
the angle measured from OA to M. Then the position of M relative to F is defined
by the composition of coordinate displacements

X = [Z(θ1)][X(a)][Z(θ2)]x, (2.10)

where a = |A−O| is the length of the crank. Expanding this equation we obtainX
Y
1

=

cos(θ1 +θ2) −sin(θ1 +θ2) acosθ1
sin(θ1 +θ2) cos(θ1 +θ2) asinθ1

0 0 1

x
y
1

 . (2.11)

Notice that the position of the floating link of an RR chain is equivalent to a trans-
lation by the vector d = (asinθ1,asinθ1)

T followed by a rotation by the angle
σ = θ1 +θ2.

The workspace of the RR chain is given by the set of displacements

[D] = [Z(θ1)][X(a)][Z(θ2)]. (2.12)

This defines the kinematics equations of the RR chain. For a given position [D] the
parameter values θ1 and θ2 that reach it are obtained by equating (2.8) to the matrix
in (2.11). The result is that the angles θ1 and σ = θ1 +θ2 are given by

θ1 = arctan
py

px
and σ = arctan

a21

a11
. (2.13)

Notice that the elements px and py must satisfy the relation

a =
√

p2
x + p2

y . (2.14)

in order for [D] to be in the workspace of this chain.
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2.1.3 The RPR and 3R Chains

If the distance a between the joints of an RR chain is allowed to vary, then we
obtain the structure of a three-degree-of-freedom planar manipulator. This variation
in length can be introduced either by a prismatic joint, forming an RPR open chain,
or by a revolute joint to form a 3R open chain, Figure 2.2. The formulas for the RR
chain can be used to analyze the RPR and 3R chains with minor modifications.

Fig. 2.2 The RPR and RRR open robots.

For the RPR, the link length a can be identified with the slide parameter s of the
prismatic joint. The result is that (2.12) with a = s defines the workspace of the RPR
chain. Equations (2.14) and (2.13) define the values for s, θ1, and θ2 needed to reach
a given goal displacement.

For the 3R case, we have an elbow joint E inserted between O and A. Let the
lengths of the two links be a1 = |E−O| and a2 = |A−E|. Denote the rotation
angle about the elbow joint by θ2 which is measured from OE counter-clockwise
to EA. The rotation of the end-link around A is now denoted by θ3. The kinematics
equations of this chain become

[D] = [Z(θ1)][X(a1)][Z(θ2)][X(a2)][Z(θ3)]. (2.15)

The variable length s = |A−O| is given by the cosine law of the triangle4OEA,

s2 = a2
1 +a2

2 +2a1a2 cosθ2. (2.16)

The positive sign for the cosine term in this equation arises because θ2 is an exterior
angle of the triangle4OEA. Notice that s must lie between the values |a2−a1| and
a1 +a2.

For a given position [D] of the end-link, we can determine the length s as we did
for the RPR chain using (2.14). This allows us to compute the elbow joint angle as

θ2 = arccos
p2

x + p2
y−a2

1−a2
2

2a1a2
. (2.17)
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The arccosine function yields two values for this angle ±θ2. We can compute the
joint angle θ1 using (2.13), however, we must account for the presence of the angle
ψ = ∠EOA, which is given by

ψ = arctan
a2 sinθ2

a1 +a2 cosθ2
. (2.18)

The result is
θ1 = arctan

py

px
−ψ. (2.19)

Finally, θ3 is obtained from the fact that the rotation of the end-link is σ = θ1+θ2+
θ3 in (2.13), which yields

θ3 = arctan
a21

a11
−θ1−θ2. (2.20)

Notice that two sets of values θ1 and θ3 are obtained depending on the sign of θ2.
These are known as the elbow-up and elbow-down solutions.

2.2 Position Analysis of the RRRP Linkage

The RRRP linkage is called a slider-crank and consists of a rotating crank linked
to a translating slider by a connecting rod, or coupler. It is a fundamental machine
element found in everything from automotive engines to door-closing mechanisms.
We can also view this device as a platform linkage, in which case the coupler is a
workpiece supported by an RR and a PR chain.

Denote the fixed and moving pivots of the input crank by O and A, respectively,
and let B be the revolute joint attached to the slider. Position the fixed frame F so
that its origin is O and orient it so that its x-axis is perpendicular to the direction of
slide, Figure 2.3. The input crank angle θ is measured from the x-axis of F around
O to OA, and the travel s of the slider is measured along the y-axis to B.

The length of the driving crank is r = |A−O|, and the length of the coupler is
L = |B−A|. The distance e to the linear path of the pivot B is called the offset.
Notice that the dimensions r, L, and e are always positive.

2.2.1 The Output Slide

To analyze this linkage, we determine the output slide s as a function of the input
crank angle θ . The linkage moves so the pivots A and B remain the constant distance
L apart. The coordinates of these pivots in F are given by

A =

{
r cosθ

r sinθ

}
and B =

{
e
s

}
. (2.21)



2.2 Position Analysis of the RRRP Linkage 21

Fig. 2.3 The dimensions characterizing a slider-crank, or RRRP, linkage.

Thus, the length L = |B−A| of the coupler provides the constraint equation

(B−A) · (B−A) = L2. (2.22)

Substitute (2.21) into this expression and collect the coefficients of s to obtain the
quadratic equation

s2− (2r sinθ)s+(r2 + e2−2er cosθ −L2) = 0. (2.23)

The quadratic formula yields the roots

s = r sinθ ±
√

L2− e2 +2er cosθ − r2 cos2 θ . (2.24)

Thus, for a given input crank angle θ there are two possible values of the slide
s. They are, geometrically, the intersection of a circle of radius L centered on A
with the line through B parallel to the y-axis of F . These two solutions define the
two assemblies of the RRRP linkage. The positive solution generally has the slider
moving above the crank, while the negative solution has it below.

2.2.2 The Range of Crank Rotation

We now consider the values of the crank angle θ for which a solution for the slider
position s exists. The condition that the solution be a real number is

L2− e2 +2er cosθ − r2 cos2
θ ≥ 0. (2.25)

Set this to zero to obtain a quadratic equation in cosθ that defines the minimum and
maximum angular values for the crank angle θ , and obtain the roots

θmin = arccos
e+L

r
and θmax = arccos

e−L
r

. (2.26)
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Notice that the arccosine function returns two values for these limiting angles that
are reflections through the x-axis of F .

If cosθmin > 1, then the lower limit θmin to the crank rotation angle does not
exist. In which case the crank can reach θ = 0 and pass into the lower half-plane of
F . Thus, the condition that no lower limit exist is

S1 = L− r+ e > 0. (2.27)

Similarly, if cosθmax < −1 then the upper limit does not exist, and the crank can
reach θ = π . This yields the condition

S2 = L− r− e > 0. (2.28)

The signs of the parameters S1 and S2 identify four types of slider-crank linkage
depending on the input rotation of the crank:

1. A rotatable crank: S1 > 0 and S2 > 0, in which case neither limit θmin nor θmax
exists, and the input crank can fully rotate.

2. A 0-rocker: S1 > 0 and S2 < 0, for which θmax exists but not θmin, and the input
crank rocks through θ = 0 between the values ±θmax.

3. A π-rocker: S1 < 0 and S2 < 0, which means that θmin exists but not θmax, and
the input crank rocks through θ = π between the values ±θmin.

4. A rocker: S1 < 0 and S2 < 0, in which case both upper and lower limit angles
exist, and the crank cannot pass through either 0 or π . Instead, it rocks in one of
two separate ranges: (i) θmin ≤ θ ≤ θmax, or (ii) −θmax ≤ θ ≤−θmin.

The conditions S1 > 0 and S2 > 0 for a fully rotatable crank can be combined to
define the formula

S1S2 = (L− r+ e)(L− r− e) = (L− r)2− e2 > 0. (2.29)

Notice that because e is always positive, L− r must be positive for S2 to be positive.
This allows us to conclude that

L− r > e (2.30)

is the condition that ensures that the crank of the RRRP linkage can fully rotate.
The parameters S1 or S2 can take on zero values as well. In these cases, the pivots

O, A, and B line up along the x-axis of F , and the slider-crank linkage is said to fold.

2.2.3 The Coupler Angle

Let φ denote the angle around the moving pivot A measured counterclockwise from
the line extending along the crank OA to the segment AB defining the coupler. Then
the coordinates of the pivot B = (e,s)T are also given by the vector
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B =

{
r cosθ +Lcos(θ +φ)
r sinθ +Lsin(θ +φ)

}
. (2.31)

We equate the two vectors defining B to obtain

r cosθ +Lcos(θ +φ) = e,

r sinθ +Lsin(θ +φ) = s. (2.32)

These equations are called the loop equations of the slider-crank because they
capture the fact that the linkage forms a closed loop. Solve these equations for
Lsin(θ +φ) and Lcos(θ +φ) and use the arctan function to obtain

θ +φ = arctan
s− r sinθ

e− r cosθ
. (2.33)

This equation provides the value for φ associated with each solution for the slide s
defined in (2.24).

2.2.4 The Extreme Slider Positions

The maximum translation of the slider, smax, is reached when the coupler angle φ

is equal to zero. In this instance the pivots O, A, and B fall on a line, so that r+L
forms the hypotenuse of a right triangle. This yields

smax =
√

(r+L)2− e2. (2.34)

The crank angle θ1 associated with smax is obtained from the loop equations (2.32)
as

θ1 = arctan
smax

e
. (2.35)

Notice that the parameter smax can be positive or negative, because the linkage can
be assembled with the slider above over below the x-axis.

The minimum translation of the slider, smin, occurs with the coupler angle φ is
equal to π . In this configuration the pivots A and B are on opposite sides of O and
L− r is the hypotenuse of the triangle, so smin is given by

smin =
√

(L− r)2− e2. (2.36)

While smax always exists, smin exists only if this square root is real. There are two
cases L− r > 0 and L− r < 0. In the first case the crank is fully rotatable and the
associated crank angle is

θ2 = π + arctan
smin

e
. (2.37)
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The minimum slide results when the pivot A rotates to the position such that O lies
between it and B. If L− r < 0 then A and B are on the same side of O and the crank
angle is

θ2 = arctan
smin

e
. (2.38)

Notice that these extreme configurations can be reflected through the x-axis.
If the crank of the slider-crank is fully rotatable, then the angular travel of the

crank as the slider moves from smax to smin is |θ2− θ1|. The angular travel of the
return from smin to smax is |2π− (θ2−θ1)|. The ratio of these two ranges of travel
is known as the time ratio

rt =
|θ2−θ1|

|2π− (θ2−θ1)|
. (2.39)

Notice that if the offset e is nonzero then the time ratio is less than 1. This means that
the crank rotates a smaller angular distance as it pulls the slider to smin, than it does
when it pushes it out again to smax. This operation is known as quick return because
for a constant angular velocity the slider moves slowly toward smax and quickly as
it returns to smin.

2.2.5 The RRPR Linkage

A slider-crank linkage is often used in an inverted configuration in which the P-joint
is connected to the floating link, Figure 2.4. In this form, the prismatic joint may be
the piston of a linear actuator that drives the rotation of the crank OA. This system
is analyzed as follows.

Fig. 2.4 The inverted slider-crank, or RRPR, linkage.

Let the driving RR crank be OA with length r = |A−O|, as before. Position the
frame F with its origin at O and its x-axis directed toward C, which denotes the fixed
pivot of the RP chain. The length of the ground link OC is g = |C−O|. Consider

r

g

θ
O

A

B

C

s

e
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the line through C perpendicular to the direction of the slider and the line through
A parallel this direction. Let the intersection of these two lines be the point B. The
length e = |B−C| is the joint offset, and s = |A−B| is the slide distance of the
prismatic joint. Denote the input crank angle by θ and let ψ be the angle measured
about C to the segment CB.

These conventions allow us to introduce the intermediate parameters b and β

given by
b =

√
s2 + e2 and tanβ =

s
e
. (2.40)

The cosine law for the triangle4COA yields the relation

b2 = g2 + r2−2rgcosθ . (2.41)

Substitute s2 + e2 to obtain

s =
√

g2 + r2− e2−2rgcosθ . (2.42)

This defines the joint slide s for a given crank angle θ . Notice that this equation can
also be solved to determine θ for a given slide:

cosθ =
g2 + r2− e2− s2

2rg
. (2.43)

This latter situation arises when the slider is the piston in a linear actuator driving
the RR crank.

The rotation angle ψ of the RP crank is determined using the fact that the coor-
dinates of the pivot A can be written in two ways

A =

{
r cosθ

r sinθ

}
=

{
g+bcos(ψ +β )

bsin(ψ +β )

}
. (2.44)

These equations yield the formula

ψ +β = arctan
r sinθ

r cosθ −g
. (2.45)

Notice that β is determined from s by (2.40).
The range of movement of the cranks and the sliding joint for this linkage can be

analyzed in the same way as shown above for the RRRP linkage.

2.3 Position Analysis of the 4R Linkage

Given a planar 4R closed chain, we can identify an input RR crank and an output
RR crank, Figure 2.5. Let the fixed and moving pivots of the input crank be O and
A, respectively, and that the fixed and moving pivots of the output crank be C and
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B. The distances between these points characterize the linkage:

a = |A−O|, b = |B−C|, g = |C−O|, h = |B−A|. (2.46)

Fig. 2.5 The link lengths that define a 4R linkage.

To analyze the linkage, we locate the origin of the fixed frame F at O, and orient
it so that the x-axis passes through the other fixed pivot C. Let θ be the input angle
measured around O from the x-axis of F to OA. Similarly, let ψ be the angular
position of the output crank CB.

2.3.1 Output Angle

The relationship between the input angle θ of the driving crank and the angle ψ of
the driven crank is obtained from the condition that A and B remain a fixed distance
apart throughout the motion of the linkage. Since h = |B−A| is constant, we have
the constraint equation

(B−A) · (B−A)−h2 = 0. (2.47)

The coordinates of A and B in F are given by

A =

{
acosθ

asinθ

}
and B =

{
g+bcosψ

bsinψ

}
. (2.48)

Substitute these coordinates into (2.47) to obtain

b2 +g2 +2gbcosψ +a2−2(acosθ(g+bcosψ)+absinθ sinψ)−h2 = 0. (2.49)

Gathering the coefficients of cosψ and sinψ , we obtain the constraint equation for
the 4R chain as

A(θ)cosψ +B(θ)sinψ =C(θ), (2.50)

h

a
b

g

θ
O

A

B

C

φ
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where

A(θ) = 2abcosθ −2gb,

B(θ) = 2absinθ ,

C(θ) = g2 +b2 +a2−h2−2agcosθ . (2.51)

The solution to this equation is

ψ(θ) = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
. (2.52)

Equations of the form (2.50) arise many times in the analysis of linkages, so we
present its solution in Appendix A for easy reference, see (A.1).

Notice that there are two angles ψ for each angle θ . This arises because the
moving pivot B of the output crank can be assembled above or below the diagonal
joining the moving pivot A of the input crank to the fixed pivot C of the output
crank. The angle δ = arctan(B/A) defines the location of this diagonal, and ε =
arccos(C/

√
A2 +B2) is the angle above and below this diagonal that locates the

output crank.
The argument of the arccosine function must be in the range −1 to +1, which

places a solvability constraint on the coefficients A, B, and C. Specifically, for a
solution to exist we must have

A2 +B2−C2 ≥ 0. (2.53)

If this constraint is not satisfied, then the linkage cannot be assembled for the spec-
ified input crank angle θ .

2.3.2 Coupler Angle

Let φ denote the angle of the coupler measured about A relative to the segment OA,
so θ +φ measures the angle to AB from the x-axis of F . The coordinates of B can
also be defined in terms of φ as

B =

{
acosθ +hcos(θ +φ)
asinθ +hsin(θ +φ)

}
. (2.54)

Equating the two forms for B, we obtain the loop equations of the four-bar linkage

acosθ +hcos(θ +φ) = g+bcosψ,

asinθ +hsin(θ +φ) = bsinψ. (2.55)

For a given value of the drive crank θ , determine ψ using (2.52) then cos(θ + φ)
and sin(θ +φ) are given by
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cos(θ +φ) =
g+bcosψ−acosθ

h
and sin(θ +φ) =

bsinψ−asinθ

h
. (2.56)

Thus, the value of the coupler angle is obtained as

φ = arctan
(

bsinψ−asinθ

g+bcosψ−acosθ

)
−θ . (2.57)

Notice that a unique value for φ is associated with each of the two solutions for the
output angle ψ .

2.3.2.1 An Alternative Derivation

It is useful here to present a direct calculation of the coupler angle φ associated
with a given crank angle θ . The derivation is identical to that above for the output
angle. However, our standard frame is now F ′, positioned with its origin at A and
its x-axis along the vector O−A. In this coordinate frame, the pivots B and C have
the coordinates

F ′B =

{
hcos(φ −π)
hsin(φ −π)

}
and F ′C =

{
a+gcos(π−θ)

gsin(π−θ)

}
. (2.58)

The constraint (B−C) · (B−C) = b2 yields the equation

A(θ)cosφ +B(θ)sinφ =C(θ), (2.59)

where

A(θ) = 2ah−2ghcosθ ,

B(θ) = 2ghsinθ ,

C(θ) = b2−a2−g2−h2 +2agcosθ . (2.60)

This equation is solved in exactly the same way as before (A.1). It results in two val-
ues for φ for each crank angle θ . The output angle ψ associated with each of these
coupler angles can be determined from the loop equations of the linkage written for
C in F ′.

This equation for the coupler angle is used in solutions for four and five position
synthesis of a planar 4R linkage.

2.3.3 Transmission Angle

The angle ζ between the coupler and the driven crank at B is called the transmission
angle of the linkage. If the only external loads on the linkage are torques on the input
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and output cranks, then the forces FA and FB acting on the coupler at the moving
pivots must oppose each other along the line AB, Figure 2.6. Thus, the force FB is
directed at the angle ζ relative to the driven crank, and sinζ measures the component
of FB that is transmitted as useful output torque. The cosζ component is absorbed
as a reaction force at the fixed pivot of the driven crank.

Fig. 2.6 The coupler is a two-force member connecting the input and output cranks.

To determine ζ in terms of θ , equate the cosine laws for the diagonal d = |A−C|
for the triangles4COA and4ABC. Since ζ is the exterior angle at B, we have

d2 = g2 +a2−2agcosθ = h2 +b2 +2bhcosζ . (2.61)

The result is

cosζ =
g2 +a2−h2−b2−2agcosθ

2bh
. (2.62)

2.3.4 Coupler Curves

As a linkage moves, points in the coupler trace curves in the fixed frame. The pa-
rameterized equation of this curve is obtained from the kinematics equations of the
driving RR chain. Let x = (x,y)T be the coordinates of a coupler point in the frame
M located at A with its x-axis along AB. The coordinates X= (X ,Y )T in F are given
by the matrix equationX(θ)

Y (θ)
1

=

cos(θ +φ) −sin(θ +φ) acosθ

sin(θ +φ) cos(θ +φ) asinθ

0 0 1

x
y
1

 . (2.63)

The coupler angle φ is a function of θ , thus the coupler curve is parametrized by the
crank angle θ .

The algebraic equation for this curve, eliminating θ , is obtained by defining the
coordinates of X from two points of view. Let the coupler triangle 4XAB (Figure

O

A

B

C
Tin Tout

FA

FB

F'A
F'B

θ

ζ



30 2 Analysis of Planar Linkages

2.7) have lengths r and s given by

r = |X−A|=
√

x2 + y2 and s = |X−B|=
√

(x−h)2 + y2. (2.64)

If λ is the angle to AX in F , and µ is the angle to BX, then we have

X−A =

{
r cosλ

r sinλ

}
and X−B =

{
scos µ

ssin µ

}
. (2.65)

Rearrange these equations to isolate A and B, and substitute into the identities A ·
A = a2 and (B−C) · (B−C) = b2 to obtain

X2 +Y 2−2Xr cosλ −2Y r sinλ + r2 = a2,

X2 +Y 2−2Xscos µ−2Y ssin µ + s2−2gscos µ−2Xg+g2 = b2. (2.66)

The algebraic equation of the coupler curve is obtained by eliminating λ and µ from
these two equations.

Fig. 2.7 The trajectory of a point in the floating link is known as a coupler curve of the 4R chain.

First, note that if α is the interior angle of the coupler triangle 4XAB at A,
then λ = α +θ +φ . Similarly, if β is the exterior angle of this triangle at B, then
µ = β +θ +φ , or equivalently

µ−λ = β −α. (2.67)

The angle γ = β −α is the interior angle of the coupler triangle at X given by the
cosine law as

cosγ =
r2 + s2−h2

2rs
. (2.68)

Substitute µ = λ + γ into (2.66) and rearrange these equations to obtain
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A1 cosλ +B1 sinλ =C1,

A2 cosλ +B2 sinλ =C2, (2.69)

where

A1 = 2rX , A2 = 2s(cosγ(X−g)+Y sinγ),

B1 = 2rY, B2 = 2s(−sinγ(X−g)+Y cosγ),

C1 = X2 +Y 2 + r2−a2, C2 = (X−g)2 +Y 2−b2 + s2. (2.70)

Eliminate λ in these equations by solving linearly for x = cosλ and y = sinλ . Then
impose the condition x2 + y2 = 1. The result is

(C1B2−C2B1)
2 +(A2C1−A1C2)

2− (A1B2−A2B1)
2 = 0. (2.71)

Notice that Ai and Bi are linear in the coordinates X and Y , and Ci are quadratic.
Therefore, this equation defines a curve of degree six. See Hunt [50] for a detailed
study of this curve, known as a tricircular sextic, and a description of its properties.

2.4 Range of Movement

2.4.1 Limits on the Input Crank Angle

The formula that defines the output angle ψ for a given input angle θ has a solution
only when A2 +B2−C2 ≥ 0. When this condition is violated, the crank is rotated
to a positioned in which the mechanism cannot be assembled. The maximum and
minimum values for θ are obtained by setting this condition to zero, which yields
the quadratic equation in cosθ

4a2g2 cos2
θ−4ag(g2 +a2−h2−b2)cosθ

+
(
(g2 +a2)− (h+b)2)((g2 +a2)− (h−b)2)= 0. (2.72)

The roots of this equation are the upper and lower limiting angles θmax and θmin that
define the range of movement of the input crank,

cosθmin =
(g2 +a2)− (h−b)2

2ag
, cosθmax =

(g2 +a2)− (h+b)2

2ag
. (2.73)

These equations are the cosine laws for the two ways that the triangle 4AOC
can be formed with the coupler AB aligned with the output crank CB, Figure 2.8.
This alignment is what limits rotation of the input crank. The cosine function does
not distinguish between±θ so there are actually two limits for each case±θmin and
±θmax above and below OC.
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Fig. 2.8 The angles θmin and θmax are the limits to the range of movement of the input link.

The arccosine function yields a real angle only if its argument is between−1 and
1. This provides conditions that determine whether these crank limits exist.

2.4.1.1 The Lower Limit: θmin

If θmin does not exist, then the crank has no lower limit to its movement and it rotated
through θ = 0 to reach negative values below the segment OC. Thus, cosθmin > 1
is the condition that there is no lower limit to the input crank rotation, that is,

(g2 +a2)− (h−b)2

2ag
> 1. (2.74)

This simplifies to yield
(g−a)2− (h−b)2 > 0. (2.75)

Factor the difference of two squares to obtain

(g−a+h−b)(g−a−h+b)> 0,
T1T2 > 0, (2.76)

where
T1 = g−a+h−b and T2 = g−a−h+b. (2.77)

Thus, T1 and T2 must both be either positive or negative for there to be no lower
limit to the rotation of the input crank.
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2.4.1.2 The Upper Limit: θmax

If θmax does not exist, then the crank has no upper limit to its movement and it will
be able to rotate through θ = π . Thus, cosθmax <−1, or

(g2 +a2)− (h+b)2

2ag
<−1, (2.78)

is the condition that this limit does not exist. This inequality simplifies to

(h+b)2− (g+a)2 > 0, (2.79)

which factors to become

(h+b−g−a)(h+b+g+a)> 0,
T3T4 > 0, (2.80)

where
T3 = h+b−g−a, and T4 = h+b+g+a. (2.81)

The sum of the link lengths T4 is always positive. Therefore, the condition that there
is no upper limit to the rotation of the input crank is T3 > 0.

2.4.1.3 Input Crank Types

We can now identify four types of movement available to the input crank of a 4R
linkage:

1. A crank: T1T2 > 0 and T3 > 0, in which case neither θmin nor θmax exists, and
the input crank can fully rotate.

2. A 0-rocker: T1T2 > 0 and T3 < 0, for which θmax exists but not θmin, and the
input crank rocks through θ = 0 between the values ±θmax.

3. A π-rocker: T1T2 < 0 and T3 > 0, which means that θmin exists but not θmax, and
the input crank rocks through θ = π between the values ±θmin.

4. A rocker: T1T2 < 0 and T3 < 0, which means that both upper and lower limiting
angles exist, and the crank cannot pass through either 0 or π . Instead, it rocks in
one of two separate ranges: (i) θmin ≤ θ ≤ θmax, or (ii) −θmax ≤ θ ≤−θmin.

2.4.2 Limits on the Output Crank Angle

The range of movement of the output crank can be analyzed in the same way. The
limiting positions occur when the input crank OA and coupler AB become aligned,
see Figure 2.9. The limits ψmin and ψmax are defined by the equations
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cosψmin =
(h+a)2− (g2 +b2)

2bg
, cosψmax =

(h−a)2− (g2 +b2)

2bg
. (2.82)

Note that in this case ψ is the exterior angle, which changes the sign of the cosine
term in the cosine law formula.

Fig. 2.9 The angles ψmin and ψmax are the limits to the range of motion of the output link.

Examining the existence of solutions to arccosine in (2.82), we find that the con-
dition for no lower limit ψmin is

(h+a−g−b)(h+a+g+b)> 0,
(−T2)(T4)> 0, (2.83)

where T2 and T4 are the same parameters used above for the input crank. Because
T4 is always greater than zero, the condition that there be no lower limit to the range
of movement of the output crank is T2 < 0.

Similarly, in order for there to be no upper limit ψmax, we have

(g−b−h−a)(g−b+h−a)> 0,
(−T3)(T1)> 0. (2.84)

Again, the parameters T3 and T1 are the same as were defined above and there is no
upper limit to the movement of the output crank when T1T3 < 0.

2.4.2.1 Output Crank Types

We can now identify four types of movement available to the output crank of a
four-bar linkage:
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1. A rocker: T1T3 > 0 and T2 > 0. In this case both limits ψmin and ψmax exist, and
the crank cannot not pass through either 0 or π . Instead, it rocks in one of two
separate ranges: (i) ψmin ≤ ψ ≤ ψmax, or (ii) −ψmax ≤ ψ ≤−ψmin.

2. A 0-rocker: T1T3 < 0 and T2 > 0, for which ψmax exists but not ψmin, and the
output crank rocks through ψ = 0 between the values ±ψmax.

3. A π-rocker: T1T3 > 0 and T2 < 0, which means that ψmin exists but not ψmax,
and the output crank rocks through ψ = π between the values ±ψmin.

4. A crank: T1T3 < 0 and T2 < 0. Then neither limit ψmin nor ψmax exists, and the
output crank can fully rotate.

2.4.3 The Classification of Planar 4R Linkages

A planar 4R linkage is classified by the movement of its input and output cranks. For
example, a crank-rocker has a fully rotatable input link, and an output link that rocks
between two limits. On the other hand a rocker-crank has an input link that rocks
and an output link that fully rotates. The combinations of positive and negative signs
for the parameters T1, T2, T3 identify eight basic linkage types. These parameters can
take zero values as well, in which case the linkage folds.

2.4.3.1 The Eight Basic Types

The link lengths a, b, g, and h for a 4R chain define the three parameters T1, T2, and
T3. Our classification scheme requires only the signs of these parameters, therefore
we assemble the array (sgnT1,sgnT2,sgnT3). The eight possible arrays identify the
eight basic types of 4R linkages.

We separate the linkage types into two general classes depending upon the sign
of the product T1T2T3. If T1T2T3 > 0 then the linkage is called Grashof ; otherwise,
it is called nonGrashof. There are four Grashof and four non-Grashof linkage types.

We consider the Grashof cases first:

1. (+,+,+): Because T1T2 > 0 and T3 > 0 the input link can fully rotate. Similarly,
because T1T3 > 0 and T2 > 0 the output link is a rocker with two output ranges.
This linkage is a crank-rocker.

2. (+,−,−): With T1T2 < 0 and T3 < 0 the input is a rocker, and with T1T3 < 0 and
T2 < 0 the output is a crank. This defines the rocker-crank linkage.

3. (−,−,+): In this case, T1T2 > 0 and T3 > 0, so the input link is a crank, and
T1T3 < 0 and T2 < 0, which means that the output link is also a crank. This
defines the double-crank linkage.

4. (−,+,−): T1T2 < 0 and T3 < 0 define the input as a rocker, and with T1T3 > 0
and T2 > 0 the output is also a rocker. This defines the Grashof double-rocker
linkage type.

Now consider the nonGrashof cases:
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5. (−,−,−): Here we have T1T2 > 0 and T3 < 0, and the input link rocks through
the value θ = 0. With T1T3 > 0 and T2 < 0, the output link rocks through the
value ψ = 0. This type of linkage is termed a 00 double-rocker.

6. (+,+,−): In this case, the input rocks through θ = 0. However, with T1T3 < 0
and T2 > 0 the output rocks through ψ = π . This linkage is called a 0π double-
rocker.

7. (+,−,+): With T1T2 > 0 and T3 > 0 the input link rocks through π , and because
T1T3 < 0 and T2 < 0 the output link rocks through 0. This is the π0 double-rocker.

8. (−,+,+): Finally, the input again rocks through π , as does the output, defining
the ππ double-rocker.

The parameters associated with these linkages are listed in Table 2.1.

Table 2.1 Basic Planar 4R Linkage types

Linkage type T1 T2 T3

1 Crank-rocker + + +
2 Rocker-crank + − −
3 Double-crank − − +
4 Grashof double-rocker − + −
5 00 double-rocker − − −
6 0π double-rocker + + −
7 π0 double-rocker + − +
8 ππ double-rocker − + +

2.4.4 Grashof Linkages

If a linkage is to be used in a continuous operation, the input crank should be able
to fully rotate so that it can be driven by a rotating power source. A study of the
configurations of a 4R linkage lead Grashof to conclude that, for a shortest link of
length s and longest link of length l, the shortest link will fully rotate if

s+ l < p+q, (2.85)

where p and q are the lengths of the other two links. This is known as Grashof’s
criterion and linkages that have a rotatable crank are called Grashof linkages.

There are four linkage types that satisfy Grashof’s criterion. If the input or output
link is the shortest, then we have the crank-rocker or the rocker-crank, respectively.
If the ground link is the shortest, then both the input and output links will fully rotate
relative to the ground; this is the double-crank linkage. Finally, if the floating link
is the shortest link, then the input and output links are rockers; this is the Grashof
double-rocker. By examining Table 2.1, it is easy to see that these four linkage types
satisfy the condition
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T1T2T3 > 0, (2.86)

which can be shown to be equivalent to Grashof’s criterion.
The rockers of each of the Grashof linkage types are distinguished by the fact

that both upper and lower limits exist. The means that they have two distinct angular
ranges of movement, one in the upper half plane and one in the lower relative to the
fixed link. If the linkage is assembled so that the rocker is in one angular range,
then it cannot reach the other range without disassembly. Thus, Grashof linkages
have two distinct sets of configurations called assemblies. The linkage can move
between the configurations in only one of these assemblies and cannot reach the
others.

2.4.5 Folding Linkages

If any one of the parameters T1, T2, or T3 has the value zero, then the linkage can
take a configuration in which all four joints lie on a line. The linkage is said to fold.

If we consider the positive, negative, and zero values for the array (T1,T2,T3),
then we find that there are 27 types of planar 4R linkages, 19 of which fold. Fur-
thermore, the number of parameters Ti that are zero defines the number of folding
configurations of the linkage. It is often useful to have a linkage fold. However,
while it is easy to drive the linkage into a folded configuration, it may be difficult to
get it out of the this configuration.

Consider, for example, the parallelogram linkage defined by a = b and g = h.
This linkage has T2 = 0 and T3 = 0. Thus, it has two folding configurations, which
occur for the input crank angles of θ = 0,π . Another doubly folding example is the
kite linkage with g = a and h = b, which yields T1 = 0 and T2 = 0. This linkage
folds when θ = 0, at which point the output link can freely rotate because the joints
A and C coincide; the second folding position occurs when ψ = π .

There is one triply folding case, the rhombus linkage, for which a = b = g = h.
This linkage is a combination of the parallelogram and kite linkages. It folds at the
two configurations θ = 0,π like the parallelogram. When θ = 0 the output link is
free to rotate because the joints A and C coincide as with the kite linkage. The
third folding configuration occurs when ψ = π . The linkage can also reach this
configuration with θ = π , in which case it is the input crank that can freely rotate
because O and B coincide.

Linkages that have small values for any of the parameters Ti are termed near
folding. These linkages have configurations in which the joints can lie close to a
line. In nearly folded configurations the transmission angle of the linkage is near 0
or π , and the output crank is difficult to move using the input crank.
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2.5 Velocity Analysis

The velocity analysis of a linkage determines the angular rates of the various joint
parameters as a function of the configuration of the linkage and the input joint rate.
This analysis can be used in combination with the principle of virtual work to pro-
vide an important technique for determining the force and torque transmission prop-
erties of these systems.

2.5.1 Velocity of a Point in a Moving Link

Points x fixed in a moving link M trace trajectories X(t) = [T (t)]x in the fixed frame
F . The velocity of a point along its trajectory is the time derivative of its coordinate
vector, that is, V = Ẋ. Of importance to us is the relationship between this velocity
and the movement of the linkage as a whole.

The usual convention in velocity calculations is to focus on the trajectories in F
rather than coordinates in M of the moving point. For this reason, the trajectory of
the of a segment AB fixed in M is defined by coordinates A and B measured in F .
A general trajectory X of M has the property that r = |X−A| and α = ∠BAX are
constants, because the three points A, B, and X are part of the same link.

Let the orientation of M be defined by the angle θ of AB measured relative to the
x-axis of F . Then we can determine the relative position vector X−A as

X−A =

{
r cos(θ +α)
r sin(θ +α)

}
. (2.87)

The time derivative of this vector yields

V = Ẋ = Ȧ+ θ̇ [J](X−A), where [J] =
[

0 −1
1 0

]
. (2.88)

This defines the velocity of a general point in terms of the velocity of a reference
point and the rate of rotation of the body. We now show that θ̇ [J] is directly related
to the angular velocity of this link.

Each body in a planar linkage rotates about an axis that is perpendicular to the
plane of movement. Denote this direction by~k = (0,0,1)T . Then the usual vector
cross product yields~k×~ı =~ and~k×~ = −~ı, where~ı and~ are unit vectors along
the x- and y-axes of the fixed frame F . We now define the angular velocity of the
link AB to be the vector

wAB = θ̇~k. (2.89)

where θ defines the orientation of AB in F. Notice that for any vector y, the angular
velocity vector satisfies the identity

wAB×y = θ̇ [J]y. (2.90)
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This allows us to write equation (2.88) for the velocity of a point in the form

V = Ȧ+wAB× (X−A). (2.91)

The angular velocity vector can be viewed as an operator that computes the compo-
nent of velocity that arises from the rotation of the link.

Notice that if the link AB simply rotates about A, then Ȧ = 0, and we have

V = wAB× (X−A). (2.92)

In this case, the velocity of a point X is directed 90◦ to the line joining it to A.

2.5.2 Instant Center

It interesting to note that there is a point in every moving link that has zero velocity.
This point I, known as the instant center, is found by setting (2.91) to zero, that is,

Ȧ+wAB× (I−A) = 0. (2.93)

Take the cross product by wAB and solve for I to obtain

I−A =
wAB× Ȧ
wAB ·wAB

. (2.94)

This calculation uses the vector identity a× (b× c) = b(a · c)− c(a ·b).
The geometric meaning of I is found by substituting Ȧ from (2.93) into (2.91) to

obtain
V = wAB× (X− I). (2.95)

Compare this to (2.92) to see that the distribution of velocities in this link, at this
instant, is the same as is generated by a rotation about the instant center I.

2.6 Velocity Analysis of an RR Chain

The kinematics equations of an open chain define the set of positions it can reach as
a function of its joint parameters. If each of these parameters is given as a function
of time, then we obtain a curve in its workspace that defines the trajectory of the
end-link. The time derivative of the kinematics equations defines the velocity along
this trajectory.

The 3×3 transform [D] = [A,P] for planar open chains separate into a 2×2 ro-
tation matrix [A] and a 2×1 translation vector P. The translation vector P is defined
by the position of reference point in the end-link. The orientation φ of this link is the
sum of the relative rotation angles at each joint. Thus, the velocity of any trajectory
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X(t) of any point in the end-link is given by the equation

V = Ṗ+wM× (X−P), (2.96)

where wM is, the angular velocity vector of the end-link, is the sum of the angular
velocities at each joint.

2.6.1 The Jacobian

For an RR chain let θ1(t) and θ2(t) be the rotation angles at each joint. We can
compute

w = (θ̇1 + θ̇2)~k and Ṗ =

{
−aθ̇1 sinθ1
aθ̇1 cosθ1

}
. (2.97)

These two equations are considered to define the velocity of the end-link as a whole,
as opposed the velocity of trajectories traced by its points. The Ṗ and φ̇ are assem-
bled into a vector and (2.97) is written in the matrix form

{
Ṗ
φ̇

}
=

−asinθ1 0
acosθ1 0

1 1

{θ̇1
θ̇2

}
(2.98)

In robotics literature this 3×2 matrix is called the Jacobian of the RR chain. Given
a desired velocity for the end effector, we can solve these equations to obtain the
required joint rates θ̇1 and θ̇2.

Another form of the Jacobian is obtained by considering the trajectory of a gen-
eral point x in M given by

X(t) = [D(t)]x = [Z(θ1)][X(a)][Z(θ2)]x. (2.99)

Compute the velocity V = Ẋ then eliminate the M-frame coordinates using x =
[D−1]X. The result is

V = Ẋ = [Ḋ][D−1]X. (2.100)

The matrix [S] = [Ḋ][D−1] can be viewed as operating on a trajectory X(t) to com-
pute its velocity V.

For the RR chain, we use (2.11) and compute

[S] =

 0 −θ̇1− θ̇2 aθ̇2 sinθ1
θ̇1 + θ̇2 0 −aθ̇2 cosθ1

0 0 0

 . (2.101)

The upper left 2× 2 matrix is (θ̇1 + θ̇2)[J], which is the matrix that we have asso-
ciated with the angular velocity of the end-link. The third column is the velocity of
the trajectory Y(t) that passes through the origin of F . Assemble this into the matrix



2.7 Velocity Analysis of a Slider-Crank 41

equation {
v
φ̇

}
=

0 asinθ1
0 −acosθ1
1 1

{θ̇1
θ̇2

}
. (2.102)

This alternative form for the Jacobian is the focus of our study in the last chapter of
this text.

2.6.2 The Centrode

We now compute the instant center for the instantaneous movement of the end-link
of the RR chain. From (2.94) we have

I = P+
wM× Ṗ
wM ·wM

. (2.103)

Simplify this equation and introduce the vector~e = (cosθ1,sinθ1)
T to obtain

I = a
(

θ̇2

θ̇1 + θ̇2

)
~e. (2.104)

This shows that the instant center lies on the line through the two revolute joints of
the RR chain.

Equation (2.103) defines an instant center for every configuration of the chain.
If the joint angles θ1 and θ2 are related by a function f (θ1,θ2) = 0, then the set of
instant centers forms a curve in F known as the centrode.

Other planar open chains can be analyzed in the same way to relate the velocity
of the end-link to the rate of change of the configuration parameters.

2.7 Velocity Analysis of a Slider-Crank

If the input crank to an RRRP linkage is driven at the rate θ̇ , then we can determine
the rotation rate φ̇ of the coupler link, and the linear velocity ṡ of the slider using
the velocity loop equations. These equations are obtained by computing the time
derivative of the loop equations (2.32)

θ̇

{
−r sinθ

r cosθ

}
+(θ̇ + φ̇)

{
−Lsin(θ +φ)
Lcos(θ +φ)

}
= ṡ
{

0
1

}
. (2.105)

Rearrange the terms so this equation takes the form[
0 Lsin(θ +φ)
1 −Lcos(θ +φ)

]{
ṡ
φ̇

}
= θ̇

{
−r sinθ −Lsin(θ +φ)
r cosθ +Lcos(θ +φ)

}
. (2.106)
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Notice that to solve these equations we must have previously determined the param-
eters φ and s. Then Cramer’s rule yields

ṡ
θ̇
=

r sinφ

sin(θ +φ)
and

φ̇

θ̇
=

r sinθ +Lsin(θ +φ)

Lsin(θ +φ)
. (2.107)

It is useful to note that we can obtain the slider velocity directly from the con-
straint (2.23) and avoid the need to determine φ or φ̇ . To do this, simply compute
the time derivative of this constraint equation to obtain

ṡ(s− r sinθ)− θ̇r(scosθ − esinθ) = 0. (2.108)

The result is
ṡ
θ̇
=

r(scosθ − esinθ)

s− r sinθ
. (2.109)

This equation is used to determine the mechanical advantage of this linkage.

2.7.1 Mechanical Advantage

The ratio of the static force generated at the slider to the input torque applied at
the crank is known as mechanical advantage. We compute this using the principle
of virtual work which states that the work done by input forces and torques must
equal the work done by output forces and torques during a virtual displacement.
For the RRRP linkage, we assume the weight of each link and the friction in each
joint are negligible compared to the applied forces and torques. In which case, the
principle of virtual work requires that the work done by the torque applied to the
input crank must equal the work done by the slider on an external load during a
virtual displacement.

A virtual displacement is a small movement of the system over which the applied
forces and torques are considered to be constant. This small movement is easily
defined in terms of the velocities of each link. The angular velocity of the input crank
θ̇ acting over a small increment of time δ t generates the virtual crank displacement
δθ = θ̇ δ t. Similarly, a virtual displacement of the slider is δ s = ṡδ t.

Let the input torque to the crank be T = Fin p~k, where Fin is a force applied
perpendicular to the link at a distance p along it. Then the virtual work of this torque
is Fin pδθ . The virtual work done by the slider as it applies a force F = Fout~ along
its direction of movement is Fδ s. Thus, we have

Foutṡδ t = Fin pθ̇ δ t. (2.110)

Because the virtual time increment δ t is not zero, we can equate coefficients to
obtain the relationship
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Fout
Fin

=
θ̇

ṡ
=

p(s− r sinθ)

r(scosθ − esinθ)
. (2.111)

This ratio defines the mechanical advantage of the slider-crank. Notice that it de-
pends on the configuration of the linkage, as well as the ratio p/r, which defines the
point of application of the input force Fin.

This formula has an interesting geometric interpretation. Let I be the intersection
of the line through the crank OA and the line y = s that locates the slider. We now
determine the distances |IA| and |IB| from the geometry of the linkage and obtain

|IA|= r− s
sinθ

and |IB|= e−
( s

sinθ

)
cosθ . (2.112)

Thus, we find that the mechanical advantage for the slider-crank can be written as

Fout
Fin

=
p|IA|
r|IB|

. (2.113)

Decreasing the distance |IB| increases the mechanical advantage. In fact, as tanθ

approaches s/e, the extreme position of the slider, the distance |IB| approaches zero,
and the mechanical advantage becomes very large.

2.8 Velocity Analysis of a 4R Chain

The velocity loop equations of the 4R chain are obtained by computing the time
derivative of the loop equations (2.55) to obtain

θ̇

{
−asinθ

acosθ

}
+(θ̇ + φ̇)

{
−hsin(θ +φ)
hcos(θ +φ)

}
= ψ̇

{
−bsinψ

bcosψ

}
. (2.114)

For a given input angular velocity θ̇ , these equations are linear in the angular ve-
locities φ̇ and ψ̇ of the coupler and output link. Notice that we must have already
determined the angles φ and ψ . Assemble these equations into the matrix equation[

−bsinψ hsin(θ +φ)
bcosψ −hcos(θ +φ)

]{
ψ̇

φ̇

}
= θ̇

{
−asinθ −hsin(θ +φ)
acosθ +hcos(θ +φ)

}
. (2.115)

Solve this equation to determine the velocity ratios

ψ̇

θ̇
=

asinφ

bsin(θ +φ −ψ)
and

φ̇

θ̇
=

asin(ψ−θ)−hsin(θ +φ −ψ)

hsin(θ +φ −ψ)
. (2.116)
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2.8.1 Output Velocity Ratio

We now examine the velocity properties of the 4R chain in terms of the angular ve-
locity vectors wO = θ̇~k and wC = ψ̇~k, where~ı,~, and~k are the unit vectors along the
coordinate axes of a three dimensional frame. The time derivative of the constraint
equation (B−A) · (B−A) = b2 yields

(Ḃ− Ȧ) · (B−A) = 0. (2.117)

Since Ḃ = wC× (B−C) and Ȧ = wO×A, this can be written as(
ψ̇~k× (B−C)− θ̇~k×A

)
· (B−A) = 0. (2.118)

Interchange the dot and cross operations and expand this equation to obtain

ψ̇~k ·B× (B−A)− θ̇~k ·A× (B−A)− ψ̇~k ·C× (B−A) = 0. (2.119)

Notice that the cross products A× (B−A) and B× (B−A) are equal, and, in fact,
any point on the line LAB: Y(t) = A+ t(B−A) yields the same result. In particular,
both A and B can be replaced by the point I = r~ı, which is the intersection of LAB
with the x-axis. Since C = g~ı, this equation takes the form

~k ·
(
ψ̇(r−g)− θ̇r

)
~ı× (B−A) = 0. (2.120)

It is now easy to see that the output velocity ratio is given by

ψ̇

θ̇
=
−r

g− r
. (2.121)

The distance r to the point I along the x-axis can be computed by finding the
parameter t that satisfies the relation ~ · (A + t(B−A)) = 0. Substitute this into
r =~ı · (A+ t(B−A)) to obtain

r =
absin(θ −φ)

bsinφ −asinθ
. (2.122)

Notice that the velocity ratio between the output and input links can be viewed as
instantaneously equivalent to the speed ratio between two gears in contact at the
instant center I that have the radii g− r and r respectively, see Figure 2.10.

2.8.2 Coupler Velocity Ratio

A similar relationship for the coupler velocity ratio is obtained by computing the
velocity of B in the fixed frame using vector operations. Combining this with the
fact that Ḃ · (B−C) = 0, we obtain a geometric representation of the velocity ratio.
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Fig. 2.10 The angular velocities of the input and output links are instantaneously equivalent to
gears in contact at the instant center I.

The coupler has the angular velocity wA = (φ̇ + θ̇)~k, so the velocity of B is given
by

Ḃ = Ȧ+wA× (B−A). (2.123)

Since Ȧ = θ̇~k×A, this equation becomes

Ḃ = θ̇~k×A+(φ̇ + θ̇)~k× (B−A) = θ̇~k×B+ φ̇~k× (B−A). (2.124)

Substitute this into the condition Ḃ · (B−C) = 0 to obtain(
θ̇~k×B+ φ̇~k× (B−A)

)
· (B−C) = 0. (2.125)

Notice that B can be replaced by any point on the line LCB: Y(t) = B+ t(B−C)

because ~k× t(B−C) · (B−C) = 0. In particular, consider the point J that is the
intersection of LCB with the line LOA that joins O and A. Let~e be the unit vector in
the direction A, so A = a~e and J = r~e. Substitute this into (2.125) and obtain(

θ̇r+ φ̇(r−a)
)
~k×~e · (B−C) = 0. (2.126)

For this equation to be zero, the coupler velocity ratio must satisfy the relation
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φ̇

θ̇
=

r
a− r

. (2.127)

Thus, the angular velocity ratio between the coupler and input link is instantaneously
equivalent to the speed ratio of two gears in contact at J with radii of a− r and a,
respectively, Figure 2.11.
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"

Fig. 2.11 The angular velocities of the input and coupler links are instantaneously equivalent to
gears in contact at the instant center J.

The value of r defining J along the line LOA is obtained by solving for t such
that~e⊥ · (B+ t(B−C)) = 0. Note that~e⊥ = (−sinθ ,cosθ)T is the unit vector per-
pendicular to~e. Then, substitute the result into the relation r =~e · (B+ t(B−A)) to
compute r.

2.8.3 Kennedy’s Theorem

We have seen that the output velocity ratio of a 4R linkage can be viewed as gen-
erated instantaneously by a pair of gears connecting the input and output links. The
points in contact along the pitch circles of the two gears, Q on the input link and P
on the output link, must have the same velocity, that is, Q̇ = Ṗ. The point in F that
coincides with these two points is the instant center I. We now show that an instant
center with this property exists for any two links moving relative to a ground frame
F .
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Consider the movement of two independent links and let their instant centers in
F be O and C. We now ask whether there are points, Q on one and P on the other,
that have both the same coordinates I = (X ,Y )T in F and the same velocity.

Let g = |C−O| be the distance between the instant centers, and let Q−O =
(r cosθ ,r sinθ)T and P−C = (g+k cosψ,k sinψ)T be the relative vectors locating
Q and P. The velocities of these points are

Q̇ = θ̇

{
−r sinθ

r cosθ

}
, Ṗ = ψ̇

{
−k sinψ

k cosψ

}
. (2.128)

If Q = P = (X ,Y )T , then Y = r sinθ = k sinψ , and to have the same velocity

Ṗ− Q̇ =

{
−ψ̇Y + θ̇Y

ψ̇(r cosθ −g)− θ̇r cosθ

}
=

{
0
0

}
. (2.129)

The first component of this equation shows that Y = 0. Set θ = ψ = 0 and let r and k
take positive and negative values so that X = r = k+g. From the second component
of (2.129) we find that r must satisfy the equation

ψ̇(r−g)− θ̇r = 0,

that is,
ψ̇

θ̇
=

r
r−g

. (2.130)

Thus, I = (r,0)T is the desired instant center. The fact that the point I must lie on
the line joining the O and C is known as Kennedy’s theorem.

2.8.4 Mechanical Advantage in a 4R Linkage

The relationship between an applied input torque and the torque generated at the
output crank of a 4R linkage is easily determined by considering the equivalent
set of gears and the principle of virtual work. From the velocity ratios determined
above, we have the virtual displacement of the output crank defined as

δψ = ψ̇δ t = θ̇
r

r−g
δ t, (2.131)

where r is the distance to the instant center I from the fixed pivot O of the drive
crank.

The virtual work of the input torque TO = TO~k is TOδθ . Similarly, the virtual
work of the output torque, TC = TC~k, is TCδψ . From the principle of virtual work
we obtain

TOδθ = TCδψ, or TOθ̇ δ t = TC
r

r−g
θ̇ δ t. (2.132)
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The virtual time increment δ t is nonzero, so we equate coefficients to obtain the
relationship

TC
TO

=
r−g

r
. (2.133)

Note that the distance r has a sign associated with its direction along the x-axis from
O. The conclusion is that the torque ratio of a linkage is the inverse of its velocity
ratio, which is exactly the torque ratio of the equivalent gear train. Notice that the
value of this torque ratio changes with the configuration of the linkage.

Let the input torque be generated by a couple, which is a pair of forces in opposite
directions but of equal magnitude FO separated by the perpendicular distance a,
so MO = aFO. Similarly, let the output torque result in a couple with magnitude
MC = bFC. Then, the ratio of output force FC to input force FO is obtained from
(2.133) as

FC
FO

=
a
b

(
r−g

r

)
. (2.134)

This ratio is called the mechanical advantage of the linkage. For a given set of
dimensions a and b the mechanical advantage is directly proportional to the velocity
ratio of the input and output links.

2.9 Analysis of Multiloop Planar Linkages

The study of mulitiloop planar linkages is covered in detail in a later chapter. Here
we summarize how to use Dixon’s determinant to solve for the configuration angles
that define the assemblies of the linkage (Wampler [148]).

2.9.1 Complex Loop Equations

Given an input angle θ0, the vector equations for each independent loop L of a planar
linkage can be written as

Fk : αk +
2L

∑
j=1

βk j cosθ j +
2L

∑
j=1

γk j sinθ j = 0, k = 1, . . . ,2L. (2.135)

Here, αk, βk j, and γk j are real quantities that depend on the dimensions of the links,
and θ j denotes the rotation angle of link j. Because the input angle θ0 is known,
we absorb it into the coefficients of αk, and these 2L equations are solved for 2L
configuration angles θ j.

Combine the loop equations (2.135) into a single complex equation by using
complex vectors x = x+ iy, where i2 =−1, rather than vectors x = (x,y). Introduce
the complex vector Θ j = eiθ j , j = 1, . . . ,2L, so the 2L loop equations become
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Ck : ck0 +
2L

∑
j=1

ck, jΘ j = 0, k = 1, . . . ,L. (2.136)

We obtain a second set of loop equations by computing the complex conjugates

C ?
k : c?k0 +

2L

∑
j=1

c?k, jΘ
−1
j = 0, k = 1, . . . ,L. (2.137)

These equations combine to provide a set of 2L complex equations for 2L complex
configuration angles Θ j that are solved using the Dixon determinant.

2.9.2 The Dixon Determinant

Suppress the joint angle Θ2L, so we have 2L complex equations in 2L−1 variables
Θ j, labeled Ck and C ?

k . These equations form the first row of the Dixon determinant.
The second row consists of the same functions but with the variable θ1 replaced by
α1. Similarly, row three has Θ1 and Θ2 replaced by α1 and α2. This continues for
the remaining rows in the determinant, so that we obtain

∆(Θ1,Θ2, . . . ,Θ2L−1)

=

∣∣∣∣∣∣∣∣∣
C1(Θ1,Θ2, . . . ,Θ2L−1) . . . C ?

L (Θ1,Θ2, . . . ,Θ2L−1)
C1(α1,Θ2, . . . ,Θ2L−1) . . . C ?

L (α1,Θ2, . . . ,Θ2L−1)
...

C1(α1,α2, . . . ,α2L−1) . . . C ?
L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣ . (2.138)

his determinant is zero when Θ1,Θ2, . . . ,Θ2L−1 satisfy the loop equations, because
the elements in the first row become zero.

Insight into the structure of the determinant ∆ is obtained by noting that the
complex equations for each loop k have the form

Ck : ck0 + ck,2Lx+
2L−1

∑
j=1

ck, jΘ j and C ?
k : c?k0 + c?k,2Lx−1 +

2L−1

∑
j=1

c?k, jΘ
−1
j , (2.139)

where x denotes the suppressed variable Θ2L. These equations maintain this form
when α j replaces Θ j. Thus, we can row reduce ∆ by subtracting the second row
from the first row, then the third from the second, the fourth from the third, and so
on to obtain
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c1,1(Θ1−α1) c∗1,1(Θ
−1
1 −α

−1
1 ) . . . c∗L,1(Θ

−1
1 −α

−1
1 )

c1,2(Θ2−α2) c∗1,2(Θ
−1
2 −α

−1
2 ) . . . c∗L,2(Θ

−1
2 −α

−1
2 )

...
...

...
c1,2L−1(Θ2L−1−α2L−1) c∗1,2L−1(Θ

−1
2L−1−α

−1
2L−1) . . . c∗L,2L−1(Θ

−1
2L−1−α

−1
2L−1)

C1(α1,α2, . . . ,α2L−1) C ?
1 (α1,α2, . . . ,α2L−1) . . . C ?

L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣∣
. (2.140)

Because Θ j−α j = −Θ jα j(Θ
−1
j −α

−1
j ), we can divide out these extraneous roots

(Θ−1
j −α

−1
j ) to define the determinant

δ =
∆(Θ1,Θ2, . . . ,Θ2L−1)

∏
2L−1
k=1 (Θ−1

k −α
−1
k )

, (2.141)

that is,

δ =

∣∣∣∣∣∣∣∣∣∣

−c1,1Θ1α1 c∗1,1 . . . c∗L,1
−c1,2Θ2α2 c∗1,2 . . . c∗L,2

...
−c1,2L−1Θ2L−1α2L−1 c∗1,2L−1 . . . c∗L,2L−1
C1(α1,α2, . . . ,α2L−1) C ?

1 (α1,α2, . . . ,α2L−1) . . . C ?
L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣∣
. (2.142)

This determinant is a polynomial of the form

δ = aT [W ]t = 0, (2.143)

where a = (a1,a2)
T contains the monomials formed from α j, t = (t1, t2)

T are
formed from monomials of Θ j, and [W ] is the 2L×2L matrix is given by

[W ] =

[
D1x+D2 AT

A s(D∗1x−1 +D∗2)

]
, (2.144)

where D1 and D2 are diagonal matrices and the elements of A obey the relations ai j
= sa?ji and s = (−1)L−1.

The vectors of monomials a = (a1,a2)
T and t = (t1, t2)

T in (2.143) are generated
as follows. Starting with a, find all combinations

(2L−1
L−1

)
of distinct variables of

degree L− 1 from the set (α1,α2, . . . ,α2L−1)
T . Assemble these into the vector a1,

and then form a2 using the complement of degree L corresponding to each monomial
in a1. The vector t is obtained in the same way.

Values Θ j that satisfy the loop equations (2.136) and (2.137) also yield δ = 0 for
arbitrary values of the auxiliary variables α j. Thus, solutions for these loop equa-
tions must also satisfy the matrix equation

[W ]t = 0. (2.145)

This equation has nonzero solutions only if det[W ] = 0. Expand this determinant to
obtain a polynomial in x =Θ2L.

The structure of [W ] yields



2.10 Summary 51

[W ]t =
[(

D1 0
A −D∗2

)
x−
(
−D2 −AT

0 D∗1

)]
t = [Mx−N]t = 0. (2.146)

Notice that the values of x that satisfy det[W ] = 0 are the roots of the characteristic
polynomial p(x) = det(Mx−N) of the generalized eigenvalue problem

Nt = xMt. (2.147)

Each value of x = Θ2L has an associated eigenvector t, which yields the values of
the remaining joint angles Θ j, j = 1,2, . . . ,2L−1.

2.9.3 Tangent Sorting

For each value of the input angle Θ0, the solution of the Dixon determinant yields
multiple roots for the configuration angles ~Θ = (Θ1, . . . ,Θ2L). Each root defines one
way that the linkage can be assembled. For example, a six-bar linkage can have as
many as six values for Θ j, or six assemblies, for each input angle. An eight-bar
linkage can have as many as 20 assemblies. Presented here is a way to sort these
roots to define these assemblies.

Assume that for the kth value of the input angle Θ0 we calculate the configuration
angles ~Θ k

i , i = 1, . . . ,m that define m assemblies of the linkage. When we increment
Θ0 and solve the loop equations, we to obtain ~Θ k+1

i , and our goal is to sort these
roots so to match those of ~Θ k

i .
Use Newton’s method to approximate the loop equations by computing the Jaco-

bian [∇C ], in order to obtain

[∇C (~Θ k
i )](~Ψ − ~Θ k

i ) = 0, (2.148)

where ~Ψ is an approximation to ~Θ k+1
i in the assembly that we seek. Solve these

equations to obtain ~Ψ , and select from the available roots ~Θ k+1
i the one that is closest

to ~Ψ , in order to match the assemblies.
The configurations traced by one assembly of a multiloop linkage is called a

circuit. The solution of (2.148) identifies a value Ψ on the tangent to the ith circuit
through ~Θ k

i . This allows rapid and exact calculation of the configuration angles for
each assembly of a multiloop planar linkage for a range of values of the input angle.

2.10 Summary

This chapter presented the position and velocity analysis of planar open chains and
the closed chain slider-crank and four-bar linkages. Conditions on the existence of
solutions to the input-output equations for the closed chains provide a classifica-
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tion scheme for these devices based on the range of movement of their cranks. The
velocity analysis of these systems lead to the introduction of instant centers and
Kennedy’s theorem, which can be used to compute the mechanical advantage of the
linkage. The position analysis of multiloop planar linkages using complex number
coordinates and the Dixon determinant elimination method were also discussed.

2.11 References

The position and velocity analysis of planar open chains follows the approach used
in robotics as found in Craig [15] and Paul [92]. The analysis of planar linkages
including the study of accelerations and dynamic forces can be found in many text-
books. See, for example, Waldron and Kinzel [144], Erdman and Sandor [30], Ma-
bie and Reinholtz [70], Mallik et al. [71], and Shigley and Uicker [114]. For fur-
ther study of the dynamics of these systems see Krishnaprasad and Yang [58] and
Sreenath et al. [125]. The strategy used to classify planar slider-crank and 4R link-
ages follows Murray and Larochelle [87]. The closed form kinematic analysis of
planar multiloop mechanism was presented by Wampler [148]. Also see Nielsen
and Roth [90], and Wampler [147].

Exercises

1. Consider the PRRP elliptic trammel formed from two PR chains connected so
that the directions of the two sliders are at right angles in the ground link. Derive
the coupler angle φ as a function of the input slider translation s and show that a
general coupler curve is an ellipse.

2. Oldham’s coupling is an RPPR linkage with the directions of the two sliders ori-
ented at a right angle to form the coupler link. Analyze this linkage to determine
the output crank angle ψ as a function of the input angle θ .

3. The Scotch yoke mechanism is an RRPP linkage with the ways of the sliders at
right angles. Analyze this linkage to determine the output slide s as a function of
the input θ .

4. Derive the algebraic equation of the coupler curve of an RRRP linkage and show
that it is a quartic curve.

5. Analyze (i) Watt’s linkage, (ii) Robert’s linkage, (iii) Chebyshev’s linkage, and
determine the coupler angle φ as a function of the input crank angle θ . Generate
the coupler curve of the point that traces an approximately straight line.

6. Derive the algebraic form of the 4R coupler curve and show that its highest de-
gree terms are (x2 + y2)3, and that those of fifth and fourth degree contain the
factors (x2 + y2)2 and x2 + y2, respectively. These features identify this curve to
as a tricircular sextic.
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7. Select a coupler point X on a 4R linkage OABC. Construct the triangle4OCY
that is similar to the coupler triangle4ABX. Show that the coupler curve traced
by X has a double point at its intersections with the circle circumscribing4OCY.

8. Show that the centrode for an RR chain becomes a circle when φ̇ = µθ̇ and
µ is constant. Because this curve lies in the fixed frame F it is called the fixed
centrode.

9. Transform the coordinates of the centrode of an RR chain to the moving frame
M by m = [T−1]I. This defines a curve known as the moving centrode. Show that
for φ̇ = µθ̇ and constant µ , the moving centrode is a circle.
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