
Chapter 1

Information Sources

Abstract An information source or source is a mathematical model for a
physical entity that produces a succession of symbols called “outputs”
in a random manner. The symbols produced may be real numbers such
as voltage measurements from a transducer, binary numbers as in com-
puter data, two dimensional intensity fields as in a sequence of images,
continuous or discontinuous waveforms, and so on. The space contain-
ing all of the possible output symbols is called the alphabet of the source
and a source is essentially an assignment of a probability measure to
events consisting of sets of sequences of symbols from the alphabet. It
is useful, however, to explicitly treat the notion of time as a transforma-
tion of sequences produced by the source. Thus in addition to the com-
mon random process model we shall also consider modeling sources by
dynamical systems as considered in ergodic theory. The material in this
chapter is a distillation of [55, 58] and is intended to establish notation.

1.1 Probability Spaces and Random Variables

A measurable space (Ω,B) is a pair consisting of a sample space Ω to-
gether with a σ -field B of subsets of Ω (also called the event space). A
σ -field or σ -algebra B is a nonempty collection of subsets of Ω with the
following properties: Ω ∈ B. (1.1)

If F ∈ B, then Fc = {ω :ω 6∈ F} ∈ B. (1.2)

If Fi ∈ B; i = 1,2, . . . , then
⋃
i
Fi ∈ B. (1.3)

From de Morgan’s “laws” of elementary set theory it follows that also
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2 1 Information Sources

∞⋂
i=1

Fi = (
∞⋃
i=1

Fci )
c ∈ B.

An event space is a collection of subsets of a sample space (called events
by virtue of belonging to the event space) such that any countable se-
quence of set theoretic operations (union, intersection, complementa-
tion) on events produces other events. Note that there are two extremes:
the largest possible σ -field of Ω is the collection of all subsets of Ω
(sometimes called the power set) and the smallest possible σ -field is
{Ω,∅}, the entire space together with the null set ∅ = Ωc (called the
trivial space).

If instead of the closure under countable unions required by (1.3), we
only require that the collection of subsets be closed under finite unions,
then we say that the collection of subsets is a field.

While the concept of a field is simpler to work with, a σ -field pos-
sesses the additional important property that it contains all of the limits
of sequences of sets in the collection. That is, if Fn, n = 1,2, · · · is
an increasing sequence of sets in a σ -field, that is, if Fn−1 ⊂ Fn and if
F =

⋃∞
n=1 Fn (in which case we write Fn ↑ F or limn→∞ Fn = F ), then also F

is contained in the σ -field. In a similar fashion we can define decreasing
sequences of sets: If Fn decreases to F in the sense that Fn+1 ⊂ Fn and
F =

⋂∞
n=1 Fn, then we write Fn ↓ F . If Fn ∈ B for all n, then F ∈ B.

A probability space (Ω,B, P) is a triple consisting of a sample spaceΩ , a σ -field B of subsets of Ω , and a probability measure P which
assigns a real number P(F) to every member F of the σ -field B so that
the following conditions are satisfied:

• Nonnegativity:
P(F) ≥ 0, all F ∈ B; (1.4)

• Normalization:
P(Ω) = 1; (1.5)

• Countable Additivity:

If Fi ∈ B, i = 1,2, · · · are disjoint, then

P(
∞⋃
i=1

Fi) =
∞∑
i=1

P(Fi). (1.6)

A set function P satisfying only (1.4) and (1.6) but not necessarily (1.5)
is called a measure and the triple (Ω,B, P) is called a measure space.
Since the probability measure is defined on a σ -field, such countable
unions of subsets of Ω in the σ -field are also events in the σ -field.

A standard result of basic probability theory is that if Gn ↓ ∅ (the
empty or null set), that is, if Gn+1 ⊂ Gn for all n and

⋂∞
n=1Gn = ∅ , then

we have
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• Continuity at ∅:
lim
n→∞

P(Gn) = 0. (1.7)

similarly it follows that we have

• Continuity from Below:

If Fn ↑ F, then lim
n→∞

P(Fn) = P(F), (1.8)

and

• Continuity from Above:

If Fn ↓ F, then lim
n→∞

P(Fn) = P(F). (1.9)

Given a measurable space (Ω,B), a collection G of members of B is
said to generate B and we write σ(G) = B if B is the smallest σ -field
that contains G; that is, if a σ -field contains all of the members of G,
then it must also contain all of the members of B. The following is a
fundamental approximation theorem of probability theory. A proof may
be found in Corollary 1.5.3 of [55] or Corollary 1.5 of [58]. The result is
most easily stated in terms of the symmetric difference ∆ defined by

F∆G ≡ (F ∩Gc)∪ (Fc ∩G).
Theorem 1.1. Given a probability space (Ω,B, P) and a generating field
F , that is, F is a field and B = σ(F), then given F ∈ B and ε > 0, there
exists an F0 ∈ F such that P(F∆F0) ≤ ε.

Let (A,BA) denote another measurable space. We will also use B(A)
as a synonym for BA. A random variable or measurable function defined
on (Ω,B) and taking values in (A,BA) is a mapping or function f : Ω→ A
with the property that

if F ∈ BA, then f−1(F) = {ω : f(ω) ∈ F} ∈ B. (1.10)

The name “random variable” is commonly associated with the special
case where A is the real line and B the Borel field, the smallest σ -field
containing all the intervals. Occasionally a more general sounding name
such as “random object” is used for a measurable function to implicitly
include random variables (A the real line), random vectors (A a Euclidean
space), and random processes (A a sequence or waveform space). We will
use the terms “random variable” in the more general sense. UsuallyAwill
either be a metric space or a product of metric spaces, in which case the
σ -field will be a Borel field BA or B(A) of subsets of A. If A is a product
of metric spaces, then BA will be taken as the corresponding product
σ -field, that is, the σ -field generated by the rectangles.
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A random variable is just a function or mapping with the property that
inverse images of “output events” determined by the random variable are
events in the original measurable space. This simple property ensures
that the output of the random variable will inherit its own probability
measure. For example, with the probability measure Pf defined by

Pf (B) = P(f−1(B)) = P(ω : f(ω) ∈ B); B ∈ BA,

(A,BA, Pf ) becomes a probability space since measurability of f and el-
ementary set theory ensure that Pf is indeed a probability measure. The
induced probability measure Pf is called the distribution of the random
variable f . The measurable space (A,BA) or, simply, the sample space
A, is called the alphabet of the random variable f . We shall occasion-
ally also use the notation Pf−1 which is a mnemonic for the relation
Pf−1(F) = P(f−1(F)) and which is less awkward when f itself is a func-
tion with a complicated name, e.g., ΠI→M.

It is often convenient to abbreviate an English description the of a
probability of an event to the pseudo mathematical form Pr(f ∈ F),
which can be considered shorthand for Pf (F) = P(f−1(F)) and can be
read as “the probability that f is in F .”

If the alphabet A of a random variable f is not clear from context, then
we shall refer to f as an A-valued random variable. . If f is a measurable
function from (Ω,B) to (A,BA), we will say that f is B/BA-measurable
if the σ -fields might not be clear from context.

Given a probability space (Ω,B, P), a collection of subsets G is a sub-
σ -field if it is a σ -field and all its members are in B. A random variable
f : Ω → A is said to be measurable with respect to a sub-σ -field G if
f−1(H) ∈ G for all H ∈ BA.

Given a probability space (Ω,B, P) and a sub-σ -field G, for any event
H ∈ B the conditional probability m(H|G) is defined as any function,
say g, which satisfies the two properties

g is measurable with respect to G (1.11)∫
G
ghdP =m(G

⋂
H); all G ∈ G. (1.12)

An important special case of conditional probability occurs when study-
ing the distributions of random variables defined on an underlying prob-
ability space. Suppose that X : Ω → AX and Y : Ω → AY are two ran-
dom variables defined on (Ω,B, P) with alphabets AX and AY and σ -
fields BAX and BAY , respectively. Let PXY denote the induced distribu-
tion on (AX × AY ,BAX × BAY ), that is, PXY (F × G) = P(X ∈ F, Y ∈ G)
= P(X−1(F)

⋂
Y−1(G)). Let σ(Y) denote the sub-σ -field of B generated

by Y , that is, Y−1(BAY ). Since the conditional probability P(F|σ(Y)) is
real-valued and measurable with respect to σ(Y), it can be written as
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g(Y(ω)), ω ∈ Ω, for some function g(y). (See, for example, Lemma
5.2.1 of [55] or Lemma 6.1 of [58].) Define P(F|y) = g(y). For a fixed
F ∈ BAX define the conditional distribution of F given Y = y by

PX|Y (F|y) = P(X−1(F)|y); y ∈ BAY .

From the properties of conditional probability,

PXY (F ×G) =
∫
G
PX|Y (F|y)dPY (y);F ∈ BAX ,G ∈ BAY . (1.13)

It is tempting to think that for a fixed y , the set function defined by
PX|Y (F|y); F ∈ BAX is actually a probability measure. This is not the case
in general. When it does hold for a conditional probability measure, the
conditional probability measure is said to be regular. This text will focus
on standard alphabets for which regular conditional probabilities always
exist.

1.2 Random Processes and Dynamical Systems

We now consider two mathematical models for a source: A random pro-
cess and a dynamical system. The first is the familiar one in elementary
courses, a source is just a random process or sequence of random vari-
ables. The second model is possibly less familiar — a random process
can also be constructed from an abstract dynamical system consisting
of a probability space together with a transformation on the space. The
two models are connected by considering a time shift to be a transfor-
mation.

A discrete time random process or, simply, a random process is a se-
quence of random variables {Xn}n∈T or {Xn;n ∈ T}, where T is an in-
dex set, defined on a common probability space (Ω,B, P). We define a
source as a random process, although we could also use the alternative
definition of a dynamical system to be introduced shortly. We usually
assume that all of the random variables share a common alphabet, say
A. The two most common index sets of interest are the set of all inte-
gers Z = {· · · ,−2,−1,0,1,2, · · · }, in which case the random process
is referred to as a two-sided random process, and the set of all nonneg-
ative integers Z+ = {0,1,2, · · · }, in which case the random process is
said to be one-sided. One-sided random processes will often prove to be
far more difficult in theory, but they provide better models for physical
random processes that must be “turned on” at some time or which have
transient behavior.

Observe that since the alphabet A is general, we could also model
continuous time random processes in the above fashion by letting A
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consist of a family of waveforms defined on an interval, e.g., the random
variable Xn could in fact be a continuous time waveform X(t) for t ∈
[nT , (n+ 1)T), where T is some fixed positive real number.

The above definition does not specify any structural properties of the
index set T . In particular, it does not exclude the possibility that T be
a finite set, in which case “random vector” would be a better name than
“random process.” In fact, the two cases of T = Z and T = Z+ will be
the only important examples for our purposes. Nonetheless, the general
notation of T will be retained in order to avoid having to state separate
results for these two cases.

An abstract dynamical system consists of a probability space (Ω,B, P)
together with a measurable transformation T : Ω → Ω of Ω into itself.
Measurability means that if F ∈ B, then also T−1F = {ω : Tω ∈ F}∈ B.
The quadruple (Ω,B,P ,T ) is called a dynamical system in ergodic the-
ory. The interested reader can find excellent introductions to classical
ergodic theory and dynamical system theory in the books of Halmos
[73] and Sinai [170]. More complete treatments may be found in [16],
[164], [149], [30], [191], [140], [46]. The term “dynamical systems” comes
from the focus of the theory on the long term “dynamics” or “dynam-
ical behavior” of repeated applications of the transformation T on the
underlying measure space.

An alternative to modeling a random process as a sequence or family
of random variables defined on a common probability space is to con-
sider a single random variable together with a transformation defined on
the underlying probability space. The outputs of the random process will
then be values of the random variable taken on transformed points in the
original space. The transformation will usually be related to shifting in
time and hence this viewpoint will focus on the action of time itself. Sup-
pose now that T is a measurable mapping of points of the sample spaceΩ into itself. It is easy to see that the cascade or composition of measur-
able functions is also measurable. Hence the transformation Tn defined
as T 2ω = T(Tω) and so on (Tnω = T(Tn−1ω)) is a measurable function
for all positive integers n. If f is an A-valued random variable defined
on (Ω, B), then the functions fTn : Ω→ A defined by fTn(ω) = f(Tnω)
for ω ∈ Ω will also be random variables for all n in Z+. Thus a dynam-
ical system together with a random variable or measurable function f
defines a one-sided random process {Xn}n∈Z+ by Xn(ω) = f(Tnω). If it
should be true that T is invertible, that is, T is one-to-one and its inverse
T−1 is measurable, then one can define a two-sided random process by
Xn(ω) = f(Tnω), all n in Z.

The most common dynamical system for modeling random processes
is that consisting of a sequence space Ω containing all one- or two-sided
A-valued sequences together with the shift transformation T , that is,
the transformation that maps a sequence {xn} into the sequence {xn+1}
wherein each coordinate has been shifted to the left by one time unit.
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Thus, for example, let Ω = AZ+ = {all x = (x0, x1, · · · ) with xi ∈ A for
all i} and define T : Ω → Ω by T(x0, x1, x2, · · · ) = (x1, x2, x3, · · · ). T
is called the shift or left shift transformation on the one-sided sequence
space. The shift for two-sided spaces is defined similarly. The sequence-
space model of a random process is sometimes referred to as the Kol-
mogorov representation of a process.

The different models provide equivalent models for a given process
— one emphasizing the sequence of outputs and the other emphasis-
ing the action of a transformation on the underlying space in producing
these outputs. In order to demonstrate in what sense the models are
equivalent for given random processes, we next turn to the notion of the
distribution of a random process.

1.3 Distributions

While in principle all probabilistic quantities associated with a random
process can be determined from the underlying probability space, it is
often more convenient to deal with the induced probability measures or
distributions on the space of possible outputs of the random process. In
particular, this allows us to compare different random processes with-
out regard to the underlying probability spaces and thereby permits us
to reasonably equate two random processes if their outputs have the
same probabilistic structure, even if the underlying probability spaces
are quite different.

We have already seen that each random variable Xn of the random
process {Xn} inherits a distribution because it is measurable. To de-
scribe a process, however, we need more than just probability measures
on output values of separate individual random variables; we require
probability measures on collections of random variables, that is, on se-
quences of outputs. In order to place probability measures on sequences
of outputs of a random process, we first must construct the appropriate
measurable spaces. A convenient technique for accomplishing this is to
consider product spaces, spaces for sequences formed by concatenating
spaces for individual outputs.

Let T denote any finite or infinite set of integers. In particular, T =
Z(n) = {0,1,2, · · · , n − 1}, T = Z, or T = Z+. Define xT = {xi}i∈T. For
example, xZ = (· · · , x−1, x0, x1, · · · ) is a two-sided infinite sequence.
When T = Z(n) we abbreviate xZ(n) to simply xn . Given alphabets
Ai, i ∈ T , define the cartesian product space

×
i∈T
Ai = {all xT : xi,∈ Ai all i in T}.
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In most cases all of the Ai will be replicas of a single alphabet A and
the above product will be denoted simply by AT . Thus, for example,
A{m,m+1,··· ,n} is the space of all possible outputs of the process from
time m to time n; AZ is the sequence space of all possible outputs of a
two-sided process. We shall abbreviate the notation for the space AZ(n),
the space of all n dimensional vectors with coordinates in A, by An .

To obtain useful σ -fields of the above product spaces, we introduce
the idea of a rectangle in a product space. A rectangle in AT taking values
in the coordinate σ -fields Bi, i ∈ J, is defined as any set of the form

B = {xT ∈ AT : xi ∈ Bi; all i in J}, (1.14)

where J is a finite subset of the index set T and Bi ∈ Bi for all i ∈ J.
(Hence rectangles are sometimes referred to as finite dimensional rect-
angles.) A rectangle as in (1.14) can be written as a finite intersection of
one-dimensional rectangles as

B =
⋂
i∈J
{xT ∈ AT : xi ∈ Bi} =

⋂
i∈J
Xi−1(Bi) (1.15)

where here we consider Xi as the coordinate functions Xi : AT → A
defined by Xi(xT) = xi.

As rectangles in AT are clearly fundamental events, they should be
members of any useful σ -field of subsets of AT. Define the product σ -
field BAT as the smallest σ -field containing all of the rectangles, that is,
the collection of sets that contains the clearly important class of rect-
angles and the minimum amount of other stuff required to make the
collection a σ -field. To be more precise, given an index set T of integers,
let RECT(Bi, i ∈ T) denote the set of all rectangles in AT taking coordi-
nate values in sets in Bi, i ∈ T . We then define the product σ -field of AT

by
BAT = σ(RECT(Bi, i ∈ T)). (1.16)

Consider an index set T and an A-valued random process {Xn}n∈T
defined on an underlying probability space (Ω,B, P). Given any index
set J ⊂ T , measurability of the individual random variables Xn im-
plies that of the random vectors XJ = {Xn;n ∈ J}. Thus the measur-
able space (AJ,BAJ) inherits a probability measure from the underlying
space through the random variables XJ. Thus in particular the measur-
able space (AT,BAT) inherits a probability measure from the underly-
ing probability space and thereby determines a new probability space
(AT,BAT, PXT), where the induced probability measure is defined by

PXT(F) = P((XT)−1(F)) = P(ω : XT(ω) ∈ F); F ∈ BAT. (1.17)
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Such probability measures induced on the outputs of random variables
are referred to as distributions for the random variables, exactly as in the
simpler case first treated. When T = {m,m + 1, · · · ,m + n − 1}, e.g.,
when we are treating Xnm = (Xn, · · · , Xm+n−1) taking values in An, the
distribution is referred to as an n-dimensional or nth order distribution
and it describes the behavior of an n-dimensional random variable. If T
is the entire process index set, e.g., if T = Z for a two-sided process or
T = Z+ for a one-sided process, then the induced probability measure is
defined to be the distribution of the process. Thus, for example, a proba-
bility space (Ω,B, P) together with a doubly infinite sequence of random
variables {Xn}n∈Z induces a new probability space (AZ,BAZ, PXZ) and
PXZ is the distribution of the process. For simplicity, let us now denote
the process distribution simply bym. We shall call the probability space
(AT,BAT,m) induced in this way by a random process {Xn}n∈Z the out-
put space or sequence space of the random process.

Since the sequence space (AT,BAT,m) of a random process {Xn}n∈Z
is a probability space, we can define random variables and hence also
random processes on this space. One simple and useful such definition
is that of a sampling or coordinate or projection function defined as
follows: Given a product space AT, define the sampling functions Πn :
AT → A by Πn(xT) = xn,xT ∈ AT; n ∈ T. (1.18)

The sampling function is named Π since it is also a projection. Observe
that the distribution of the random process {Πn}n∈T defined on the
probability space (AT,BAT,m) is exactly the same as the distribution of
the random process {Xn}n∈T defined on the probability space (Ω,B, P).
In fact, so far they are the same process since the {Πn} simply read off
the values of the {Xn}.

What happens, however, if we no longer build the Πn on the Xn, that
is, we no longer first select ω from Ω according to P , then form the se-
quence xT = XT(ω) = {Xn(ω)}n∈T, and then define Πn(xT) = Xn(ω)?
Instead we directly choose an x in AT using the probability measure m
and then view the sequence of coordinate values. In other words, we are
considering two completely separate experiments, one described by the
probability space (Ω,B, P) and the random variables {Xn} and the other
described by the probability space (AT,BAT,m) and the random vari-
ables {Πn}. In these two separate experiments, the actual sequences se-
lected may be completely different. Yet intuitively the processes should
be the “same” in the sense that their statistical structures are identical,
that is, they have the same distribution. We make this intuition formal
by defining two processes to be equivalent if their process distributions
are identical, that is, if the probability measures on the output sequence
spaces are the same, regardless of the functional form of the random
variables of the underlying probability spaces. In the same way, we con-
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sider two random variables to be equivalent if their distributions are
identical.

We have described above two equivalent processes or two equiva-
lent models for the same random process, one defined as a sequence
of random variables on a perhaps very complicated underlying proba-
bility space, the other defined as a probability measure directly on the
measurable space of possible output sequences. The second model will
be referred to as a directly given random process or a the Kolmogorov
model for the random process.

Which model is “better” depends on the application. For example, a
directly given model for a random process may focus on the random
process itself and not its origin and hence may be simpler to deal with.
If the random process is then coded or measurements are taken on the
random process, then it may be better to model the encoded random
process in terms of random variables defined on the original random
process and not as a directly given random process. This model will
then focus on the input process and the coding operation. We shall let
convenience determine the most appropriate model.

We can now describe yet another model for the above random process,
that is, another means of describing a random process with the same dis-
tribution. This time the model is in terms of a dynamical system. Given
the probability space (AT,BAT,m), define the (left) shift transformation
T : AT → AT by

T(xT) = T({xn}n∈T) = yT = {yn}n∈T,

where
yn = xn+1, n ∈ T.

Thus the nth coordinate of yT is simply the (n+ 1)st coordinate of xT.
(We assume that T is closed under addition and hence if n and 1 are in
T, then so is (n + 1).) If the alphabet of such a shift is not clear from
context, we will occasionally denote the shift by TA or TAT . The shift can
easily be shown to be measurable.

Consider next the dynamical system (AT,BAT, P , T) and the random
process formed by combining the dynamical system with the zero time
sampling function Π0 (we assume that 0 is a member of T ). If we define
Yn(x) = Π0(Tnx) for x = xT ∈ AT, or, in abbreviated form, Yn = Π0Tn,
then the random process {Yn}n∈T is equivalent to the processes de-
veloped above. Thus we have developed three different, but equivalent,
means of producing the same random process. Each will be seen to have
its uses.

The above development shows that a dynamical system is a more fun-
damental entity than a random process since we can always construct an
equivalent model for a random process in terms of a dynamical system
— use the directly given representation, shift transformation, and zero
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time sampling function. Two important properties of dynamical systems
or random processes can be defined at this point, the implications will
be developed throughout the book. A dynamical system (AT,BAT, P , T)
is said to be stationary (with respect to T ) if the distribution P is invari-
ant with respect to P , that is,

P(T−1F) = P(F), all F ∈ BAT. (1.19)

In other words, probabilities of process events are unchanged by shift-
ing. The dynamical system is said to be ergodic if

If T−1F = F, then P(F) = 0 or 1, (1.20)

that is, all invariant events are trivial. Note that neither definition implies
or excludes the other.

The shift transformation on a sequence space introduced above is the
most important transformation that we shall encounter. It is not, how-
ever, the only important transformation. When dealing with transforma-
tions we will usually use the notation T to reflect the fact that it is often
related to the action of a simple left shift of a sequence, yet it should
be kept in mind that occasionally other operators will be considered and
the theory to be developed will remain valid, even if T is not required to
be a simple time shift. For example, we will also consider block shifts.

Most texts on ergodic theory deal with the case of an invertible trans-
formation, that is, where T is a one-to-one transformation and the in-
verse mapping T−1 is measurable. This is the case for the shift on AZ,
the two-sided shift. It is not the case, however, for the one-sided shift
defined on AZ+ and hence we will avoid use of this assumption. We will,
however, often point out in the discussion what simplifications or special
properties arise for invertible transformations.

Since random processes are considered equivalent if their distribu-
tions are the same, we shall adopt the notation [A,m,X] for a random
process {Xn;n ∈ T} with alphabet A and process distribution m, the
index set T usually being clear from context. We will occasionally abbre-
viate this to the more common notation [A,m], but it is often convenient
to note the name of the output random variables as there may be several,
e.g., a random process may have an input X and output Y . By “the asso-
ciated probability space” of a random process [A,m,X] we shall mean
the sequence probability space (AT,BAT,m). It will often be convenient
to consider the random process as a directly given random process, that
is, to view Xn as the coordinate functions Πn on the sequence space AT

rather than as being defined on some other abstract space. This will not
always be the case, however, as often processes will be formed by coding
or communicating other random processes. Context should render such
bookkeeping details clear.
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1.4 Standard Alphabets

A measurable space (A,BA) is a standard space if there exists a sequence
of finite fields Fn; n = 1,2, · · · with the following properties:

(1)Fn ⊂ Fn+1 (the fields are increasing).
(2)BA is the smallest σ -field containing all of the Fn (the Fn generate
BA or BA = σ(

⋃∞
n=1Fn)).

(3)An event Gn ∈ Fn is called an atom of the field if it is nonempty and
and its only subsets which are also field members are itself and the
empty set. If Gn ∈ Fn; n = 1,2, · · · are atoms and Gn+1 ⊂ Gn for all
n, then

∞⋂
n=1

Gn 6= ∅.

Standard spaces are important for several reasons: First, they are a gen-
eral class of spaces for which two of the key results of probability hold:
(1) the Kolmogorov extension theorem showing that a random process
is completely described by its finite order distributions, and (2) the ex-
istence of regular conditional probability measures. Thus, in particular,
the conditional probability measure PX|Y (F|y) of (1.13) is regular if the
alphabets AX and AY are standard and hence for each fixed y ∈ AY the
set function PX|Y (F|y); F ∈ BAX is a probability measure. In this case we
can interpret PX|Y (F|y) as P(X ∈ F|Y = y). Second, the ergodic decom-
position theorem of ergodic theory holds for such spaces. The ergodic
decomposition implies that any stationary process is equivalent to a mix-
ture of stationary and ergodic processes; that is, a stationary nonergodic
source can be viewed as a random selection of one of a family of sta-
tionary and ergodic sources. Third, the class is sufficiently general to in-
clude virtually all examples arising in applications, e.g., discrete spaces,
the real line, Euclidean vector spaces, Polish spaces (complete separable
metric spaces), etc. The reader is referred to [55] or [58] and the refer-
ences cited therein for a detailed development of these properties and
examples of standard spaces.

Standard spaces are not the most general space for which the Kol-
mogorov extension theorem, the existence of conditional probability,
and the ergodic decomposition theorem all hold. These results also hold
for perfect spaces which include standard spaces as a special case. (See,
e.g., [161],[174],[155], [114].) We limit discussion to standard spaces,
however, as they are easier to characterize and work with and they are
sufficiently general to handle most cases encountered in applications. Al-
though standard spaces are not the most general for which the required
probability theory results hold, they are the most general for which all
finitely additive normalized measures extend to countably additive prob-
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ability measures, a property which greatly eases the proof of many of the
desired results.

Throughout this book we shall assume that the alphabet A of the in-
formation source is a standard space.

1.5 Expectation

Let (Ω,B,m) be a probability space, e.g., the probability space of a di-
rectly given random process with alphabet A, (AT, BAT,m). A real-valued
random variable f : Ω → R will also be called a measurement since it
is often formed by taking a mapping or function of some other set of
more general random variables, e.g., the outputs of some random pro-
cess which might not have real-valued outputs. Measurements made on
such processes, however, will always be assumed to be real.

Suppose next we have a measurement f whose range space or alpha-
bet f(Ω) ⊂ R of possible values is finite. Then f is called a discrete
random variable or discrete measurement or digital measurement or, in
the common mathematical terminology, a simple function.

Given a discrete measurement f , suppose that its range space is
f(Ω) = {bi, i = 1, · · · , N}, where the bi are distinct. Define the sets
Fi = f−1(bi) = {x : f(x) = bi}, i = 1, · · · , N . Since f is measurable,
the Fi are all members of B. Since the bi are distinct, the Fi are disjoint.
Since every input point in Ω must map into some bi, the union of the
Fi equals Ω. Thus the collection {Fi; i = 1,2, · · · , N} forms a partition
of Ω. We have therefore shown that any discrete measurement f can be
expressed in the form

f(x) =
M∑
i=1

bi1Fi(x), (1.21)

where bi ∈ R, the Fi ∈ B form a partition of Ω, and 1Fi is the indicator
function of Fi, i = 1, · · · ,M . Every simple function has a unique repre-
sentation in this form with distinct bi and {Fi} a partition.

The expectation or ensemble average or probabilistic average or mean
of a discrete measurement f : Ω → R as in (1.21) with respect to a
probability measure m is defined by

Emf =
M∑
i=0

bim(Fi). (1.22)

An immediate consequence of the definition of expectation is the sim-
ple but useful fact that for any event F in the original probability space,

Em1F =m(F),
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that is, probabilities can be found from expectations of indicator func-
tions.

Again let (Ω,B,m) be a probability space and f : Ω → R a measure-
ment, that is, a real-valued random variable or measurable real-valued
function. Define the sequence of quantizers qn : R→ R, n = 1,2, · · · , as
follows:

qn(r) =


n n ≤ r
(k− 1)2−n (k− 1)2−n ≤ r < k2−n, k = 1,2, · · · , n2n

−(k− 1)2−n −k2−n ≤ r < −(k− 1)2−n; k = 1,2, · · · , n2n

−n r < −n.

We now define expectation for general measurements in two steps. If
f ≥ 0, then define

Emf = lim
n→∞

Em(qn(f)). (1.23)

Since the qn are discrete measurements on f , the qn(f) are discrete mea-
surements on Ω (qn(f)(x) = qn(f(x)) is a simple function) and hence
the individual expectations are well defined. Since the qn(f) are nonde-
creasing, so are the Em(qn(f)) and this sequence must either converge
to a finite limit or grow without bound, in which case we say it converges
to ∞. In both cases the expectation Emf is well defined, although it may
be infinite.

If f is an arbitrary real random variable, define its positive and neg-
ative parts f+(x) = max(f (x),0) and f−(x) = −min(f (x),0) so that
f(x) = f+(x)− f−(x) and set

Emf = Emf+ − Emf− (1.24)

provided this does not have the form +∞−∞, in which case the expec-
tation does not exist. It can be shown that the expectation can also be
evaluated for nonnegative measurements by the formula

Emf = sup
discrete g: g≤f

Emg.

The expectation is also called an integral and is denoted by any of the
following:

Emf =
∫
fdm =

∫
f(x)dm(x) =

∫
f(x)m(dx).

The subscript m denoting the measure with respect to which the expec-
tation is taken will occasionally be omitted if it is clear from context.

A measurement f is said to be integrable orm-integrable if Emf exists
and is finite. A function is integrable if and only if its absolute value is
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integrable. Define L1(m) to be the space of all m-integrable functions.
Given any m-integrable f and an event B, define∫

B
fdm =

∫
f(x)1B(x)dm(x).

Two random variables f and g are said to be equalm-almost-everywhere
or equal m-a.e. or equal with m-probability one if m(f = g) = m({x :
f(x) = g(x)}) = 1. The m- is dropped if it is clear from context.

Given a probability space (Ω,B,m), suppose that G is a sub-σ -field
of B, that is, it is a σ -field of subsets of Ω and all those subsets are
in B (G ⊂ B). Let f : Ω → R be an integrable measurement. Then the
conditional expectation E(f |G) is described as any function, say h(ω),
that satisfies the following two properties:

h(ω) is measurable with respect to G (1.25)

∫
G
hdm =

∫
G
f dm; all G ∈ G. (1.26)

If a regular conditional probability distribution given G exists, e.g., if
the space is standard, then one has a constructive definition of condi-
tional expectation: E(f |G)(ω) is simply the expectation of f with re-
spect to the conditional probability measure m(.|G)(ω). Applying this
to the example of two random variables X and Y with standard alpha-
bets described in Section 1.2 we have from (1.26) that for integrable
f : AX ×AY → R

E(f) =
∫
f(x,y)dPXY (x,y) =

∫
(
∫
f(x,y)dPX|Y (x|y))dPY (y). (1.27)

In particular, for fixed y , f(x,y) is an integrable (and measurable) func-
tion of x.

Equation (1.27) provides a generalization of (1.13) from rectangles to
arbitrary events. For an arbitrary F ∈ BAX×AY we have that

PXY (F) =
∫ (∫

1F(x,y)dPX|Y (x|y)
)
dPY (y) =

∫
PX|Y (Fy |y)dPY (y),

(1.28)
where Fy = {x : (x,y) ∈ F} is called the section of F at y . If F is measur-
able, then so is Fy for all y . Alternatively, since 1F(x,y) is measurable
with respect to x for each fixed y , Fy ∈ BAX and the inner integral is
just ∫

x:(x,y)∈F
dPX|Y (x|y) = PX|Y (Fy |y).
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1.6 Asymptotic Mean Stationarity

Recall that a dynamical system (or the associated source) (Ω,B, P , T) is
said to be stationary if P(T−1G) = P(G) for all G ∈ B. It is said to be
asymptotically mean stationary or, simply, AMS if the limit

P(G) = lim
n→∞

1
n

n−1∑
k=0

P(T−kG) (1.29)

exists for all G ∈ B. The following theorems summarize several impor-
tant properties of AMS sources. Details may be found in Chapter 6 of
[55] or Chapter 7 of [58].

Theorem 1.2. If a dynamical system (Ω,B, P , T) is AMS, then P defined in
(1.29) is a probability measure and (Ω,B, P , T) is stationary. The distribu-
tion P is called the stationary mean of P . If an event G is invariant in the
sense that T−1G = G, then

P(G) = P(G).

If a random variable g is invariant in the sense that g(Tx) = g(x) with
P probability 1, then

EPg = EPg.
The stationary mean P asymptotically dominates P in the sense that if
P(G) = 0, then

lim sup
n→∞

P(T−nG) = 0.

Theorem 1.3. Given an AMS source {Xn} let σ(Xn,Xn+1, · · · ) denote the
σ -field generated by the random variables Xn, · · · , that is, the smallest
σ -field with respect to which all these random variables are measurable.
Define the tail σ -field F∞ by

F∞ =
∞⋂
n=0

σ(Xn, · · · ).

If G ∈ F∞ and P(G) = 0, then also P(G) = 0.

The tail σ -field can be thought of as events that are determinable by
looking only at samples of the sequence in the arbitrarily distant fu-
ture. The theorem states that the stationary mean dominates the original
measure on such tail events in the sense that zero probability under the
stationary mean implies zero probability under the original source.
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1.7 Ergodic Properties

Two of the basic results of ergodic theory that will be called upon exten-
sively are the pointwise or almost-everywhere ergodic theorem and the
ergodic decomposition theorem We quote these results along with some
relevant notation for reference. Detailed developments may be found in
Chapters 6–8 of [55] or Chapters 7–10 of [58]. The ergodic theorem states
that AMS dynamical systems (and hence also sources) have convergent
sample averages, and it characterizes the limits.

Theorem 1.4. If a dynamical system (Ω,B,m,T) is AMS with stationary
mean m and if f ∈ L1(m), then with probability one under m and m

lim
n→∞

1
n

n−1∑
i=0

fT i = Em(f |I),

where I is the sub-σ -field of invariant events, that is, events G for which
T−1G = G.

The basic idea of the ergodic decomposition is that any stationary
source which is not ergodic can be represented as a mixture of stationary
ergodic components or subsources.

Theorem 1.5. Ergodic Decomposition Given the standard sequence space
(Ω,B) with shift T as previously, there exists a family of stationary er-
godic measures {px ; x ∈ Ω}, called the ergodic decomposition, with the
following properties:

(a)pTx = px .
(b)For any stationary measure m,

m(G) =
∫
px(G)dm(x); all G ∈ B.

(c) For any g ∈ L1(m) ∫
gdm =

∫ (∫
gdpx

)
dm(x).

It is important to note that the same collection of stationary ergodic com-
ponents works for any stationary measure m. This is the strong form of
the ergodic decomposition.

The final result of this section is a variation on the ergodic decompo-
sition. To describe the result, we need to digress briefly to introduce a
metric on spaces of probability measures. A thorough development can
be found in Chapter 8 of [55] or Chapter 9 of [58]. We have a standard se-
quence measurable space (Ω,B) and hence we can generate the σ -field B
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by a countable field F = {Fn; n = 1,2, · · · }. Given such a countable gen-
erating field, a distributional distance between two probability measures
p and m on (Ω,B) is defined by

d(p,m) =
∞∑
n=1

2−n|p(Fn)−m(Fn)|.

Any choice of a countable generating field yields a distributional dis-
tance. Such a distance or metric yields a measurable space of probability
measures as follows: Let Λ denote the space of all probability measures
on the original measurable space (Ω,B). Let B(Λ) denote the σ -field of
subsets of Λ generated by all open spheres using the distributional dis-
tance, that is, all sets of the form {p : d(p,m) ≤ ε} for some m ∈ Λ
and some ε > 0. We can now consider properties of functions that carry
sequences in our original space into probability measures. The following
is Theorem 8.5.1 of [55] and Theorem 10.1 of [58].

Theorem 1.6. A Variation on the Ergodic Decomposition Fix a standard
measurable space (Ω,B) and a transformation T : Ω → Ω. Then there
are a standard measurable space (Λ,L), a family of stationary ergodic
measures {mλ;λ ∈ Λ} on (Ω,B), and a measurable mapping ψ : Ω → Λ
such that

(a)ψ is invariant (ψ(Tx) = ψ(x) all x);
(b)if m is a stationary measure on (Ω,B) and Pψ is the induced distribu-

tion; that is, Pψ(G) =m(ψ−1(G)) for G ∈ Λ (which is well defined from
(a)), then

m(F) =
∫
dm(x)mψ(x)(F) =

∫
dPψ(λ)mλ(F), all F ∈ B,

and if f ∈ L1(m), then so is
∫
fdmλ Pψ-a.e. and

Emf =
∫
dm(x)Emψ(x)f =

∫
dPψ(λ)Emλf .

Finally, for any event F , mψ(F) = m(F|ψ), that is, given the ergodic
decomposition and a stationary measure m , the ergodic component λ
is a version of the conditional probability under m given ψ = λ.

The following corollary to the ergodic decomposition is Lemma 8.6.2
of [55] and Lemma 10.4 of [58]. It states that the conditional probability
of a future event given the entire past is unchanged by knowing the
ergodic component in effect. This is because the infinite past determines
the ergodic component in effect.

Corollary 1.1. Suppose that {Xn} is a two-sided stationary process with
distribution m and that {mλ;λ ∈ Λ} is the ergodic decomposition and ψ
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the ergodic component function. Then the mapping ψ is measurable with
respect to σ(X−1, X−2, · · · ) and

m((X0, X1, · · · ) ∈ F|X−1, X−2, · · · ) =
mψ((X0, X1, · · · ) ∈ F|X−1, X−2, · · · ); m− a.e.
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