Chapter 2
LOCAL INSTANT FORMULATION

The singular characteristic of two-phase or of two immiscible mixtures is
the presence of one or several interfaces separating the phases or
components. Examples of such flow systems can be found in a large number
of engineering systems as well as in a wide variety of natural phenomena.
The understanding of the flow and heat transfer processes of two-phase
systems has become increasingly important in nuclear, mechanical and
chemical engineering, as well as in environmental and medical science.

In analyzing two-phase flow, it is evident that we first follow the
standard method of continuum mechanics. Thus, a two-phase flow is
considered as a field that is subdivided into single-phase regions with
moving boundaries between phases. The standard differential balance
equations hold for each subregion with appropriate jump and boundary
conditions to match the solutions of these differential equations at the
interfaces. Hence, in theory, it is possible to formulate a two-phase flow
problem in terms of the local instant variable, namely, F' = F'(x,t). This
formulation is called a local instant formulation in order to distinguish it
from formulations based on various methods of averaging.

Such a formulation would result in a multiboundary problem with the
positions of the interface being unknown due to the coupling of the fields
and the boundary conditions. Indeed, mathematical difficulties encountered
by using this local instant formulation can be considerable and, in many
cases, they may be insurmountable. However, there are two fundamental
importances in the local instant formulation. The first importance is the
direct application to study the separated flows such as film, stratified,
annular and jet flow, see Table 1-1. The formulation can be used there to
study pressure drops, heat transfer, phase changes, the dynamic and stability
of an interface, and the critical heat flux. In addition to the above
applications, important examples of when this formulation can be used
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include: the problems of single or several bubble dynamics, the growth or
collapse of a single bubble or a droplet, and ice formation and melting.

The second importance of the local instant formulation is as a
fundamental base of the macroscopic two-phase flow models using various
averaging. When each subregion bounded by interfaces can be considered
as a continuum, the local instant formulation is mathematically rigorous.
Consequently, two-phase flow models should be derived from this
formulation by proper averaging methods. In the following, the general
formulation of two-phase flow systems based on the local instant variables is
presented and discussed. It should be noted here that the balance equations
for a single-phase one component flow were firmly established for some
time (Truesdell and Toupin, 1960; Bird et al, 1960). However, the axiomatic
construction of the general constitutive laws including the equations of state
was put into mathematical rigor by specialists (Coleman, 1964; Bowen,
1973; Truesdell, 1969). A similar approach was also used for a single-phase
diffusive mixture by Muller (1968).

Before going into the detailed derivation and discussion of the local
instant formulation, we review the method of mathematical physics in
connection with the continuum mechanics. The next diagram shows the
basic procedures used to obtain a mathematical model for a physical system.

Physical System Mathematical System Model
Physical Concepts Mathematical Concepts Variables
Physical Laws General Axioms Field Equations
Particular Class of Constitutive Axioms Constitutive Equations
Materials (Determinism)

f ]

| Interfacial Conditions [

As it can be seen from the diagram, a physical system is first replaced by a
mathematical system by introducing mathematical concepts, general axioms
and constitutive axioms. In the continuum mechanics they correspond to
variables, field equations and constitutive equations, whereas at the singular
surface the mathematical system requires the interfacial conditions. The
latter can be applied not only at the interface between two phases, but also at
the outer boundaries which limit the system. It is clear from the diagram that
the continuum formulation consists of three essential parts, namely: the
derivations of field equations, constitutive equations, and interfacial
conditions.

Now let us examine the basic procedure used to solve a particular
problem. The following diagram summarizes the standard method. Using
the continuum formulation, the physical problem is represented by idealized
boundary geometries, boundary conditions, initial conditions, field and
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constitutive equations. It is evident that in two-phase flow systems, we have
interfaces within the system that can be represented by general interfacial
conditions. The solutions can be obtained by solving these sets of
differential equations together with some idealizing or simplifying
assumptions. For most problems of practical importance, experimental data
also play a key role. First, experimental data can be taken by accepting the
model, indicating the possibility of measurements. The comparison of a
solution to experimental data gives feedback to the model itself and to the
various assumptions. This feedback will improve both the methods of the
experiment and the solution. The validity of the model is shown in general
by solving a number of simple physical problems.

The continuum approach in single-phase thermo-fluid dynamics is widely
accepted and its validity is well proved. Thus, if each subregion bounded by
interfaces in two-phase systems can be considered as continuum, the validity
of local instant formulation is evident. By accepting this assumption, we
derive and discuss the field equations, the constitutive laws, and the
interfacial conditions. Since an interface is a singular case of the continuous
field, we have two different conditions at the interface. The balance at an
interface that corresponds to the field equation is called a jump condition.
Any additional information corresponding to the constitutive laws in space,
which are also necessary at interface, is called an interfacial boundary
condition.

1.1 Single-phase flow conservation equations
1.1.1 General balance equations

The derivation of the differential balance equation is shown in the
following diagram. The general integral balance can be written by

introducing the fluid density p, , the efflux J, and the body source ¢, of
any quantity 1), defined for a unit mass. Thus we have
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| General Integral Balance |

Leibnitz Rule

| Axiom of Continuum |->—

| General Balance Equation |

d
E“/:/m le/)de = —ﬁm nk; . Jde + j;m pk¢kdv (2_1)

where V is a material volume with a material surface A . It states that the
time rate of change of p,¢), in V, is equal to the influx through A plus
the body source. The subscript k& denotes the k™-phase. If the functlons
appearing in the Eq.(2-1) are sufficiently smooth such that the Jacobian
transformation between material and spatial coordinates exists, then the
familiar differential form of the balance equation can be obtained. This is

done by using the Reynolds transport theorem (Aris, 1962) expressed as

f FdV = f V+fﬁ Fu, -n dA (2-2)

where v, denotes the velocity of a fluid particle. The Green’s theorem
gives a transformation between a certain volume and surface integral, thus

fvv-ﬂ,dv = £n~ﬂd/1. 2-3)

Hence, from Egs.(2-2) and (2-3) we obtain

%defv

m

orF,

(v )]d V. (2-4)

Furthermore, we note that the Reynolds transport theorem is a special case of
Leibnitz rule given by

d B orF,
Ej;ﬂdv_fv o dV+fAFku-ndA (2-5)
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where V(l) is an arbitrary volume bounded by A(t) and u-m is the surface
displacement velocity of A(t) .

In view of Egs.(2-1), (2-3) and (2-4) we obtain a differential balance
equation

ap,
% + Ve (opd)=-V-J, +pd. (2-6)

The first term of the above equation is the time rate of change of the quantity
per unit volume, whereas the second term is the rate of convection per unit
volume. The right-hand side terms represent the surface flux and the volume
source.

1.1.2 Conservation equation
Continuity Equation

The conservation of mass can be expressed in a differential form by
setting

h=1 ¢ =0 J =0 (2-7)

since there is no surface and volume sources of mass with respect to a fixed
mass volume. Hence from the general balance equation we obtain

op,
% +V-(pv,)=0. (2-8)

Momentum Equation
The conservation of momentum can be obtained from Eq.(2-6) by
introducing the surface stress tensor 7, and the body force g, , thus we set

Y, =,
Jk = _m = ka - @l: (2_9)
o, = g,

where /[ is the unit tensor. Here we have split the stress tensor into the
pressure term and the viscous stress &, . In view of Eq.(2-6) we have

Ipv,

EY, +V- (pkvkvk) =-Vp, +V-& +pg,. (2-10)
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Conservation of Angular Momentum

If we assume that there is no body torque or couple stress, then all
torques arise from the surface stress and the body force. In this case, the
conservation of angular momentum reduces to

=17 (2-11)

where T,’f denotes the transposed stress tensor. The above result is correct
for a non-polar fluid, however, for a polar fluid we should introduce an
intrinsic angular momentum. In that case, we have a differential angular
momentum equation (Aris, 1962).

Conservation of Energy
The balance of energy can be written by considering the total energy of
the fluid. Thus we set

2
v,
Y =, + EL
Jy=q,— 1, v, (2-12)
q
&, =g, + =+
p/«

where u, , g, and g, represent the internal energy, heat flux and the body
heating, respectively. It can be seen here that both the flux and the body
source consist of the thermal effect and the mechanical effect. By
substituting Eq.(2-12) into Eq.(2-6) we have the total energy equation

2
Uy
U, +—

apk

] +V- v, (2-13)

U —}—U—’?
ot Pr | Wy >

=-V-q, + V(T v)+ g, v+

These four local equations, namely, Eqgs.(2-8), (2-10), (2-11) and (2-13),
express the four basic physical laws of the conservation of mass, momentum,
angular momentum and energy. In order to solve these equations, it is
necessary to specify the fluxes and the body sources as well as the
fundamental equation of state. These are discussed under the constitutive
laws. Apart from these constitutive laws, we note that there are several
important transformations of above equations. A good review of
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transformed equations can be found in Bird et al. (1960). The important
ones are given below.

The Transformation on Material Derivative
In view of the continuity equation we have

0 XN
ot

N,

D,
+v'('0kwkvk) = Py [_ t v, V%:J = pp—

k-
Dt

> (2-14)

This special time derivative is called the material or substantial derivative,
since it expresses the rate of change with respect to time when an observer
moves with the fluid.

Equation of Motion

By using the above transformation the momentum equation becomes the
equation of motion

D, v,

Pr Di =—=Vp, +V-& + p,g,. (2-15)

Here it is noted that D, v, /Dt is the fluid acceleration, thus the equation of
motion expresses Newton’s Second Law of Motion.

Mechanical Energy Equation
By dotting the equation of motion by the velocity we obtain

0 v, v,
ot [p’“ 2] [p’“ 2 k] (2-16)
=-v,-Vp, +v,-(V-&) + pv, - g,.
For a symmetrical stress tensor
T:Nv, =& V) v, =V-(C -v)—v-(V-T). (2-17)

Thus, Eq.(2-16) may be written as
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2
/S

0 v?

- +V- _k

ot [p’“ 2} [p’“ 2 ka (2-18)
=-—v,-Vp, +V- (@ : 'Uk) ~Z:Vv, + p, - g,.

This mechanical energy equation is a scalar equation, therefore it represents
only some part of the physical law concerning the fluid motion governed by
the momentum equation.

Internal Energy Equation
By subtracting the mechanical energy equation from the total energy
equation, we obtain the internal energy equation

op,u, .
% + V- (pv,) =~V -q, — p,V -0, + &:Vv, + . (2-19)

Enthalpy Equation
By introducing the enthalpy defined by

i =u, + 2 (2-20)

Pr

the enthalpy energy equation can be obtained as

Ipyiy,

: D, p, :
otV (pdn) = -V + =+ EVY g @2

Dt
1.1.3 Entropy inequality and principle of constitutive law

The constitutive laws are constructed on three different bases. The
entropy inequality can be considered as a restriction on the constitutive laws,
and it should be satisfied by the proper constitutive equations regardless of
the material responses. Apart from the entropy inequality there is an
important group of constitutive axioms that idealize in general terms the
responses and behaviors of all the materials included in the theory. The
principles of determinism and local action are frequently used in the
continuum mechanics.

The above two bases of the constitutive laws define the general forms of
the constitutive equations permitted in the theory. The third base of the
constitutive laws is the mathematical modeling of material responses of a
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certain group of fluids based on the experimental observations. Using these
three bases, we obtain specific constitutive equations that can be used to
solve the field equations. It is evident that the balance equations and the
proper constitutive equations should form a mathematically closed set of
equations.

Now we proceed to the discussion of the entropy inequality. In order to
state the second law of thermodynamics, it is necessary to introduce the
concept of a temperature 7, and of the specific entropy s,. With these
variables the second law can be written as an inequality

d q;
Efv 0,54V + A”—-nde—f

v,
ke m

9 gy >0, (2-22)
TL':

Assuming the sufficient smoothness on the variables we obtain

0 q, q _
—(ps, )+ V- (ps,v +V-[—k]——:A >0 (2-23)
6t(kk (kk k) T, T, %

where A, is the rate of entropy production per unit volume. In this form it
appears that Eq.(2-23) yields no clear physical or mathematical meanings in
relation to the conservation equations, since the relations of s, and 7, to the
other dependent variables are not specified. In other words, the constitutive
equations are not given yet. The inequality thus can be considered as a
restriction on the constitutive laws rather than on the process itself.

As it is evident from the previous section, the number of dependent
variables exceed that of the field equations, thus the balance equations of
mass, momentum, angular momentum and total energy with proper
boundary conditions are insufficient to yield any specific answers.
Consequently, it is necessary to supplement them with various constitutive
equations that define a certain type of ideal materials. Constitutive equations,
thus, can be considered as a mathematical model of a particular group of
materials. They are formulated on experimental data characterizing specific
behaviors of materials together with postulated principles governing them.

From their physical significances, it is possible to classify various
constitutive equations into three groups:

1. Mechanical constitutive equations;
2. Energetic constitutive equations;
3. Constitutive equation of state.
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The first group specifies the stress tensor and the body force, whereas the
second group supplies the heat flux and the body heating. The last equation
gives a relation between the thermodynamic properties such as the entropy,
internal energy and density of the fluid with the particle coordinates as a
parameter.  If it does not depend on the particle, it is called
thermodynamically homogenous. It implies that the field consists of same
material.

As it has been explained, the derivation of a general form of constitutive
laws follows the postulated principles such as the entropy inequality,
determinism, frame indifference and local action. The most important of
them all is the principle of determinism that roughly states the predictability
of a present state from a past history. The principle of material frame-
indifference is the realization of the idea that the response of a material is
independent of the frame or the observer. And the entropy inequality
requires that the constitutive equations should satisfy inequality (2-23)
unconditionally.  Further restrictions such as the equipresence of the
variables are frequently introduced into the constitutive equations for flux,
namely, &, and g, .

1.14 Constitutive equation

We restrict our attention to particular type of materials and constitutive
equations which are most important and widely used in the fluid mechanics.

Fundamental Equation of State
The standard form of the fundamental equation of state for

thermodynamically homogeneous fluid is given by a function relating the
internal energy to the entropy and the density, hence we have

w, = U (8, 0;)- (2-24)

And the temperature and the thermodynamic pressure are given by

ou, Oy

Tk, = a_skv b, = 8(1/pk).

(2-25)

Thus in a differential form, the fundamental equation of state becomes

du, =T,ds, — p,d

L], (2-26)

Py,
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The Gibbs free energy, enthalpy and Helmholtz free energy function are
defined by

g, =u, —Ts +2& (2-27)
Pr
i =u, + 2 (2-28)
pkt
ﬁ: = U’k - Tksk (2-29)

respectively. These can be considered as a Legendre transformation” (Callen,
1960) which changes independent variables from the original ones to the
first derivatives. Thus in our case we have

9 = 9 (T py) (2-30)

*If we have
Yy = y(xlﬂxﬂ“"xn); P=—
then the Legendre transformation is given by
J
4 =y~— Z Pz:Ez
i=l

and in this case Z becomes
Z= 7 (P, P2a"'?Pj’ $j+1>"'7xn)'

Thus, we have
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i, =1, (s, 0) (2-31)

fi=5£(Tp) (2-32)

which are also a fundamental equation of state.

Since the temperature and the pressure are the first order derivatives of
u, of the fundamental equation of state, Eq.(2-24) can be replaced by a
combination of thermal and caloric equations of state (Bird et al., 1960;
Callen, 1960) given by

e =0 (P T}) (2-33)

e = (py ) (2-34)

The temperature and pressure are easily measurable quantities; therefore, it
is more practical to obtain these two equations of state from experiments as
well as to use them in the formulation. A simple example of these equations
of state is for an incompressible fluid

p, = constant

(2-35)
W, = Uy <1—;i)

And in this case the pressure cannot be defined thermodynamically, thus we
use the hydrodynamic pressure which is the average of the normal stress.
Furthermore, an ideal gas has the equations of state

. = Ry Tip,

(2-36)
u, = u, (T})

where R,, is the ideal gas constant divided by a molecular weight.
Mechanical Constitutive Equation

The simplest rheological constitutive equation is the one for an inviscid
fluid expressed as

T =0. (2-37)
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For most fluid, Newton’s Law of Viscosity applies. The generalized linearly
viscous fluid of Navier-Stokes has a constitutive equation (Bird et al., 1960)

T =y, [Vvk + (Vvk)*] — [%uk ~ )\k](V-vk)I (2-38)

where (1, and ), are the viscosity and the bulk viscosity of the k™-phase,
respectively.

The body forces arise from external force fields and from mutual
interaction forces with surrounding bodies or fluid particles. The origins of
the forces are Newtonian gravitational, electrostatic, and electromagnetic
forces. If the mutual interaction forces are important the body forces may
not be considered as a function only of the independent variables x and ¢ .
In such a case, the principle of local actions cannot be applied. For most
problems, however, these mutual interaction forces can be neglected in
comparison with the gravitational field force g. Thus we have

9. =9 (2-39)

Energetic Constitutive Equation

The contact heat transfer is expressed by the heat flux vector g, , and its
constitutive equation specifies the nature and mechanism of the contact
energy transfer. Most fluids obey the generalized Fourier’s Law of Heat
Conduction having the form

q. =—K, -VT,. (2-40)

The second order tensor /K, is the conductivity tensor which takes account
for the anisotropy of the material. For an isotropic fluid the constitutive law
can be expressed by a single coefficient as

g, =K, (T,)VT,. (2-41)

This is the standard form of Fourier’s Law of Heat Conduction and the scalar
K, is called the thermal conductivity.

The body heating ¢, arises from external energy sources and from
mutual interactions. Energy can be generated by nuclear fission and can be
transferred from distance by radiation, electric conduction and magnetic
induction. The mutual interaction or transfer of energy is best exemplified
by the mutual radiation between two parts of the fluid. In most cases these
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interaction terms are negligibly small in comparison with the contact heating.
The radiation heat transfer becomes increasingly important at elevated
temperature and in that case the effects are not local. If the radiation effects
are negligible and the nuclear, electric or magnetic heating are absent, then
the constitutive law for body heating is simply

g, =0 (2-42)

which can be used in a wide range of practical problems.

Finally, we note that the entropy inequality requires the transport
coefficients 11, , A, and K, to be non-negative. Thus, viscous stress works
as a resistance of fluid motions and it does not give out work. Furthermore,
the heat flows only in the direction of higher to lower temperatures.

1.2 Interfacial balance and boundary condition
1.2.1 Interfacial balance (Jump condition)

The standard differential balance equations derived in the previous
sections can be applied to each phase up to an interface, but not across it. A
particular form of the balance equation should be used at an interface in
order to take into account the singular characteristics, namely, the sharp
changes (or discontinuities) in various variables. By considering the
interface as a singular surface across which the fluid density, energy and
velocity suffer jump discontinuities, the so-called jump conditions have been
developed. These conditions specify the exchanges of mass, momentum,
and energy through the interface and stand as matching conditions between
two phases, thus they are indispensable in two-phase flow analyses.
Furthermore since a solid boundary in a single-phase flow problem also
constitutes an interface, various simplified forms of the jump conditions are
in frequent use without much notice. Because of its importances, we discuss
in detail the derivation and physical significance of the jump conditions.

The interfacial jump conditions without any surface properties were first
put into general form by Kotchine (1926) as the dynamical compatibility
condition at shock discontinuities, though special cases had been developed
earlier by various authors. It can be derived from the integral balance
equation by assuming that it holds for a material volume with a surface of
discontinuity. Various authors (Scriven, 1960; Slattery, 1964; Standart,
1964; Delhaye, 1968; Kelly, 1964) have attempted to extend the Kotchine’s
theorem. These include the introduction of interfacial line fluxes such as the
surface tension, viscous stress and heat flux or of surface material properties.
There are several approaches to the problem and the results of the above
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authors are not in complete agreement. The detailed discussion on this
subject as well as a comprehensive analysis which shows the origins of
various discrepancies among previous studies have been presented by
Delhaye (1974). A particular emphasis is directed there to the correct form
of the energy jump condition and of the interfacial entropy production.

Since it will be convenient to consider a finite thickness interface in
applying time average to two-phase flow fields, we derive a general
interfacial balance equation based on the control volume analyses. Suppose
the position of an interface is given by a mathematical surface f (z, t) =0.
The effect of the interface on the physical variables is limited only to the
neighborhood of the surface, and the domain of influence is given by a thin
layer of thickness 0 with 6, and 0, at each side of the surface. Let’s denote
the simple connected region on the surface by A, then the control volume is
bounded by a surface X, which is normal to A, and the intersection of A,
and Y, is a closed curve C;. Thus X, forms a ring with a width 6 ,
whereas the boundaries of the interfacial region at each side are denoted by
A and A, . Our control volume V; is formed by X, A and A4,.

Since the magnitude of ¢ is assumed to be much smaller than the
characteristic dimension along the surface A, we put

n, =-n, (2-43)
where 1, and 7, are the outward unit normal vectors from the bulk fluid of
phase 1 and 2, respectively. The outward unit vector normal to X is

denoted by IV, then the extended general integral balance equation for the
control volume V, is given by

ij;p?/JdV:iLknk.Rvk_vi)pkd]k +Jk]dA
_ff N-[(v-v, pw+J]d6dC+f ppd V.

(2-44)

The first two integrals on the right-hand side take account for the fluxes from
the surface 4, 4, and Y. In order to reduce the volume integral balance
to a surface integral balance over A, we should introduce surface properties
defined below.

The surface mean particle velocity v, is given by

5
PO = j:ﬁ pvdd (2-45)
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Figure 2-1. Interface (Ishii, 1975)

where the mean density p, and the mean density per unit surface area p,
are defined as

p. = p. 6= f_ Z pds. (2-46)
Then the weighted mean values of 1) and ¢ are given by

pb= [ puds (2-47)
and

p.6. = [ pods. (2-48)

The notation here is such that a quantity per unit interface mass and per unit
surface area is denoted by the subscript s and a, respectively.

The control surface velocity can be split into the tangential and normal
components, thus

v, = v, + v, (2-49)
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where
V,; = Uy,
ﬁ (2-50)
UL . n P _i.
IV /]

Hence the normal component is the surface displacement velocity and the
tangential component is given by the mean tangential particle velocity v,, .
Since the unit vector IV is in the tangential plane and normal to C,, we
have

N-v,=N - v, (2-51)

Thus, from Eqgs.(2-45) and (2-51) we obtain
0
PN (v, —v)d6 =0 (2-52)
and
6 4
f5 pYN - (v, —v)ds = f5 pN - (v, — v)dé. (2-53)

In view of Egs.(2-44) and (2-53) we define the average line efflux along C),
by

J,= i {7 — (v, —v) py}ds. (2-54)

Using the above definitions the integral balance at the interfacial region
becomes

= n, -[('vk —v,) p, Y, +Jk]dA_fClN'Ja aC (2-55)
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As in the case for the derivation of the field equation, here we need two
mathematical transformations, namely, the surface transport theorem and the
surface Green’s theorem (Weatherburn, 1927; McConnell, 1957; Aris 1962).
The surface transport theorem is given by

d d,
-, Faa= fA {%(F)+Fvs~vi}d/1 (2-56)

where d, / dt denotes the convective derivative with the surface velocity v,

defined by Eq.(2-50), and V, denotes the surface divergence operator. The
surface Green’s theorem is given by

fc N-J,dC = fA AVg (405),, dA. (2-57)

Here, A“’S, gy, t and ,; denote the surface metric tensor, the space
metric tensor, the hybrid tensor, and the surface covariant derivative,
respectively (Aris, 1962).

The surface flux, J, in space coordinates is expressed by J'* which
represents the space vector for mass and energy balance and the space tensor
for momentum balance. The essential concepts of the tensor symbols are
given below. First the Cartesian space coordinates are denoted by
(yl,yz,y3) and a general coordinates by (:El,xz,x3) , then the space metric

tensor is defined by

3 a k a k
gln = Za_?;[ az" (2-58)

k=1

which relates the distance of the infinitesimal coordinate element between
these two systems. As shown in Fig.2-2, if the Cartesian coordinates yk’
give a point of a surface with the surface coordinates of (ul,uz) as
yk = yk (ul, u2> , then the surface metric tensor is defined by

3. 0y" 0y
AV = , 2-59
; ou” ou’ (2-59)

and the small distance ds is given by
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yl

Figure 2-2. Relationship between Cartesian coordinates and surface coordinates

(ds)' = (dy')" + (dy?)" +(dy’) = A du’du”. (2-60)

By introducing the general space coordinates, the surface position is
givenby z' = z' (ul , u% . The hybrid tensor is then defined by

; ox'
= (2-61)
- au(l

The covariance surface derivative ( ) is similar to the space derivative

8

but it also takes into account for the curved coordinate effects. Furthermore,
if IN - J, has only a tangential component as in the case of surface tension

8 Im ¥ o
force, A"¢g, t"J," =1t"J”. Hence, the surface flux contribution can be

«

written as <t;"J o ), 4 or (taJ o ),ﬂ where ¢, denotes the hybrid tensor in

vector notation. It is noted that for the momentum transfer, the dominant
interfacial momentum flux is the isotropic surface tension o . Then,
J* = g A"’ . In this case, the surface flux contribution becomes as follows

(t,0A"),,=2Hon +t,A" (o) ;. (2-62)
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The first term represents the net effect of the curved surface and gives the
normal component force with the mean curvature H , whereas the second
term represents the tangential force due to surface tension gradient.

Since we assumed that 6 is sufficiently small, the surface 4, and A4,
coincide with 4; geometrically. Thus, Eq.(2-55) reduces to

ds .
/. {@(Pu%) + PV, v,;}dA

2
- f 4 {Z [pk¢knk: (v, —v,) +n, - Jk] (2-63)
k=1
_Auﬁghl (t:)éLJ(i. ) 3 +pa¢s } dA

This balance equation holds for any arbitrary portion of an interface with
A, >> &7, thus we obtain a differential balance equation

d
dt (pal'bs) + pu¢s s 'UZ

2
= Z {pkl/}knk : ('Uk - vz) +n - Jk} (2-64)
k=1

A g (6T7) s o

We note here this result has exactly the same form as the one derived by
Delhaye (1974), although the method used and the definition of the surface
velocity v, is different. Let’s define a surface quantity and a source per
surface area as

v, = P (2-65)
and

¢, = PP, (2-66)
Then the surface balance equation becomes

%(wa) +4,V, v = Z{pkwknk : (vk - 'vi) +n, 'Jk}

_Aaﬂgln (t(ZJ{i. ) 3 +¢a :

(2-67)
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The left-hand side represents the time rate of change of 1, from the
observer moving at v,, plus the effect of the surface dilatation. Whereas the
three terms on the right-hand side are the fluxes from the bulk phases, the
line flux along the surface, and the surface source respectively. We note that
Eq.(2-6) and Eq.(2-67) govern the physical laws in the bulk phases and at an
interface.

In order to obtain a simpler expression for interfacial jump of quantities,
we make further assumptions which are consistent with our thin layer
assumption given by

6 << A. (2-68)

First the mass density of interface p, is negligibly small so that its
momentum and mechanical energy can also be neglected. Secondly, all the
molecular diffusion fluxes along the line are neglected, namely, no surface
viscous stress or surface heat flux. Furthermore all the surface sources are
neglected, namely, no particular body force other than the gravity and no
radiation effect.

The thermodynamic tension and hence the interfacial energy are included
in the following analysis, consequently from the principle of determinism we
should postulate the existence of the surface equation of state. Under these
assumptions we obtain

Interfacial Mass Balance
2
> oy - (v, —v,)=0. (2-69)
k=1

By defining the interfacial mass efflux from the X"-phase as
m, = pyny, - (v, —v,) (2-70)

we have from Eq.(2-69)
2
> iy, =0. (2-71)
h=1

This equation simply states that there is no capacity of mass at the interface,
hence phase changes are pure exchanges of mass between the two phases.
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Interfacial Momentum Balance
2 Ya
Z{pknk . ('vk — 'vi)vk -n, - 7‘,}} + <ta,A“‘da> 5= 0. (2-72)
h=1

Equation (2-72) is a balance between the momentum fluxes from the bulk
fluids and the interfacial tension.

Interfacial Energy Balance
Substituting the interfacial energy u, per unit surface area for 1), , we
obtain from Eq.(2-67)

d
Yy V-,
di

iﬂmm ¢ — o)

k=1

2
[
m+2%mk(mwmwﬁ 2-73)

The left-hand side represents the rate change of the surface energy, whereas
the right-hand side accounts for the energy transfer from the bulk at each
side and for the work done by the surface tension.

1.2.2 Boundary conditions at interface
As in the case of the three-dimensional field equations the surface
balance equations should be supplemented by various constitutive laws. In

order to establish the principle of determinism, first we introduce a simple
equation of state. Since the mass of interface is negligible, we have

u, = u,(s,) (2-74)

where u, and s, are the specific internal energy and the specific entropy
per unit surface area, respectively.
The thermodynamic tension is given by

oc=-T1s,+u, (2-75)

where the temperature 7 is defined by
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Thus, in a differential form, Eq.(2-74) becomes

du, =T.ds,

and the Gibbs-Duhem relation is given by

5,dT, +do = 0.

The interfacial enthalpy is defined by
1, = U, — 0.
From Eq.(2-78) we have

do

—_— = —S .
dTL a

Hence, from Eqgs.(2-77) and (2-80) we obtain

)

du, =-Td
a7,

By combining Egs.(2-75), (2-79) and (2-80) we get

Thus the thermal equation of state

o= o)

33

(2-76)

(2-77)

(2-78)

(2-79)

(2-80)

(2-81)

(2-82)

(2-83)

supplies all the necessary information to interrelate the thermodynamic
properties. By substituting Eq.(2-81) into Eq.(2-73) we obtain an energy

jump condition in terms of the surface tension as
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_pldfde]) (do)g
dt\dT. | |dT,

=(t,4"0),;, (2-84)

2 2
+Z{mk [uk +%] +mn, - (=T, v, + qk)}
k=1

Interfacial Entropy Inequality

Following the above discussion, we assume the existence of the surface
temperature 7, which enables us to write an entropy inequality at the
interface. Thus, in the absence of surface heat flux and source terms, we
have

2
ds* Sa

| - n, - q;
Aa - +savs .,Ui _Z[mksk +%

> 0. (2-85)
dt k=1 k

The entropy s, in above inequality can be eliminated by using the energy
balance equation, Eq.(2-73), and the equation of state, Eq.(2-77), hence we
obtain

2 . ‘2
T,A, ZZ my, |, — .1, +|v’“ v 4+ B
b=l Py
(2-86)
Ti
B, 0)bmeafi- 2 >0
k

We note here that this expression has the same form as the one obtained by
Delhaye (1974). Also a similar result was derived by Standart (1968)
without considering the surface properties and the surface tension term, but
including the effect of chemical reactions.

In general, the interfacial jump conditions, Egs.(2-69), (2-72) and (2-84),
do not constitute sufficient matching conditions which are necessary to
define the problem uniquely. Consequently, they should be supplemented
by various boundary conditions that restrict the kinematical, dynamical and
thermal relations between two phases. These relations can also be
considered as interfacial constitutive laws, satisfying the restriction imposed
by the entropy inequality (2-86). They may be obtained from the standard
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argument of the irreversible thermodynamics. In order to do so, first suitable
combinations of fluxes and potentials should be postulated in the inequality
(2-86), and then the fluxes were expanded linearly in terms of the potentials.
Here, the principle of equipresence and the symmetric relations between the
expansion coefficients are normally used. The standard procedure for a
general system is discussed in detail by De Groot and Mazur (1962) among
others, and it has been applied to an interface by Standart (1968), and
Bornhorst and Hatsopoulos (1967). Standart based his argument on the
correct jump conditions and the entropy inequality and obtained the
interfacial constitutive laws with great care, though he neglected from the
beginning all the surface properties and the surface tension that are generally
important in a two-phase system. The results of Bornhorst are limited to
particular cases and the argument is based on the classical thermodynamic
tools of piston, reservoir, homogeneous system, etc.

The analysis based on the constitutive laws of the interface may be
important for a detailed study of a two-phase system. However, they are
generally too complicated to apply as boundary conditions. Furthermore, the
effects of the potentials, namely, the discontinuities of temperature, chemical
potential, tangential velocity, etc., as driving forces of transfer of quantities,
or resulting interfacial resistances to heat, momentum and mass transfer are
relatively insignificant in the total system.

Consequently a much simpler theory for providing the necessary
boundary conditions is desirable. As a limiting case, it is possible to
consider the case when entropy production of the interface A, becomes zero.
This means that there are no resistances to interfacial transfer of quantities.
Hence, the exchanges between two phases are governed by the conditions of
the bulk fluid at each side, but not by the interface itself. Furthermore, from
the classical thermodynamic point of view, the transfer at the interface is
said to be reversible. This is not so for a shock discontinuity in a single-
phase flow.

By setting the entropy production of Eq.(2-86) to be zero we obtain

2 _ ol
E : my g, + 7,| Tk | E : Ty (,Utk . vﬁ)
= 1 2 Py, P T
(2-87)
2 1 1
E . g, ns 1T J)|———|=0
" h=1 <nk BT k)[Tz' T, ]

Moreover, we assume that the three terms in Eq.(2-87) are independently
zero for all combinations of the mass flux, the tangential stresses and the
heat fluxes.
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Thermal Boundary Condition
Thus, from the last term of Eq.(2-87), we obtain a thermal equilibrium
condition at the interface

TM = TZ7 = 1_; (2-88)

that is consistent with the assumption of the existence of the equation of state
at the interface, Eqs.(2-74) and (2-83). In view of Eqs.(2-82) and (2-84) this
thermal boundary condition sets the energy level of the interface. In contrast
to the above equation, the energy jump condition, Eq.(2-73), specifies the
relation between the energy transfers to the interface. Furthermore, the
thermal equilibrium condition, Eq.(2-88), eliminates a variable 7, and it
stands as a matching condition for the temperature of each phase at the
interface. We note here that, in reality, the discontinuity of the temperature
at the interface exists and can be estimated from the kinetic theories
(Hirschfelder et al., 1954). However, its value in comparison with the
absolute temperature is very small for most materials with few exceptions,
such as for liquid metals (Brodkey, 1971). Thus, the influence on the
interfacial transfer is negligible under the standard conditions.

No-Slip Condition

In view of the definition of the interfacial surface velocity v,, Eq.(2-50),
the tangential velocity v, is an unknown parameter, whereas the normal
component is directly related to the position of the interface. Furthermore, it
appears in the dissipation term in the entropy inequality (2-86) and Eq.(2-87).
Thus, it is natural to supply a constitutive relation between the tangential
stress T, and the tangential relative velocity v, — v, , as it has been
discussed previously. However, in the present analysis we have assumed
that the interfacial entropy production is identically zero. By taking the
second term of Eq.(2-87) to be zero independently, we obtain a no-slip
condition

v, =7

=v,. (2-89)

t1 t2
The no-slip condition for a moving viscous fluid in contact with a solid wall
is well established (Goldstein, 1938; Serrin, 1959). It is called a classical
adherence condition and it has been verified experimentally and also
analytically from kinetic theories. The relation given by Eq.(2-89) can be
used to eliminate the interfacial tangential particle velocity and then it can be

utilized as a velocity boundary condition at an interface.
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However, it should be noted here that for an inviscid fluid the no-slip
condition (2-89) is not necessary and cannot be satisfied generally, due to the
tangential component of the momentum jump condition, Eq.(2-72). This is
in complete agreement with our analysis, since the viscous dissipation term
in Eq.(2-87) is identically zero for an inviscid fluid and does not appear in
the entropy inequality. Consequently, Eq.(2-89) cannot be obtained.
Furthermore, under the condition of no-slip, the momentum jump condition,
Eq.(2-72), in the tangential and the normal directions becomes

2
DT =A@, (2-90)
P
and
2 mZ
Z n,—-+mp, — T, |=-2H,n0 (2-91)
k=1 Py

where the normal and the tangential viscous stress is given by
nls: ' @; = Tnk + Ttk: = nannk + Tf,k:' (2-92)

And the mean curvature H,, is taken from phase 2 to 1, namely, H,, > 0 if
the interface makes a convex surface in phase 1.

Chemical (Phase Change) Boundary Condition

In analogy with the preceding discussion, the chemical (or phase change)
boundary condition can be obtained by setting the first term of Eq.(2-87) to
be independently zero for all values of 7, . This implies that the entropy
production due to a phase transition is zero, and hence the phase change is
considered not as a transfer due to non-equilibrium forces, but rather as an
equilibrium transformation of state.

Substituting the thermal equilibrium condition, Eq.(2-88), into the first
term of Eq.(2-87) and equating it to zero, we obtain

v —’Uvz v —’U-Z
(gl _ gz) — [| 2 > o | 1 > Z| . [T;nl _ T;nl ] (2_93)
2 1

The phase change condition given by the above equation shows that the
difference in the chemical potential compensates for the mechanical effects
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of the relative kinetic energy difference and of the normal stresses. Here it
should be noted that this phase change condition is only applicable to the
case when the transfer of mass across the interface is possible. In other
words, if the transfer of mass is identically zero for all conditions as in the
case of two immiscible non-reacting liquids, the boundary condition should
be

m, =0 (2-94)
which replaces the condition on the chemical potentials.
1.2.3 Simplified boundary condition

In the preceding sections the interfacial jump conditions and
supplementary boundary conditions have been given. It is important to
realize that the thermal equilibrium condition, Eq.(2-88), normal component
of the momentum jump condition, Eq.(2-91), and the phase change boundary
condition, Eq.(2-93), correspond to the standard thermal, mechanical and
chemical equilibrium conditions of the thermostatics (Gibbs, 1948). The
difference is that the present analysis takes into account the dynamic effects
of mass transfer and of the normal stresses in the mechanical and phase
change boundary conditions. These interesting properties between the
results of dynamical analysis and of the thermostatic theory can be
summarized in the following table.

It can be seen from the table that except the thermal condition these
interfacial relations are still very complicated for many practical applications.
This is mainly due to the terms arisen from the mass transfer and from the
normal stresses. The former contributes as a thrust force due to the density
change in the mechanical boundary condition and also as an impact kinetic
energy change in the chemical (phase) boundary condition. The latter
introduces complicated coupling effects of the flow fields with the
thermodynamic properties at the interface. Under standard conditions,
however, the normal stresses may be neglected with respect to the pressure
terms, which greatly simplify the mechanical boundary condition, Eq.(2-91).
The same argument can be applied to the chemical boundary condition, since
the order of magnitude of the term p, g, is p, ., thus the normal stress terms
can be neglected also in Eq.(2-93). Similarly the mass transfer terms are
negligibly small in most practical problems, though they can be important
for problems with large mass transfer rate or with vapor film boiling.

Since in the standard formulation of field equations the Gibbs free energy
g, does not appear explicitly, it is desirable to transform the variable ¢, in
the chemical boundary condition, Eq.(2-93), into other variables which have
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Table 2-1. Interfacial relations of thermodynamic potentials (Ishii, 1975)

Analysis
Thermostatics Present Dynamical Analysis
Condition
Thermal L-T,=0 T-T,=0
Mechanical = 2|1 1
p—p,=0 p—p,=—2H0—m | ——— +(T,m| _Tuuz)
P P2
Chemical 0 mf [ 1 1 ] [T T 2J
h: h $h—9 = G—9=——F"| ||/
(phase change) 1= 9% 1~ 9% D) p|2 Pzz o 0

already been used in the field equations. For this purpose, we recall here
that the Gibbs free energy expressed as a function of the temperature and
pressure is a fundamental equation of state, Eq.(2-30), thus we have

9 = 9, (T, p) (2-95)
and
dg, = —s,dT, + idpk. (2-96)
Py
The thermostatic phase equilibrium condition is then given by
L=T,=T"p =p,=p";and g = g, (2-97)
Hence from Egs.(2-95) and (2-97) we obtain
g, (T,p™") = g, (T, p™") (2-98)
which reduces to the classical saturation condition
p = p (T). (2-99)

This relation shows that the thermostatic equilibrium condition uniquely
relates the thermodynamic potentials of each phase. Furthermore, the
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differential form of Eq.(2-99) known as the Clausius-Clapeyron equation can
be obtained from Eqs.(2-27) and (2-28) and Eqs.(2-96) and (2-97)
dpsat S
—__h7h (2-100)

deat Tmt [1 B 1]
P P

where all values of the right-hand side are calculated on the saturation line
given by Eq.(2-99).

If we assume that the deviations of the interface pressures of each phase
from the saturation pressure corresponding to the interfacial temperature 7
are sufficiently small in comparison with the pressure level, the Gibbs free
energy function can be expanded around the static saturation point. Thus we
have

i op,
(72 = 0. 1) - — 01
Pr (pk 7Tz'>
where 6p, is defined by
ép, = p, — ™ (T)). (2-102)
Since we have
sat sat
6 (p(T.),T) = 9. (p™ (1)), T,). (2-103)
Equation (2-93) can be reduced to
.2
%_%i_ﬂ[%_%]+[ﬂ_ﬂ] (2-104)
P P> 2 {p P Py P>

whereas the mechanical boundary condition, Eq.(2-91), with the definition
of Op, becomes

ol 1 1
8p, = bp, = —2Hy0 — iy [— - —] (Tt = Tua)- (2-105)
P P
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These above two equations can be solved for the pressure deviation from the
saturation pressure as

L \2
op, :—2H21a[ £ ]—l—(ml) [L—L + 7,
Py = P 2\, p
and (2-106)
L \2
6p2 = _2H210-[ pz ] + (ml) [i - L + TnnZ‘
| — P2 2 \p P

This result shows that neither phase is in the saturation condition given
by Eq.(2-99). The amount of deviation of pressure from p* depends on the
mean curvature, the surface tension, the mass transfer rate and the normal
stress. An interesting result follows if we take into account only the effect of
the surface tension and drop the other terms which are generally negligibly

small. In this case, we can approximate

ép, =2H,0 [—Pg ] and 6p, = 2H o [—pf

]. (2-107)
Pr = Py Py — Py

Since the mean curvature of the liquid phase H 1, 18 positive for a droplet
and negative for a bubble, the phase pressures at the interface are both over
the saturation pressure for a droplet flow, and they are both under it for a
bubbly flow.

Now we recall the existence of the limits on heating of liquid or cooling
of vapor beyond the saturation condition in terms of the pressure deviation at
fixed temperature, namely, the instability points of the equation of state in
the thermostatics. Thus, we write

6pg§ 6pgma.x (Tz)

(2-108)
6pf zépfmin (Tz)

which are shown in Fig.2-3.

Figure 2-3 shows the saturation line corresponding to the Clausius-
Clapeyron equation or Eq.(2-99) and the limits of the metastable liquid and
vapor phases. These two limits can be obtained from the van der Waals
equation of state given by
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Critical Point

Liquid Phase Vapor Phase

(5p omax_"
Limit of Existence .~ $

: Eq.(2-99); Saturation Line

Limit of Existence
of Liquid

——b]: RT (2-109)

where R and M are the gas constant and the molecular weight,
respectively. a and b are empirical constants. The thermodynamic theory
states that the intrinsic thermodynamic stability requires

<0. (2-110)

Therefore, by using the van der Waals equation, the loci of 8p/ 8(1/,0) =0

can be found. These loci actually represent two limits, namely the
superheated liquid limit and subcooled vapor limit. These two loci are
shown by the broken curves in Fig.2-3.

It is interesting to note that Eq.(2-107) with the limiting condition of
Eq.(2-108) gives the smallest droplet and the bubble sizes. In other words,
these sizes are the lowest natural level of the disturbances in the statistical
sense. Beyond these limits the liquid or the vapor phase cannot stay without
changing the phase, because the statistical fluctuations create a core which
can grow to a bubble or a droplet.

The relations given by Eqs.(2-107) and (2-108) at a temperature 7’ are
exhibited in Fig.2-4. The widely used interfacial condition that the vapor



2. Local Instant Formulation 43
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Figure 2-4. p,-Op; relation (Ishii, 1975)

interfacial pressure equals the saturation pressure p** at a temperature 7
can be derived as a further approximation to Eq.(2-107). Since the density
ratio between phases is very large at a small reduce pressure, namely,
p/ p, <<1 where p, is the critical pressure, Eq.(2-107) can be
approximated by

6p, =~ 0, p, ~ p™ (T,)

» (2-111)
6pf ~ 2Hfga, p;RDp (TL) + 2Hﬁqa.

1.24 External boundary condition and contact angle

The external boundary condition is a special case of the jump and the
supplemental interfacial boundary conditions which have been discussed in
the previous section. For a standard single-phase flow problem, these
conditions become particularly simple because the mass transfer rate m, ,
the effect of the surface tension and the velocity of the solid-wall interface
are all set to be zero. Similar simplifications could also be applied to a two-
phase flow system, however, two exceptional characteristics should be taken
into account here. These are:

1. The wall microstructure effect on bubble nucleations;
2. The intersection of a phase interface with the external boundary.
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Figure 2-5. Contact angle (Ishii, 1975)

The first effect characterizes the necessity to consider the existence of
surface nucleation sites which have irregular geometries deviating from the
standard idealized wall boundary. These microstructures and the gas content
in these sites often decide the bubble nucleation conditions and the degree of
thermodynamic non-equilibrium. The second case is the singularity created
by meeting of two different interfaces, see Fig.2-5. As a bubble or a droplet
comes in contact with the external boundary, the vapor-liquid interface
attaches to the wall and forms a singular curve at the intersection. When
such a contact line is formed, the angle of contact 6 measured through the
liquid characterizes the condition along the curve. An analysis similar to the
one for the interface can be developed also for this singular line. In this case,
since the area of transport from the bulk fluids is the thickness of the
interface 0, the effects of the mass transfers and of the fluxes of the fluids
can be neglected. Hence, only the surface fluxes and possibly the properties
associated with the curve, namely, energy of the contact line, are important,
By considering only the surface fluxes, we have from the force balance in
the normal plane to the singular curve

J— O-fé
(2-112)

gs

cos 0 = —

Ty
where o, , 0, and 0, denote the surface tension between vapor-liquid,
vapor-solid, and liquid-solid respectively.

We note here that Eq.(2-112) is consistent with the jump conditions, if
we neglect the tension tangent to the singular curve and thus the thermal
energy of the curve. If these effects are neglected, Eq.(2-112) is the only
condition obtainable in parallel with the jump conditions. Hence, as it has
been mentioned, the contact angle @ characterizes the phenomenon and an
appropriate constitutive law should be supplied if o, and o, are not
available. The static contact angle 6 is well measured and tabulated for
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various interfaces: in reality however it is greatly influenced by the surface
roughness, the deposit of foreign materials and the purity of fluid itself.

Furthermore, the dynamic contact angle of a moving interface can be
significantly different from the static values. However, in the absence of a
well established constitutive law for € under dynamic condition, the static
values are frequently used in practical problems. We only note here that it is
generally accepted that the apparent difference between the static and the
dynamic contact angle is a function of a surface tension o, and the normal
slipping velocity of the singular curve (Schwartz and Tejada, 1972; Phillips
and Raddiford, 1972).

In summarizing this section we list standard external boundary conditions
at the solid wall:

The position of an external boundary

f,@=0 (2-113)
No-mass transfer condition

v, =v, =0 (2-114)

nKk nw
No-slip condition for a viscous fluid

v, =v, =0 (2-115)

tw
The force balance from the momentum jump condition

n -1 +n,-17,=0 (2-116)

w

The energy balance from the energy jump condition

n,-q, +mn,q,=0 (2-117)
The thermal equilibrium condition

T, =1, (2-118)

These above conditions can be applied where a fluid is in contact with
the wall. It cannot be applied however at an intersection of an interface with
the solid boundary. On such a singular curve the constitutive equation for
the contact angle 6 should be given. Finally, we summarize the local
instant formulation of a two-phase flow system in the following diagram.
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EXTERNAL BOUNDARY CONDITIONS

Position of the Wall Jump Conditions
Constraints Interfacial B. C.
Contact Angle
PHASE 1 INTERFACE PHASE 2
Field Equations Jump Conditions Field Equations
Continuity Eq. Mass J. C. C.E.
Momentum Eq. Momentum J. C. M. E.
Energy Eq. Energy J. C. E.E.
Constitutive Equations Interfacial B. C. Constitutive Equations
Equation of State Thermal B. C. E.S.
Mechanical C. E. (No-slip B. C.) M.C.E.
Energetic C. E. (Chemical B. C.) E.C.E.
INITIAL CONDITIONS
1.3 Application of local instant formulation to two-phase

flow problems
1.3.1 Drag force acting on a spherical particle in a very slow stream

As an example of applying local instant formulation to two-phase flow
problems, let us study the drag constitutive equation of a solid sphere of
radius 7, in a very slow stream of speed U, (creeping flow) (Stokes, 1851;
Schlichting, 1979). In order to analyze this problem analytically, we assume
(1) Newtonian viscous fluid with constant viscosity, (2) incompressible flow
(fluid density is constant), and (3) very small Reynolds number
(Re|=2mp.U, /uc << 1) where viscous effects dominate the flow and
the inertia term can be neglected in the momentum equation. Then, the
continuity equation, Eq.(2-8), and the momentum equation, Eq.(2-10), can
be linearized as

V-, =0 (2-119)

Vp, = u, Vv, (2-120)

The gravity term is dropped by considering the pressure field which
excludes the hydrostatic effect. The velocity components and the pressure in
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spherical coordinates (r,0) with # = 0 in the direction of U, can be
derived under the boundary condition of no-slip on the solid sphere as

3
v, = Uycost —%r—d+%%] (2-121)
T T
3r, 1 r{f
vy, = —U,cost 1_27_27"_3 (2-122)
D= Dy — —3M£Q2U° cosf. (2-123)
T

where p_ is the uniform freestream pressure. The shear stress acting on the

solid sphere, 7 ,., is given by
1 3 U, .
T [—% +%] = 2 HE0 ging, (2-124)
R \r 00 or T,

Thus, the total drag force, F},, acting on the solid sphere is given by
integrating the pressure and the shear stress around the surface as

F, = foﬂ 00 SINOdA — foﬂ p, cos 0dA (2-125)

= 47rrd/’[/(:U0 + 27T7:iu(:U0 = 67T7:i/’[/(:U0

where A is the surface area. This indicates that the drag consists of the
pressure and shear forces even in this viscosity dominated flow. Then, we
define the drag coefficient, C),, by

C, = B (2-126)

5 p(U(?Ap

where Ap is the projected area of a particle. Thus, we have
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24

c, =—.
" Re

(2-127)

This analysis was extended by Rybczynski (1911) and Hadamard (1911) to
creeping motion of a spherical fluid particle in an infinite Navier-Stokes
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid
particle is given by

2 3
F, = 6mryu, (v, —v,)—te T 2Ha | (2-128)
3+ py)
Then, we define the drag coefficient, C),__, by
F
Cpo =+ D (2-129)
2
Epc <Ucoo - Ud) Ap
and the particle Reynolds number by
2rp. (v —wv
Re, = iPe (Ve — ), (2-130)

He

It is evident here that v, and v, are the undisturbed flow velocity and the
particle velocity. Thus, we have

24 | 2
CDOO — { IU/C + 3lu’d

;Re, <1. (2-131)
Re, 3(% + Nd)} ’

The drag law given by Rybczynski and Hadamard is good up to a Reynolds
number of about 1.

1.3.2 Kelvin-Helmholtz instability

As another example of application of local instant formulation to two-
phase flow problems, let us study the Kelvin-Helmholtz instability
(Helmholtz, 1868; Kelvin; 1871; Lamb, 1945). The Kelvin-Helmholtz
instability arises at the interface of two fluid layers of different densities p,
and p, flowing with average velocities v, and v, in a horizontal duct. In
order to analyze this problem analytically, we assume: (1) inviscid flow
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(viscous force is negligible); (2) incompressible flow (fluid density is
constant); and (3) irrotational flow. It is convenient to use rectangular
coordinates (z,y) where  and ¥y indicate the coordinate in the horizontal
direction and the coordinate in the vertical direction measured from the
average interface of the two fluid layers, respectively. Then, the velocity
components are given in terms of the velocity potential, ¢, , as

L9, _ 9% (2-132)

T g dy

Thus, the continuity equation, Eq.(2-8), is given in terms of the velocity
potential as

a2¢k _|_ az¢k — O

2-133
o> oy’ ( )
and the momentum equation, Eq.(2-10), is given by
1 0
&—f——v,ﬁ +gy=—¢+F(t) (2-134)
) ot

where F'(t) is the function of ¢, respectively. The shape of the interface
between two phases are approximated by a sinusoidal wave as

n = nsin{k(z — Ct)} (2-135)

where 7),, k, and C' are the amplitude, the wave number, and the wave
velocity, respectively. Then, the velocity potentials of the upper fluid
(k =1) and lower fluid (k = 2) are derived under the boundary condition
of no fluid penetration on the upper and lower duct surfaces and the
assumption of small perturbation.

cosh {k (b, — y)}
sinh (k)

¢, = —vz +1,(v, — C) cos{k(z — Ct)} (2-136)

cosh {k (h, + y)}
sinh (kh, )

¢, = —v,x — 1, (v, — O) cos{k(z — Ct)} (2-137)
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where h, and h, are the average thickness of the upper and lower fluid
layers, respectively. Substituting Eqs.(2-136) and (2-137) into Eq.(2-134)
and assuming v, << v, yield the pressure of each phase at the interface as

Py = —p {(vl — 0)2 keoth (kh, ) + g} nesin {k (z — Ct)}
+p

(2-138)

Dy = P, {(vz — C’)2 keoth (kh, ) — g} nesin {k (z — Ct)}
+p

(2-139)

where p, is the pressure at a smooth interface. The interfacial pressure
difference between two fluid layers is due to the surface tension, and can be
approximated by

2

d™n
ox®’

Pp—Py =0 (2-140)

Then, the wave velocity can be obtained from Eq.(2-135) and Egs.(2-138)-
to-(2-140) as

o+ plo, |k (0 — ) g/k
C:pll IOZZZE\/ 2 ! / _1/

2
1| U — U,
) (2-141)
pl+ pl pl+ ol z[pfﬂ)é]

where p, = p,coth(kh,). Under the deep water assumption of
hl/(27r/k), hz/(ZW/k) > 0.25, p; can be approximated to be p, . In this
case, Eq.(2-141) can be simplified as

2
o =Pl + 0, + .2 — pip, U Y (2-142)
P+ Py P+ Py
where
2 =dL Py ok (2-143)

ko +p, :01"'/72.
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When the root in the expression for the wave velocity C' has a nonzero
imaginary part, then the interfacial disturbance can grow exponentially.
Hence, the flow is unstable if

2
9P~ P ok UW—b
- + < pp [ ] . (2-144)
koo ptp 12P1+P2

There are several important points to be recognized in this stability
criterion. First, the viscous effects of the fluids are neglected; therefore, the
Reynolds number plays no role in this type of interfacial instability. The
stability of the system then is governed by three effects, namely, the gravity
force, surface-tension force, and relative motion. The relative-motion term
is always destabilizing due to the inertia force from Bernoulli effect. The
surface-tension force is always stabilizing, since the flat interface has the
minimum surface area, and the surface-tension force acts to resist any
deformation from the equilibrium configuration. The gravity term is
stabilizing only if the upper fluid is lighter than the lower fluid (p, > p,).

The propagation velocity C_ in the absence of the flows (or the left-
hand side of the stability criterion) is a function of the wave number & .
Therefore, as the wavelength A = 27/k changes from zero to infinite, the
wave velocity decreases to the minimum value and then increases. This
minimum value of C2 is given by (S 2[09(/)2 —Pl)/<f)z — pl)z}l/z,
which occurs at kf = g(p2 - N )/a . This corresponds to the critical
wavelength of A, = 27/k_. This 1s known as Taylor wave length that is
one of the most important internal length scales in two-phase flow. Then the
system is stable for small disturbances of all wavelengths if the relative
velocity is sufficiently small to satisfy

2 (Pl + pz)
PP

(vl - v2)2 < og (p2 — ,01). (2-145)

For a relative velocity larger than this limit, the system is only
conditionally stable for a certain range of the wavelength. When the
wavelength is large, the value of C' jo in Eq.(2-143) is mainly determined by
the gravity term. Conversely, if A is sufficiently small, the capillary force
governs the wave motion.

Furthermore, it is possible to develop a similar stability criterion based on
the one-dimensional two-phase flow equations (Wallis, 1969;
Kocamustafaogullari, 1971). It is noted (Miles, 1957) that the Kelvin-
Helmholtz instability theory tends to overpredict the critical relative velocity
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for the initial generation of surface waves, except in the case of highly
viscous fluids. However, the Kelvin-Helmholtz instability mechanism is
important in wave-propagation phenomena, particularly for flows in a
confined channel (Kordyban, 1977). Based on the analysis, Kelvin proposed
the word “Ripples” to describe waves having a wavelength of less than

A =2mo/g(p, = p)-
For a gravity dominated flow with a relatively large wave length

A >> )\, the surface tension effect can be neglected. By considering the
finite channel flow, Eq.(2-141) can give a criterion for instability as

2
U — Y

o+ P

9P~ P / (2-146)

kool + p;

/
2

By taking a Taylor expansion and retaining only the first order term for the
hyperbolic functions, a following simplified but useful criterion can be
obtained.

(m—mewD%ﬂm—Mh'

o (2-147)
P1P> P

(v, — vz)z >%

When this criterion is compared to experimental data for slug formation in a
channel, the critical relative velocity is overpredicted by a factor close to two.
This discrepancy can be explained by a theoretical analysis introducing a
finite amplitude or wave front propagation method (Mishima and Ishii, 1980;
Wu and Ishii, 1996).

1.3.3 Rayleigh-Taylor instability

The Rayleigh-Taylor instability is the interfacial instability between two
fluids of different densities that are stratified in the gravity field or
accelerated normal to the interface. It is commonly observed that the
boundary between two stratified fluid layers at rest is not stable if the upper-
fluid density p, is larger than the lower-fluid density p, . Since the
Rayleigh-Taylor instability can lead to the destruction of the single common
interface, it is important in the formation of bubbles or droplets. In
particular, the critical wavelength predicted by the related stability analysis
is one of the most significant length scales for two-phase flow.

The Rayleigh-Taylor instability can be considered as a special case of the
Kelvin-Helmholtz instability with zero flows and p, > p,. Hence, the
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propagation velocity can be obtained from Eq.(2-142) by setting
vy, =0v,=0

9P ok
kp,+p ptp

(2-148)

The system is unstable if the root of the propagation velocity has a nonzero
imaginary part. Therefore, Eq.(2-148) shows that the gravitational force is
destabilizing for p, > p,, whereas the surface-tension force is stabilizing.
There is a critical wavelength A below which C” is always positive. This

is given by \ =27 /g/g(pz —p,)- If the wavelength of a disturbance is

larger than the critical wave length (A > X ), then C” becomes negative
and the interface is unstable. For fluids that are unlimited laterally, the
wavelength of the disturbance can be as large as desired; therefore such a
system is always unstable. However, if the fluids are confined laterally, the
maximum wavelength is limited to twice the system dimension. This
implies that a system is stable if the lateral characteristic dimension is less
than half the critical wavelength A\ . For an air-water system, this
characteristic dimension is 0.86 cm. A similar dimension can be obtained
from fluids contained in a vertical cylinder by using polar coordinates in the
stability analysis.

For an unstable system, any disturbance having a wavelength greater than
A, can grow in time. However, the dominant waves are those having the
maximum growth factor. Since the wave amplitude grows with
exp (-ikCt), the predominant wavelength should be

Y (2-149)

g<p1 - pz).

m

These unstable waves can be observed as water droplets dripping from a
wire in a rainy day, or condensed water droplets falling from a horizontal
downward-facing surface. Quite regular waveforms and generation of
bubbles due to the Rayleigh-Taylor instability can also be observed in film
boiling. Note that this instability is not limited to the gravitational field.
Any interface, and fluids that are accelerated normal to the interface, can
exhibit the same instability. This can occur for example in nuclear explosion
and inertia confinement of a fusion pellet. In such a case the acceleration
should replace the gravity field g in the analysis.
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