
Chapter 2

The Basic Multiperiod Dynamic Model
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Chapter 1 outlined an approach for constructing a single-period newsvendor-type

model that explicitly accounts for future outdating of the current order. In this

chapter, we present the extension of this one-period model to a finite horizon

dynamic model. We present only the general m-period lifetime case, but the reader

may be interested in reviewing the simpler case for m ¼ 2, as this requires only a

single-dimensional state variable.

The problem dynamics are described by the one-period transfer function. Given

the current state of the system, x, the quantity of fresh product ordered, y, and the

realization of demand t, the transfer function, s(y, x, t), gives the vector of starting
inventories of the next period. The logic behind the transfer function dynamics is

very similar to the logic required to derive the expected outdating functionÐy
0

Gmðt; xÞdt. The one-period transfer function is:

siðy; x; tÞ ¼ ½xiþ1 � ðt�
Xi

j¼1

xjÞþ�þ

and

sm�1ðy; x; tÞ ¼
y� ðt� xÞþ if excess demand is backordered,

½y� ðt� xÞþ�þ if excess demand is lost:

(

Note the similarity of the form of the transfer function to the definition of the

sequence of random variables B0;B1; :::; defined in the previous chapter. This is,

of course, not coincidental. In fact, both are just two different ways of showing the

system dynamics. This is shown precisely in the following result which is central

to the analysis of the dynamic problem.
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Theorem 2.1. Gnðy;wn�1Þ ¼
Ð1
0

Gn�1½sðy;wn�1; tÞf ðtÞdt:
Proof. The proof is somewhat tedious, but conceptually straightforward. Note that

by defining G0ðtÞ ¼ 1 for all t, the theorem easily holds for n ¼ 1. One proceeds by

induction, assuming that the theorem is true for n � 1 and showing that this leads to

the theorem for n. Again, the details appear in Nahmias (1972).

2.1 The Functional Equations for the General
Dynamic Problem

Following the usual approach for dynamic programming analysis, define CnðxÞ as
the minimum expected discounted cost when n periods remain. Then CnðxÞ satisfies
the following system of functional equations:

CnðxÞ ¼ min
y�0

Lðx; yÞ þ a
ð1

0

Cn�1ðsðy; x; tÞf ðtÞdt
8<
:

9=
;;

which we write as

CnðxÞ ¼ min
y�0

fBnðx; yÞg:

In order to establish the existence and to define the properties of an optimal

policy, the key result we need to establish is the convexity of Bnðx; yÞ in y for every
set of starting inventories x. In addition, the main theorem describes several

important properties of the optimal order function, ynðxÞ, when n periods remain

in planning horizon. The main theorem requires 17 steps and is proven via a

complex induction argument.

We will not present the proof of the main theorem here, but the interested reader

can refer to Nahmias (1974) for an outline of the proof or Nahmias (1972) for a

detailed exposition.

It is interesting to note that the traditional approach to proving convexity of

Bnðx; yÞ for the standard nonperishable problem breaks down in this case. Typi-

cally, one shows that CnðxÞ is convex in x, that convexity is preserved via the

transfer function, and sums of convex functions are convex, thus easily giving

the required convexity of Bnðx; yÞ in the decision variable, y.
Unfortunately, this straightforward approach does not work for the perish-

able inventory problem. Consider the case of m ¼ 2. Here, the decision variable

has only a single dimension. A necessary and sufficient conditions for CnðxÞ to
be convex are that Cn

00ðxÞ � 0 for all x � 0. We can demonstrate that, in fact,
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C1
00ðxÞ< 0 for some value of x. As is shown in Nahmias and Pierskalla

(1973) (and Nahmias 1972),

C1
0ðxÞ ¼ �yFðxÞFðy1ðxÞÞ

giving

C1
00ðxÞ ¼ �yFðy1ðxÞÞf ðxÞ � f ðy1ðxÞÞFðxÞy10ðxÞ;

where y1ðxÞ is the optimal order quantity when x is the (one period old) on-hand

inventory, and one planning period remains in the horizon. Note that the sign of

C1
00ðxÞ is not obvious, since y1

0ðxÞ< 0. Consider, however, the following special

case. Let us assume that the periodic demand follows the negative exponential

distribution with parameter l. That is f ðxÞ ¼ le�lx and FðxÞ ¼ 1� e�lt. Since

y1ð0Þ> 0 and the function y1ðxÞ is continuous, there must exist at least one value

of x, say ~x> 0, such that y1ð~xÞ> ~x. Because the exponential density is monotonically

decreasing in the region x � 0 and the cumulative distribution function

for the exponential is monotonically increasing in this same region, we have

that Fðy1ð~xÞÞ >Fð~xÞ and f ðy1ð~xÞÞ< f ð~xÞ. In addition, it has been shown that y1
0 �

ð~xÞ � �1: Combining these results gives C1
00ð~xÞ< 0. Hence, we conclude that

C1ðxÞ is not convex in x. However, it turns out that the degree of nonconvexity

(as measured by a lower bound on C1
00ðxÞ) is not very great, and we can show that

B2ðx; yÞ ¼ Lðx; yÞ þ a
Ð1
0

C1ðsðy; x; tÞf ðtÞdt is convex in y. That is, the nonconvexity
of C1ðxÞ is more than compensated for by the convexity of Lðx; yÞ. For the general
m-period problem, it is the convexity of Bnðx, y) in y that allows us to establish the

existence and basic properties of the optimal order function, ynðxÞ.
We will assume the following notational convention. For any vector valued

function, g(x), gðiÞðxÞ is the first partial derivative of g with respect to the ith
variable, and gði; jÞðxÞ is the second partial derivative with respect to the ith and

jth variables, respectively.

In the general m-period lifetime problem, the key result that allows us to prove

convexity of Bn(x, y) is Cn
ð1;1ÞðxÞ � �yGm�1

ð1ÞðxÞ (where the differentiation is

done with respect to the first variable in the vector x, which is xm�1). Establishing

the validity of this lower bound via induction is extremely complex, requiring a

network of inequalities on the first and second partial derivatives of the optimal

return functions, Cn(x). To provide the reader with an appreciation of the complex-

ity of this problem, we provide a complete statement of the theorem required to

prove convexity. As noted, the proof will not be presented here.

Theorem 2.2. Assume that demands in each period form a sequence of indepen-

dent identically distributed random variables (although the theorem also holds for

nonstationary demands) and that:

(a) The demand distribution, F, possesses a bounded continuous density f with the

property that f(t) > 0 if t > 0 and f(t) ¼ 0 if t < 0.
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(b) Future costs are discounted by a discount factor a, where 0 < a < 1. Then:

1. Bnðx; yÞ is convex in y for all x 2 Rm�1 and is strictly convex in a neighbor-

hood of the global minimum.

2. lim
y!0

@Bnðx;yÞ
@y < 0 and lim

y!1
@Bnðx;yÞ

@y > 0 for all x.

3. There is a unique function ynðxÞ given as the solution to
@Bnðx;yÞ

@y

���
y¼ynðxÞ

¼ 0

and 0< ynðxÞ<1. In addition yn
ðiÞðxÞ exists and is continuous for all x;

1 � i � m� 1.

4. CðiÞ
n ðxÞ¼�y

Xi

j¼1

Gm�jðxðm� jÞÞHjðynðxÞ;�xðm� jÞÞþa
Xm�i

j¼1

ðwj

wj�1

fCðiþ1Þ
n�1 ½zjðtÞ�

�C
ð1Þ
n�1½zjðtÞ�g f ðtÞdtþa

Xm�1

j¼m�iþ1

ðwj

wj�1

fCm�jþ1
n�1 ½zjðtÞ��C

ð1Þ
n�1½zjðtÞ�g f ðtÞdt;

where zjðtÞ¼ ðy;xm�1; :::;xjþ1;
Pj
i¼1

xi� t;0; :::0Þ and wj ¼
Xj

i¼1

xi, and C
ðmÞ
n ðxÞ� 0.

The result holds for 1 � i � m�1.

5. � 1 � y
ð1Þ
n ðxÞ � y

ð2Þ
n ðxÞ � � � � � ym�1

n ðxÞ< 0.

6. (a) C
ði;kÞ
n ðxÞ exists and is continuous for all x 2 Rm�1 and 1 � k, i � m� 1.

However, C
ð1;1Þ
n ðt; xðm� 2ÞÞ will be discontinuous at t ¼ 0 whenever

f(t) is discontinuous at t ¼ 0.

(b) Ci
n½�xðm� iÞ; 0� � Ci�1

n ½�xðm� iÞ; 0� ¼ 0 for 2 � i � m� 1. The notation

is meant to be interpreted as the last m�i components being zeros.

7. (a) C
ð1; jÞ
n ðxÞ � �yGð jÞ

m�1ðxÞ 1 � j � m�1:

(b) C
ði; jÞ
n ðxÞ � C

ði�1; jÞ
n ðxÞ � �yGð jþiþ1Þ

m�i ðxðm� iÞÞ½1�
Xi�1

k¼1

Hk ðxm�iþk0 ; . . . ;
xm�iþ1Þ� for m� 1 � j � i � 1:

(c) C
ð1;iÞ
n ðxÞ � C

ð1;i�1Þ
n ðxÞ � y½Gði�1Þ

m�1 ðxÞ � G
ðiÞ
m�1ðxÞ� for m� 1 � i � 2:

(d) ½Cði;jÞ
n ðxÞ�C

ði�1;jÞ
n ðxÞ�� ½Cði;j�1Þ

n ðxÞ�C
ði�1;j�1
n ðxÞ� � y½Gðj�iÞ

m�i ðxðm� iÞÞ

�G
ðj�iþ1Þ
m�i ðxðm� iÞÞ�½1�

Xi�1

k¼1

Hkðxm�iþk; . . . ;xm�iþ1Þ�

form�1� j> i� 2:

8. (a) �y
Xi

j¼1

Gm�jðxðm� jÞÞ½1�
Xj�1

k¼1

Hkðxm�jþk; . . . ;xm�jþ1Þ� �CðiÞ
n ðxÞ� 0

for 1� i�m�1 and for all x:

(b) C
ðiÞ
n ðxÞ � C

ðjÞ
n ðxÞ � y

Xi

k¼jþ1

Gm�kðxðm� kÞÞ

½
Xk�1

q¼k�j

Hqðxm�kþq; . . . ; xm�kþ1Þ� for 1 � j<i � m� 1 and for all x:
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(c) C
ðiÞ
n ðxÞ�C

ðjÞ
n ðxÞ��y

Xi

k¼jþ1

Gm�kðxðm�kÞÞ½1�
Xk�1

q¼1

Hqðxm�kþq; . . . ;xm�kþ1Þ�
for 1� j<i�m�1 and for all x:

(d) C
ðiÞ
n ðxÞ ¼ 0 for x ¼ ðxm�1; 0Þ and xm�1 � 0:

9. (a) lim
xi!1 ynðxÞ ¼ 0 1 � i � m� 1:

(b) lim
xj!1C

ðiÞ
n ðxÞ ¼ 0 1 � i; j � m� 1:

Note that the functions Hk referred to in steps 7 and 8 are used as a convenience

for representing derivatives of the outdating function, Gm. As they add nothing to

the exposition, we will not discuss them further here. Aside from all of the

machinery involving the derivatives of the optimal value functions, what does

the theorem tell us about the behavior of the optimal policy function? The key

piece of information we obtain from the theorem is step 5: � 1 � yn
ð1ÞðxÞ � yn

ð2Þ

ðxÞ � � � � � yn
ðm�1ÞðxÞ< 0. This says two things. First, since all partial derivatives

are negative, the optimal order quantity decreases as starting inventories increase.

More importantly, it characterizes the sensitivity to starting stocks of different ages.

The larger the derivative of yn(x) in absolute value, the greater the sensitivity of the
optimal order function to changes in starting stock. This means that increasing

the on-hand quantity of newer stock has a larger effect on optimal order quantities

than increasing the on-hand quantity of older stock.

This is a fundamental property of perishable inventory systems that separates

such systems from traditional nonperishable systems. One is concerned not only

with the amounts of on-hand inventory, but also their ages as well. Because the

dimension of the state variable is proportional to the lifetime of the stock in

periods, computing an optimal policy is feasible only for relatively short lifetimes.

One quickly faces the “curse of dimensionality” that plagues many dynamic

programming formulations. For product lifetimes much more than two or three

periods, it is unlikely one would use optimal policies. Also, implementation of

optimal policies would be complicated by the fact that one needs to keep track of

the age distribution of stock. Approximations that depend only on the total stock on-

hand are of interest as they are easy to compute and easy to implement. Methods of

finding simple approximations for the periodic review problem will be the subject

of the next chapter.

An interesting question is whether or not these results hold when demand is

discrete rather than continuous, as is assumed in Theorem 2.2. To try to prove

convexity of the functions Bn(x, y) directly under discrete demand would be

extremely tedious, if even possible. To circumvent these difficulties, Nahmias

and Schmidt (1986) considered a very novel approach to the discrete demand

problem. They considered an infinite sequence of continuous demand distributions,

F1, F2,. . ., that converged weakly to the discrete distribution of demand, F. We

know all of the results of Theorem 2.2 hold for each of the continuous distributions

F1, F2,. . .. Without going into the mathematical details, the authors show that the

essential results of Theorem 2.2 carry over in the limit for the discrete case. We do
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not believe that this approach has been used before or since in the context of a

dynamic inventory problem.

It should be noted before closing this section that Fries (1975) also provided

a rigorous analysis of the perishable inventory problem, but did not work with

the outdate function Gm(y, x). Instead, he developed a straightforward dynamic

programming formulation that required m periods before the effects of outdating

appeared in the optimal order function. This approach is equally valid as ours

outlined here, and preferred for computing optimal policies, as the functional

equations are somewhat simpler. As Nahmias (1977a) shows, the two methods

give the same policy if one is sufficiently far from the end of the planning horizon,

and the discount factor is adjusted in a suitable fashion.
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