
Chapter 2

Archaic Astronomical Instruments

The oldest astronomical instrument is the naked eye, with which the courses of the

celestial objects were observed. Since time immemorial, people have noticed that

the celestial bodies rise at the eastern horizon and set at the western horizon. They

have also noticed that some stars never set and that all stars circle around a fixed

point in the northern sky (at least on the northern hemisphere, where the oldest

civilizations were. See Fig. 2.1). Already in ancient times, this point was conceived

of as the end of the celestial axis. More on the celestial axis in Chap. 5.

The rhythm of day and night is determined by the appearance and disappearance

of the sun. That in summer the sun is higher and a longer time in the sky than in

winter is governed by another rhythm, that of the year. One can observe that every

day the sun rises and sets at another point at the horizon, in summer in the eastern,

respectively, and western sky further to the north, and in winter more southward

(always on the northern hemisphere, where the ancient civilizations were). The sun

reaches its northernmost position on the first day of summer, when the day is

longest. This is called the summer solstice. The southernmost position of the sun

is reached on the first day of winter, when the day is shortest. This is called the

winter solstice. Twice a year, the points of sunrise and sunset lie exactly opposite to

each other, due east and due west, respectively. On these dates, night and day are of

equal length. These days are called the equinoxes. The circles of the daily orbit of

the sun stand perpendicular to the celestial axis. The inclination of the plane of the

sun’s daily orbit in relation to the horizon varies from place to place, according to

the location of the observer. The farther to the south, the higher the sun, and the

farther northward, the lower (always on the northern hemisphere. See Fig. 2.2).

More on this phenomenon, as seen from a flat earth, in Chap. 5.

The moon has a rhythm of its own, characterized by its monthly passing through

the subsequent stadia of new moon, waxing crescent, first quarter, waxing gibbous,

full moon, and back again to waning gibbous, last quarter, waning crescent, and

new moon. The moon too, stands high or low in the sky in a monthly rhythm that is

called the tropical month. Sometimes the strange phenomena of partial or total lunar

and solar eclipses take place. The stars are always in the same and fixed mutual

positions. From ancient times, people have divided the celestial vault into constel-

lations, which made the topography of the sky easier. The velocity with which the

stars move along the sky differs from that of the sun and the moon, making us see
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different constellations as the seasons pass. Only the constellations that never set

remain visible during the whole year. Part of the unchanging starry sky is occupied

by a capriciously shaped and softly shining belt, the Milky Way. Seven or eight

celestial bodies (depending on whether the morning star is taken to be identical with

Fig. 2.2 The daily orbit of the sun in the different seasons

Fig. 2.1 Stars circling around the celestial axis on a recent time exposure (photograph by Antonio

Fraga, composition, and Gabriel Vazquez, circumpolar stars)
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the evening star) do not have a fixed position on the celestial vault. These are the

so-called planetary stars, or planets. They are not at arbitrary places in the sky, but

move within the limits of a belt of constellations, the Zodiac.

As a result of careful and regular observations of the sky over many generations,

all kinds of regularities have been recorded, for instance, the way lunar and solar

eclipses appear. An example can be seen in Chap. 3, Table 3.2, which shows the

lunar and solar eclipses that Thales could have observed during his lifetime in

Miletus. These eclipses move like garlands through the calendar. Another example

is the cycle of Meton. This is the cycle of 235 synodic months (the time between

two subsequent new moons), which is approximately 19 years. At the end of this

cycle, the sun and the moon, in relation to each other and to the stars, are in virtually

the same position as at the start. This cycle is named after Meton of Athens, who

introduced it in 432 B.C. to improve the calendar.

From ancient Mesopotamia, we possess an enormous amount of observations,

descriptions, and predictions of the rising and setting of the celestial bodies and

their courses along the firmament, preserved on clay tablets. The Babylonians were

well-versed observers and had achieved excellent results. In the second century

A.D., Ptolemy, in his Almagest, used the systematic Babylonian registrations of the

movements of the sun, moon, and planets, dating as far back as the time of

Nabonassar (747 B.C.).

From the Presocratics, on the contrary, we hardly know of any observations of

this kind. One of the few exceptions is a report by Pliny of an observation, made by

three ancient observers, Hesiod, Thales, and Anaximander, of the time the Pleiades

set (Naturalis historia XVIII: 213, see also DK 12A20). According to Hesiod, it

was the day of the autumnal equinox, which was 30 September in Hesiod’s time.1

According to Thales, it was 25 days, and according to Anaximander, it was the 31st

day after the autumnal equinox (which was 29 September in their days).2 As regards

Hesiod, Pliny’s source is a lost book on astronomy that is ascribed to him. In his

Works and Days, Hesiod says no more than the following: “When the Pleiades set at

the end of the night, then it is the right time to plough,” and: “When the Pleiades,

Hyades, and Orion set, remember that it is the season to plough” (Works and Days
681–682 and 432–433). Pliny adds the observations of two later astronomers:

according to Euctemon, the Pleiades set the 44th day after the autumnal equinox

(which was on 28 September), and according to Eudoxus on the 48th day after the

autumnal equinox (which was on 28 September). If we take the year 700 B.C. for

1 Before 1582 A.D., the dates of the equinoxes and solstices shift about one day per 128 years on

the Julian calendar. This was corrected by Pope Gregory’s calendar reform, which resulted in an

error of only one day in about 3,000 years. Moreover, to eliminate the 10-day error that had

developed since the church council of Nicea, in the same year, 1582 ten days were passed over so

that 4 October was followed by 15 October. This is why Table 2.1 differs from that in Couprie

(2003: 181), where 23 September was taken as the date of the autumnal equinox throughout.
2White reads for Anaximander: “on the 29th [day from the equinox]” (2002: 10). This makes,

however, only a few minutes difference: on 28 October 560 B.C., the sun rose at 4:33 h, and the

Pleiades set at 4:17 h.
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Hesiod and his birthplace Ascra in Boeotia (23�070E, 38�230N) as his observation
post, 580 B.C. and Miletus (27�150E, 37�300N) for Thales, 560 B.C. and Miletus for

Anaximander, 430 B.C. and Athens (23�440E, 38�000N) for Euctemon, and Athens

and 350 B.C. for Eudoxus, then the times of sunrise and the true setting of the

Pleiades are as indicated in Table 2.1.3

The last column in Table 2.1 shows the different time of the true setting of the

Pleiades. Because of the light of the rising or setting sun, stars are invisible some

time before and after sunrise and sunset. Therefore, the ancient astronomers noted

the first and the last moment of visibility of a certain rising or setting star. In relation

to the rising sun, these are called the heliacal rising and the cosmical setting. The

data of the cosmical setting are (with an insecurity margin of 2 days to both sides)

as follows: Ascra 6 November 750 B.C., Miletus, 7 November 580 B.C., Miletus

7 November 560 B.C., Athens 8 November 430 B.C., and Athens 9 November

350 B.C. Euctemon’s and Eudoxus’ figures seem to refer to the cosmical setting

of the Pleiades.4 They correspond rather well to the duration of the astronomical

dawn, which is about 1 h and a half for latitudes between 36� and 44� (see

Neugebauer 1922: 21, Table 11). Wenskus has tried to explain the data for Thales

and Anaximander, which are, respectively, “um etwa zehn Tage zu fr€uh” and “etwa
eineWoche zu fr€uh,” by suggesting that in the case of Thales we have to read 35 days
after the autumnal equinox instead of 25 and that in the case of Anaximander

Table 2.1 Ancient dates of the autumnal setting of the Pleiades

Observer Place

Date of

autumnal

equinox

Date of

observation

Sunrise

(universal

time)

Pleiades set

(universal time)

Hesoid Ascra 30 September

700 B.C.

30 September

700 B.C.

4:18 a.m. 6:18 a.m.

Thales Miletus 29 September

580 B.C.

24 October

580 B.C.

4:27 a.m. 4:30 a.m.

Anaximander Miletus 29 September

560 B.C.

30 October

560 B.C.

4:33 a.m. 4:07 a.m.

Euctemon Athens 28 September

430 B.C.

11 November

430 B.C.

5:02 a.m. 3:42 a.m.

Eudoxus Athens 28 September

350 B.C.

15 November

350 B.C.

5:07 a.m. 3:30 a.m.

3 This table is made with the help of the computer program Redshift 5.1 (2005), and compared with

Neugebauer for the days of the equinox (1922: 49, Tafel 19).
4 Information from USHA-member Rob van Gent, according to the computer program Planetary,
Lunar, and Stellar Visibility 3.0. Pannekoek, discussing Hesiod, gives on one and the same page

the dates for the cosmical setting of the Pleiades as 12 and 3 November, the last the same asWright

(Pannekoek 1961: 95; Wright 1995: 18). Dicks (1970: 36) has 5–11 November; Bickerman (1980:

112) has 3–5 November for latitude 38� and the years 500–300 B.C.; Wenskus (1990: 250) has 4–6

November for 700–300 B.C. (see also p. 49), and elsewhere: “Ende Oktober – Anfang November”

(1990: 176). White has November, and remarks: “the extended size of the cluster makes its rising

and setting impossible to determine precisely” (2002: 10).
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wemust suppose that he had very sharp eyes and was able to see the Pleiades set less

than half an hour before sunrise (1990: 53, see also 52 and 60). Although the notion

of “cosmical setting” is somewhat vague and depends on the sharpness of sight of the

observer, it is certainly impossible to see stars of that magnitude set half an hour

before sunrise, even if one takes into account that the sky at the western horizon is

still rather dark when the rose-fingered dawn announces the rising sun in the east. I

tend to think that Thales and Anaximander, on the contrary, were not concerned with

the cosmical setting but tried to fix the precise moment at which the rising of the sun

and the true setting of the Pleiades at the western horizon coincide. If Pliny’s report is

right, they must have been able to calculate in one way or another the elapsed time

from the last moment the Pleiades were visible until their true setting, when they are

no longer visible. We may conclude that, according to Pliny, Thales’ account was

better than that of Anaximander. The resulting date for Hesiod, however, is rather

strange because at the autumnal equinox the Pleiades set almost 2 h after sunrise.

Perhaps he was not yet able to fix the date of the equinox or to calculate the time the

Pleiades actually set. As regards the strange figure given for Hesiod, Wenskus has to

admit that “die Hesiod zugeschriebene Angabe ungenau” is (1990: 51–52).

Already in ancient times, observers have tried to improve the accuracy of the

results achieved with the unaided eye. The first tool is the human body itself. The
altitude of a celestial body above the horizon, or the angular distance between two

stars, can be measured by means of the finger (the digit), the thumb (the inch), the
fist (the palm), the stretched fingers (the span), and the forearm from the elbow to

the middle fingertip (the cubit), and so on. Ptolemy cites observations like these:

“In the year 82 of the Chaldeans, Xanthicus 5, Saturn was two digits below the

Virgin’s southern shoulder”; “In the year 75 according to the Chaldeans, Dius 14 in

the morning, Mercury was half a cubit on the upper side of the southern Balance”

(Almagest XI 7 and IX 7). We may assume that the ancient Greeks also measured

distances on the firmament in this way. The person on the left of Fig. 2.3 shows that

this method was still used much later. Figure 2.4 shows other examples, redrawn

after a more recent handbook.

The Egyptians used the human body in yet another way to locate a point in the

sky. In the tombs of Ramesses VI, VII, and IX, a kind of star clock is painted,

consisting of 24 sitting men (one for the first, and one for the 16th day of each

month), above whom stars are drawn, as in Fig. 2.5. The sitting person, obviously

an aide of the observer, had to sit all night with his back to the south (or better: the

line between the observer and his assistant had to be the north–south line – we

would say the meridian of that place). The rows on the right indicate the hours of the

night, and the columns behind the sitting man the various positions of the stars, for

instance “the star of Sothis (Sirius) on top of the left shoulder.” This method of

determining a position has become obsolete, not only because of its inherent

inaccuracy but perhaps also because it must surely have been a nuisance for the

aide of the astronomer to have to sit still all night (see Clagett 1995: 64–65). Bruins

has made the interesting suggestion that “the ‘target figure’ of the star clocks is not
an assistant of the observing astronomer, but the astronomer himself ! The painter
depicted the seated astronomer and what he sees is, independently, drawn ‘behind
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him’ in the charts” (1965b: 173). However, his interpretation of the indications

“opposite the heart,” “on the left shoulder,” etc., as “mnemotechnic expressions”

sounds not very convincing (cf. 1965b: 174).

Fig. 2.3 Several manners of measuring distances at the firmament on an engraving from 1533A.D.

(picture by the courtesy of Adler Planetarium & Astronomy Museum and Cambridge UP)

Fig. 2.4 Some more examples of measuring angles between stars (freely after Klepešta and R€ukl
1969: 70)
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In the following description of genuine instruments, bywhich Imeanmanufactured
tools, I confine myself not only to the instruments that were used by the ancient

Greeks, or with which they could have been acquainted, but also to the period before

the discovery of the sphericity of the earth. The instruments that were developed

after that have been described sufficiently elsewhere and are of less interest for the

scope of this book. It is strange that this subject is scarcely treated in studies on

archaic astronomy. Perhaps one reason is that although the Babylonians were

experienced observers of the heavens, we do not know whether they made use of

any instrument other than the gnomon. Observing instruments are neither mentioned

in the texts nor found in the excavations, not even a water clock (see Steele

2008: 45). Although Egyptian astronomy is generally said to be poor as compared

with that of the Babylonians, at least three kinds of astronomical instruments have

been found in Egypt, as we will see. However, this may be, most authors start with

the instruments of Ptolemy. In this respect, even the standard work of Kelley and

Milone (2005) has a serious lacuna.5 Moreover, Dicks’ article and Gibbs’ chapter on

ancient astronomical instruments, in spite of their titles, give less than one would

expect (Dicks 1954: 77–85; Gibbs 1979: 39–59). The same holds for Thurston’s

chapter on the astronomer’s tools where mainly later and more sophisticated (and

especially Chinese) instruments are treated (1994: 26–44).

The person on the left in Fig. 2.4 uses a little piece of board to compare the angular

distances of stars. A similar instrument is described by Simplicius (In Aristotelis De
caelo commentaria 504.16 ff.), explaining how one can easily see that the moon does

not always have the same angular diameter. A disk held at a certain distance from our

Fig. 2.5 Part of the star clock in the tomb of Ramesses IX (Sloley 1931: 169, Fig. 3)

5 Kelley and Milone use another definition of “Archaeoastronomy” than in this book, namely, “the

practices of pretelescopic astronomy” (2005: vii).
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eye sometimes needs a diameter of 11 in. to cover the moon but 12 in. at another time

of the year. This is not to be confusedwith the well-known phenomenon that themoon

looks bigger at the horizon than in the zenith, and which can be shown by the same

instrument to be an optical illusion. In one of the following sections, we see how a

similar tool can also be used to measure the angular diameter of the sun.

One is well advised not to study the sun by direct observation because of the

danger of eye damage. To observe the sun, and solar eclipses in particular, people

used the reflection on the surface of a liquid, for instance olive oil, poured into a

bowl, as described by Seneca (Naturales Quaestiones: 1, 11.3–12.1). The reader

can find out for himself that it is possible, after some time of eye accommodation, to

observe a distinct reflection of the sun disk, even at noon. I used this method myself,

with perfect results, to observe the partial sun eclipse on 1 August 2008 at

Maastricht. In his allegory of the cave, Plato hints at this method when he says

that the prisoner, who is freed from the cave and arrives at the surface of the earth,

sees the sun “without using its reflections in water or another medium” (Republic
516b). Elsewhere he speaks of the risk people run to injure their eyes when looking

at a solar eclipse, “unless they study its image in water or something like it”

(Phaedo 99d). Another way to observe the sun, and in particular a solar eclipse,

is with a camera obscura, where the light of the sun is captured through a little hole,
throwing an reversed image on the opposite wall. Aristotle seems to hint at it

somewhere, but it is doubtful whether the Presocratics were already acquainted

with this method (Problems, book xv, Chap. 6). Thales could have used one of these
methods for his observations that led to the prediction of a solar eclipse.

To avoid the unevenness of the real horizon, people may have used an artificial
horizon, like the little circular wall in Fig. 2.6. With this device they could, for

instance, determine the north. From the center of the circle, the observer notes

where a certain star rises above the wall, and he puts a mark there. In the same way,

he puts a mark where the star sets. The bisector that divides the angle from the

observer to the marks into two equal parts will point to the north.

Somewhere – though not in a book on astronomy – Aristotle mentions the

sighting tube (Generation of Animals: 780b 19–2 and 781a 9–12). A sighting tube

(Greek: dióptϱa, but Aristotle speaks of an au’lóB) is a hollow tube, put on a stand,

a kind of telescope without lenses (see Evans 1998: 33 and 34). A sighting tube

facilitates the observation of stars at daybreak or in the evening twilight, by keeping

out the atmospheric light from view. Also at night the observation of stars is

improved by the use of a sighting tube (thus Eisler 1949: 314). Observing from

the bottom of a deep pit or shaft has the same effect. Even during daytime, the stars

are visible with this method, says Aristotle.6 In the Arabic and European Middle

Ages, deep pits were said to be used as observation wells (see Sayili 1953:

149–155). Perhaps this makes sense of the story of Thales falling into a well

while looking at the stars. He may have descended into a well on purpose with

the intention to make use of its sighting tube function (see Eisler 1949: 324, n. 13).

6 See also Strabo, Geographica, ed. H.L. Jones (Strabo 1923, vol. II: 10).
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The sighting tube made it possible to find the north in another way as well. If one

points the tube toward an arbitrary star, this star will disappear from sight after a

certain time, because of the turning of the celestial vault. If one points it toward the

Polar star, this will remain visible all night. Since the Polar star, because of the

precession, was in archaic times further removed from the actual celestial pole than

today, another star was nearer to the pole. In Anaximander’s time, a star just at the

limits of human visibility stood almost at the north celestial pole (FK3037, magni-

tude +6.00, at about 89�270), but the ancients probably preferred Kochab in the Big
Dipper (magnitude +8.00, at about 83�090). To find the north, one would have to

point the sighting tube – of suitable size and fitted on a stand – in such a way that

that star described a small circle in the visual field of the instrument. The center of

this circle is the north pole of the heaven (Eisler 1949: 313). Figure 2.7, the original

of which dates from more than three and a half centuries before the invention of the

telescope in The Netherlands, shows that in the Middle Ages the sighting tube was

still in use. In Chap. 16, we discuss a rather spectacular measurement with the help

of such a sighting tube.

Fig. 2.6 Finding north with the help of an artificial horizon

2 Archaic Astronomical Instruments 23



Diogenes Laertius relates that Thales maintained that the diameter of the sun

equals 1/720th part of its orbit (and that the same holds for the moon).7 This is

confirmed by Apuleius (DK 11A1(24) and 11A19). In other words, 720 suns placed

in a row add up to the full circle of its daily orbit. This is correct because the angular

Fig. 2.7 The personification

of astronomy with a sighting

tube. Drawing (c.1880 A.D.)

after medieval manuscript

(1241 A.D.). For the

original, see http://www.

manuscripta-mediaevalia.de/

hs/katalogseiten/HSK0523b_

a040_jpg.htm. (# Hermann,

www.editions-herman.fr)

7 Gobry, who reads this text as “Selon Thalès (. . .) la course de la lune est le cent vingtième de celle

du soleil”, is twice mistaken (2000: 172).
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(or apparent) diameter of the sun (which is the angle between our eye and the both

ends of the sun’s diameter) equals approximately half a degree (see Fig. 2.8). As with

all doxographical accounts on Thales, we have to be careful about the truthfulness of

this statement. To measure the angular diameter of the sun implies that Thales

would have developed the idea that the celestial bodies pass underneath the earth

during their daily course along the firmament, making a full circle. This idea,

however, is not consistent with his world picture, at least as far as we are acquainted

with it. As we discuss in Chap. 4, Aristotle says that according to Thales, the earth

floats on water like a piece of wood. This representation is difficult to combine with

the idea of celestial bodies making full circles around the earth, which implies that

the earth hangs freely in space instead of floating on water. The unsupported earth

is, as we see in Chap. 8, Anaximander’s conception. If the account on the measure-

ment of the angular diameter of the sun is based on truth, then Anaximander

probably has to be credited with this achievement rather than Thales.

He could have made this measurement with the help of a water clock, the
so-called clepsydra (klecu�dϱa, “water thief”. See Fig. 2.9). This instrument was

already used by the Egyptians about 1350 B.C. and even earlier (see, e.g., Lull

2006: 137–139; Clagett 1995: 65–82 and plates III. 21a–35). The principle of a

clepsydra is the same as that of an hourglass. Its use is described by Cleomedes in

the second century A.D. The picture shows a primitive Greek clepsydra, consisting
of two containers, one placed above the other. The upper vessel is continuously

filled with water that slowly drains away into the lower vessel in a steady stream.

When the lower vessel is full, it is replaced by an identical empty one, so that a

measurement of time in equal units is achieved. Cleomedes describes the experi-

ment as follows: “During the time from the first appearance of the sun above the

Fig. 2.8 The angular diameter of the sun
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eastern horizon until the time the whole sun is visible above the horizon, one vessel

of the water-clock will be filled. When one lets the water stream out day and night,

until the next sun rises above the horizon, about 750 vessels will have been filled.

Therefore, the diameter of the sun equals 1/750th part of its entire orbit” (De motu
circulari corporum celestium 2.75, at p. 136).8 Cleomedes’ result differs from the 1/

720th part mentioned by Diogenes Laertius. This, however, will be due to the

intrinsic inaccuracy of the measuring method used (see Dicks 1954: 84: “it was

liable to constant error”).9

It is interesting to compare Cleomedes’ clepsydra with an Egyptian specimen of

14 in. height, found in Karnak and dating from about 1400 B.C. This clepsydra was
supposed to empty in one night. On the inside of the vessel, inscriptions are made

that indicate the water level for the hours of the night at different times of the year

(see Fig. 2.10). The length of the night at Karnak varies during the seasons between

610 and 820 min. Although we would say that it does not matter whether one

Fig. 2.9 A simple Greek

clepsydra (water clock)

(photograph by the courtesy

of Agora Excavations, The

American School of Classical

Studies at Athens)

8Wasserstein tries to make acceptable that Thales would have used another method than that

with the clepsydra, since his result differs from that of Cleomedes (1955: 114–116). Thales’ result

of 1/720, Wasserstein says, is obviously inspired by the hexagesimal system, in which the circle is

divided in 360�. His argumentation, however, is not convincing. Given the inaccuracy of the

measuring method, Thales – or whoever performed the calculation – could very well, for instance

for aesthetic reasons, have brought his results in line with the hexagesimal system. Moreover,

Wasserstein gives no indication of what other method Thales should have used.
9 The clepsydra on Fig. 2.9 is in the Athenian Agora Museum. It is said to be used to control the

length of a testimony in the Dikasterion. When the water stopped flowing, everyone yelled “sit

down” to the speaker (information by Robert Hahn). Of course, this does not exclude the

possibility of using the clepsydra for astronomical purposes as well.
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measures the hours of the day or those of the night, an inscription on the clepsydra
tells that it was meant to measure the hours of the night. Perhaps its primary use was

to let the priests know the exact time to say prayers.10 When we compare this

instrument with Cleomedes’ clepsydra, we may conclude that it emptied about

375 times faster than the Karnak clepsydra, which is an amazing difference. The

Egyptian clepsydramust have had a very small aperture of less than one millimeter

in diameter. The Egyptians probably put a metal (golden) orifice with the desired

diameter into the aperture of the clepsydra (Cotterell and Kamminga 1990: 62;

Sloley 1924: 45, n. 5). Given the volume of the Karnak clepsydra of about 22 l, and
the volume of a droplet of 50 ml, one may calculate that ideally speaking, the water

had to drop out at a steady rate of about ten drops per second (Turner 1984: 46;

Sloley 1924: 45). It would have been a question of trial and error to find the

diameter that produced the right speed of the outflowing water.

Another problemwas that the velocity of thewater flowdecreases as thewater level

drops. The Egyptians tried to solve this problem by making the vessel conical, the

lower diameter being smaller than the upper diameter, so that the lower water pressure

was compensated by the smaller amount of water flowing. As the water pressure is

reduced to zero when the water-level reaches the bottom of the vessel, they made the

aperture a bit above the bottom. Recent calculations and experiments have resulted in

the conclusion that “the clock would have been accurate as far as the Egyptians were

concerned” (Cotterell and Kamminga 1990: 63, and especially Fig. 3.10).

According to White in a recent handbook, Anaximander could have measured

the apparent diameter of the sun in another way, using a tool similar to the piece of

board already described above. He writes: “if the disk of a cup or plate held at arm’s

length covers the rising sun, then the disk can be used to measure the horizon by

counting how many of the diameters of the cup or plate it spans” (2008: 109).

Fig. 2.10 The month scales on the inside of the Karnak clepsydra (Sloley 1924: 46)

10 Information by Robert Hahn.
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In order to prevent eye damage and to get a better picture of the sun disk, one has to

better wait until the sun is somewhat clouded. White recommends using an artificial

horizon like that in Fig. 2.6 to provide for a perfect circle. However, in what

follows, he makes the procedure needlessly complicated by suggesting a pointer

turning along the horizon. The easiest way would be, instead of holding it in the

hand, to put a disk of appropriate size on an artificial horizon while standing at its

center and divide the circumference of that horizon by the diameter of the disk. Just

like with the use of the clepsydra, this procedure avoids calculating with p. On the

other hand, it presupposes some knowledge of the laws of perspective to elucidate

that the angular diameter of the sun has to its circular path around the earth the same

ratio as the diameter of the disk to the circle of the artificial horizon.

Apparently, White did not perform the experiment he describes himself. Other-

wise, he would have noticed that not “the disk of a cup or plate,” but a vitamin pill

(with a diameter of about a quarter of an inch) held at one arm’s distance will cover

the sun. Probably, this is the reason why he states that “the results are bound to be

wildly inaccurate” (2008: 109). On the contrary, they are acceptably accurate, as the

reader can easily check by performing the experiment. They remain within an

acceptable range, comparable with that in measuring with the clepsydra. In a

somewhat older handbook, it has already been stated that “(the) value of ½� (. . .)
can be ascertained by the most simple observation” (Pannekoek 1961: 120). The

error definitely cannot be a factor 4, as White surmises when he conjectures that

Anaximander took the angular diameter of the sun to be 2� instead of a half degree.
White makes a curious mistake when he writes that the result is impoverished

because “the atmosphere makes the sun appear larger on the horizon than in the

sky” (2008: 109). As already explained above, this mistake can be exposed with the

help of the same tool. The disk that covers exactly the sun high in the sky will be seen

to cover exactly the sun at the horizon as well. Moreover, it is not the atmosphere that

causes this illusion. This is a misunderstanding introduced by Aristotle (Meteor-
ologica: 373b12–13), as can be read in any book on optical illusions.11

The gnomon (gno�mon) is usually considered as the most important instrument of

archaic astronomy. On the operation of sundials, many books have been written.12

Usually, however, relatively little attention is paid to the simplest and oldest sundial,

the upright gnomon. A gnomon is nothing but a stick or staff put vertically into the

ground, the shadow of which can be studied. Any other vertical object, an obelisk for

instance, or even the upright human body itself may function as a gnomon as well.13

Diogenes Laertius says that Anaximander invented the gnomon (DK 12A1(1)). This

report must be false, since the gnomon had been in use for centuries all over the

world, for instance in Mesopotamia. The oldest records of Babylonian observations

with the help of a gnomon, dating from 687 B.C., are preserved in a number of clay

11 For quick information, see the article “Moon illusion” in Wikipedia.
12 A good introduction still is, for instance, Mayall andMayall (1938). A survey of ancient sundials

can be found in Gibbs (1976).
13 See, e.g., Pliny’s description of the obelisk that was erected on the Campus Martius in Naturalis
historia XXXVI, 72.
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tablets that are called MUL.APIN, after their first words. They contain, among other

things, tables indicating when the shadow of a standard gnomon has a certain

length.14 Herodotus says somewhere (Histories II 109) that the Greeks learned the

use of the gnomon from the Babylonians. Probably, then, we have to explain

Diogenes Laertius’ report in this way that Anaximander introduced the gnomon

from Mesopotamia into Greece.15 Diogenes Laertius and others also report that

Anaximander had erected in Sparta an instrument for measuring the hours, and that

he used the gnomon not only to measure the time but also to determine the solstices

and the equinoxes (DK 12A1(1), DK 12A2, and DK 12A4).

Usually it is said that the gnomon is in the first place an instrument for telling the

time of the day. So, for instance, Van der Waerden says: “Der Hauptzweck des

Gnomons ist, aus dem Gnomonschatten die Tageszeit zu erkennen” (1965: 254).16

It may be doubted, however, whether this is as simply true as it sounds. Imagine that

you walk around with a stick and want to know the hour of the day. You put your

stick perpendicularly in the sand and study the length of its shadow. What does it

tell you? All you know is that at different times of the day the shadow has different

lengths and that the length of the shadow varies with the seasons. I think you had

better throw your stick away, remember where the south is and look directly where

the sun stands. Before we discuss a method to handle the problem of telling the time

with an upright gnomon by fixing it at one place, we deal with the use of the

gnomon as an astronomical instrument.

Pedersen and Phil say: “Even with a simple gnomon it is possible to perform a

large number of measurements fundamental to astronomy” (1974: 42).17 Neverthe-

less, inspite of its various uses, the gnomon remains a rather limited astronomical

instrument because it is, so to speak, the instrument of the day, whereas ancient

astronomy is mainly the science of the night sky. Local noon is the only time of the

day that can be determined with a gnomon rather precisely, and in different ways, as

we see in due time. When employed to find out local noon, the gnomon functions

not only as a time indicator but also as an astronomical instrument because it

determines the north–south line, since at local noon the sun is at its highest and

stands exactly in the south. The first method is to study carefully the shadow of a

gnomon during the day and note its smallest length. At that moment, the gnomon’s

shadow lies exactly on the meridian of the observer, which is the circle that runs

through both poles of the earth. Of course this is something the ancients could not

know because it presupposes knowledge of the sphericity of the earth. This method,

however, is too inaccurate, as differences in length of the shadow are very hard to

14 MUL.APIN means as much as “the Plough star.” It is a small constellation, consisting of our

constellation Triangulum and the star d Andromedae.
15 In a recent study, Haase has held the somewhat strange opinion that Herodotus’ text must be

read in the sense that Anaximander “im Unterschied zum altorientalischen Verst€andnis dieses

Messtechnischen Instruments den Gnomon erstmals als Medium begriff ” (2008: 18, my italics).
16 I did it myself in Couprie (2003: 185).
17 See also Sarton (1959: 174): “A relatively large amount of precise information could thus be

obtained with the simplest kind of tool.”
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perceive during a considerable time around noon, and especially in winter, when

around noon during more than an hour the differences in altitude of the sun are no

more than 1�. This handicap bothers all instruments that are based on an upright

pointer, such as the Egyptian merkhyt that is treated hereafter.

The second method to determine noon is more precise and consists of bisecting

the angle between an arbitrary morning shadow and an evening shadow of the same

length. This is shown in Fig. 2.11, where G indicates the point where the gnomon is

put into the ground, GA the morning shadow, GB the evening shadow of equal

length, and CG the bisector of the angle AGB. An extra check can be made, as the

lines CG (north–south) and BA (east–west) must be perpendicular to one another.

This method is the complement in the day time of determining the north with the

help of a rising and setting star, as visualized in Fig. 2.6. However, when you walk

around with a stick and want to know when it is noon, these methods will not help

you, as noonwill be already past when you have finished your observations.With the

first method you will notice, when the shadows become longer again, that some time

ago it must have been noon, and with the second method you will have to wait for the

afternoon shadow to see that some hours ago it was noon. When used to find out

noontime, the gnomon functions not so much as a time indicator, but rather as an

astronomical instrument determining the north–south line. In addition to Figs. 2.6

and 2.11, at the end of this chapter we discuss another method of finding north.

In a nice little article, Neugebauer has shown how the Egyptians could have used a

similar method to orientate their pyramids exactly north–south (1980: 1–3). All they

had to do was to take a small but accurately shaped pyramid RSTU with top P (for

instance the pyramidion, the top of the pyramid itself), and put it roughly on a

north–south orientation on a completely flat and horizontal base, where the actual

pyramid had to be built (see Fig. 2.12). Then, they had to wait till the morning shadow

SMR of the small pyramid was an as-exact-as-possible continuation of the western

base UR of the pyramidion to measure the length UM. The same procedure had to be

performed in the afternoon, at the time when the shadow RAS was an as-exact-as-

possible continuation of the eastern base TS of the small pyramid, and TA could be

Fig. 2.11 The determination

of the noon line with the help

of a gnomon
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measured. If after this procedure UM and TA proved not to be of equal length, they

had to turn the small pyramid somewhat, and repeat the procedure the next days, until

the shadows were of equal length and the big pyramid could be aligned and

orientated. The best measurements can be obtained during the winter months, when

the sun is lower on the horizon and the shadow of the pyramid is sufficiently long.

However, as it is not so easy to construct a perfectly shaped pyramidion, nor a

perfectly horizontal floor, and as it is rather difficult to determine whether the

shadows are exactly equal in length, this method may suffer from inaccuracies.

Doxographical reports tell us that Anaximander observed the (dates of) the

solstices and equinoxes. On the equinoxes, 27 March and 29 September, respec-

tively, in the days of Thales and Anaximander, day and night are equally long.

At the summer solstice (29 June in Anaximander’s days), the noon shadow of the

gnomon is at its shortest, and at the winter solstice (26 December in Anaximander’s

days), it is at its longest. These dates could only approximately be established,

according to Dicks “probably to an accuracy of at best some five or six days”

(1966: 29). The reason is that during some days around the solstices, there is hardly

any difference in the shadow length at noon.

The angle made by the top of the gnomon and the end of its shadow at the time of

the solstices can be measured and will show to be about 47� (see Fig. 2.13). This

angle equals twice the inclination of the ecliptic (which is the sun’s yearly orbit

around the starry sky) in relation to the celestial equator (which is the projection of

the earth equator on the sphere of the sky). Acquaintance with the obliquity of the

ecliptic presupposes knowledge of the sphericity of the earth. This knowledge,

however, is not required for measuring the angle between the shadows of the

summer and winter solstices with a gnomon. As Sarton says, speaking about

Anaximander: “It was possible (. . .) from the observations he made with a gnomon

(. . .), to measure the obliquity. Yet, even if Anaximander measured the obliquity,

one could hardly say that he understood it” (1959: 292).

On the days of the equinoxes, day and night are of equal length. On these days,

the sun rises exactly in the east and sets exactly in the west. With the gnomon, the

Fig. 2.12 The north–south

orientation of a pyramidion

(somewhat adapted after

Neugebauer)
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equinoxes can be found in various ways. The first method is to bisect the angle of

the shadows thrown by the gnomon at the summer and winter solstices and to note

the day when the shadow reaches the point on the ground found in this way (E in

Fig. 2.13). This method is necessarily not very exact, because of the difficulty of

measuring the angles at the top of the gnomon and the insecurity of fixing the exact

dates of the solstices. The second method is to note on which calendar day the

earliest morning shadow and the latest afternoon shadow are just opposite one

another. This method too, is not very precise, as it requires a completely smooth

horizon on both sides. The third method, which is better, consists of observing on

which calendar day the top of the shadow of the gnomon describes a straight line

during the day. This line is, for instance, marked on the plate of a Roman sundial

(see Fig. 2.16). Contrary to what is sometimes said, none of these three methods

presupposes knowledge of the sphericity of the earth, or the idea of a celestial

sphere, on which the equator, tropics, and ecliptic are projected.18 The curves of the

Fig. 2.13 Fixing the shadow points of the equinox and the solstices, and measuring the obliquity

of the ecliptic with the help of a gnomon

18Dicks is wrong when he writes: “the equinoxes cannot be determined by simple observation

alone” (1966: 31). And also elsewhere: “The concept of the equinoxes is a more sophisticated one,

involving necessarily the complete picture of the spherical earth and the celestial sphere with

equator and tropics and the ecliptic as a great circle” (1966: 30). It is also not right to say that

“these concepts are entirely anachronistic for the sixth century B.C.” (1966: 30; see also 1970: 45).

Of course, the ancient ways of fixing the equinoxes and solstices did not possess the grade of

accuracy we would expect nowadays. See also, for instance, Fotheringham: “The determination of

the exact date of a solstice remained a difficulty throughout the whole course of ancient astronomy.

Even Ptolemy deduced from his own observations a date 38 h later than the true date for the

summer solstice” (1919: 168).
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shadow of the gnomon top during any day, with the exception of the equinoxes, are

hyperbolas, the extremes of which are those of the two solstices. That they are

hyperbolas was, of course, not yet known, as is clear from the way in which they

are rendered in Fig. 2.16. This does not alter the fact that any ancient observer could

observe and draw them.

The gnomon can also be used to determine the observer’s latitude by measuring

the angle of the shadow at the top of the gnomon at an equinox (∠BGE in Fig. 2.14;

the latitude depicted is that of Miletus). Of course, this figure makes sense only if

one is acquainted with the earth’s sphericity.

Another possibility is to determine the azimuth of the sun at any time of the day, as

in Fig. 2.15. The azimuth is the bearing of an object measured as an angle around

the horizon eastward starting fromnorth as the zero point. As is clear from the drawing,

one has to determine a north–south line first; the angle between this noon line and

the shadowof the gnomon indicates the azimuth. As the stars do not throw shadows, the

method at night is somewhat different. To determine the azimuth of a star, youwill have

to place the gnomon at a certain distance and notice the moment that the star is hiding

behind it. Then, the angle of azimuth between the line from the observer to the gnomon

and the north–south line can be measured. Combined with measuring the altitude

of the star above the horizon with the methods of Figs. 2.3 and 2.4, a rather acceptable

determination of the star’s position can be obtained. I do not knowwhether the ancients

really used this method. The Egyptians, at least, seem to have preferred the much less

precisemethod of the above-mentionedRammessian star clocks (see Fig. 2.5), whereas

the Babylonians identified the position of the moon and planets by indicating their

distances to the so-called Normal Stars (see Steele 2008: 42–44).

Fig. 2.14 Measuring the observer’s latitude with the help of a gnomon
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Now, let us return to the problem of making the gnomon a time indicator. If you

cannot use your gnomon as a time teller when you are traveling around, you may

decide to put it permanently somewhere, for instance, at the marketplace. Then, you

can construct converging hour lines that indicate the time of the day in different

seasons, like on the ground plate of the Roman sundial in Fig. 2.16. The black spot

on that picture is the place where a vertical gnomon was erected. The idea is that the

tip of the shadow of the gnomon touches the same hour line at different points,

depending on the time of the year. This is the way it is described in Kirk et al.: “the

ground near the gnomon was calibrated so as to give the time of day” (2009: 103).

During the day, the tip of the shadow describes a curve. The outermost curves,

drawn at the days of the solstices, are indicated (although not as curves but as

broken lines) in Fig. 2.16. On the days of the equinoxes, the shadow of the tip of the

gnomon does not show a curve but a straight line, as also indicated in Fig. 2.16

between the two solsititial curves. The doxography tells us that Anaximander

erected a gnomon in Sparta to observe the solstices and equinoxes and to measure

the hours (DK 12A1(1), DK 12A2, and DK 12A4). If these reports can be trusted,

the simplest way to understand them is to suppose that Anaximander drew a pattern

of lines similar to that of the Roman sundial on Fig. 2.16.

To construct the hour lines, Anaximander could have proceeded as follows. First,

at the day of an equinox, he marked the point of a morning shadow of the top of his

gnomon that fell neatly within the ground plate of his sundial (cf. the right end of the

equinox line in Fig. 2.16). On the same day, he marked the point of the evening

shadow of the same length at the other end of the equinox line. With the help of a

clepsydra, he divided the equinox line between these points into equal time portions

Fig. 2.15 Measuring the azimuth with the help of a gnomon
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(let us assume ten, as in Fig. 2.16), called “hours” (which do not coincide with our

hours of 60 min). He observed that equal time portions did not result in equal

distances on the equinox line. Subsequently, at the time of the summer solstice,

he marked on the curved line of the summer solstice the point of the shadow at noon

and then, after the lapse of five successive afternoon “hours” (measured by

the clepsydra), the points of the afternoon shadows. He mirrored these points to

get the morning hours. Finally, he connected the same hour points on the curve of the

summer solstice and on the line of the equinox and thus found the hour points on

the curve of the winter solstice (the first and last of which are, on Fig. 2.16, outside

the circle of the ground plate). In this way, the hour lines resulted. Now, at whatever

day of the year the point of the shadow of the gnomon fell on, e.g., the second hour

line in the morning, it was said to be the second hour in the morning.

As a commentary on Kirk’s lines quoted above Dicks wrote: “there can be

no question of the calibration of ‘the ground near the gnomon. . . to give the time

of day’.” This is, as he says, “owing to the fact that the altitude and azimuth of the sun

Fig. 2.16 Floor of a Roman sundial (first or second century B.C.), with hour lines, equinoctial line

and solstitial curves (drawing by Hans Exterkate)
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are continually altering, no one set of markings applicable all the year round can be

formulated to indicate the division of the day into parts” (1966: 29). Against the

background of the reconstruction attempted above, this verdict is too harsh.

The division of the day into equal parts (“hours”) as shown on Fig. 2.16 would

have been sufficient for practical purposes in Anaximander’s time. An obvious

handicap of the sundial as represented in Fig. 2.16 is that it does not show the

early morning and late afternoon hours in summer, when the days are longer. This is

because its calibration starts from the equinoctial hours. Drawing more intermediate

curves and constructingmore hour lines for that season could solve this problem. But

then, another problem arises, as the resulting morning hour lines lie before what was

called “the first hour.” Another evident difficulty is that you will always have to run to

the gnomon on the marketplace (or wherever it stands) when you want to know the

time of the day. When you are at a certain distance of the marketplace you had better

spare you the trouble and simply look at the sun to know approximatelywhat time it is.

The problem of telling the time while walking around with a stick still bothered

people as late as the eighteenth century A.D. This is shown in an English almanac of

the year 1712 A.D., in which for every single month of the year tables of shadow

lengths in southern England with their corresponding morning and afternoon hours

were published (see Isler 1991b: 170–171). Borchardt mentions an Egyptian table

that, however, is so fallacious that he is not even able to conclude from it in which

month the summer solstice must be placed. Another table from Taifa in northern

Nubia is so inaccurate that it may only function as a very rough rule of thumb (1920:

27–32). After all, we may not suppose that the ancients used to carry around such

tables to translate the length of the shadow of their gnomon into the time of the day.

Notwithstanding the above-mentioned proviso, Dicks is basically right when he

writes: “observations of the shadow of a gnomon can give only the roughest

indication of the time of day, unless the gnomon is so placed that its axis is parallel

to the axis of the earth” (1966: 29). The habit of placing the gnomon at an angle,

parallel to the earth’s or celestial axis (which amounts to the same), however, was

developed much later, according to some, in the first century A.D. (Mayall and

Mayall 1938: 15). This is the way the gnomon can still be seen on numerous

sundials today. When the gnomon is placed parallel to the celestial axis, one

reads the shadow of the entire gnomon (not only its top) on a scale.

There is another way of using the gnomon, which is ascribed to Thales, and which

at first sight has nothing to do with astronomy. It will, however, appear to have

consequences for archaic cosmology, as is shown in Chap. 16. Plutarch tells us that

Thales used a gnomon to measure the height of a pyramid. To illustrate his descrip-

tion, I have inserted capitals in his text corresponding with those in Fig. 2.17: “You

set up a stick (GH) at the end of the shadow cast by the pyramid, so that by means of

the sunbeam that touches both the top of the pyramid and that of the gnomon, you

have made two triangles (AGH and APQ). Then you have shown that the ratio of the

one shadow (of the pyramid, PA) to the other one (of the stick, GA) is the same as

that of the (height of the) pyramid (PQ) to the (length of the) stick (GH)” (DK

11A21, my translation). Thales probably tried to measure the height of the Great

Pyramid of Giza (Cheops’ pyramid) that is neatly oriented north–south, as we saw.
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Thales would have had to solve two other problems, before he could measure the

height of the pyramid.19 The first problem was that he had to measure the distance

AP, whereas P is hidden in the center of the pyramid. To measure this distance (and

taking for granted that the pyramid had an exactly square base), Thaleswould have had

to put his gnomon right in front of a point halfway the side of the pyramid, opposite to

the sun at noon (the pyramid is, as we have seen, aligned north–south). In Fig. 2.18,

which is in plan view, G is the base of the gnomon and P the hidden center of the

pyramid, right below its top. Then, the line GP is perpendicular to SR, which it cuts

into two equal halves. SCP is an isosceles right-angled triangle, from which follows

that SC¼ PC.Now, the total length of the shadowof the pyramid is the addition of two

lines of known length. SC (¼PC) +CG (in Fig. 2.18) +GA (in Fig. 2.17).

Fig. 2.17 How Thales

measured the height

of a pyramid

Fig. 2.18 Measuring the

distance GP

19 These were the problems Carlo Rovelli’s students were confronted with when he asked them to

repeat Thales’ measurement.
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If SR in Fig. 2.18 is the northern base of the pyramid, the line GC points to the

south, the direction of the sun at noon. However, if you try to measure the Great

Pyramid’s shadow, the second difficulty is that during a considerable part of the

year the pyramid does not cast a shadow at noon. This is because the angle of its

sloping sides is about 52� to the horizontal. Since the Great Pyramid is at 30�N, the
sun at the equinoxes is 60� above the horizon. At the summer solstice, at noon, the

sun even gets as high as 83.5� above the horizon. At the winter solstice, the altitude
of the sun at Giza is about 36.5�. So Thales had better perform his measurement in

winter. Another possibility would be for him to face the west or east side of the

pyramid and watch the sun in summer a few hours after its rising or before its

setting, when the sun is due east or due west, and not too high in the sky.

An easier way to measure the height of a pyramid is to wait until the shadow is

exactly equal to the size of the gnomon. Then, the shadow of the pyramid is also

equal to its height. According to Burch this method fails because “a pyramid with a

45� slope (and the Egyptian pyramids are nearly that) casts no shadow at all under

the circumstances required by the rule” (1949–1950: 139). Burch is too pessimistic,

as the slope of all important pyramids is 50� or more, except one (the north or red

pyramid of Snefru) that is 43.5�.20 The slope of the Great Pyramid is, as we have

seen, about 52�. In Thales’ time (600 B.C.), the transit altitude of the sun at Giza

was 45� on 14 February and 7 November. This means that at those days the shadow

at noon fell far enough outside the pyramid to be measured, whereas the length of

the shadow of the gnomon was equal to the length of the gnomon, and accordingly

the length of the shadow of the pyramid (measured from right beneath its top,

hidden inside the pyramid) was equal to its height.

Let us return to Fig. 2.17. This picture invites us, as it were, to draw yet another

line from the sun downward to the flat earth, and to measure the distance of the sun.

To be able to do so we first need to calculate the distance from A to the point on

earth where the sun is right above our head (in the zenith). How this problem can be

solved, we will see in Chap. 16. Another possible application of the gnomon is to

outline the shape and boundaries of the inhabited part of the earth (the oi’koume�nZ)
on a map of the flat earth, as will be discussed in Chap. 6 and is shown in Fig. 6.1.

A later development is to place the gnomon vertically in the center of a

hemispherical bowl with its top in the plane of the bowl’s rim. Such an instrument

is called a skajZ� (“bowl”). The bowl creates an inverted celestial vault. The

shadow of the gnomon’s tip draws curves on the inner side of the bowl that mimic

those of the sun in its daily track along the celestial vault (see Fig. 2.19). The oldest

skajZ� dates to the fourth century B.C. (Pedersen and Pihl 1974: 47).

As we have seen, when you are walking with a stick it is not a very helpful to use

it as a gnomon to tell the time of the day. Yet the gnomon can rather easily be used

to make appointments, as a kind of portable agenda. Today, we are used to make

appointments to the minute, checking our watches. For instance, we will meet at a

20According to Clayton 1994: 44, the norm was 51�520.
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quarter past five in the afternoon; the train departs at 10.37 a.m. sharp, etc.

The ancient civilizations, too, with the steadily increasing complexity of their

societies, must have felt a growing need for an instrument that enabled people to

make rather precise appointments. The ancients used the clepsydra to tell the

hours, but this instrument was of course tied to one place and thus of no use for

making appointments when the persons involved were at some distance from each

other. Two (or more) staffs, used as gnomons, however, were well able to do the

job. Mayall and Mayall hint at such a use of the gnomon for making appointments,

when they write: “How could the traveler return at a prearranged time? He could

carry with him a stick equal in length to the height of the one which had been

securely placed in the ground near his cave. No doubt Mrs. Caveman frequently

remarked, ‘don’t forget your shadow pole and return when the shadow’s length is

one pole’” (1938: 2). However, the authors are too precise, for a serious advantage

of the gnomon is that the two persons do not need to carry identical sticks (sticks

of the same length). Any vertical stick will do when you arrange to make an

appointment like that of Mr. And Mrs. Caveman. This is the only place in the

literature that I could find where the possible use of gnomons for making appoint-

ments is mentioned.

This method could be easily generalized. Imagine two or more persons carrying

sticks with standard marks of, say, one half, one quarter, and one-third of the stick,

or even a finer scale. People could then make an appointment when the shadow of

the stick was, for instance, 1 2
3
its length. Of course, you will not only have to take

into account that the same shadow length will occur twice a day, in the morning and

afternoon, but also that the same shadow length will indicate different times of the

day according to the season. For instance, in Athens in 500 B.C. around the 9th of

March the shadow of a gnomon was equal to its length at noon, whereas 3 months

Fig. 2.19 Transverse section

of a bowl with an upright

gnomon
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later (9th of June) it had the same length at 8.40 a.m. and at 3.20 p.m. (local time).

This would not have caused a big problem, as a daily use of the gnomon would have

led to a continuous adjustment of the length of the shadow to make an appointment

for approximately the same desired time of the day. Provided all persons involved

noticed the shadow length agreed upon, they would all come at about the same time

for their appointment. There are some indications that the ancients did it this way.

I do not know whether Greek staffs with measuring marks have been found, but

some Egyptian staffs seem to bear such marks, as in the statue of Amenhotep II in

Fig. 2.20 (Isler 1991b: 174, Fig. 23).

Roman indications of calculating with fractions of staff length are in Pliny:

“In Egypt at noon on the day of the equinox the shadow of the gnomon measures a

little more than half the gnomon itself, whereas in the city of Rome the shadow is one-

ninth shorter than the gnomon, in the town of Ancona 1/35th longer, and in the district

of Italy called Venezia at the same time and hour the shadow is equal to the gnomon”

(Naturalis historia I: 182, my translation). Similar remarks were made a century

Fig. 2.20 Statue of

Amenhotep II holding a staff

with a measuring scale on its

shaft (Isler 1991b: 174,

Fig. 23, by the courtesy

of Martin Isler)
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earlier by Vitruvius (De architectone IX: 1.1). These observations regard the

differences in shadow between different cities, but the point is that the shadow lengths

were expressed in terms of parts of the length of the gnomon. As stated previously, the

gnomon that is always available is the upright human body with its shadow. Isler

remarks somewhere that “the empirical method of telling time by estimating, in paces,

the length of a man’s own shadow, is ancient and widespread” (1991b: 179). An

amusing example is in one of Aristophanes’ plays, when a hungry person concludes

from the length (in feet) of his own shadow that it is time for dinner (Ekklesiazusae
652).21 Of course, this last method is much less precise than measuring the length of

the shadow of a well-scaled staff.

Concluding this section it may be clear that the gnomon, being by far the

simplest tool you can think of, and although it was practically confined to use by

daylight, was actually a powerful and multifunctional instrument. Moreover, the

gnomon inspired the development of computation and measurement, and more

specifically stimulated the calculation of angles. If the invention of the wheel

stood at the cradle of technology, the use of the staff as a gnomon can be said to

have stood at the cradle of the natural sciences. And if it is true that Anaximander

introduced the gnomon in Greece, he may also be credited with the introduction of

measurement and calculation as scientific tools.

The Egyptians used an instrument, called merkhyt (or merkhet) that is akin to the

gnomon (see Figs. 2.21 and 2.23 right). Themerkhyt is called after its upright part as a
pars pro toto. Actually, youmay look upon themerkhyt as a gnomonwith a part of the

ground attached to it (the horizontal plank). Themerkhyt is a rather small instrument,

Fig. 2.21 The handling of a

merkhyt according to Isler

(Isler 1991a: 67, Fig. 8, by the

courtesy of Martin Isler)

21 Similar remarks in Menander, fragment 304 (364K) and Eubulus, fragment 119.
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which makes it easy to carry along. In modern representations (e.g., recently in North

2008: 31, Fig. 20), it is often depicted with a crossbar on top of its upright part, but

this is a fiction resulting, as Isler has convincingly shown, from a wrong reading of

an Egyptian text. Moreover, such a crossbar has never been found (See Isler 1991a:

57–59, 1991b: 177–179). A plumb on a line, as in Figs. 2.21 and 2.23, was used to

keep the instrument horizontal. Isler lets the observer hold the merkhyt in his hand

(Fig. 2.21¼ Isler 1991a: 67, Fig. 8), but it seems more appropriate to put it on

something like a wall or table. When it is turned toward the sun, the shadow of the

short upright part, thrown on the horizontal piece, can be read on a scale.

In the description of a merkhyt found in the cenotaph of Seti I (�1280 B.C., see

Fig. 2.22), the mark that is nearest to the upright part is obviously the noon mark at

the equinox, as the angle of the shadow at the upright part is about 30�,
corresponding to the latitude of northern Egypt. The plank is divided according to

the numerical indications 3, 6, 9, and 12, given in the text (Fig. 2.22, columns

8 and 9). Nowhere is indicated which unit has to be taken 3, 6, 9, or 12 times. I take

it that the counting unit is the distance between the upright part and the noon mark

(which we may call “a”) and that the counting starts from the noon mark, although

this is not well represented in the drawing. This results in a distance of 3a between

the noon mark and the second mark, a distance of 6a between the noon mark and

the third mark, and so on.22

A similar counting method is used on the merkhyt that is preserved in the

Ägyptisches Museum in Berlin (see picture in Von Bomhard 1999: 68–69, Abb.

49), although this one show marks in a rising sequence (1:2:3:4:5). On this

specimen the noon mark is so close to the upright part that the instrument must

have been calibrated for the summer solstice. Henceforth, I confine myself to a

discussion of the merkhyt in the cenotaph of Seti I, but, mutatis mutandis, the same

holds for other merkhyts as well.
A main problem is that the way in which the marks are branded on the plank

makes no sense as an indication of hours or other time units. The noon mark, for

instance, is valid only on the days around the equinoxes. In other times of the year,

the shadow at noon is either shorter or (much) longer. This entails that the marks in

different seasons indicate different times of the day. Moreover, the equal distances

between the marks do not correspond to equal time units. As Clagett puts it: “Even if

these marks correctly measured equal hours at the equinoxes (which they did not),

they would not have accurately marked the lengths of those hours at other times of the

year in view of the changing declination of the sun throughout the year” (1995: 86).

Nevertheless, in the text, the marks are said to indicate the hours of the day.

The word “hours,” then, is used here in a rather loose way. The instrument neglects

the first two hours in the morning and the two last afternoon hours, as is explicitly

mentioned in the text in columns 12 and 13: “It sums at [only] eight hours, for two

hours have passed in the morning before the sun shines [on the shadow clock] and

22 The text on top may be translated as “knowing the hours of day and night, starting from fixing

noon”, as I will defend in a forthcoming article.
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another two hours [will] pass after [which] the sun enters [the Duat]” (transl.

Clagett 1995: 466).23 Consequently, the mark that is farthest away from the upright

part marks the end of the second hour in the morning (and of the fourth hour in the

Fig. 2.22 Description of

a merkhyt from the cenotaph

of Seti I (Frankfort 1933:

Plate LXXXIII)

23 Strictly speaking this holds only for the time between the autumnal equinox and the vernal

equinox, when the noon shadow falls either on the first mark (at the equinoxes) or somewhere in

between the first and the second mark. In the other half of the year, the shadow falls somewhere

between the upright part and the first mark, thus creating an extra “hour.”
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afternoon), although in column 8 it is called (the mark of) the first hour. By this last

expression is meant, accordingly: the first “hour” indicated on the instrument.

All this taken together results in the conclusion that the merkhyt has, to say it

friendly, a very limited use as a time teller. The distances of the marks on the

instrument are apparently not meant to indicate precise hours of the day, but chosen

in a way that should make them easy to reproduce in order to get exact copies. This

feature leads to an interpretation of the use of the merkhyt analogous to that given

above for the gnomon: the instrument was perfectly apt tomake appointments or to fix

the moment of, say, a certain ceremony. As far as I can see, scholars have always tried

to give an interpretation of the use of one merkhyt at a time, whereas nobody has

bothered about the use of two or more identical merkhyts, used by different persons.

When two or more persons had a copy of a merkhyt, made according to identical

instructions, they could easily agree to meet when the shadow had reached, e.g., the

secondmark in themorning, or start a celebration when it had reached the fourthmark

in the afternoon, and so on. Nomatter the season of the year, theywould all come at the

appointed place at the right time.As themarks do not indicate exact times of the day, it

does not matter very much where exactly they are drawn, provided they are identical

on the merkhyts of the persons who make the appointment. Summarizing, three

features make themerkhyt into a rather practical instrument for making appointments:

(1) that it was portable and thus easy to carry with you, (2) that the shadow could be

read on the instrument itself instead of on the ground, and (3) that it was easy to

reproduce, especially when its marks were at regular distances, so that more people

could handle identical instruments. I do not discuss here later developments of this

instrument with tilted hour scales, as this would take too much space.

In the literature, the merkhyt is often mentioned in combination with another

instrument, called the bay (which is called merkhyt as well by some authors).24 The

bay and themerkhyt seem to belong together, as at least one set has been foundwith the

name of the same priest on both instruments. The bay is a stick with a split upper end.
The length of the bay in Fig. 2.23 is 52.5 cm. Perhaps it is noteworthy that themerkhyt
was written as an ideogram in hieroglyphs (see Isler 1991a: 63), but that this is not the

case with the bay. How this instrument was used is a much discussed question.

Borchardt was the first to describe its supposed use, with the following words: “ein

Visirstab, der vertical dicht vor das eine Auge zu halten ist, w€ahrend man das andere

schließt” (1899: 14, see also Borchardt 1920: 53–54). Other authors repeat this alleged

use of the bay, suggesting that “it would concentrate the vision and so give a sharper

image” (West 1982: 121). I am not able to understand, however, what the advantage

would be of looking through the split end of a stick held before the eye.

As the bay and themerkhyt seem to belong together, several authors have tried to

imagine what their combined use could have been. Sloley figured out that the

observer and his aide were sitting on a north–south line, the first holding a bay in
one hand and a merkhyt with a plumb line in the other, whereas the aide holds the

plumb line of his merkhyt above his head (see Fig. 2.24). The observer is supposed

24 E.g., Sloley (1931: 169 and Plate XVI, 4).
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to look through the split end of the bay and along the plumb line of his merkhyt and
that of his aide to mark the position of a star.

Other attempts to comprehend the combined use of the bay and the merkhyt are
derivatives of Sloley’s picture but usually have only one bay and one merkhyt.
Mostly, they have one observer hold the bay before him, while an aide holds the

merkhyt in his hand. (e.g., Ronan 1971: 56). The observer is supposed to look

through the split end of the bay and along the plumb line of the merkhyt to mark the

position of a star. Lull inverts the order and lets the observer look along the plumb

line of the merkhyt, whereas the aide holds a kind of stick (2006: 296, Fig. 98, and

299, Fig. 100, here reproduced as Fig. 2.25).

The trouble with all these alleged methods is that even if the supposed observers

could manage to hold their hands still enough to make any observation possible, this

looks like a clumsy way of observing a star. Neugebauer and Parker already

remark: “That two persons, sitting opposite each other, cannot resume exactly the

same position night after night is clear. To fix accurately the moment of transit,

when even very small motions of the eye of the observer will displace the apparent

position of a star, is impossible” (1960–1969, Vol. II: x). Probably for this reason,

Fig. 2.23 Two Egyptian

instruments, a bay (left), and
a merkhyt with plumb line

(Borchardt 1899: 10)
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Fig. 2.24 The use of merkhyt and bay according to Sloley (1931, plate XVII,1 between 170

and 171)

Fig. 2.25 The use of merkhyt and stick according to Lull (2006: 299, fig. 100)



Pecker makes the merkhyt the cross-beam of a gallows, on which a plumb line

hangs (2001: 31, Fig. 1.13). The observer is thought to stand behind a board with a

vertical slit that is provided with a scale, and to look through this slit along the

plumb line to determine the apparent height of a star above the horizon. Needless

to say that such a board with a slit and a scale is no more than a product of

Pecker’s fantasy.25 None of the proposed methods of using the bay seems to me

convincing.

Of course the merkhyt itself is not necessary for the use of its plumb line as a

kind of sighting instrument. A mere plumb line, its upper end tied to something

like the gallows mentioned above, will do the job as well. It is well known that the

ancient Egyptians were interested in the culmination of other stars, especially the

36 so-called decans.26 To watch these culminations, the observer needed a perma-

nent and dependable north–south line. I think he could obtain such a line by using

the bay as a calibration device. The procedure would look like this: The observer

sets himself south of a rather long plumb line that hangs down from a stake and,

always looking with one eye to prevent parallax problems, he waits until he can

move so that he can see stars culminate when passing the plumb line. Then, he lets

his aide put a bay, with the split end on top, perpendicularly in a holder between

himself and the plumb line, so that he sees the plumb line exactly in the split of the

bay, As soon as he has achieved this, he asks his aide to fix the holder on that spot.

Now, he has made sure that every time he will return to the same place and put his

bay into the holder, he will provide a perfect north–south line by setting himself

south of the bay so that the plumb line is caught in the split of the bay. In other

words, he has made a simple but convenient observatory, by means of which he can

observe the culmination of a star, say Sirius, or another of the 36 so-called decans.
Mark that the bay is not held close to the eye, as Borchardt supposed, but at a certain
distance, because the observer uses the bay only to make sure that he will sit in

the right place. The observatory is shown in Fig. 2.26. This reconstruction of the

way the instruments were used is of course also a fruit of fantasy, but at least it

makes sense.

The procedure just described can be used for stars on the northern sky. For the

observation of culminations in the southern sky, the observer, having drawn a

north–south line on the ground, simply has to change his position to north of the

plumb line and to look southward, making sure that the plumb line is seen in the

split of the bay. In Fig. 2.26 I made use of the fact, exposed by Spence, that in

2467 B.C. the imaginary line between two stars, Mizar (z of the Big Dipper) and

Kochab (b of the Little Dipper), ran through the pole (2000: 320–324). Lull did the

25 Isler proposes still another use, quite different, of the bay. He lets the observer put it upside down
(with the split end under) at the top of the shadow of a gnomon “to help clarify a shadow by

reducing surface reflection” (1991b: 162, Fig. 9; cf. 1989: 198, Fig. 5; see also Lull 2006: 292,

Fig. 96). Moreover, Isler shows all kinds of forked and curved sticks that could function as a

gnomon, but none of them looks exactly like the bay in Fig. 2.23.
26 The so-called decans were stars that were used by the ancient Egyptians for marking the hours of

the night. More on this subject in Von Bomhard (1999: 50–65), and especially in Leitz (1995).
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same in Fig. 2.25 above. According to Spence, this datum was used to align the

pyramids. Spence concluded that, with an uncertainty of 5 years, the pyramid of

Cheops must have been built in 2467 B.C. Spence’s article has met with severe

criticisms that need not bother us here.27 As already said, any culminating star could

have been used to set up the observatory as in Fig. 2.26.

At the end of this chapter on archaic astronomical instruments, we may mention

Kauffmann’s suggestion that the play of the moving shadows on the cannelures of

temple columns functioned as a sundial (1976: 28). There are, however, no ancient

sources to confirm this hypothesis (Fig. 2.27).28

Fig. 2.26 An Egyptian observatory with bay and plumb line (2467 B.C.) (drawing by Hans

Exterkate)

27 See e.g., the discussion in Gingerich (2000: 297–298), Rawlins and Pickering (2001: 699),

Spence (2001: 699–700), Bauval (2001: 320–324), and Lull (2006: 299–300).
28 See for some critical remarks Couprie and Pott (2001: 47).
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Fig. 2.27 The play of light

and shadow on the cannelures

of temple columns

(photograph by Victor

Abrash)
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