CHAPTER 2
The Wave-Particle Duality

This book is mainly concerned with the interactions of electrons with matter.
Thus, the question “What is an electron?” is quite in order. Now, to our
knowledge, nobody has so far seen an electron, even by using the most
sophisticated equipment. We experience merely the actions of electrons,
e.g., on a cathode-ray television screen or in an electron microscope. In each
of these instances, the electrons seem to manifest themselves in quite a
different way, i.e., in the first case as a particle and in the latter case as an
electron wave. Accordingly, we shall use, in this book, the terms “wave” and
“particle” as convenient means to describe the different aspects of the
properties of electrons. This “duality” of the manifestations of electrons
should not overly concern us. The reader has probably been exposed to a
similar discussion when the properties of light have been introduced.

We perceive light intuitively as a wave (specifically, an electromagnetic
wave) which travels in undulations from a given source to a point of obser-
vation. The color of the light is related to its wavelength, 4, or to its
frequency, v, i.e., its number of vibrations per second. Many crucial experi-
ments, such as diffraction, interference, and dispersion clearly confirm the
wavelike nature of light. Nevertheless, at least since the discovery of the
photoelectric effect in 1887 by Hertz, and its interpretation in 1905 by
Einstein, we do know that light also has a particle nature. (The photoelectric
effect describes the emission of electrons from a metallic surface that has
been illuminated by light of appropriately high energy, e.g., by blue light.)
Interestingly enough, Newton, about 300 years ago, was a strong proponent
of the particle concept of light. His original ideas, however, were in need of
some refinement, which was eventually provided in 1901 by quantum
theory. We know today (based on Planck’s famous hypothesis) that a certain
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8 I. Fundamentals of Electron Theory

minimal energy of light, i.e., at least one light quantum, called a photon,
with the energy

E =vh = wh, 2.1

needs to impinge on a metal in order that a negatively charged electron may
overcome its binding energy to its positively charged nucleus and escape
into free space. (This is true regardless of the intensity of the light.) In (2.1)
h is the Planck constant whose numerical value is given in Appendix 4.
Frequently, the reduced Planck constant

_h
C2n

is utilized in conjunction with the angular frequency, w = 2nv (1.7). In
short, the wave-particle duality of /ight (or more generally, of electromag-
netic radiation) had been firmly established at the beginning of the twentieth
century.

On the other hand, the wave-particle duality of electrons needed more
time until it was fully recognized. The particle property of electrons, having
a rest mass myg and charge e, was discovered in 1897 by the British physicist
J.J. Thomson at the Cavendish Laboratory of Cambridge University in
an experiment in which he observed the deviation of a cathode ray by
electric and magnetic fields. These cathode rays were known to consist of
an invisible radiation that emanated from a negative electrode (called a
cathode) which was sealed through the walls of an evacuated glass tube that
also contained at the opposite wall a second, positively charged electrode.
It was likewise known at the end of the nineteenth century that cathode rays
travel in straight lines and produce a glow when they strike glass or some
other materials. J.J. Thomson noticed that cathode rays travel slower than
light and transport negative electricity. In order to settle the lingering
question of whether cathode rays were “vibrations of the ether” or instead
“streams of particles”, he promulgated a bold hypothesis, suggesting that
cathode rays were “charged corpuscles which are miniscule constituents
of the atom”. This proposition—that an atom should consist of more than
one particle—was startling for most people at that time. Indeed, atoms were
considered since antiquity to be indivisible, that is, the most fundamental
building blocks of matter.

The charge of these “corpuscles” was found to be the same as that carried
by hydrogen ions during electrolysis (about 10~'° C). Further, the mass of
these corpuscles turned out to be 1/2000th the mass of the hydrogen atom.

A second hypothesis brought forward by J.J. Thomson, suggesting that
the “corpuscles of cathode rays are the only constituents of atoms”, was
eventually proven to be incorrect. Specifically, E. Rutherford, one of
Thomson’s former students, by using a different kind of particle beam,
concluded in 1910 that the atom resembled a tiny solar system in which a
few electrons orbited around a “massive” positively charged center. Today,

2.2)



2. The Wave-Particle Duality 9

one knows that the electron is the lightest stable elementary particle of
matter and that it carries the basic charge of electricity.

Eventually, it was also discovered that the electrons in metals can move
freely under certain circumstances. This critical experiment was performed
by Tolman who observed inertia effects of the electrons when rotating
metals.

In 1924, de Broglie, who believed in a unified creation of the universe,
introduced the idea that electrons should also possess a wave-particle
duality. In other words, he suggested, based on the hypothesis of a general
reciprocity of physical laws, the wave nature of electrons. He connected
the wavelength, A, of an electron wave and the momentum, p, of the particle
by the relation

Ip = h. 2.3)

This equation can be “derived” by combining equivalents to the photonic
equations £ = vh (2.1), E = me? (1.8), p = mc (1.3), and ¢ = Av (1.5).

In 1926, Schrodinger gave this idea of de Broglie a mathematical form.
In 1927, Davisson and Germer and, independently in 1928, G.P. Thomson
(the son of J.J. Thomson; see above) discovered electron diffraction by a
crystal, which finally proved the wave nature of electrons.

What is a wave? A wave is a “disturbance” which is periodic in position
and time. (In contrast to this, a vibration is a disturbance which is only
periodic in position or time.") Waves are characterized by a velocity, v, a
frequency, v, and a wavelength, A, which are interrelated by

v ="VAi. 2.4)
Quite often, however, the wavelength is replaced by its inverse quantity
(multiplied by 2n), i.e., 4 is replaced by the wave number
_2n
=
Concomitantly, the frequency, v, is replaced by the angular frequency w = 2
nv (1.7). Equation (2.4) then becomes

k (2.5)

[0

V= (2.6)

One of the simplest waveforms is mathematically expressed by a sine (or

a cosine) function. This simple disturbance is called a “harmonic wave”.

(We restrict our discussion below to harmonic waves since a mathematical

manipulation, called a Fourier transformation, can substitute any odd

type of waveform by a series of harmonic waves, each having a different
frequency.)

A summary of the equations which govern waves and vibrations is given in Appendix 1.
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The properties of electrons will be described in the following by a
harmonic wave, i.e., by a wave function ¥ (which contains, as outlined
above, a time- and a space-dependent component):

Y = sin(kx — wt). (2.7)

This wave function does not represent, as far as we know, any physical
waves or other physical quantities. It should be understood merely as a
mathematical description of a particle (the electron) which enables us to
calculate its actual behavior in a convenient way. This thought probably
sounds unfamiliar to a beginner in quantum physics. However, by repeated
exposure, one can become accustomed to this kind of thought.

The wave-particle duality may be better understood by realizing that the
electron can be represented by a combination of several wave trains having
slightly different frequencies, for example, ® and w + Aw, and different
wave numbers, k and k + Ak. Let us study this, assuming at first only two
waves, which will be written as above:

Y, = sinkx — o] 2.7)
and
¥, = sin[(k + Ak)x — (o + Aw)i]. (2.8)

Superposition of ¥, and ¥, yields a new wave W. With sino 4+ sinf§ =
2cos3 (e — f) - sing (o 4 f8) we obtain

Aw Ak . Ak Aw
Y, +¥Y, =¥ = 2cos<7t—7x) ~sm{(k+7>x— (w—kT)t].

Modulated Sine wave
amplitude

2.9

Equation (2.9) describes a sine wave (having a frequency intermediate
between @ and @ + Aw) whose amplitude is slowly modulated by a cosine
function. (This familiar effect in acoustics can be heard in the form of
“beats” when two strings of a piano have a slightly different pitch. The
beats become less rapid the smaller the difference in frequency, Aw,
between the two strings until they finally cease once both strings have
the same pitch, (2.9).) Each of the “beats” represents a “wave packet”
(Fig. 2.1). The wave packet becomes “longer” the slower the beats, i.e.,
the smaller Aw. The extreme conditions are as follows:

(a) No variation in @ and k (i.e., Aw = 0 and Ak = 0). This yields an “infinitely
long” wave packet, i.e., a monochromatic wave, which corresponds to the
wave picture of an electron (see Fig. 2.2).

(b) Alternately, Aw and Ak could be assumed to be very large. This yields short
wave packets. Moreover, if a large number of different waves are combined
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Figure 2.1. Combination of two waves of slightly different frequencies. AX is the distance
over which the particle can be found.

Figure 2.2. Monochromatic matter wave (Aw and Ak = 0). The wave has constant ampli-
tude. The matter wave travels with the phase velocity, v.

(rather than only two waves ¥ and W,), having frequencies @ + nAw (where
n=1,2,3,4,...), then the string of wave packets shown in Fig. 2.1 reduces to
one wave packet only. The electron is then represented as a particle. This is
shown in Fig. 2.3, in which a number of W-waves have been superimposed on
each other, as just outlined. It is evident from Fig. 2.3 that a superposition of,
say, 300 W-waves yields essentially one wave packet only.

Different velocities need to be distinguished:

(a) The velocity of the matter wave is called the wave velocity or “phase velocity”,
v. As we saw above, the matter wave is a monochromatic wave (or a stream of
particles of equal velocity) whose frequency, w, wave-length, 1, momentum, p,
or energy, E, can be exactly determined (Fig. 2.2). The location of the particles,
however, is undetermined. From the second part of (2.9) (marked “sine wave”),
we deduce

X o+Aw/2 o

ot k+ Ak/2 K
which is a restatement of (2.6). We obtain the velocity of a matter wave that
has a frequency @ + Aw/2 and a wave number k + Ak/2. The phase velocity
varies for different wavelengths (a phenomenon which is called “dispersion”,

and which the reader knows from the rainbow colors that emerge from a prism
when white light impinges on it).

(2.6a)
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Figure 2.3. Superposition of ¥-waves. The number of W-waves is given in the graphs. (See
also Fig. 2.1 and Problem 2.8.)

(b) We mentioned above that a particle can be understood to be “composed of” a
group of waves or a “wave packet”. Each individual wave has a slightly
different frequency. Appropriately, the velocity of a particle is called “group
velocity”, v,. The “envelope” in Fig. 2.1 propagates with the group velocity, v,.
From the left part of (2.9) (marked “modulated amplitude”) we obtain this
group velocity

x Ao do
Vo =s—= — = ——,
T Ak dk
Equation (2.10) is the velocity of a “pulse wave”, i.e., of a moving particle.

(2.10)

The location X of a particle is known precisely, whereas the frequency is not.
This is due to the fact that a wave packet can be thought to “consist” of several
wave functions ¥y, ¥, ... , ¥, with slightly different frequencies. Another
way of looking at it is to perform a Fourier analysis of a pulse wave (Fig. 2.4)
which results in a series of sine and cosine functions (waves) which have
different wavelengths. The better the location, AX, of a particle can be
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Figure 2.4. Particle (pulse wave) moving with a group velocity v, (Aw is large).

determined, the wider is the frequency range, Aw, of its waves. This is one
form of Heisenberg’s uncertainty principle,

Ap-AX = h, @.11)

stating that the product of the distance over which there is a finite probability
of finding an electron, AX, and the range of momenta, Ap (or wave-lengths
(2.3)), of the electron wave is greater than or equal to a constant. This means
that both the location and frequency of an electron cannot be accurately
determined at the same time.

A word of encouragement should be added at this point for those readers
who (quite legitimately) might ask the question: What can I do with wave
functions which supposedly have no equivalent in real life? For the inter-
pretation of the wave functions, we will use in future chapters Born’s
postulate, which states that the square of the wave function (or because ¥
is generally a complex function, the quantity WYW¥") is the probability of
finding a particle at a certain location. (¥ is the complex conjugate quantity
of W.) In other words,

YW*dxdydz = YY" dt (2.12)

is the probability of finding an electron in the volume element dz. This makes
it clear that in wave mechanics probability statements are often obtained,
whereas in classical mechanics the location of a particle can be determined
exactly. We will see in future chapters, however, that this does not affect the
usefulness of our results.

Finally, the reader may ask the question: Is an electron wave the same
as an electromagnetic wave? Most definitely not! Electromagnetic waves
(radio waves, infrared radiation (heat), visible light, ultraviolet (UV) light,
X-rays, or y-rays) propagate by an interaction of electrical and magnetic
disturbances. Detection devices for electromagnetic waves include the
human eye, photomultiplier tubes, photographic films, heat-sensitive
devices, such as the skin, and antennas in conjunction with electrical
circuits. For the detection of electrons (e.g., in an electron microscope or
on a television screen) certain chemical compounds called “phosphors” are
utilized. Materials which possess “phosphorescence” (see Section 13.8)
include zinc sulfide, zinc—cadmium sulfide, tungstates, molybdates, salts
of the rare earths, uranium compounds, and organic compounds. They vary
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in color and strength and in the length in time during which visible light is
emitted.

At the end of this chapter, let us revisit the fundamental question that
stood at the outset of our discussion concerning the wave-particle duality:
Are particles and waves really two completely unrelated phenomena? Seen
conceptually, they probably are. But consider (2.9) and its discussion. Both
waves and particles are mathematically described essentially by the same
equation, i.e., the former by setting Aw and Ak = 0 and the latter by making
Aw and Ak large. Thus, waves and particles appear to be interrelated in a
certain way. It is left to the reader to contemplate further on this idea.

Problems

1. Calculate the wavelength of an electron which has a kinetic energy of 4 eV.

2. What should be the energy of an electron so that the associated electron waves have a
wavelength of 600 nm?

3. Since the visible region spans between approximately 400 nm and 700 nm, why can the
electron wave mentioned in Problem 2 not be seen by the human eye? What kind of
device is necessary to detect electron waves?

4. What is the energy of a light quantum (photon) which has a wavelength of 600 nm?
Compare the energy with the electron wave energy calculated in Problem 2 and discuss
the difference.

5. A tennis ball, having a mass of 50 g, travels with a velocity of 200 km/h. What is the
equivalent wavelength of this “particle”? Compare your result with that obtained in
Problem 1 above and discuss the difference.

6. Derive (2.9) by adding (2.7) and (2.8).
7. “Derive” (2.3) by combining (1.3), (1.5), (1.8), and (2.1).

*8. Computer problem.
(a) Insert numerical values of your choice into (2.9) and plot the result. For example, set
a constant time (e.g. t = 0) and vary Ak.
(b) Add more than two equations of the type of (2.7) and (2.8) by using different values
of Aw and plot the result. Does this indeed reduce the number of wave packets, as
stated in the text? Compare to Fig. 2.3.
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