
Chapter 6
Longitudinal Models for Count Data

In longitudinal studies for count data, a small number of repeated count responses
along with a set of multidimensional covariates are collected from a large number
of independent individuals. For example, in a health care utilization study, the num-
ber of visits to a physician by a large number of independent individuals may be
recorded annually over a period of several years. Also, the information on the co-
variates such as gender, number of chronic conditions, education level, and age, may
be recorded for each individual. For i = 1, . . . ,K, and t = 1, . . . ,T, let yit denote the
count response and xit = (xit1, . . . ,xit p)′ denote the p-dimensional covariate vector
collected at time point t from the ith individual. Let β be the effect of xit on yit .
Note that because yi1, . . . ,yit , . . . ,yiT are T repeated count responses from the same
individual, it is most likely that they are autocorrelated. The scientific concern is
to find β , the effects of the covariates on the repeated count responses, after taking
their autocorrelations into account.

Note that there are situations in practice, where the covariates of the ith individual
may be time independent. We denote such covariates by x̃i = (xi1, . . . ,xip)′. This is
a simpler special case of the general situation with time-dependent covariates xit . In
Section 6.1, we provide the marginal distributional properties of the count response
variable Yit under the general situation when corresponding covariates are time de-
pendent. For simplicity, Section 6.2 discusses the estimation of β by pretending
that the repeated count responses are independent, even though in reality they are
autocorrelated. In Section 6.3, we provide several autocorrelation structures for the
repeated count data for the special case with time-independent covariates. A unified
generalized quasi-likelihood (GQL) approach is discussed in Section 6.4 for the es-
timation of the regression effects β after taking the stationary correlations of the
data into account.

Note that stationary autocorrelation models can be generalized to the nonstation-
ary cases in various ways. We consider two types of nonstationary models. First,
we consider a class of nonstationary autocorrelation models where all models pro-
duce the same specified marginal mean and variance functions. These models are
given in Section 6.5. The same section also contains the estimating equation for β

after taking the nonstationary correlations into account. Second, in Section 6.6, we
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demonstrate that the stationary autocorrelation models discussed in Section 6.3 may
be generalized to a nonstationary class of models where these models may produce
different marginal means and variances along with different correlation structures.
The inferences for the regression effects β , after taking the nonstationary correla-
tion structure of the repeated data into account are discussed in details, including the
model misspecification effects. Note that in the stationary case, model selection is
not necessary for the estimation of the regression effects, whereas model selection
becomes an important issue in the nonstationary case. This model selection problem
is also discussed in Section 6.6 for the second type of nonstationary autocorrelation
models. A data example is considered in Section 6.7 to illustrate both correlation
model selection and estimation of the parameters.

6.1 Marginal Model

Suppose that each of the count response variables Yi1, . . . ,Yit , . . . ,YiT for the ith
(i = 1, . . . ,K) follows the well-known Poisson distribution with a suitable mean
parameter. Let µit = exp(x′itβ ) denote the mean of the Poisson distribution for Yit .
In the form of exponential density, one may then write the marginal distribution of
Yit as

f (yit) = exp[{yitθit −a(θit)}+b(yit)] (6.1)

[Nelder and Wedderburn (1972)], with

θit = x′itβ , ;a(θit) = exp(θit), and b(yit) = log(
1

yit !
).

We denote this marginal Poisson distribution as Yit ∼ Poi(µit). For an auxiliary pa-
rameter s, by using the moment generating function (m.g.f.) of Yit [see (4.9), also
Exercise (4.5)] given by

MYit (s) = E[exp(sYit)] = exp[a(s+θit)−a(θit)], (6.2)

one may obtain the basic properties such as the first four moments of the marginal
distribution (6.1) as in the following lemma.

Lemma 6.1 The first four moments of Yit under the exponential family density
(6.1) are given by

µit = [Yit ] = a′(θit)

σitt = var[Yit ] = a′′(θit)

δ̃itt = E[Yit −µit ]3 = a′′′(θit)

φ̃itttt = E[Yit −µit ]4 = a′′′′(θit)+3σ
2
itt , (6.3)
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where a′(θit), a′′(θit), a′′′(θit), and a′′′′(θit) are, respectively, the first−, second−,
third−, and the fourth-order derivatives of a(θit) with respect to θit .

In the present longitudinal setup, the repeated count responses yi1, . . . ,yit , . . . ,yiT

are most likely to be correlated, and these correlations, unlike the familial correla-
tions developed through random effects in Chapter 4, should reflect the time effects.
Some suitable modelling for this type of time effects based correlations is discussed
in Section 6.3 for the cases when covariates are stationary (i.e., time independent),
and in Sections 6.5 and 6.6 when covariates are nonstationary (i.e., time dependent).
Note that if one is, however, interested to obtain only a consistent estimate for β as
opposed to a consistent as well as efficient estimate, then, the repeated responses
may be treated as independent and the marginal distribution (6.1) or the marginal
properties in Lemma 6.1 may be exploited to construct suitable estimating equations
to achieve such a goal. In the following section, we discuss three standard marginal
model based estimation techniques that use either the marginal density in (6.1) or
only the first two moments from Lemma 6.1.

6.2 Marginal Model Based Estimation of Regression Effects

Method of Moments (MM): Irrespective of the cases whether the repeated counts
yi1, . . . ,yit , . . . ,yiT are independent or autocorrelated, one may always obtain the mo-
ment estimate of β by solving the moment equation

K

∑
i=1

T

∑
t=1

[xit(yit −a′(θit))] = 0, (6.4)

where a′(θit)= µit = exp(x′itβ ) for Poisson yit . By writing yi =(yi1, . . . ,yit , . . . ,yiT )′ :
T ×1; µi = (µi1, . . . ,µit , . . . ,µiT )′ : T ×1; and Xi = (xi1, . . . ,xit , . . . ,xiT )′ : T × p, the
moment equation (6.4) may be re-expressed as

K

∑
i=1

[X ′
i (yi−µi)] = 0. (6.5)

Let the moment estimator of β , the root of the moment equation (6.5), be denoted
by β̂M. This root may be obtained by using the iterative equation

β̂M(r +1) = β̂M(r)+

[
K

∑
i=1

X ′
i AiXi

]−1

(r)

[
K

∑
i=1

X ′
i (yi−µi)

]
(r)

, (6.6)

where Ai = diag[a′′(θit)] = diag[σitt ], and [·](r) denotes that the expression within

the brackets is evaluated at β = β̂M(r), the rth iterative value for β̂M. Note that be-
cause (6.5) is an unbiased estimating equation for the zero vector, β̂M is a consistent
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estimator. Furthermore, because K individuals are chosen independently, by using
multivariate central limit theorem [Mardia, Kent and Bibby (1979, p. 51)] it follows
from (6.6) that K

1
2 (β̂M−β ) is asymptotically multivariate Gaussian with zero mean

vector and covariance matrix VM given by

VM = limitK→∞K

[
K

∑
i=1

X ′
i AiX

]−1[ K

∑
i=1

X ′
i A1/2

i CiA
1/2
i Xi

][
K

∑
i=1

X ′
i AiX

]−1

, (6.7)

where Ci is the true correlation matrix of yi, which may be unknown. This covariance
matrix VM may, however, be estimated by using the sandwich type estimator

V̂M = limitK→∞K

[
K

∑
i=1

X ′
i AiXi

]−1[ K

∑
i=1

X ′
i (yi−µi)(yi−µi)′Xi

][
K

∑
i=1

X ′
i AiXi

]−1

(6.8)
[see for example, Liang and Zeger (1986, p. 15)].

Quasilikelihood (QL) Method : Note that when there is a functional relationship
between the mean and the variance of the response, Wedderburn (1974) [see also
McCullagh (1983)] proposed a QL approach for independent data which exploits
both mean and the variance in estimating the regression effects β . The QL estimat-
ing equation for β is given by

K

∑
i=1

T

∑
t=1

[
∂a′(θit)

∂β

(yit −a′(θit))
var(yit)

] = 0, (6.9)

where the var(Yit) = a′′(θit) is a function of the mean parameter a′(θit) = µit . In the
Poisson case, for example,

var(Yit) = a′′(θit) = a′(θit) = µit = exp(x′itβ ).

Notice that there is no difference between this QL estimating equation (6.9) and the
MM estimating equation (6.4).

We remark, however, that as opposed to the independence case, in a practical
situation one would also exploit the correlation properties of the repeated responses
in generalizing the QL estimating equation (6.9), but the MM approach will still use
the estimating equation (6.5). Thus, in the longitudinal setup, the generalized QL
approach will yield a different estimate for β than the MM approach.

Marginal Likelihood (ML) Method: It is true that the repeated counts

yi1, . . . ,yit , . . . ,yiT

are autocorrelated. If the correlations are, however, ignored, that is, the repeated
responses are treated to be independent, then one may maximize the marginal like-
lihood function to obtain an independence assumption based ‘working’ likelihood
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estimate of β . By (6.1), the log of the marginal likelihood function of β is given by

logL(β ) =
K

∑
i=1

T

∑
t=1

[yitθit −a(θit)+b(yit)], (6.10)

yielding the likelihood equation for β as

∂ logL
∂β

=
K

∑
i=1

T

∑
t=1

[yit −a′(θit)]
∂θit

∂β
= 0. (6.11)

Because, θit = x′itβ , this likelihood equation is the same as the MM equation (6.4).
Thus it is clear that all three approaches, namely, the MM, QL and ML methods
yield the same estimate for β . All three approaches yield a consistent estimate for
this regression effect.

6.3 Correlation Models for Stationary Count Data

Note that a marginal model based estimation approach may not yield an efficient
regression estimate. Obtaining an efficient estimate will require exploitation of the
joint probability or correlation model for the repeated count data. In this section, we
discuss this issue, for a simpler situation when covariates of an individual are time
independent. Note that this situation can arise in some longitudinal studies such as
in a longitudinal clinical study where, for example, the number of weekly asthma
attacks is recorded as the responses over a small period such as four weeks of time.
Here, it is likely that the covariate information such as gender, education level, and
number of other chronic diseases of the individual will remain the same for each
week for the duration of the study over four weeks. This is, however, true that the
repeated responses will still be correlated due to the influence of time, the time being
a stochastic factor. In the end, it is of main interest to find the effects of the covariates
on the responses after taking the correlations of the responses into account.

Recall that x̃i = (xi1, . . . ,xip)′ denote the time-independent covariate vector for
the ith individual. For this time-independent covariate, the mean and the variance of
yit may be written, following Lemma 6.1, as

E[Yit ] = var[Yit ] = µ̃i = exp(x̃′iβ ), (6.12)

yielding the mean vector and the diagonal matrix of the variances as

µi = µ̃i1, Ai = diag(σitt) = diag(µ̃i), (6.13)

where 1 is the T ×1 unit vector.
As far as the correlation structures for the repeated counts yi1, . . . ,yiT are con-

cerned, it was speculated in some of the original studies such as in Liang and Zeger
(1986) that the correlations of the repeated data may follow Gaussian type such as
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autoregressive order 1 (AR(1)), moving average order (1) (MA(1)), or exchangeable
(equicorrelations) correlation structures. But, as it is not easy to know the underlying
true correlation structure, these authors have used a ‘working’ correlation structure
based generalized estimating equations (GEE) approach for the efficient estimation
of the regression effects. We discuss this GEE approach and its serious limitations
in Section 6.4.

We now provide three correlation models [Sutradhar (2003), McKenzie (1988)]
that yield the speculated AR(1), MA(1), and equicorrelation structures for repeated
count data. In fact, these three low-order models are easily extendable to other pos-
sible higher-order models such as AR(2), MA(2), and ARMA(1,1) models.

6.3.1 Poisson AR(1) Model

Let yi1 ∼ Poi(µ̃i), where µ̃i = exp(x̃′iβ ) as in (6.12). Furthermore, for t = 2, . . . ,T,
let the response yit at time t be related to yi,t−1 at time t−1 as

yit = ρ ∗ yi,t−1 +dit , (6.14)

[McKenzie (1988), Sutradhar (2003)] where it is assumed that for given yi,t−1, ρ ∗
yi,t−1 denotes the so-called binomial thinning operation (McKenzie, 1988). That is,

ρ ∗ yi,t−1 =
yi,t−1

∑
j=1

b j(ρ)

= zi,t−1,say, (6.15)

with Pr[b j(ρ) = 1] = ρ and Pr[b j(ρ) = 0] = 1−ρ . Furthermore, it is assumed in
(6.14) that dit ∼ P(µ̃i(1−ρ)) and is independent of zi,t−1.

It then follows that each yit satisfying the model (6.14) has marginally Poisson
distribution with parameters as in (6.12). Also by direct calculation, it can be shown
that

E[Yit ] = EYi,t−1E[Yit |Yi,t−1] = µ̃i

var[Yit ] = EYi,t−1var[Yit |Yi,t−1]+varYi,t−1E[Yit |Yi,t−1] = µ̃i. (6.16)

Next, by similar calculations as in (6.16), for lag ` = 1, . . . ,T −1, it can be shown
from (6.14) that E(YitYi,t−`) = µ̃2

i + µ̃iρ
`, yielding the lag ` correlation between yit

and yi,t−`, say c∗i,(t−`)t(ρ), as

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)

= ρ
`, (6.17)
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which is the same as lag ` correlation under the Gaussian AR(1) autocorrelation
structure. But, the ρ parameter under the present AR(1) model (6.14) must satisfy
the range restriction 0 ≤ ρ ≤ 1, whereas in the Gaussian AR(1) structure ρ lies in
the range −1 < ρ < 1.

6.3.2 Poisson MA(1) Model

For a scale parameter ρ, let

dit
iid∼ Poi

(
µ̃i

1+ρ

)
, for t = 0,1, . . . ,T,

where µ̃i = exp(x̃′iβ ), t = 0 being an initial time. Next suppose that the response yit

is related to the dit as

yit = ρ ∗di,t−1 +dit , for t = 1, . . . ,T, (6.18)

where ρ ∗di,t−1 = ∑
di,t−1
j=1 b j(ρ) is the binomial thinning operation similar to (6.15).

By similar calculations as in the AR(1) process, one obtains

E[Yit ] = var[Yit ] = µ̃i

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)

=
{

ρ/(1+ρ) for ` = 1
0 otherwise.

(6.19)

Note that the lag correlations in (6.19) have the same forms as in the Gaussian
MA(1) correlation structure, except that in the present set up 0 ≤ ρ ≤ 1, whereas
under the Gaussian structure −1 < ρ < 1.

6.3.3 Poisson Equicorrelation Model

Suppose that yi0 is a Poisson variable with the mean parameter µ̃i = exp(x̃′iβ ). Also
suppose that

dit
iid∼ Poi(µ̃i(1−ρ)) for all t = 1, . . . ,T.

By similar arguments as for the AR(1) and MA(1) processes, one can show that yit

given by
yit = ρ ∗ yi0 +dit (6.20)

also follows the Poisson distribution ( i.e., yit ∼ Poi(µ̃i), yielding the marginal prop-
erties

E[Yit ] = var[Yit ] = µ̃i = exp(x̃′iβ ). (6.21)
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Note that these marginal properties may also be computed directly by using the
model (6.20). As far as the product moments properties are concerned, it can be
shown that

corr(Yit ,Yi,t−`) = c∗i,(t−`)t(ρ)
= ρ, (6.22)

for all ` = 1,2, . . . ,T −1, with 0 ≤ ρ ≤ 1 instead of −(1/T −1)≤ ρ ≤ 1 under the
Gaussian equicorrelation model.

For convenience, we summarize the means, variances, and correlations for all
three stationary correlation models, as in Table 6.1.

Table 6.1 A class of stationary correlation models for longitudinal count data and basic properties.

Model Dynamic Relationship Mean, Variance,
& Correlations

AR(1) yit = ρ ∗ yi,t−1 +dit , t = 2, . . . E[Yit ] = µi·
yi1 ∼ Poi(µi·) var[Yit ] = µi·

dit ∼ Poi(µi·(1−ρ)), t = 2, . . . corr[Yit ,Yi,t+`] = ρ`

= ρ`

MA(1) yit = ρ ∗di,t−1 +dit , t = 1, . . . E[Yit ] = µi·
di0 ∼ Poi(µi·/(1+ρ)) var[Yit ] = µi·

dit ∼ Poi(µi·/(1+ρ)), t = 1, . . . corr[Yit ,Yi,t+`] = ρ`

=
{ ρ

1+ρ
for ` = 1

0 otherwise,
EQC yit = ρ ∗ yi1 +dit , t = 2, . . . E[Yit ] = µi·

yi1 ∼ Poi(µi·) var[Yit ] = µi·
dit ∼ Poi(µi·(1−ρ)), t = 2, . . . corr[Yit ,Yi,t+`] = ρ`

= ρ

6.4 Inferences for Stationary Correlation Models

6.4.1 Likelihood Approach and Complexity

As opposed to the marginal likelihood estimation by (6.10), it is natural that under
the correlation models (6.14), (6.18), and (6.20), the likelihood construction would
be complicated. This is because under these models, the likelihood function is given
by

L(β ,ρ) = Π
K
i=1[ f (yi1)Π T

t=2 f (yit |yi,t−1)], (6.23)

where f (yi1) = exp(−µ̃i)µ̃
yi1
i /yi1! is the Poisson density with µ̃i = exp(x̃′iβ ), un-

der all three models, but the conditional densities f (yit |yi,t−1) would have differ-
ent forms under different models. For example, under the stationary AR(1) model
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(6.14), the conditional density has the form given by

f (yit |yi,t−1) =
min(yit ,yi,t−1)

∑
s=1

(yi,t−1)!
s!(yi,t−1− s)!

ρ
s(1−ρ)yi,t−1−s exp(−µ̃i)µ̃

yit−s
i

(yit − s)!
, (6.24)

yielding by (6.23) a complex likelihood, which is not easy to maximize with regard
to the desired parameters β and ρ.

In the following section we provide an alternative efficient approach for the esti-
mation of the parameters of the models.

6.4.2 GQL Approach

Recall that under the independence assumption, one can solve the quasi-likelihood
[QL; Wedderburn (1974)] estimating equation (6.9) for β , but this will be an ineffi-
cient estimate given that the repeated responses are now assumed to follow either the
AR(1) correlation model (6.14) with correlation structure (6.17), MA(1) correlation
model (6.18) with correlation structure (6.19), or equicorrelation model (6.20) with
correlation structure as in (6.22). Note that all three correlation structures given in
(6.17), (6.19), and (6.22), may be represented by a general autocorrelation matrix of
the form

C∗
i (ρ) = (c∗i,(t−`)t(ρ)) =


1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

 , (6.25)

[Sutradhar and Das (1999, Section 3)], where for ` = 1, . . . ,T −1, ρ` represents the
lag ` autocorrelation. For example, the AR(1) model based autocorrelation structure
(6.17) may be represented by this correlation matrix C∗

i (ρ) (6.25) by using ρ` =
ρ`. Similarly, when one uses ρ1 = ρ/(1+ρ) and ρ2 = ρ3 = . . . = ρT−1 = 0, in
(6.25), it produces the MA(1) correlation structure (6.19); and for ρ` = ρ for all
` = 1, . . . ,T −1, C∗

i (ρ) matrix in (6.25) represents the correlations under the equi-
correlations structure (6.22).

It is therefore clear that if it is assumed that the repeated counted responses fol-
low one of the AR(1), MA(1), or equi-correlation models, then one may estimate
the regression effects under any of these three models by simply estimating this
common C∗

i (ρ) matrix in (6.25) and then using this estimated correlation matrix
in a proper estimating equation for the regression effects β . Because C∗

i (ρ) is the
true correlation matrix for any of the three models, Sutradhar (2003, Section 3) pro-
posed a generalized quasi-likelihood approach that generalizes the independence
assumption based QL (6.9) approach of Wedderburn (1974) to the general station-
ary correlation setup. The GQL estimating equation for β is given by
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K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−µi) = 0, (6.26)

where Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i , with C∗
i (ρ) as the true stationary correlation struc-

ture for any of the AR(1), MA(1), or equicorrelation models. Note that in (6.26),
µi = µ̃i1, Ai = diag(σitt) = diag(µ̃i), as in (6.13), yi = (yi1, . . . ,yit , . . . ,yiT )′ is the
T × 1 vector of repeated counts for the ith individual, and X ′

i = [x̃i, . . . , x̃i] : p×T
is the corresponding matrix of stationary covariates with x̃i = (xi1, . . . ,xip)′ as the
p-dimensional time-independent covariate vector as in (6.12).

Note that the GQL estimating equation (6.26) may be solved for β when ρ (i.e.,
all lag correlations ρ1, . . . ,ρ`, . . . ,ρT−1) is known. It is, however, not necessary to
know the specific form for the correlation matrix C∗

i (ρ), as this form in (6.25) is
general which is valid under any of the three correlation structures (6.17), (6.19) and
(6.22). In practice ρ is unknown, therefore the lag correlations can be consistently
estimated by using the well-known method of moments. For ` = |u− t|, u 6= t, u, t =
1, . . . ,T , the moment estimator for ρ`, the autocorrelation of lag `, has the formula

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (6.27)

[Sutradhar and Kovacevic (2000, eqn. (2.18)); Sutradhar (2003)], where ỹit is the
standardized residual, defined as ỹit = (yit − µit)/{σitt}1/2. Note that under the
present stationary correlation models for the repeated count data µit = σitt = µ̃i

as in (6.12) and (6.13).
Let β̂GQL denote the GQL estimator of β which is obtained by solving (6.26)

after using ρ̂` from (6.27) for ρ`. Note that because the left-hand side of the GQL
estimating equation in (6.26) is an unbiased estimating function for the zero vector,
β̂GQL, the root of the equation (6.26) is a consistent estimator for β .

6.4.2.1 Asymptotic Distribution of the GQL Estimator

Note that β̂GQL may be obtained from (6.26) by using the iterative equation

β̂GQL(r +1) = β̂GQL(r)+

[
K

∑
i=1

X ′
i Σ

∗
i
−1(ρ)Xi

]−1

(r)

×

[
K

∑
i=1

X ′
i Σ

∗
i
−1(ρ)(yi−µi)

]
(r)

, (6.28)

where [·](r) denotes that the expression within the brackets is evaluated at β =
β̂GQL(r), the rth iterative value for β̂GQL. Because y1, . . . ,yi, . . . ,yK are indepen-
dent, by using the central limit theorem, it then follows from (6.28) that as K → ∞,
(β̂GQL−β ) has the p-dimensional multivariate normal distribution with mean vector
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0 and p× p covariance matrix V ∗ given by

V ∗(β̂GQL) = lim
K→∞

{
K

∑
i=1

XT
i A1/2

i C∗
i
−1(ρ)A1/2

i Xi

}−1

. (6.29)

Note that this asymptotic distribution is given here for known ρ. This result,
however, holds even when ρ̂ is used for ρ. This is because it can be shown that ρ̂`

from (6.27) converges in probability to ρ` for all ` = 1, . . . ,T −1.

6.4.2.2 ‘Working’ Independence Assumption Based GQL Estimation

It is known that if one is interested in obtaining only a consistent estimator for β ,
this can be achieved by solving the GQL estimating equation (6.26) by pretending
that the repeated responses are independent even though they are actually corre-
lated following any of the three models (6.14), (6.18), or (6.20). Thus, we obtain a
‘working’ independence assumption based GQL estimate by solving

K

∑
i=1

X ′
i AiΣ

∗
i
−1(ρ)(yi−µi)|ρ=0 =

K

∑
i=1

X ′
i (yi−µi) = 0. (6.30)

Note that this estimating equation is in fact the QL estimating equation (6.9) due to
Wedderburn (1974), which is also the same as the MM estimating equation (6.5).
This QL estimating equation is simpler to solve than the GQL (6.26) equation and
this provides the consistent estimate for β .

Let β̂ (I) denote the solution of (6.30). This estimator is the same as the MM
estimator β̂MM obtained from (6.5), therefore its asymptotic distribution is given by
(6.7). Thus, β̂ (I) has the asymptotic variance

V ∗(β̂ (I)) = limitK→∞

[
K

∑
i=1

X ′
i AiX

]−1[ K

∑
i=1

X ′
i Σ

∗
i (ρ)Xi

][
K

∑
i=1

X ′
i AiX

]−1

, (6.31)

where Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i .

6.4.2.3 Efficiency of the Independence Assumption Based Estimator

Similar to the correlated linear model case [Amemiya (1985, Section 6.1.3)], a com-
parison of (6.31) with (6.29) shows that the independence assumption based estima-
tor β̂ (I) always has the less than or the same efficiency asthe GQL estimator β̂GQL.
We provide a numerical example below to illustrate this efficiency issue.

The percentage efficiency of the uth (u = 1, . . . , p) component of the β̂ (I) esti-
mator, for example, is defined as
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eff(β̂u(I)) =
var(β̂u,GQL)

var(β̂u(I))
×100, (6.32)

where var(β̂u,GQL) and var(β̂u(I)) are the uth diagonal elements of the covariance
matrices V ∗(β̂GQL) (6.29) and V ∗(β̂ (I)) (6.31), respectively. Let us take p = 2 for
simplicity so that the Poisson mean and the variance µit for the ith (i = 1, . . . ,K)
at time t (t = 1, . . . ,T ), has the formula µ̃i = exp(x̃i1β1 + x̃i2β2) under any of the
three stationary models (6.14), (6.18), or (6.20). Let us consider K = 100, and three
values of T = 5,10, and 15. As far as the time-independent stationary covariates are
considered, we choose

xit1 = x̃i1 = 1.0, for all i = 1, . . . ,K, and t = 1, . . . ,T,

and

xit2 = x̃i2 =



−1 for t = 1, . . . ,T ; i = 1, . . . ,K/4

0 for t = 1, . . . ,T ; i = (K/4)+1, . . . ,K/2

0 for t = 1, . . . ,T ; i = (K/2)+1, . . . ,3K/4

1 for t = 1, . . . ,T ; i = (3K/4)+1, . . . ,K;

Next to compute the covariance matrices V ∗(β̂GQL) (6.29) and V ∗(β̂ (I)) (6.31),
we need to construct the Xi and Ai matrices by

Xi = [x̃i11T , x̃i21T ], and Ai = diag[µ̃i] : T ×T.

We also need to specify the correlation matrix C∗
i (ρ). We choose all three cor-

relation models AR(1), MA(1), and exchangeable correlation structures given by
(6.17), (6.19), and (6.22), respectively. Note that because the lag 1 correlations un-
der the AR(1) (6.17) and equicorrelations (6.22) structures are given as ρ1 = ρ, we
choose, for example, ρ = 0.3 and 0.7 under both AR(1) and equi-correlation struc-
tures. But, as the lag 1 correlation under the MA(1) structure has to satisfy the range
0 < ρ1 = ρ/(1+ρ) < 0.5, we choose, for example, two values of ρ = 0.25 and 0.67,
yielding the lag 1 correlations ρ1 = 0.2 and 0.4, respectively.

For β1 = β2 = 1.0, and for the selected values of ρ, the efficiencies of β̂ (I) as
compared to β̂GQL are given in Table 1.

The results of Table 6.2 show that as expected the independence assumption
based GQL estimator β̂ (I) obtained by solving (6.30) always has less or the same
efficiency as compared to the true correlation structure based GQL estimator β̂GQL

obtained by solving (6.26).
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Table 6.2 Percentage relative efficiency of β̂1(I) and β̂2(I) to the generalized estimators β̂1,GQL

and β̂2,GQL, respectively, with true stationary correlation matrix C∗
1(ρ) for AR(1), MA(1), and

Equi-correlation structures, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

AR(1) MA(1) EQC
T ρ β̂1(I) β̂2(I) ρ β̂1(I) β̂2(I) ρ β̂1(I) β̂2(I)
5 0.3 98 98 0.25 99 99 0.30 100 100

0.49 96 96 0.49 100 100
0.7 95 95 0.67 97 97 0.7 100 100

10 0.3 99 99 0.25 99 99 0.3 100 100
0.49 96 96 0.49 100 100
0.7 93 93 0.67 98 98 0.7 100 100

15 0.3 99 99 0.25 100 100 0.3 100 100
0.49 97 97 0.49 100 100
0.7 93 93 0.67 99 99 0.7 100 100

6.4.2.4 Performance of the GQL Estimation: A Simulation Example

Suppose that the repeated count responses follow either of the three stationary,
namely AR(1)(6.17), MA(1) (6.19), or equicorrelation (6.22) structures. In estimat-
ing the regression effects β , the GQL approach does not, however, require us to
know the specific correlation structure. What is needed here is: first consider that
the repeated data for the ith individual has the autocorrelation matrix C∗

i (ρ) (6.25)
which in fact is a valid matrix not only for the above three correlation structures but
also for any higher-order such as AR(2) and MA(2) correlation structures. Second,
estimate this general autocorrelation matrix consistently and use the estimate in the
GQL estimating equation (6.26) for β . This prompts the following two-step estima-
tion.

Step 1. First, we solve the estimating equation for β (6.26) iteratively by (6.28), us-
ing starting values zero for longitudinal correlations and small positive or negative
values for the regression parameters.
Step 2. This interim estimate of β from step 1 is then used in (6.27) to obtain the es-
timate of the autocorrelation matrix C∗

i (ρ) in (6.25), which is used in turn in (6.28)
to compute the new β estimate. This cycle of iterations continues until convergence.

To examine the performance of the above two-step based GQL estimation, we
now consider a simulation study. Suppose that we follow the Poisson AR(1) model
(6.14) and generate T = 4 repeated count observations for each of K = 100 in-
dependent individuals. As far as the covariates are concerned, we choose p = 2
time-independent covariates for each of these 100 individuals, given by
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xit1 =



−1 for t = 1, . . . ,T ; i = 1, . . . ,K/4

0 for t = 1, . . . ,T ; i = (K/4)+1, . . . ,K/2

0 for t = 1, . . . ,T ; i = (K/2)+1, . . . ,3K/4

1 for t = 1, . . . ,T ; i = (3K/4)+1, . . . ,K;

and
xit2 = z∗i mbox f or t = 1, . . . ,T ; i = 1, . . . ,K,

where z∗i is a standard normal quantity. In this problem, β = (β1,β2)′ denotes the
effects of the two covariates on the repeated counts.

Note that even though the data are generated following the AR(1) model (6.14),
the GQL approach does not, however, require this model to be known for the es-
timation of β . This is because the GQL estimating equation (6.26) is developed
based on a general autocorrelation structure Ci(ρ∗), which accommodates all three
AR(1) (6.17), MA(1) (6.19), and exchangeable (6.22) correlation structures. Further
note that for T = 4, this general autocorrelation structure has three lag correlations,
namely, ρ1, ρ2, and ρ3, to estimate, by using the formula (6.27) as explained in Step
2 above. It would be interesting to see how these three estimates behave in estimat-
ing the three lag correlations ρ, ρ2, and ρ3, for the AR(1) model that generated the
data. Next these correlation estimates are used in step 1 to estimate β by solving
the GQL estimating equation (6.26). For a selected set of parameter values, namely
β1 = β2 = 0.0, and ρ = 0.6, 0.8, the simulation is repeated 500 times. The average
and standard error of the 500 estimates for each parameter are given in Table 6.3. In
the table, these estimates are referred to as the simulated mean (SM) and simulated
standard error (SSE). The estimated standard errors (ESE) of the regression esti-
mates are also computed. This is done by using the asymptotic covariance formula
for V ∗(β̂GQL) given in (6.29).

Table 6.3 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson AR(1) process with T = 4, K = 100, β1 = β2 = 0, based on 500
simulations.

Estimates
AR(1) Correlation (ρ) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.6 SM -0.003 -0.001 0.595 0.352 0.203
SSE 0.085 0.049 0.061 0.088 0.108
ESE 0.086 0.050

0.8 SM 0.000 0.003 0.791 0.626 0.496
SSE 0.096 0.056 0.043 0.070 0.098
ESE 0.098 0.057

The results in Table 6.3 clearly show that the two-step based GQL approach es-
timates all parameters very well. For example, when ρ = 0.8, the lag correlation es-
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timates are 0.791, 0.626, and 0.496, whereas the true AR(1) based lag correlations
are ρ = 0.8, ρ2 = 0.64, and ρ3 = 0.512. Similarly, the GQL approach estimates for
β1 = β2 = 0 are 0.000, 0.003. Furthermore, for this ρ = 0.8 case, the ESE of the
regression estimates , that is, 0.098, and 0.0.57 appear to be very close to the SSEs
0.096 and 0.056, respectively.

In Tables 6.4 and 6.5 below, we show similar results with regard to the perfor-
mance of the GQL approach when data are generated under the MA(1) (6.18) and
exchangeable (6.20) correlation models, respectively, by using the same covariates
as in the AR(1) case.

Table 6.4 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson MA(1) process with T = 4, K = 100, β1 = β2 = 0, based on 500
simulations.

Estimates
ρ (MA(1) Correlation (ρ1)) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.25 (0.2) SM 0.002 0.002 0.191 -0.006 0.004
SSE 0.083 0.063 0.058 0.073 0.100
ESE 0.081 0.063

0.67 (0.4) SM -0.004 -0.004 0.396 -0.005 -0.004
SSE 0.085 0.069 0.059 0.074 0.097
ESE 0.088 0.070

Table 6.5 Simulated means, simulated standard errors, and estimated standard errors of the GQL
estimates for regression and autocorrelation coefficients for selected values of the true correlation
parameter under the Poisson equicorrelation process with T = 4, K = 100, β1 = β2 = 0, based on
500 simulations.

Estimates
Equi-correlation (ρ) Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

0.6 SM -0.006 -0.005 0.587 0.587 0.587
SSE 0.119 0.096 0.064 0.065 0.088
ESE 0.118 0.093

0.8 SM -0.009 -0.009 0.790 0.790 0.789
SSE 0.131 0.101 0.043 0.041 0.059
ESE 0.130 0.103
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6.4.3 GEE Approach and Limitations

In order to gain efficiency over the independence assumption based regression es-
timator β̂ (I) (6.30), in the generalized estimating equations approach [Liang and
Zeger (1986)], one solves a ‘working’ correlation matrix, R(α), based estimating
equation

K

∑
i=1

X ′
i AiV

∗−1
i (α̂)(yi−µi) = 0, (6.33)

where V ∗
i (α) = A1/2

i R(α)A1/2
i is the working covariance matrix of yi, α being an s×

1 vector of parameters which fully characterizes R(α). Note that the GEE in (6.33)
appears to be similar to the GQL estimating equations in (6.26), but they are quite
different. Also, in (6.33), α̂ is obtained by solving a ‘working’ correlation model
based moment equation. The data used in such a moment equation follow a different
but true correlation structure, thus it is inappropriate to assume that α̂ converges to
α [Crowder (1995)]. In view of this anomaly, any efficiency computations by using
α̂ for α in the formula for the covariance matrix of the GEE estimator obtained from
(6.33) [Liang and Zeger (1986)] would be incorrect.

Let β̂G be the solution for β based on (6.33). Next suppose that α̂ converges
to α0, which must be a function of the true correlation parameter (ρ). In order to
examine the correlation misspecification effects on the efficiency of β̂G, Sutradhar
and Das (1999) have suggested using this α0 in the formula for the covariance matrix
of β̂G. Thus, K1/2(β̂G −β ) is now asymptotically multivariate Gaussian with zero
mean vector and covariance matrix VG given by

VG = lim
K→∞

K

(
K

∑
i=1

X ′
i A1/2

i R−1(α0)A
1/2
i Xi

)−1

×

{
K

∑
i=1

X ′
i A1/2

i R−1(α0)Ci(ρ)R−1(α0)A
1/2
i Xi

}

×

{
K

∑
i=1

X ′
i A1/2

i R−1(α0)A
1/2
i Xi

}−1

, (6.34)

where Ci(ρ) is the true correlation matrix, as given in (6.25).

6.4.3.1 Efficiency of the GEE Based Estimator Under Correlation Structure
Mis-specification

As far as the correlation models are concerned, we consider the same three station-
ary Poisson correlation models as we took for Section 6.4.2.3. Note that similar
to (6.32), the percentage efficiency of the uth (u = 1, . . . , p) component of the β̂G
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estimator, for example, is defined as

eff(β̂u,G) =
var(β̂u,T R)

var(β̂u,G)
×100, (6.35)

where var(β̂u,T R) is the uth diagonal element of the covariance matrix of the true
correlation structure based estimator V ∗

T R computed by (6.29) using the true correla-
tion structure for C∗

i (ρ), and var(β̂u,G) is the uth diagonal element of the covariance
matrix VG given in (6.34). For the purpose, we first show how to compute α0 under
possible model mis-specifications, and then compute the efficiencies.

(i) Computation of α0 Under True AR(1) Correlation Structure
For EQC Working Correlation Structure

Under the working exchangeable correlation structure, α̂ satisfies the estimating
equation

K

∑
i=1

T

∑
t 6=u

(ỹit ỹiu−α) = 0, (6.36)

where ỹit = (yit − µit)/{σitt}1/2, as in (6.27), with µit = σitt = µ̃i = exp(x̃′iβ )
for the present stationary case. Note that for the true AR(1) correlation structure,
E(ỹit ỹiu) = ρ

|t−u| with 0 < ρ < 1. This shows that α̂ obtained from (6.36), if it
exists, will converge to α0 satisfying

α0 = 2ρ{T − (1−ρ
T )/(1−ρ)}/T (T −1)(1−ρ). (6.37)

For example, when ρ = 0.7 the equation (6.37) yields α0 = 0.52, 0.35 and 0.26 for
T = 5, 10, and 15, respectively.

Now to compute the efficiency of the ‘working’ equicorrelation structure based
GEE estimator β̂G, when in fact the repeated counts truly follow the AR(1) correla-
tion structure, we need to put AR(1) based Ci(ρ) and EQC based R(α0) in (6.34),
for example, with α0 = 0.52 when ρ = 0.7 for T = 5. The efficiencies for selected
ρ and for the selected design covariates as in Section 6.4.2.4 for T = 5, 10, 15, are
shown in Table 6.6.

For MA(1) Working Correlation Structure

For the working MA(1) correlation structure, we solve

K

∑
i=1

T−1

∑
t=1

ỹit ỹi(t+1)−K(T −1)α = 0, (6.38)

to obtain α̂ . If α̂ exists, then in this case α̂ will converge to α0 = ρ , because,
under the true AR(1) structure, E(ỹit ỹi(t+1)) = ρ . Note, however, that although in
the present case ρ can take any value from 0 to 1, we can use only the range
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Table 6.6 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based
estimators β̂1,T (= β̂1,GQL) and β̂2,T (= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for AR(1) structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

True Correlation Structure AR(1)
Working Structure MA(1) EQC
T ρ α0 β̂1,MA(1) β̂2,MA(1) ρ α0 β̂1,EQC β̂2,EQC

5 0.3 0.3 100 100 0.3 0.15 98 98
0.49 0.49 95 95 0.7 0.52 95 95

10 0.3 0.3 100 100 0.3 0.08 99 99
0.49 0.49 98 98 0.7 0.35 93 93

15 0.3 0.3 100 100 0.3 0.06 99 99
0.49 0.49 97 97 0.7 0.26 93 93

0 < ρ(= α0) < 0.5 for the efficiency computation. This is because in the GEE ap-
proach ρ is unknown and the working correlation α can range from −0.5 to 0.5
only. This is clear from the formula of VG in (6.34), where one cannot use R−1(α0)
beyond the range −0.5 < α < 0.5, as R(α) has the MA(1) correlation structure.
In view of this we have chosen ρ = 0.3 and 0.49 for our efficiency computations.
These efficiencies are also reported in Table 6.6, for T = 5, 10, and 15.

(ii) Computation of α0 Under True MA(1) Correlation Structure
For AR(1) Working Correlation Structure

Let ci,ut be the (u, t) element of the true correlation matrix Ci(ρ). For MA(1) true
correlation structure, ci,ut = ρ1 = ρ(1+ρ) if |t − u| = 1, and ci,ut = 0 otherwise,
where ρ1 denotes the lag-1 correlation. Under this structure, ρ1 satisfies −0.5 ≤
ρ1 ≤ 0.5.

Now consider the working AR(1) correlation matrix. Here ri,ut = α
|t−u| for u, t =

1, . . . ,T . If we base the estimation again on the average correlation, the estimating
equation

K

∑
i=1

T

∑
u<t

(ỹit ỹiu−α
|t−u|) = 0 (6.39)

results, giving α̂; a simple moment estimator for α , see also Crowder (1995), where
ỹiu and ỹit are the standardized residuals defined as in (6.36). Because

E

{
T

∑
u<t

ỹit ỹiu

}
= (T −1)ρ1 = (T −1)

ρ

1+ρ

under the MA(1) correlation structure, it follows from (6.39) that α0 is in fact the
solution of

α0(1−α0)−1{T − (1−α
T
0 )/(1−α0)}− (T −1)ρ1 = 0. (6.40)
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Therefore, if α̂ exists, α̂ will converge in probability to α0, α0 being related to ρ

through (6.40). For example, when ρ1 = 0.4, that is, ρ = 0.67, the α0 values are
approximately 0.31, 0.30, and 0.29 for T = 5, 10, and 15 respectively. For selected
values of ρ , the efficiencies of β̂G for the MA(1) versus AR(1) correlation structures,
are shown in Table 6.7.

Table 6.7 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based es-
timators β̂1,T R(= β̂1,GQL) and β̂2,T R(= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for MA(1) structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1

True Correlation Structure MA(1)
Working Structure AR(1) EQC
T ρ α0 β̂1,AR(1) β̂2,AR(1) ρ α0 β̂1,EQC β̂2,EQC

5 0.25 0.17 100 100 0.25 0.08 99 99
0.67 0.31 99 99 0.67 0.16 97 97

10 0.25 0.17 100 100 0.25 0.04 99 99
0.67 0.30 100 100 0.67 0.08 98 98

15 0.25 0.17 100 100 0.25 0.04 99 99
0.67 0.29 100 100 0.67 0.05 98 98

For EQC Working Correlation Structure

For the working exchangeable correlation matrix R(α), one writes ri,ut = α for all
u, t except for u = t. We must have −{1/(T −1)} ≤ α ≤ 1 for R(α) to be a positive
definite matrix, where T is the dimension of the R(α) matrix. It then follows that
the moment estimator α̂ [see also Crowder (1995] for α is given by

α̂ =
K

∑
i=1

T

∑
u6=t

r̂i(ut)/KT (T −1)

=
K

∑
i=1

T

∑
u6=t

ỹiuỹit/KT (T −1). (6.41)

Because Ci(ρ) has the MA(1) correlation structure,

E(α̂) = {KT (T −1)}−12K(T −1)ρ1 = 2ρ1/T =
2ρ

T (1+ρ)
. (6.42)

Thus, if α̂ exists, then α̂ converges to α0 = 2ρ1/T . Therefore, to compute the effi-
ciency of β̂G, we use the true ρ1 = ρ/(1+ρ) for Ci(ρ) and α0 = 2ρ1/T for R(α0)
in VG given in (6.34). For example, with T = 5 and ρ = 0.67, we use α0 = 0.16 in
R(α0). The efficiencies for selected values of ρ are shown in Table 6.7.
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(iii) Computation of α0 Under True Equicorrelation (EQC) Structure

For AR(1) Working Correlation Structure:

For the working AR(1) correlation structure, the estimating equation for α remains
the same as (6.39). However, as E(ỹiuỹit) = ρ under the true exchangeable correla-
tion structure, α̂ obtained from (6.39), if it exists, converges to α0, now satisfying
the equation

α0(1−α0)−1{T − (1−α
T
0 )/(1−α0)}−T (T −1)ρ/2 = 0. (6.43)

Here ρ ≥ −1/(T − 1). Consequently, we use only positive ρ values for efficiency
computations. For example, when ρ = 0.7 is used in (6.43), α0 is 0.83, 0.90, and
0.93 for T = 5, 10, and 15 respectively. Now the efficiencies of AR(1) ‘working’
structure based β̂G, when EQC is the true correlation structure, are shown in Table
6.8, for the selected values of ρ.

Table 6.8 Percentage relative efficiency of β̂1,G and β̂2,G to the true correlation structure based es-
timators β̂1,T R(= β̂1,GQL) and β̂2,T R(= β̂2,GQL), respectively, with true stationary correlation matrix
C∗

1(ρ) for EQC structure, for µit = µ̃i = exp(x̃i1β1 + x̃i2β2) with β1 = β2 = 1.

EQC True Correlation Structure
Working Structure AR(1) MA(1)
T ρ α0 β̂1,AR(1) β̂2,AR(1) ρ α0 β̂1,MA(1) β̂2,MA(1)
5 0.3 0.49 96 96 0.3 0.3 99 99

0.7 0.83 95 95 0.49 0.49 92 92
10 0.3 0.65 95 95 0.3 0.3 99 99

0.7 0.90 94 94 0.49 0.49 98 98
15 0.3 0.74 94 94 0.3 0.3 100 100

0.7 0.93 93 93 0.49 0.49 98 98

For MA(1) Working Correlation Structure

For the working MA(1) correlation structure, the estimating equation for α is given
by (6.38). Because E(ỹit ỹi(t+1)) = ρ for the true exchangeable correlation structure,

it follows from (6.38) that α̂ , if it exists, converges to α0 = ρ . The efficiencies of β̂G

for the exchangeable versus MA(1) correlation structure are also shown in Table 6.8,
for selected values of ρ.

Note that when the efficiencies displayed in Tables 6.6− 6.8 under correlation
structure misspecification are compared with those in Table 6.2 computed for the
independence assumption based regression estimators, it is seen that in some cases,
especially when EQC is the true correlation structure, the β̂ (I) appears to be equally
or more efficient than the GEE based estimator β̂G. For this reason, as Sutradhar
and Das (1999) [see also Sutradhar (2003)] argued, there is no guarantee that the
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GEE approach can provide more efficient estimates than the simpler MM estimates
obtained from (6.6) or QL estimates obtained from (6.9).

6.5 Nonstationary Correlation Models

In Section 6.3, we provided three stationary correlation models for longitudinal
count data. In Section 6.4, we discussed various estimation techniques including
the GEE and GQL approaches, for the estimation of the regression effects. Note
that in the GEE approach, the selection of a suitable ‘working’ correlation struc-
ture out of these three or other possible correlation structures is left to the user. It
was shown in Section 6.4 [see also Sutradhar and Das (1999)] that the use of such
a ‘working’ correlation structure may in reality produce a less efficient estimate
for the regression effect β than the ‘independence’ assumption based estimate. As
a remedy, Sutradhar (2003) has suggested using a general (robust) autocorrelation
structure that accommodates the above three stationary correlation structures as spe-
cial cases. Thus, as demonstrated in Section 6.4.2.3 (see Table 6.2), if the data fol-
low this class of Gaussian type stationary correlation structure, then the solution of a
generalized quasi-likelihood equation, following Sutradhar (2003), always produces
consistent and efficient estimates.

There, however, remains a concern that it may not be reasonable to use a station-
ary correlation structure when it is known that the covariates are time dependent.
In Section 6.5.1, we provide three nonstationary correlation models as a generaliza-
tion of the stationary AR(1), MA(1), and EQC structures, discussed in Section 6.3.
These models produce the same mean and variance functions, and different cor-
relation structures, under both stationary and nonstationary conditions. Under the
assumption that the repeated count data follow one of these three possible nonsta-
tionary models, in Section 6.5.2, we discuss the estimation of the parameters under
all three models. In Section 6.6.1, we deal with more nonstationary autocorrelation
models that belong to the same autocorrelation class as that of Section 6.5, but now
the marginal means and variances can be different under different models. In Sec-
tion 6.6.2 we provide a model selection criterion based on the principle of minimum
error sum of squares. A simulation study is conducted in Section 6.6.3 to exam-
ine the performances of the estimates under the true as well as misspecified models.
Also, the simulation study in the same section justifies the model selection criterion.
In Section 6.7, a real-life data example is discussed both for model selection as well
as estimation of the regression effects and the correlation parameters.
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6.5.1 Nonstationary Correlation Models with the Same Specified
Marginal Mean and Variance Functions

6.5.1.1 Nonstationary AR(1) Models

Suppose that yi1 follows the Poisson distribution with mean parameter µi1 = exp(x′i1β );
that is, yi1 ∼ Poi(µi1 = exp(x′i1β )), and for t = 2, . . . ,T, yit relates to yi,t−1 through
the dynamic relationship

yit = ρ ∗ yi,t−1 +dit , for t = 2, . . . ,T, (6.44)

where

ρ ∗ yi,t−1 =
yi,t−1

∑
s=1

bs(ρ),

with Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1−ρ. Also suppose that

yi,t−1 ∼ Poi(µi,t−1), and dit ∼ Poi(µit −ρµi,t−1),

with µit = ex′it β , and dit and yi,t−1 are independent. After some algebra, it may be
shown that this model (6.44) yields the means and the variances as

E(Yit) = var(Yit) = µit = ex
′
it β , (6.45)

and for u < t with t = 2, . . . ,T, nonstationary (ns) correlations, say c(ns)
i,ut (xiu,xit ,ρ),

as

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ)

= ρ
t−u
√

µiu

µit
, (6.46)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi,t−1

]
, t = 2, · · · ,T. (6.47)

Stationary Correlation Structure: Note that in the stationary case, that is, when
the covariates are time independent such as xit = x̃i for all t = 1, . . . ,T, the means
and variances given by (6.45) and the correlation matrix given by (6.46) become
stationary. In particular, the nonstationary correlations given by (6.46) reduce to the
covariates free stationary correlations

c∗i,ut(ρ)) = (ρ |t−u|), for all u 6= t,u, t = 1, . . . ,T, (6.48)

which is same as the correlation in (6.17) derived under the stationary correlation
model (6.14).
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6.5.1.2 Nonstationary MA(1) Models

To generalize the stationary MA(1) model [Sutradhar (2003)] to the nonstationarity
case, we consider the dynamic relationship

yi1 ∼ Poi(µi1 = exp(x′i1β ))
yit = ρ ∗di,t−1 +dit , for t = 2, . . . ,T, (6.49)

where

dit
iid∼ Poi

[
t−1

∑
j=0

(−ρ) j
µi,t− j

]
for all t = 1, . . . ,T.

After some algebra, this model yields the same means and variances as in (6.45)
derived under the AR(1) model. Furthermore, it can be shown that the correlations
are given by

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ) =

 ρ{∑min(u,t)−1
j=0 (−ρ) jµ

i,min(u,t)− j
}

√
µiuµit

for |u− t|= 1

0 otherwise,
(6.50)

with ρ satisfying the range restriction

0 < ρ < min [1,ρi20, . . . ,ρit0, . . . ,ρiT 0] , (6.51)

where ρit0 is the solution of ∑t−1
j=0(−ρ) jµi,t− j = 0. Note that this range restriction

may allow only a narrow range for the ρ parameter.

Stationary Correlation Structure: Note that in the stationary case, the means and
the variances have the form µit = µi· = exp(x̃′iβ ) for all t = 1, . . . ,T. Furthermore,
by (6.50), the limiting correlations when min(u, t)→ ∞ have the formula

c∗i,ut(ρ) = corr(Yiu,Yit) =
{

ρ{∑∞
j=0(−ρ) j = ρ

1+ρ
for|u− t|= 1

0 otherwise,
(6.52)

which is free from the time-dependent covariates. This stationary correlation is the
same as the correlation in (6.19) derived under the stationary MA(1) model (6.18).

6.5.1.3 Nonstationary EQC Models

To generate a nonstationary equicorrelations model, we consider

yi1 ∼ Poi(µi1 = exp(x′i1β ))
yit = ρ ∗ yi1 +dit , for t = 2, . . . ,T, (6.53)

where dit is assumed to be distributed as
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dit ∼ Poi(µit −ρµi1)

with µit = ex′it β . Also it is assumed that dit for t = 2, . . . ,T, are independent of yi1.

It then follows that E(Yit) = var(Yit) = µit = ex
′
it β as in the AR(1) and MA(1) cases,

for all t = 1, . . . ,T, and for u < t,

cov(Yiu,Yit) = ρµi1, (6.54)

yielding the nonstationary correlation structure

corr(Yiu,Yit) = c(ns)
i,ut (xiu,xit ,ρ) =

ρµi1√
µiuµit

, (6.55)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

µit

µi1

]
, t = 2, . . . ,T.

Stationary Correlation Structure: Note that when covariates are time indepen-
dent, that is, xit = x̃i for all t = 1, . . . ,T, the nonstationary correlations in (6.55)
reduce to the stationary correlations in (6.22) derived under the stationary exchange-
able correlation model (6.20).

For convenience, we summarize the means, variances, and correlations for all
three nonstationary correlation models, as in Table 6.9.

Table 6.9 A class of nonstationary correlation models for longitudinal count data and basic prop-
erties.

Model Dynamic Relationship Mean, Variance
and Correlations

AR(1) yit = ρ ∗ yi,t−1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit ∼ Poi(µit −ρµi,t−1), t = 2, . . . ,T corr[Yiu,Yit ] = ρ
(ns)
|t−u|

= ρ |t−u|
[

µiu
µit

] 1
2

MA(1) yit = ρ ∗di,t−1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit
iid∼ Poi

[
∑t−1

j=0(−ρ) jµi,t− j

]
t = 1, . . . ,T corr[Yiu,Yit ] = ρ

(ns)
|u−t|

=

{
ρ{∑min(u,t)−1

j=0 (−ρ) j µi,min(u,t)− j}√
µiuµit

for |u− t|= 1

0 otherwise,
EQC yit = ρ ∗ yi1 +dit , t = 2, . . . ,T E[Yit ] = µit

yi1 ∼ Poi(µi1) var[Yit ] = µit

dit ∼ P(µit −ρµi1), t = 2, . . . ,T corr[Yiu,Yit ] = ρ
(ns)
|u−t|

= ρµi1√
µiuµit
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6.5.2 Estimation of Parameters

It follows from Sections 6.5.1.1−6.5.1.3 (see also Table 6.9) that all three nonsta-
tionary, namely AR(1), MA(1), and EQC, models have the same mean and variance
structures. Their correlation structures are, however, different; that is, the nonsta-
tionary correlation matrix C(ns)

i (xi,ρ) = (c(ns)
i,ut (xiu,xit ,ρ)) is not the same under all

three models. Suppose that the structure is identified (see Section 6.5.3 for an ex-
ploratory way for the model selection). Now assuming that we have a consistent
estimate for ρ, say ρ̂, we may obtain a consistent and highly efficient estimate for
β by using the GQL approach that we provide below.
GQL Estimating Equation for β : Similar to the GQL estimation (6.26) for the
stationary case, we now solve the GQL estimating equation given by

K

∑
i=1

∂ µ ′
i

∂β
Σ

(ns)
i

−1
(ρ̂)(yi−µi) = 0, (6.56)

where µi = (µi1, . . . ,µit , . . . ,µiT )
′

is the mean vector of yi = (yi1, . . . ,yit , . . . ,yiT )
′

with

µit = exp(x′itβ )

Σ
(ns)
i (ρ̂) = A1/2

i C(ns)
i (xi, ρ̂)A1/2

i , (6.57)

where
Ai = diag[σi11, . . . ,σitt , . . . ,σiT T ],

with σitt = exp(x′itβ ). Furthermore, in (6.56), ∂ µ ′
i /∂β = X ′

i Ai, with Xi as the T × p
covariate matrix as defined earlier.

Let β̂GQL denote the solution of (6.56) after using ρ̂ computed under the se-
lected model. Under mild regularity conditions one may then show that β̂GQL has
the asymptotic (as K → ∞) normal distribution given by

K1/2(β̂GQL−β )∼ N

0, K

[
K

∑
i=1

X ′
i AiΣ

(ns)
i

−1
AiXi

]−1
 .

We now show how to compute ρ̂ under all three models.

6.5.2.1 Estimation of ρ Parameter Under AR(1) Model

Moment Equation for ρ: Under the nonstationary AR(1) model (6.44), the moment
estimate of ρ has the formula given by

ρ̂ =
∑K

i=1 ∑T
t=2 ỹit ỹi,t−1

∑K
i=1 ∑T

t=1 ỹ2
it

KT

∑K
i=1 ∑T

t=2[µi,t−1/µit ]1/2
, (6.58)



206 6 Longitudinal Models for Count Data

where ỹit = [yit−µit ]/
√

µit . Note that the formula for ρ given by (6.58) was obtained
by equating the lag 1 sample autocorrelation with its population counterpart given
by (6.46). Furthermore, ρ̂ computed by (6.58) must satisfy the range restriction
given in (6.47). This implies that if the value of ρ̂ computed by (6.58) falls beyond
the range shown in (6.47), we use the upper limit of ρ given in (6.47) as the estimate
of ρ .

6.5.2.2 Estimation of ρ Parameter Under MA(1) Correlation Model

Note that unlike the formula for lag 1 correlations (6.46) under the AR(1) model,
the formula for this lag 1 correlation given by (6.50) under the nonstationary MA(1)
model (6.49) involves a complicated summation. Thus, it is convenient to solve the
moment equation for ρ by using the Newton−Raphson iterative technique. To be
specific, by writing the moment equation as

g(ρ) =
∑K

i=1 ∑T−1
t=1 ỹit ỹi,t+1/K(T −1)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

− ρ

T −1

T−1

∑
u=1

[
∑u−1

j=0(−ρ) jµi,u− j
√

µiuµi,u+1

]
= 0,

(6.59)
we solve for ρ iteratively by using the Newton−Raphson iterative formula

ρ̂(r +1) = ρ̂(r)−
[
{∂g(ρ)

∂ρ
}−1g(ρ)

]
(r)

,

where [·](r) denotes that the expression within brackets is evaluated at ρ = ρ̂(r), the
rth iterative value of ρ. Note that ρ̂ must satisfy the range restriction (6.51).

6.5.2.3 Estimation of ρ Parameter Under Exchangeable (EQC) Correlation
Model

The moment estimating equation for the ρ parameter for the exchangeable model is
quite similar to that of the AR(1) model. The difference between the two equations
is that under the AR(1) process we have considered all lag 1 standardized residuals,
whereas under the exchangeable model, one needs to use standardized residuals of
all possible lags. Thus, following (6.58) for the AR(1) model, we write the moment
formula for ρ under the exchangeable model as

ρ̂ =
∑K

i=1 ∑T−1
`=1 ∑T−`

t=1 ỹit ỹi,t+`

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1 ỹ2

it

KT

∑K
i=1 ∑T−1

`=1 ∑T−`
t=1

µi1

[µit µi,t+`]
1
2

, (6.60)

where ỹit = [yit −µit ]/
√

µit . Note that ρ̂ must satisfy the range restriction in (6.55).
This implies that if the value of ρ̂ computed by (6.58) falls beyond the range shown
in (6.55), we take ρ̂ as the upper limit of ρ given in (6.55).
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6.5.3 Model Selection

Note that in the stationary case it is not necessary to identify the correlation structure
for the construction of the estimating equation (6.26) for β . This is because the
estimating equation (6.26) is constructed based on a common correlation structure
for C∗

i (ρ) as given by (6.25) with ρ` estimated as

ρ̂` =
∑K

i=1 ∑T−`
t=1 ỹit ỹi,t+`/K(T − `)

∑K
i=1 ∑T

t=1 ỹ2
it/KT

, (6.61)

(see also (6.27)) where ỹit = [yit − µit ]/
√

σitt . Nevertheless, if one would like to
identify the stationary correlation structure for the purpose of forecasting or other
reasons, this could be done by using the values of ρ̂` for ` = 1, . . . ,T − 1. This is
because one may show that

E[ρ̂`] = ρ`,

approximately, and it is reasonable to use the values of ρ̂` for ` = 1, . . . ,T − 1, to
identify a stationary correlation structure.

As far as the identification of a nonstationary correlation structure is concerned,
it appears that the values of ρ̂` can still be used for such an identification. More
specifically, simply compute the values of ρ̂` by (6.61) and compare their pattern
for best possible matching with those of E[ρ̂`] under desired models for all possi-
ble values of ρ = 0.0, 0.05, . . . ,0.90, 0.95. Suppose that it is intended to find out
whether the longitudinal count data follow one of the low-order, namely AR(1),
MA(1), or EQC, models. To resolve such an issue, one would compute the E[ρ̂`]
under all these three models and select that model which produces a pattern for ρ̂`

similar to that of E[ρ̂`].
For the longitudinal count data, the formulas for the expectations under the

AR(1), MA(1), or EQC models are given by

For AR(1) : E[ρ̂`] =
ρ`

K(T − `)

K

∑
i=1

T−`

∑
t=1

[
µit

µi,t+`

]1/2

for ` = 1, . . . ,T −1(6.62)

For MA(1) : E[ρ̂`] =

 ρ

K(T−`) ∑K
i=1 ∑T−`

t=1

[
∑t−1

j=0(−ρ) jµi,t− j√
µit µi,t+`

]
for ` = 1

0 otherwise
(6.63)

For EQC : E[ρ̂`] =
ρ

K(T − `)

K

∑
i=1

T−`

∑
t=1

[
µi1

{µit µi,t+`}
1
2

]
, (6.64)

for ` = 1, . . . ,T − 1, where µit = exp(x′itβ ) for all t = 1, . . . ,T. Note that as far
as the value of β is concerned for computing ρ̂` by (6.61) and the expectations
by (6.62)− (6.64), this may be obtained by solving the GQL estimating equation
(6.26) under the ’working’ independence assumption ρ = 0.0. This is because such
an estimate is always consistent and one does not necessarily require an efficient
estimate for β before the correlation structure is identified.
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Further note that if the time dependent covariates are not so different over time,
then the expected values in (6.62)− (6.64) would almost agree with the correlation
pattern under the stationary case, described through (6.17), (6.19), and (6.22). To
demonstrate this, we now examine empirically the pattern for E[ρ̂`] under all three
correlation models. For this purpose, we consider two time-dependent covariates as
follows:

xit1 =



1
2 for t = 1, 2; i = 1, . . . ,K/4

1 for t = 3, 4; i = 1, . . . ,K/4

− 1
2 for t = 1; i = (K/4)+1, . . . ,3K/4

0 for t = 2, 3; i = (K/4)+1, . . . ,3K/4

1
2 for t = 4; i = (K/4)+1, . . . ,3K/4

t
8 for t = 1, . . . ,4; i = (3K/4)+1, . . . ,K,

and

xit2 =


t−2.5

8 for t = 1, . . . ,4; i = 1, . . . ,K/2

0 for t = 1,2; i = (K/2)+1, . . . ,K

1
2 for t = 3, 4; i = (K/2)+1, . . . ,K.

For T = 4 and K = 100, the values for E[ρ̂`] computed by (6.62)− (6.64) for suit-
able values of ρ are displayed in Table 6.10.

It is clear from the results of the table that the E[ρ̂`] for ` = 1, . . . ,T−1, exhibit an
exponentially decaying pattern under the nonstationary AR(1) model, whereas they
exhibit a truncated pattern under the MA(1) model, and a constant pattern under the
EQC model. These patterns are quite similar to those under the respective stationary
correlation structure. Thus, it appears that in practice one may still exploit the values
of ρ̂` computed by (6.61) in order to diagnose the nonstationary correlation pattern.
More specifically, because the values of E[ρ̂`] for ` = 1, . . . ,T −1, under the AR(1),
MA(1), and EQC models exhibit three different patterns, and because the values
of ρ̂` computed from the data should reflect the pattern supported by the values of
E[ρ̂`], it is quite reasonable to examine the pattern generated by the values of ρ̂` to
diagnose the appropriate model.
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Table 6.10 The pattern for E[ρ̂`] for lag ` = 1, . . . ,T −1, under AR(1), MA(1), and EQC correla-
tion structures for longitudinal count data with selected values for the correlation index parameter
ρ.

Correlation Structure
AR(1) MA(1) EQC

ρ ` E[ρ̂`] ρ ` E[ρ̂`] ρ ` E[ρ̂`]
0.3 1 0.282 0.1 1 0.089 0.3 1 0.251

2 0.078 2 0.0 2 0.248
3 0.022 3 0.0 3 0.248

0.5 1 0.469 0.2 1 0.168 0.5 1 0.417
2 0.216 2 0.0 2 0.413
3 0.103 3 0.0 3 0.412

0.6 1 0.563 0.3 1 0.239 0.6 1 0.502
2 0.312 2 0.0 2 0.495
3 0.178 3 0.0 3 0.494

0.68 1 0.638 0.4 1 0.306 0.7 1 0.587
2 0.400 2 0.0 2 0.577
3 0.259 3 0.0 3 0.577

6.6 More Nonstationary Correlation Models

6.6.1 Models with Variable Marginal Means and Variances

In this section, we demonstrate that as opposed to the nonstationary MA(1) model in
(6.49), one may construct a different MA(1) model that produces the mean and the
variance functions different from those produced by the nonstationary AR(1) (6.44)
and EQC (6.53) models. These two latter models in (6.44) and (6.53) produce the
mean and the variance as

E[Yit ] = var[Yit ] = exp(x′itβ ). (6.65)

We now construct an alternative MA(1) model to (6.49), and examine its mean,
variance, and correlation structures.

6.6.1.1 Nonstationary MA(1) Models

Suppose that the non-stationary MA(1) model for the count responses has the same
form, that is,

yit = ρ ∗di,t−1 +dit , (6.66)

as in (6.18) under the stationary case, but the model components are now assumed
to satisfy the following distributional assumptions.
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Assumption 1. For t = 1, . . . ,T, the discrete errors dit follow the Poisson distribu-
tion as dit ∼ P(µit/(1+ρ)), with µit = exp(x′itβ ).

Assumption 2. For all t = 1, . . . ,T, dits are independent.

Assumption 3. An initial discrete error di0 ∼ P(µi0/[1 + ρ]), where the choice of
µi0, a function of some initial or past covariates, is left to the user. In the stationary
case, µi0 = µi1 = · · ·= µiT = µi·.

For t = 1, . . . ,T, by writing zi,t−1 = ρ ∗di,t−1, for convenience, one may now use
the model (6.66) and compute the mean νit = E(Yit) and the variance σitt = var(Yit)
as

νit = Edi,t−1E[zi,t−1]+E[dit ] = [ρµi,t−1 + µit ]/(1+ρ), (6.67)

and

σitt = vardi,t−1E[zit |di,t−1]+Edi,t−1var[zit |di,t−1]+var[dit ]

= vardi,t−1 [ρdi,t−1]+Edi,t−1 [ρ(1−ρ)di,t−1]+ [µit/(1+ρ)]

= [ρµi,t−1 + µit ]/(1+ρ), (6.68)

respectively. Thus, it is clear that for t = 1, . . . ,T , yit has the mean νit and the
variance σitt = νit , which are, however, different from the mean and the variance
functions given in (6.65) under the AR(1) and EQC models. Also, it is to be noted
that the ρ parameter in the MA(1) model (6.66) must satisfy the range restriction
max[−µit/µi,t−1] < ρ < 1, for all i and t. Next by similar calculations as in the
AR(1) model, it follows from (6.67)− (6.68) that under the MA(1) model, the `th
` = 1, . . . ,T −1, lag autocorrelation is given by

corr(Yit ,Yi,t−`) = c(ns)
it,t−l(xi,ρ) =

 [ρµi,t−`/(1+ρ)]/[νitνi,t−`]1/2 for ` = 1

0 for ` > 1.

 ,

(6.69)

which is nonstationary. This correlation structure is different from that (6.50) of the
other MA(1) model (6.49).

Thus, under this alternative nonstationary MA(1) model (6.66), it is not only that
the correlations are different from those of the AR(1) and EQC models, but the mean
and the variances are also different.
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6.6.2 Estimation of Parameters

Note that the three nonstationary models, namely AR(1), MA(1), and EQC intro-
duced in Sections 6.5.1.1, 6.5.1.2, and 6.5.1.3, respectively, produce the same mean
and variance functions but different correlation structures. In spite of their differ-
ent correlation structures, the regression parameter β was estimated by solving the
GQL estimating equation (6.56), which is unbiased for zero vector, irrespective of
the model for the data. This happens because all three correlation models produce
the same mean vector µi as given in (6.56). As opposed to Section 6.5, in Section
6.6 we now assume that the repeated count data are generated following either the
AR(1) (6.44) or EQC (6.53) model from Section 6.5, or following the MA(1) model
(6.66) introduced in Section 6.6.1.1. The MA(1) model (6.66) produces different
mean and variance structure, thus it is no longer possible to use the estimating equa-
tion (6.56) for β to obtain consistent estimate, under the MA(1) model (6.66). This
is, however, a valid equation to solve for β under the AR(1) and EQC models. Fur-
thermore, for these two models (6.44) and (6.53), the ρ parameter is consistently
estimated by (6.58) and (6.60), respectively.

In the next section, we demonstrate how to estimate β and ρ parameters of the
MA(1) model (6.66).

6.6.2.1 GQL Estimation for Regression Effects β

We now fit the nonstationary MA(1) model (6.66) to the longitudinal count data.
The mean and the variance structures under this model are given in (6.67)− (6.68),
whereas the nonstationary correlation structure is given by (6.69).

Let
νi = (νi1, . . . ,νit , . . . ,νiT )

′

be the mean vector of yi, where for t = 1, . . . ,T,

νit = [µit +ρµi,t−1]/(1+ρ)

by (6.67). For convenience, we assume that µi0 = 0. Furthermore, let Σ
(ns)
i (ρ) =

(σiut) be the T ×T covariance matrix of yi, where

σiut =

σitt , if u = t

ρµiu
1+ρ

, if u < t,
(6.70)

with σitt as in (6.68). It then follows that for known ρ , one may write the GQL
estimating equation for β as

K

∑
i=1

∂νi
′

∂β
Σ

(ns)
i

−1
(ρ̂)(yi−νi) = 0, (6.71)
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which is a different estimating equation from that of under the AR(1) model
(6.44) and EQC model (6.53).One may now solve (6.71) iteratively by using the
Newton−Raphson algorithm. To be specific, (6.71) is solved for β iteratively by
using

β̂ (r +1) = β̂ (r)+

{ K

∑
i=1

[(X
′
i Ai +Z′iBi)Σ−1

i (AiXi +BiZi)]

}−1

×
K

∑
i=1

{
(X

′
i Ai +Z′iBi)Σ−1

i (yi−νi)
}]

[r]

, (6.72)

where

X ′
i = (xi1, . . . ,xit , . . . ,xiT ), Z′i = (1p, xi1, . . . ,xi,T−1),

Ai = diag(
µi1

1+ρ
,

µi2

1+ρ
, . . . ,

µit

1+ρ
, . . . ,

µiT

1+ρ
),

B = diag(0,
ρµi1

1+ρ
,

ρµi2

1+ρ
, . . . ,

ρµit

1+ρ
, . . . ,

ρµi,T−1

1+ρ
),

and [.]r denotes the fact that the expression within the brackets is evaluated at β̂ (r).
Let β̂GQL denote the solution obtained from (6.72). Under mild regularity conditions
it may be shown that β̂GQL has the asymptotic (as K →∞) normal distribution given
as

K
1
2 (β̂GQL−β )∼ N

0, K

[
K

∑
i=1

(X ′
i Ai +Z′iBi)Σ−1

i (AiXi +BiZi)

]−1
 . (6.73)

6.6.2.2 Moment Estimation for the Correlation Parameter ρ

As far as the ρ parameter is concerned, we estimate this parameter consistently by
using the well-known method of moments. For the purpose, we first observe under
the MA(1) model that

E

[
(Yit −νit)√

νit

]2

= 1

E

[
(Yit −νit)√

νit

(Yi,t−1−νi,t−1)√
νi,t−1

]
=

ρ

1+ρ

µi,t−1√
νitνi,t−1

. (6.74)
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Consequently, one may obtain a consistent estimator of ρ by solving the moment
equation

a(ρ)
b(ρ)

=
ρ

1+ρ
c(ρ), (6.75)

where

a(ρ) =
1

K(T −1)

K

∑
i=1

T

∑
t=2

(Yit −νit)√
νit

(Yi,t−1−νi,t−1)√
νi,t−1

b(ρ) =
1

KT

K

∑
i=1

T

∑
t=1

[
(Yit −νit)√

νit

]2

,

and

c(ρ) =
1

K(T −1)

K

∑
i=1

T

∑
t=2

µi,t−1√
νitνi,t−1

. (6.76)

Note that unlike solving for ρ by (6.58) under the AR(1) process or by (6.60)
under the EQC model, solving (6.75) for ρ under the MA(1) model is complicated
as νit contains ρ for all t = 1, . . . ,T. One may, however, obtain an approximate
solution, based on an iterative technique by using an initial value of ρ , say ρ0, in all
νit , and solving (6.75) for ρ as

ρ1 =
a(ρ0)

b(ρ0)c(ρ0)−a(ρ0)
. (6.77)

Next one may improve the estimate of ρ by using ρ1 in place of ρ0 in (6.75). That
is, the new solution of ρ is obtained as

ρ2 =
a(ρ1)

b(ρ1)c(ρ1)−a(ρ1)
. (6.78)

This iteration continues until convergence.

6.6.3 Model Selection

Under the assumption that the longitudinal count data follow either the nonstation-
ary AR(1) (6.44) or EQC (6.53) model described in Section 6.5, we have estimated
their common regression parameter by (6.56), and their correlation parameter ρ was
estimated by (6.58) and (6.60), respectively. Next, for the estimation of the param-
eters of the MA(1) model (6.66), we have used the GQL approach (6.71) for β

estimation, and the moment estimating equation (6.75) for the estimation of the ρ

parameter. Now the question arises, which model to recommend for use in practice?
We consider a lag 1 model fitting approach to answer this question. Note that this
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model selection approach is different from that we have used in Section 6.5.3. One
of the reasons for this difference in model selection approaches is that in Section
6.5 we have considered models with the same mean functions, whereas in this sec-
tion we have considered models with different mean functions. To be more specific,
when the models do not agree for the mean functions, it is better to fit them to the
data separately and then see which model fits the data best. Thus, in this section, we
fit a model M (say) to the data and simply compute the error sum of squares, GM,
under the model M, defined by

GM =
K

∑
i=1

T

∑
t=1

[yit − ŷit(M)]2, (6.79)

and recommend that model with the smallest value of the error sum of squares. In
(6.79), ŷit(M) denotes the fitted value of yit under the model M.

The formula for ŷit(M)under each of the three models are as follows.

When Nonstationary AR(1) Model (6.44) Is Fitted

ŷit =

{
µ̂it for t = 1

µ̂it + ρ̂{yi,t−1− µ̂i,t−1} for t = 2, . . . ,T,
(6.80)

with µ̂it = exp(x′it β̂ ), where β̂ is obtained by solving the GQL estimating equation
(6.56) and ρ̂ is obtained as the moment estimate by using (6.58).
When Non-stationary MA(1) Model (6.66) is Fitted

ŷit =


µ̂it

1+ρ̂
for t = 1

µ̂it+ρ̂ µ̂i,t−1
1+ρ̂

for t = 2, . . . ,T,
(6.81)

with µ̂it = exp(x′it β̂ ), but β̂ is obtained by solving the GQL estimating equation
(6.71) and ρ̂ is obtained as the moment estimate by solving (6.75). Note that es-
timating equations in (6.71) and (6.75) under the MA(1) model are similar to but
different from the AR(1) based estimating equations (6.56) and (6.58), respectively.

When Nonstationary Exchangeable or Equicorrelation (EQC) Model (6.53) Is
Fitted

ŷit =

{
µ̂it for t = 1

µ̂it + ρ̂{yi1− µ̂i1} for t = 2, . . . ,T,
(6.82)

with µ̂it = exp(x′it β̂ ), where β̂ and ρ̂ are obtained by solving the GQL (6.56) and
moment estimating equation (6.60).
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6.6.4 Estimation and Model Selection: A Simulation Example

We now consider a simulation study and examine the performance of the GQL es-
timation approach discussed in Section 6.6.2. We also examine the performance of
the mean squared errors (MSEs) based model selection approach discussed in Sec-
tion 6.6.3. We demonstrate here that if a misspecified model is used, then the GQL
approach may lead to inconsistent estimates for the regression effects causing a se-
rious inference problem. This happens when the mean and the variance functions of
the true model are different from those of the so-called ‘working’ or misspecified
model.

6.6.4.1 Simulated Estimates Under the True and Misspecified Models

To choose a simulation design, we take p = 2 and β1 = β2 = 0.5. With regard to
the correlation index parameter, we consider two cases, one with moderately large
ρ = 0.5 and the other with large ρ = 0.75. Next we choose K = 300, where K is
the number of independent individuals. As far as the values of the covariates are
concerned, we consider two time-dependent covariates given in Section 6.5.3.

Next, for a selected value of K, and ρ, we simulate the longitudinal responses
yi1, . . . ,yiT , following a true, say AR(1) or exchangeable correlation model as de-
scribed in Section 6.5.1, or the MA(1) model as described in Section 6.6.1. We
consider 1000 simulations. In each simulation, we then estimate the parameters
β1, β2, and ρ, by using the formulas for all three processes as discussed in Sec-
tion 6.6.2. The simulated mean and the simulated standard error of the estimates are
reported in Table 6.11.

The results in Table 6.11 clearly indicate that fitting a ‘working’ nonstationary
model can be extremely dangerous. For example, when the longitudinal data are
generated, say following the MA(1) model, and also the estimates are obtained by
fitting the MA(1) model, the GQL estimates appear to perform very well. The GQL
estimates computed based on either the AR(1) or EQC model, however, appear to be
far off from the true parameter values. To be specific, when ρ = 0.75, the true MA(1)
based GQL estimates for β1 = 0.5 and β2 = 0.5 are 0.491 with standard error 0.175,
and 0.499 with standard error 0.175, respectively. These estimates are very close to
the true values. Similarly, the moment estimate for ρ = 0.75 is found to be 0.749
with small standard error 0.064, which indicates superb performance of the GQL
approach provided the true model is used for the estimation. On the contrary, when
AR(1) model is used as the ’working’ model, the regression estimates are found
to be −1.016 and 1.709 for true β1 = β2 = 0.5. It is clear that these estimates are
complete nonsense. Similar results hold for ρ estimation. The AR(1) based moment
estimate for ρ = 0.75 is found to be 1.000, which is also highly biased. Note that
these results are not surprising. This is because unlike under the stationary models
[Liang and Zeger (1986), Sutradhar (2003)], the mean and variance structures under
different correlation models may be different.
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Table 6.11 The simulated means and the simulated standard errors of the estimates of the re-
gression and the correlation index parameters under both true and ‘working’ nonstationary AR(1),
MA(1), and EQC (equicorrelations) models for longitudinal count data, with true β1 = β2 = 0.5,
for K = 300 individuals, and a selected value of ρ , based on 1000 simulations.

True Nonstationary Correlation Model
AR(1) MA(1) EQC

Working Model True ρ Parameters SM SSE SM SSE SM SSE
AR(1) 0.60 β1 0.499 0.111 −0.159 0.370 0.502 0.125

β2 0.494 0.103 1.171 0.306 0.491 0.116
ρ 0.599 0.033 0.847 0.076 0.504 0.044

0.75 β1 0.499 0.094 −1.016 0.279 0.504 0.114
β2 0.503 0.087 1.790 0.232 0.499 0.104
ρ 0.749 0.029 1.000 0.004 0.696 0.042

MA(1) 0.60 β1 0.477 0.138 0.483 0.178 0.360 0.130
β2 0.388 0.133 0.506 0.177 0.601 0.129
ρ 0.386 0.031 0.598 0.062 0.249 0.039

0.75 β1 0.481 0.127 0.491 0.175 0.368 0.122
β2 0.367 0.125 0.499 0.175 0.611 0.121
ρ 0.452 0.028 0.749 0.064 0.291 0.042

EQC 0.60 β1 0.498 0.126 0.215 0.278 0.498 0.110
β2 0.496 0.111 0.875 0.253 0.498 0.097
ρ 0.521 0.042 0.717 0.080 0.597 0.044

0.75 β1 0.497 0.115 0.777 0.446 0.498 0.090
β2 0.500 0.097 1.618 0.350 0.500 0.080
ρ 0.655 0.038 0.966 0.054 0.749 0.041

Remark that because the AR(1) and EQC models produce the same mean and
the variance functions, the estimates under model misspecification do not vary too
much but the standard errors tend to be larger under the misspecified models [Su-
tradhar and Das (1999)]. For example, when the data are generated following the
AR(1) model, the AR(1) model based estimates for β1, β2, and ρ, have the standard
errors 0.094, 0.087, 0.029, whereas the EQC model based corresponding standard
errors are 0.115, 0.097, 0.038, confirming inefficient estimation under the ’work-
ing’ correlation models.

In summary, when the longitudinal data follow a nonstationary correlation model,
the effect of selecting a ‘working’ model with different mean and variance functions
can be very serious. Thus, it is important to identify the true model to fit the data.

6.6.4.2 Model Selection

Note that it is practical to attempt to fit a possible low-order correlation model to
given longitudinal data. But it may not be easy to identify the actual correlation
structure for the data, especially when the data may follow one of the three non-
stationary correlation models discussed in the paper. We thus recommend fitting
all three models initially to the given data and compute the GM statistic defined in
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(6.79) under all three fitted models. One may then choose the model which produces
the smallest value of the statistic GM. The simulation results reported in Table 6.12
appear to support this technique of model selection.

Table 6.12 The simulated error sum of squares (ESS) under both true and ‘working’ nonstationary
AR(1), MA(1), and EQC (equi-correlations) models for longitudinal count data, with true β1 =
β2 = 0.5, for K = 300 individuals, and a selected value of ρ , based on 1000 simulations.

True nonstationary Correlation Model
AR(1) MA(1) EQC

Selected ρ Working Model ESS ESS ESS
0.60 AR(1) 0.967 1.378 1.180

MA(1) 1.281 1.138 1.158
EQC 1.053 1.347 1.012

0.75 AR(1) 0.788 1.450 1.046
MA(1) 1.249 1.120 1.145
EQC 0.919 1.425 0.856

For example, when the data were generated following the nonstationary AR(1)
model (6.44) with ρ = 0.75, the simulated average values of the GM statistic com-
puted by using the fitted values based on AR(1) (6.80), MA(1) (6.81), and EQC
(6.82) models are found to be 0.788, 1.450, and 1.046, respectively. It is then clear
that when the data follow the AR(1) model and the AR(1) model is fitted, the GM

statistic has the smallest value. Similar results hold under the other two models too.

6.7 A Data Example: Analyzing Health Care Utilization Count
Data

We now consider an illustration for the application of the nonstationary correlation
models for repeated count data discussed in Section 6.6, by analyzing the health
care utilization data, earlier studied by Sutradhar (2003), for example. This dataset,
provided in Appendix 6A, is a part of the longitudinal dataset collected by the Gen-
eral Hospital of the city of St. John’s, Canada. To be specific, here we consider
the longitudinal count data that contain the complete records for 144 individuals
for four years (n = 4) from 1985− 1988. The number of visits to a physician by
each individual during a given year was recorded as the response, and this was
repeated for four years. Also, the information on four covariates, namely, gender,
number of chronic conditions, education level, and age, were recorded for each
individual. Note that as the responses are counts, it is appropriate to assume that
the response variable, marginally, follows the Poisson distribution, and the repeated
counts recorded for four years will be longitudinally correlated. Along the lines of
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Liang and Zeger (1986) we assume that the data may follow any of the low-order
correlations such as AR(1), MA(1), or EQC models discussed in Section 6.6. Note
that because these models produce different mean and the variance structures, they
must be fitted by using these varied mean, variance, and correlation structures for
the purpose of obtaining consistent and efficient estimates for the regression effects
β and the correlation index parameter ρ.

Following the notations used in Sections 6.5 and 6.6, the four covariates for
the ith (i = 1, . . . ,K = 144) individual at time t (t = 1, . . . ,4) are denoted by
xit1,xit2,xit3, and xit4 respectively. The first covariate geneder was coded as 0 for
female and 1 for male. Thus, at any time t, xit1 = 0 if the ith individual is female,
otherwise xit1 = 1. Similarly, the number of chronic diseases was coded as xit2 = 0
for the absence of chronic disease for the ith individual at time t, and xit2 = 1 if the
ith individual had 1 or more chronic diseases at time t. The third covariate, educa-
tion level, xit3, was coded as 1 for less than high school, and 0 for high school or
higher education. The last covariate, xit4, represents the age of the individual. The
effects of these covariates are denoted by β = (β1,β2,β3,β4)′, so that the mean of
the count response for the ith individual at a time point t is given by (6.65) under
the nonstationary AR(1) and EQC structures, and by (6.67) under the nonstationary
MA(1) model. In all these mean functions xit = (xit1,xit2,xit3,xit4)′.

We now apply the GQL estimation methodology discussed in Section 6.6. By
using the response data yit and xit vector for all i = 1, . . . ,144, individuals and over
t = 1, . . . ,4, years, we obtain the estimate of β and ρ from Section 6.5.1.1 under
the nonstationary AR(1), from Section 6.6.1.1 under the MA(1), and similarly from
Section 6.5.1.3 under the EQC models. These results along with the standard errors
of the estimates of β computed by using the asymptotic covariance matrices from
these three sections, are reported in Table 6.13.

Table 6.13 Comparison of the estimates of the regression and the correlation parameters under
the nonstationary AR(1), MA(1), and EQC (equicorrelations) models in fitting the health care
utilization data.

Nonstationary Correlation Models
AR(1) MA(1) EQC

Parameters EST SE EST SE EST SE
Gender effect (β1) −0.223 0.060 −0.179 0.054 −0.204 0.065
Chronic effect (β2) 0.374 0.072 0.363 0.065 0.341 0.078
Education effect (β3) −0.428 0.074 −0.400 0.066 −0.390 0.081
Age effect(β4) 0.029 0.001 0.031 0.001 0.029 0.001
ρ 0.554 – 0.769 – 0.529 –
ρy(1) 0.546 – 0.486 – 0.521 –
GM 14.20 – 20.46 – 15.34

As far as the selection of a model from these three lower-order models is con-
cerned, we have computed the fitted residual squared distance GM by (6.79) under
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all three models and reported them in the same Table 6.13. As the GM statistic has
the lowest value 14.20 under the AR(1) structure, we chose the AR(1) model to
interpret the estimates.

As the first covariate gender was coded as 1 for male and 0 for female, it follows
from (6.65) and (6.67) that the negative value of β̂1 = −0.223 suggests that the
females made more visits to the physician as compared to the males. The positive
values of β̂2 = 0.374 and β̂4 = 0.029 suggest that individuals having one or more
chronic diseases or individuals belonging to the older age group pay more visits to
the physicians, as expected. The third covariate education level was coded as 1 for
less than high school, 0 for higher education. The effect of the education level on
the physician visits was found to be β̂3 = −0.428. This negative estimate shows
that highly educated individuals pay more visits as compared to individuals with a
low level of education. One of the reasons for this type of behavior of this covariate
may be that the individuals with a high-level education (more than high school) are
more concerned about their health condition as compared to the individuals with
low-level education.

Note that the standard errors of the regression estimates under the AR(1) model
were found to be

s.e.(β̂1) = 0.060, s.e.(β̂2) = 0.072, s.e.(β̂3) = 0.074, s.e.(β̂4) = 0.001.

As these standard errors are quite small as compared to the corresponding values
of the regression estimates, all four covariates appear to have significant effects on
the physician visits. Further note that the standard errors of the estimates under the
MA(1) model appear to be smaller than the corresponding standard errors under the
AR(1) model. Nevertheless, the estimates under the MA(1) model cannot be trusted
as it is evident from the simulation study (see Table 6.11) that they can be highly
biased when the data really follow the AR(1) model. Here the data as mentioned
earlier appear to follow the AR(1) model with the smallest GM value.

6.8 Models for Count Data from Longitudinal Adaptive Clinical
Trials

In a clinical trial study with human subjects, it is highly desirable that one use certain
data-dependent treatment allocation rules which exploit accumulating past informa-
tion to assign individuals to treatments so that more study subjects are assigned
to the better treatment. For example, consider a clinical trial study to examine the
performance of a new treatment for asthma prevention. Suppose that one individual
patient is assigned to one of the treatments in an adaptive way and number of asthma
attacks for a week is recorded. Here the number of asthma attacks for a week may
be considered to follow a Poisson distribution. Once the outcome of the first individ-
ual is known, the treatment for the second individual may be decided based on the
outcome of the first individual as well as the covariate information of the individual.
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Similarly, a treatment is assigned to the third individual based on the outcomes of
the past two individuals and their covariate information. This adaptive procedure
continues for a large number of weeks, say for 100 weeks for the treatment of 100
individuals. Note that 100 or more weeks is a reasonable duration for the completion
of an intensive clinical trial study. Here, the purpose is to determine the effects of
the treatments after treating a large proportion of subjects by the better treatment.

Note that there are many clinical studies including the aforementioned asthma
study where it may be necessary to record the count responses repeatedly over a
small period of time, from a patient based on the same assigned treatment, assign-
ment of treatment being done in a longitudinal adaptive way. For example, for the
asthma problem, it may be better to collect responses from a patient weekly for a
period of T = 4 weeks, say, where the responses will be longitudinally correlated.
As far as the treatment assignment is concerned, the assignment of the treatment to
the third patient, for example, will be benefitted from the first week’s response of
the second patient, and the first and second weeks’ responses from the first patient,
and so on. The main purpose of this section is to discuss such longitudinal count
data collected from a clinical trial study based on a suitable adaptive design. For
the purpose, following Sutradhar and Jowaheer (2006), we first provide two longi-
tudinal adaptive designs in Section 6.8.1. In Section 6.8.2, we demonstrate through
a simulation study that the longitudinal adaptive designs discussed in Section 6.8.1
indeed allocate more patients to a better treatment. The overall treatment effects and
the effects of other possible covariates are consistently and efficiently estimated in
Section 6.8.3 by using a weighted GQL (WGQL) approach, based on the complete
data collected from all patients during the study. We remark here that the WGQL
approach indicates that the longitudinal adaptive design weights responsible for the
collection of the longitudinal count data are incorporated in the so-called GQL ap-
proach discussed in the previous sections.

6.8.1 Adaptive Longitudinal Designs

Autocorrelated Poisson Model Conditional on Design Weights: Suppose that K
independent patients will be treated in the clinical study and T longitudinal count
responses will be collected from each of them. Also, for simplicity, let there be two
treatments A and B to treat these patients and A is the better treatment between
the two. Next suppose that δi refers to the selection of the treatment for the ith
(i = 1, . . . ,K) patient, and

δi =

{
1, if ith patient is assigned to A

0, if ith patient is assigned to B

with
Pr(δi = 1) = wi and Pr(δi = 0) = 1−wi. (6.83)
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Here wi refers to the better treatment selection probability for the ith patient. Now
to construct a longitudinal adaptive design one needs to derive the formulas for
the selection probabilities wi(i = 1, . . . ,K) so that in the long run more patients are
treated by A.

Note that the value of δi determines the treatment by which the ith patient will be
treated. Now suppose that conditional on δi, yit denotes the count response recorded
from the ith patient at time t(t = 1, . . . ,T ), and xit denotes the p-dimensional covari-
ate vector corresponding to yit , defined as

xit = (δi,xit2, . . . ,xitu, . . . ,xit p)′

= (δi,x
∗′
it )

′, (6.84)

where x∗it = (xit2, . . . ,xitu, . . . ,xit p)′ denote the p− 1× 1 vector of covariates such
as prognostic factors (e.g., age, chronic conditions, and smoking habit) for the ith
patient available at time point t. Thus, for i = 2, . . . ,K, the distribution of δi, that
is, the formula of wi, will depend on {δ1, . . . ,δi−1} and available responses ykv (k =
1, . . . , i−1;1≤ v≤ T ) along with their corresponding covariate vector xkv. For i = 1,
w1 is assumed to be known.

As far as the availability of the repeated responses is concerned, we assume that
for all i = 1, . . . ,K, once δi becomes known, the repeated count responses from the
ith patient will be available following a Poisson distribution with conditional mean
and variance (conditional on δi) given by

E(Yit |δi,x
∗
it) = var(Yit |δi,x

∗
it) = exp(θit), (6.85)

where θit = x′itβ , with xit = (δi,x∗
′

it )
′. Also we assume that the pairwise longitudinal

correlations between two repeated count responses are given by

corr[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = ρ

(ns)
|t−v|(δi,x

∗
it ,x

∗
iv,ρ)

= c(ns)
i,tv (δi,x

∗
it ,x

∗
iv,ρ), (6.86)

where c(ns)
i,tv (δi,x∗it ,x

∗
iv,ρ) has the formulas given by (6.46), (6.50), and (6.55) under

the nonstationary AR(1), MA(1), and EQC models, respectively. It then follows by
(6.85) and (6.86) that the conditional (on δi) covariance between yit and yiv is given
by

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] = ρ

(ns)
|t−v|{exp(θit +θiv)}

1
2 .

Note, however, that for simplicity we use the stationary correlations based covari-
ance matrix given by

cov[(Yit ,Yiv)|δi,x
∗
it ,x

∗
iv] ' c∗i,tv(ρ){exp(θit +θiv)}1/2

= ρ|t−v|{exp(θit +θiv)}
1
2 . (6.87)
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6.8.1.1 Simple Longitudinal Play-the-Winner (SLPW) Rule to Formulate wi

Note that in the cross-sectional setup, i.e., when T = 1 there exist a number of op-
tions to formulate the adaptive design weights wi for i = 1, . . . ,K. For example, we
refer to the

(i) randomized play the winner (RPW) rule [Zelen (1969); Wei and Durham (1978);
Wei et al. (1990)],
(ii) random walks rule [Durham and Flournoy (1994)],
(iii) group sequential test [Jennison and Turnbull (2001)], and
(iv) optimum biased coin designs [Pocock and Simon(1975); Smith (1984); Atkin-
son (1999)].

The purpose of these designs is to assign a better treatment to an incoming patient
based on the past outcomes of the experiment as well as the covariate information.
Note that even if there are controversies [Royall 1991; Farewell, Viveros, and Sprott
(1993)] about the usefulness of the play the winner rule, this seems to be the only
design which was applied by some investigators [see, e.g., Tamura et al (1994);
Rosenberger (1996)]. In this section, following Sutradhar, and Jowaheer (2006) [see
also Sutradhar, Biswas, and Bari (2005)] we discuss a SLPW design to deal with
longitudinal count data.

Note that as wi is the probability of selection of the better treatment for the ith
patient, it is convenient to compute wi by considering two types of balls in an urn,
the first type being the indicator for the selection of the better treatment A and the
second type for the other treatment. The two types of balls are added to the urn as
follows.

(a) As in the beginning we have no reason to believe that any particular treatment
is better than the other, we take the initial urn composition in a 50:50 fashion.
Thus, the urn will have two types of balls, say α balls of each type at the outset,
and the probability that the first patient will be treated by treatment A is 0.5; that
is, Pr(δ1 = 1) = w1 = 0.5. For simplicity one may use α = 1.

(b) Suppose that at the selection stage of the ith patient {yrt} denote all available
responses for r = 1, . . . , i−1 and 1≤ t ≤min(T, i− r). The range of t here depends
on the value of r. For example, for the selection time of the ith (i = 2, . . . ,K) pa-
tient, t = 1 when r = i−1. Similarly t = 1,2 for r = i−2. Also suppose that at this
selection stage we take all these available responses into account and for a suitable
τ value and for specific available response yrt , we add τ balls of the same kind by
which the patient was treated if yrt ≤ m∗

0, and add τ balls of the opposite kind in
the urn if yrt > m∗

0. Here m∗
0 is a threshold value of the responses so that any patient

with response less than this may be thought to belong to the success group. By the
same token, if the response exceeds this threshold value, the patient may be thought
to belong to the failure group. Thus, at this stage, we add τ balls for each and every
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available response. In general τ can be small such as τ = 2, or 4.

(c) On top of the past responses, it may also be sensible to take into account the
condition of certain covariates which, along with the treatment (A or B) were re-
sponsible for yielding those past responses yrt . For a suitable quantity urt defined
such that a large value of urt implies the prognostic factor based on a less serious
condition of the rth (r = 1, . . . , i−1) past patient, G−urt balls of the same kind by
which the rth patient was treated and urt balls of the opposite kind are added, at the
treatment selection stage for the ith patient, where [0, G] is the domain of urt .

The above scheme described through (a) to (c), produces the selection probabil-
ities wi(i = 2, . . . ,K) for the cases 2 ≤ i ≤ T as in Exercise 6.4, and for i > T as in
Exercise 6.5.

6.8.1.2 Bivariate Random Walk (BRW) Design

Note that in the cross-sectional setup, apart from the randomized play-the-winner
rule, there exist some alternative adaptive designs such as the random walk rule [see,
e.g., Temple (1981), and Storer (1989)] to collect and analyze the clinical trial data.
These random walk rules are variants of the familiar up-and-down rules [Anderson,
McCarthy, and Tukey (1946), Derman (1957)]. For example, in the two treatment
case, if the (i− 1)th (i = 2, . . . ,K,) patient is assigned to treatment A, then the ith
patient will be assigned to treatment A with probability pi, and to treatment B with
probability qi, such that pi +qi = 1. The parameters pi and qi depend on the previous
patient’s response and some random event, such as the result of a biased coin flip.

Remark that in the SLPW design in the previous section, the design weight wi

was mainly dependent on the responses of the individuals 1,2, . . . , i− 1, as well as
on the conditions of their covariates. Consequently, the construction of any random
walk type of rules must be based on past responses as well as covariates. As in the
previous section, suppose that a greater value of urt implies a better condition of
the rth past patient and it was a more favorable condition of the patient to treat. By
the same token, a smaller value of urt means that the patient was serious. Now to
make sure that this better or serious covariate condition of the past patient does not
influence the selection of the treatment for the present ith patient, and also to make
sure that the past better response (say, a low value of the response such as yrt ≤ y0)
gets more weight for the assignment of the patient to the better treatment, one may
use a bivariate probability structure given by

Pr(urt ≤ u0,yrt ≤ y0) = prt , Pr(urt ≤ u0,yrt > y0) = qrt ,

Pr(urt > u0,yrt ≤ y0) = qrt , Pr(urt > u0,yrt > y0) = hrt ,

so that prt + 2qrt + hrt = 1.0. Here the parameters are chosen such that prt > qrt >
hrt . Note that the bivariate probability structure arises from the consideration of
using the past responses and the covariate condition of the patients.
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The design weights wi under this BRW rule are given in Exercise 6.6 for the case
2≤ i≤ T, and in Exercise 6.7 for the case i > T.

6.8.2 Performance of the SLPW and BRW Designs For Treatment
Selection: A Simulation Study

In the last two sections, we have discussed how to construct the longitudinal adaptive
design weights represented by wi for the selection of a better treatment for the ith
patient, for all i = 2, . . . ,K. We now conduct an empirical study to examine the
performance of wi under both SLPW and BRW designs.

To evaluate wi under the SLPW design, we use the following steps.

Step 1. Parameter Selection: Clinical Design Parameters

α = 1.0, ; G = 3.0, and τ = 2 and 4.

Longitudinal Response Model Parameters

K = 100 subjects, p = 3 covariates, β1 = 0.5,1.00; β2 = 0.5; β3 = 0.25,

along with Poisson AR(1) responses for T = 4 time points with correlation index
parameter ρ = 0.9. Also, use threshold count m∗

0 = 8.

Note that the p = 3 covariates are denoted by xit = (δi,xit2,xit3)′. Here δi is
the treatment selection for the ith patient. Suppose that xit2 and xit3 are both non-
stochastic covariates. Let xit2 = 0,1, . . . ,5 denote the number of chronic diseases for
the ith patient at the entry time to the clinical experiment, and xit3 = 1,2, . . . ,6 be
the age group of the ith patient. These two covariates are virtually time independent.
We generate these covariates as

xit2 ∼ Binomial(5, p = 0.9)

zit3 ∼ Uniform(20,80),

for all i = 1, . . . ,K, and t = 1, . . . ,T, and then assign
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xit3 =



1 for 20≤ zit3 < 30

2 for 30≤ zit3 < 40

3 for 40≤ zit3 < 50

4 for 50≤ zit3 < 60

5 for 60≤ zit3 < 70

6 for 70≤ zit3 ≤ 80.

Step 2. Generate Correlated Responses for First Individual: First using w1 = 1
2 ,

generate δ1 such that Pr[δ1 = 1] = w1. Now for i = 1, that is, for the first patient,
use

x11 = [δ1,x111,x112]′

and generate y11 following

y11 ∼ Poi(µ11 = exp(x′11β ).

Next use the stationary Poisson AR(1) model (6.14), that is,

y1t = ρ ∗ y1,t−1 +d11,

to generate the remaining three responses, namely y12,y13, and y14.

Step 3. Generation of the nonstochastic u-Variable: Next to generate w2, one
depends on the y11 just generated and also on a u-variable which is a function of the
second and third covariates. We now define the nonstochastic u-variable, uit , given
by

uit =
2

xit2 +1
+

1
xit3

which ranges from 0.5 to 3. This aids the consideration of G = 3 under the SLPW
design.

Step 4. Generation of wi and δi for i = 2, . . . ,K: Use the formula for wi from Ex-
ercise 6.4 and 6.5. The desired yit values are generated following the model (6.14);
that is,

y1t = ρ ∗ y1,t−1 +d1t . (6.88)

Step 5. Generate δi. Once wi is computed, obtain δi such that Pr[δi = 1] = wi, and
compute δ ∗ = ∑K

i=1 δi in each simulation.
In a manner similar to that of the SLPW design, we now evaluate wi under the

BRW design. To compute wi in the BRW design, one requires an upper limit for the
u-variable, say u0 = 1 and an upper limit for yrt , say y0 = 8 for all past rth individuals
at time point t = 1, . . . ,4. By using β1 = 1.0,β2 = 0.25, and β3 = 0 we generate
w2 and other values of wi, i = 3, . . . ,100 by using the formulas from Exercise 6.6
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and 6.7. For the BRW design we also use prt = 0.75,qrt = 0.10, and hrt = 0.05
as the bivariate probabilities depending on the past responses and the values of the
u-variable.

Next, in each of 1000 simulations we generate binary values δi with correspond-
ing probability wi, where the wi are generated as above except that w1 = 0.5. In each
simulation we then calculate δ ∗ = ∑100

i=1 δi. For different parameter values under two
designs, the mean and standard error of δ ∗ are shown in Table 6.14.

Table 6.14 Simulated mean values and simulated standard errors of the total number of patients
δ ∗ = ∑100

i=1 δi receiving the better treatment (A) among K = 100 subjects under both SLPW and
BRW designs, based on 1000 simulations.

δ ∗

Design ρ β1 Mean SE
SLPW 0.9 τ = 2 0.50 62 4.90

1.00 58 4.73
τ = 4 0.50 68 4.92

1.0 61 4.79
BRW 0.9 0.50 61 4.74

1.00 56 5.01

It is clear from Table 6.14 that the design weights wi under both SLPW and
BRW designs appear to perform well for the selected parameter values. In all cases,
the design weights appear to help assign more patients to the better treatment. More
specifically, for τ = 2 and β1 = 0.50, the SLPW design assigns on the average 62 pa-
tients out of 100 to the better treatment A. Similarly for β1 = 0.50, the BRW design
assigns 61 patients on the average to the better treatment A. Note that all these val-
ues of total number of patients receiving treatment A are significant as the standard
errors of δ ∗ = ∑100

i=1 δi are reasonably small in all cases. Remark that β1 in both de-
signs represent the treatment effect. In both SLPW and BRW designs, smaller values
of the response variable y indicate that the treatment is better. For example, a fewer
number of asthma attacks for an individual implies that the individual received the
better treatment. This justification also follows, for example, from the formulas for
wi in Exercises 6.4 and 6.6. This is because as the threshold point m∗

0 in the SLPW
design and the cut point (y0,u0) in the BRW design are predetermined and fixed, the
smaller values of the response variable y will produce many of I(yrt) ≤ m∗

0 as 1 in
the formula for wi in Exercise 6.4, and δyrt prt in the formula for wi in Exercise 6.6
will contribute significantly. Thus, the better treatment should produce smaller val-
ues of y in the present setup. This in turn means that the smaller values of β1 should
indicate the better treatment. Consequently, the formulation of the design weights
for both SLPW and BRW designs appear to work well as more patients are seen to
be assigned to treatment A when β1 = 0.5 as compared to β1 = 1.0.
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6.8.3 Weighted GQL Estimation for Treatment Effects and Other
Regression Parameters

In previous sections, the repeated count responses for the ith individual were repre-
sented by a vector yi = [yi1, . . . ,yit , . . . ,yiT ]′ with its mean vector µi, and covariance

matrix Σ ∗
i (ρ) = A1/2

i C∗
i (ρ)A1/2

i (6.26) under the stationary correlation models or

Σ
(ns)
i (ρ) = A1/2

i C(ns)
i (xi,ρ)A1/2

i (6.56) under the nonstationary correlation models.
It was, however, demonstrated in Sections 6.8.1 and 6.8.2 under the longitudinal
adaptive clinical trial setup, that a treatment is selected first for the ith individual
based on adaptive design weight wi, and then the responses are collected. To reflect
this operation, we now denote the response vector as

yi(wi) = [yi1(wi), . . . ,yit(wi), . . . ,yiT (wi)]′

and its mean vector and stationary correlations based covariance matrix, for exam-
ple, by

µi(wi0), and Σ
∗
i (wi0,ρ),

respectively, where wi0 is the limiting value of wi, for example, wi0 = E[wi].

6.8.3.1 Formulas for µi(wi0), and Σ ∗
i (wi0,ρ) :

Construction of the Mean Vector µi(wi0) Let

z′it = x′it |δi=1 = (1,x∗
′

it ), and z∗
′

it = x′it |δi=0 = (0,x∗
′

it ),

where x∗it = (xit2, . . . ,xit p)′. Also, define

µ
∗
rt1 = exp(z′rtβ ), and µ

∗
rt2 = exp(z∗

′
rt β ). (6.89)

Now by taking the average over the distribution of δi, it follows from (6.85) that the
unconditional mean of Yit , that is, µit(wi0) has the formula given by

E(Yit |x∗it) = Eδ1
Eδ2|δ1

. . .Eδi|δ1,δ2,...,δi−1
E(Yit |δi, . . . ,δ1)

= wi0 exp(z′itβ )+(1−wi0)exp(z∗
′

it β )

= wi0µ
∗
it1 +(1−wi0)µ

∗
it2

= µit(wi0), (6.90)

where for i = 1, . . . ,K, wi0 is the expectation of wi, with wi = Pr(δi = 1|yHi−1) as
defined in Exercises 6.4 and 6.5 for the SLPW design, and in Exercises 6.6 and 6.7,
for the BRW design. More specifically, for the SLPW design, wi0 can be computed
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for the case 2≤ i≤ T as

wi0 = Eδ1
Eδ2|δ1

· · · Eδi|δ1,δ2,...,δi−1
E(δi|yHi−1)

=
1

2α + 1
2 i(i−1)(G+ τ)

×

[
α +

i−1

∑
r=1

i−r

∑
t=1

[{(G−urt)+ µ̃rt1τ}wr

+{urt +(1− µ̃rt2)τ}(1−wr)]] , (6.91)

and for the case i > T as

wi0 = Eδ1
Eδ2|δ1

. . .Eδi|δ1,δ2,···,δi−1
E(δi|yHi−1)

=
{

2α +(G+ τ)T
(

i− T +1
2

)}−1

×

[
α +

i−T

∑
r=1

T

∑
t=1
{(G−urt + µ̃rt1τ)wr +(urt +(1− µ̃rt2)τ)(1−wr)}

+
i−1

∑
r=i−T+1

i−r

∑
t=1
{((G−urt)+ µ̃rt1τ)wr

+(urt +(1− µ̃rt2)τ)(1−wr)}] , (6.92)

with

µ̃rt1 =
∫ m∗

0

0
f (yrt |θrt = z′rtβ ) =

m∗
0

∑
k=0

exp(−µ∗
rt1)(µ∗

rt1)
k

k!

and

µ̃rt2 =
∫ m∗

0

0
f (yrt |θrt = z∗

′
rt β ) =

m∗
0

∑
k=0

exp(−µ∗
rt2)(µ∗

rt2)
k

k!
,

where m∗
0 is the threshold count as mentioned before.

Note that the computation of the unconditional mean vector µi(wi0) for the BRW
design is similar to that of SLPW design, and hence omitted.

Construction of the Covariance Matrix Σ ∗
i (wi0,ρ)

Next, we construct the unconditional covariance matrix Σ ∗
i (ρ) of the Yi vector as

follows. Recall that given δ1,δ2, . . . ,δi, or simply say, given δi, the conditional vari-
ance of Yit and the conditional covariance between Yit and Yiv are given in (6.85) and
(6.87), respectively. Now by similar arguments as for the construction of the mean
vector, the unconditional covariance between Yit and Yiv may be computed as
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cov[(Yit ,Yiv)|x∗it ,x∗iv] = Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[cov(Yit ,Yiv)|δi]

+ covδ1,...,δi
[E(yit |δi),E(yiv|δi)],

= Eδ1
Eδ2|δ1

. . .Eδi|δ1,...,δi−1
[ρ|t−v|{exp[(θit +θiv)′β ]}1/2]

+covδ1,...,δi
{exp[(θit +θiv)′β ]}

= ρ|t−v|

[
wi0{µ

∗
it1µ

∗
iv1}1/2 +(1−wi0){µ

∗
it2µ

∗
iv2}1/2

]
+wi0{µ

∗
it1µ

∗
iv1}+(1−wi0){µ

∗
it2µ

∗
iv2}−µit(wi0µiv(wi0)

= σ
∗
i jk(wi0,ρ), say, (6.93)

where µ∗
it1 and µ∗

it2 are given as in (6.89), and µit(wi0) is given as in (6.90). For
t = v, equation (6.93) yields the unconditional variance of yit given by

var(Yit |x∗it) = µ
∗
it +{wi0µ

∗2
it1 +(1−wi0)µ

∗2
it2}−µ

∗2
it . (6.94)

The construction of the covariance matrix Σ ∗
i (wi0,ρ) = (σ∗

i jk(wi0,ρ)), say, is now
completed by (6.93) and (6.94).

6.8.3.2 Weighted GQL Estimation of β

Note that β = [β1,β2, . . . ,βp]′ is the effect of the covariate

xit = [δi,x
∗′
i t]′ = [δi,xit2, . . . ,xit p]′

on yit for all i = 1, . . . ,K, and t = 1, . . . ,T, where yit is now collected based
on longitudinal adaptive design scheme and is represented by yit(wi). Because
E[Yi(wi)] = µi(wi0) by (6.90), and var[Yi(wi)] = Σ ∗

i (wi0,ρ) by (6.93) and (6.94),
similar to the construction of the GQL estimating equation (6.26) or (6.56), we may
now construct a weighted GQL estimating equation for β given by

K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi(wi)−µi(wi0) = 0. (6.95)

where ρ̂ is a consistent estimate of ρ, the longitudinal correlation index parameter of
the model. Now, by treating the data as though they follow the stationary correlation
structure, one may apply the MM and equate the sample auto-covariance to the
autocovariance of the data given by (6.93) and obtain a moment estimate of ρ` (` =
|t− v|= 1, . . . ,T −1) as

ρ̂` =
N1−N2

D
, (6.96)
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where

N1 =
∑K

i=1 ∑|t−v|=`[(yit −µit(wi0))(yiv−µiv(wi0))/K(T − `)

∑K
i=1 ∑T

t=1[yit −µit(wi0)]2/KT

N2 = −
∑K

i=1 ∑|t−v|=`[wi0µ∗
it1µ∗

iv1 +(1−wi0)µ∗
it2µ∗

iv2−µit(wi0)µiv(wi0)]/K(T − `)

∑K
i=1 ∑T

t=1[µit(wi0)−µ2
it(wi0)+wi0µ∗2

it1 +(1−wi0)µ∗2
it2]/KT

,

and

D =
∑K

i=1 ∑|t−v|=`

[
wi0{µ∗

it1µ∗
iv1}1/2 +(1−wi0){µ∗

it2µ∗
iv2}1/2

]
/K(T − `)

∑K
i=1 ∑T

t=1[µit(wi0)−µ2
it(wi0)+wi0µ∗2

it1 +(1−wi0)µ∗2
it2]/KT

.

For given ρ̂` (a function of ρ̂), the solution of (6.95) may easily be obtained by using
the Newton−Rapson iterative equation.

β̂(m+1) = β̂(m) +

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

m

×

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi(wi)−µi(wi0))

]
m

, (6.97)

where β̂(m) is the value of β at the mth iteration and [·]m denotes that the expression

within brackets is evaluated at β̂(m). Let β̂WGQL be the solution of (6.97), which is
consistent for β .

Under some mild regularity conditions, it may be shown from (6.97) that for
large K, β̂WGQL has an asymptotically p-dimensional normal distribution with mean
β and covariance matrix var(β̂WGQL) which may be consistently estimated by using
the sandwich type estimator given by

ˆvar(β̂WGQL) =

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

+

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

×

[
2

K

∑
i<r

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)(yi−µi(wi0))

× (yr−µr(wi0))′Σ ∗
r
−1(wr0, ρ̂)

∂ µr(wr0)
∂β ′

]
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×

[
K

∑
i=1

∂ µ ′
i (wi0)
∂β

Σ
∗
i
−1(wi0, ρ̂)

∂ µi(wi0)
∂β ′

]−1

. (6.98)

Formula for the Derivative (∂ µ ′
i (wi0))/∂β in (6.95)

As
∂ µit(wi0)

∂β
= wi0µ

∗
it1zit +(1−wi0)µ

∗
it2z∗it ,

the p×T matrix ∂ µ ′
i (wi0)/∂β is computed as

∂ µ ′
i (wi0)
∂β

= wi0Z′iAi1 +(1−wi0)Z∗
′

i Ai2, (6.99)

where Z′i = (zi1, . . . ,zit , . . . ,ziT ) and Z∗
′

i = (z∗i1, . . . ,z
∗
it , . . . ,z

∗
iT ) are p× T matrices,

Ai1 = diag[µ∗
i11, . . . ,µ∗

iT 1], and Ai2 = diag[µ∗
i12, . . . ,µ∗

iT 2], with

µ
∗
it1 = exp(z′itβ ), µ

∗
it2 = exp(z∗

′
it β ),

where zit = (1,x∗
′

it )
′ and z∗it = (0,x∗

′
it )

′, for all t = 1, . . . ,T.

Exercises

6.1. (Section 6.5.1.1) [Likelihood estimation for nonstationary AR(1) model]
Consider the nonstationary AR(1) model given by (6.44). Then demonstrate that
similar to that (6.23) of the stationary AR(1) model (6.14), one may write the like-
lihood function for the model (6.44) as

L(β ,ρ) = Π
K
i=1[ f (yi1)Π T

t=2 f (yit |yi,t−1)],

with

f (yit |yi,t−1) = exp[−(µit −ρµi,t−1)]

×
min(yit ,yi,t−1)

∑
s=1

(yi,t−1)!ρs(1−ρ)yi,t−1−s(µit −ρµi,t−1)yit−s

s!(yi,t−1− s)!(yit − s)!
.

Now, argue that the likelihood estimation of β and ρ, is extremely complicated.

6.2. (Section 6.5.1.1) [Conditional moments for nonstationary AR(1) model]
Show either by using the conditional density from Exercise 6.1, or by direct compu-
tation from the model (6.44), that for t = 2, . . . ,T, the conditional mean and variance
of yit given yi,t−1 have the formulas:
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E[Yit |yi,t−1] = µit +ρ(yi,t−1−µi,t−1)

var[Yit |yi,t−1] = µit +ρ(yi,t−1−µi,t−1)−ρ
2yi,t−1.

Next, verify that for u < t, the conditional covariance has the formula

cov[{Yiu,Yit}|yi,u−1,yi,t−1] = 0.

6.3. (Section 6.5.2) [Conditional GQL estimating equation]
Denote the conditional mean and the variance in Exercise (6.2) by µ∗

it|t−1 and λitt|t−1,

respectively. Let µ∗ = [µi1,µ∗
i2|1, . . . ,µ∗

it|t−1, . . . ,µ∗
iT |T−1]

′ be the T × 1 conditional
mean vector, and Λi = diag[µi1,λi22|1, . . . ,λitt|t−1, . . . ,λiT T |T−1] is the T ×T condi-
tional covariance matrix of yi. Then, similar to (6.56), argue that a consistent esti-
mator of β can also be obtained by solving the conditional GQL estimating equation
given by

K

∑
i=1

∂ µ∗′

∂β
Λ
−1
i (ρ̂)(yi−µ

∗) = 0,

where ρ̂ is obtained by using (6.58) as in the unconditional estimation. Also, derive
the formulas for the elements of the p× T derivative matrix ∂ µ∗′/∂β . Comment
on the relative efficiency of this conditional GQL estimator of β as compared to the
unconditional GQL estimator obtained from (6.56).

6.4. (Section 6.8.1.1) [wi for the case 2≤ i≤ T under SLPW rule]
As the selection of the ith patient is made at the ith time point, by this time, the (i−
1)th patient has yielded one response and (i−2)th patient has yielded two responses
and so on. Use the rules (a), (b), and (c) from the Section 6.8.1.1 and argue that at
this treatment selection stage for the ith patient, there are

n∗i−1 = 2α +
i−1

∑
r=1

i−r

∑
t=1

(G+ τ) = 2α +
1
2

i(i−1)(G+ τ)

balls in total in the urn. Also justify that among these balls, there are

n∗i−1,1(yHi−1) = α +
i−1

∑
r=1

i−r

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){ur j + I[yrt > m∗
0]τ}]

balls of first type, where yHi−1 indicates the history of responses from the past i−1
patients. The number of second type of balls may be denoted by n∗i−1,2(yHi−1). It
then follows that for given yHi−1 , the conditional probability that δi = 1 is given by

wi = Pr(δi = 1|yHi−1) = n∗i−1,1(yHi−1)/n∗i−1.

6.5. (Section 6.8.1.1) [wi for the case i > T under SLPW rule]
Argue that under this case, at the treatment selection stage for the ith patient, there
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are

ñi−1 = 2α +
i−T

∑
r=1

T

∑
t=1

(G+ τ)+
i−1

∑
r=i−T+1

i−r

∑
t=1

(G+ τ)

balls in total in the urn. Also argue that among these balls, there are ñi−1,1(yHi−1)
balls of first type, where

ñi−1,1(yHi−1) = α +
i−T

∑
r=1

T

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){urt + I[yrt > m∗
0]τ}]

+
i−1

∑
r=1−T+1

i−r

∑
t=1

[δr{(G−urt)+ I[yrt ≤ m∗
0]τ}

+(1−δr){urt + I[yrt > m∗
0]τ}].

Clearly, for this i > T case, one may then evaluate the design weight wi as

wi =
ñi−1,1(yHi−1)

ñi−1
.

6.6. (Section 6.8.1.2) [wi for the case 2≤ i≤ T under BRW rule]
Let δurt = 1 for urt ≤ u0 and δurt = 0 otherwise. Similarly, let δyrt = 1 for yrt ≤ y0 and
δyrt = 0 otherwise. Verify, in the fashion similar to that of Exercise 6.4 that under
the BRW rule, the design weight wi has the formula

wi =
∑i−1

r=1 ∑i−r
t=1[δurt g(yrt)]+ [(1−δurt )s(yrt)]

∑i−1
r=1 ∑i−r

t=1(prt +2qrt +hrt)
,

where g(yrt) = δyrt prt +(1−δyrt )qrt , and s(yrt) = δyrt qrt +(1−δyrt )hrt .

6.7. (Section 6.8.1.2) [wi for the case i > T under BRW rule]
For this case, make an argument similar to that of Exercise 6.5 for the SLPW design,
and justify under the BRW rule, that wi has the formula given by

wi =
1

0.5i(i−1)−0.5(i−T )(i−T −1)

×[
i−T

∑
r=1

T

∑
t=1

[δurt g(yrt)]+ [(1−δurt )s(yrt)]

+
i−1

∑
r=i−T+1

i−r

∑
t=1

[δurt g(yrt)]+ [(1−δurt )s(yrt)]],

where g(yrt) and s(yrt) are defined as in Exercise 6.6.
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Appendix

Table 6A. Health care utilization data for six years from 1985 to 1990 collected by Health Science
Center, Memorial University, St. John’s, Canada. [Code: column 1 (C1)-Family identification; C2-
Member identification; C3-Gender (1 for male, 2 for female); C4-Chronic disease status (0 for
no chronic disease, 1 for 1 chronic disease and so on); C5-Education level (1 for less than high
school, 2 for high school, 3 for university graduate, and 4 for post graduate); C6-Age at 1985;
C7-C12-Number of physician visits from 1985 to 1990]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
7 101 2 3 3 51.7 10 15 10 6 7 14
7 102 1 2 2 55.4 0 6 0 4 2 0
7 203 2 1 4 24.9 12 6 2 0 3 2
7 204 2 0 4 21.5 0 1 1 0 0 0

27 101 2 1 3 49.5 2 11 8 7 7 3
27 102 1 1 4 50.7 13 13 16 12 18 12
27 203 1 0 4 20.2 1 5 0 2 0 0
27 203 1 0 4 20.2 2 3 7 1 0 0
36 101 2 2 3 49.7 5 5 4 18 11 9
36 102 1 1 3 54.6 1 0 0 2 1 1
36 203 2 0 3 26.0 10 6 9 9 21 16
36 204 1 0 2 22.4 3 4 1 0 4 1

189 101 2 1 3 58.6 4 3 1 3 0 6
189 102 1 0 4 58.3 1 0 0 3 0 3
189 203 2 3 2 31.7 8 4 4 12 12 7
189 204 2 1 3 20.2 2 0 6 2 2 5
436 101 2 0 1 62.1 10 8 7 10 8 11
436 102 1 0 1 68.9 6 5 2 6 4 6
436 203 1 0 3 31.8 1 3 4 0 0 0
436 204 1 0 4 23.8 2 2 5 0 0 0
469 101 2 4 2 44.1 4 1 6 7 13 3
469 102 1 0 3 47.5 2 0 1 0 1 1
469 203 1 0 3 23.7 2 4 3 2 1 0
469 204 1 2 4 21.2 5 5 5 0 8 0
574 101 2 0 1 47.2 4 10 12 17 13 10
574 102 1 4 1 52.9 8 9 14 23 22 15
574 203 2 1 3 23.2 5 3 6 6 5 7
574 204 1 0 2 21.9 2 0 3 3 1 1
580 101 2 2 1 41.9 2 5 1 0 1 0
580 102 1 0 2 44.2 1 1 4 24 5 2
580 203 2 1 2 20.5 13 11 11 16 18 21
580 204 2 0 2 23 9 3 4 3 19 3
706 101 2 2 3 40.7 17 5 1 5 3 2
706 102 1 0 1 42.9 1 1 7 6 1 0
706 203 1 0 3 21.5 1 3 0 3 0 0
706 204 1 0 3 19.9 0 0 0 0 0 0
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
754 101 2 1 2 49.8 8 2 5 12 8 8
754 102 1 0 1 50.8 0 2 0 0 2 0
754 203 1 1 2 21.3 0 0 0 0 1 0
754 204 1 0 4 25.3 1 1 1 0 0 2
758 101 2 1 2 60.9 2 5 1 1 0 0
758 102 1 0 4 63.7 1 0 0 0 0 0
758 203 1 1 4 22.8 0 0 0 2 1 0
758 204 1 0 4 20.9 2 11 4 11 10 4
921 101 2 1 1 50.8 0 3 0 3 7 14
921 202 1 1 1 26.4 1 1 4 3 5 2
921 203 2 1 3 25.2 3 2 2 1 2 2
921 204 2 0 2 21.9 3 2 4 2 5 16
965 101 2 1 1 44.8 13 18 13 13 15 17
965 102 1 2 1 48.6 4 2 0 3 0 6
965 203 1 0 3 25 4 3 1 0 6 2
965 204 1 0 3 20.9 2 3 1 1 3 1
993 101 2 3 1 67.3 2 3 3 2 4 3
993 203 1 2 1 31.3 2 0 1 1 2 3
993 204 2 1 2 22 11 6 3 4 17 8
993 205 1 0 1 22.3 1 1 4 9 4 1

1054 101 2 0 2 41.1 1 11 3 5 2 4 9
1054 102 1 2 1 43.6 3 4 10 4 11 11
1054 203 2 1 4 22.2 4 2 3 4 14 11
1054 204 2 2 4 20.3 1 4 3 5 10 9
1120 101 2 3 1 52.7 2 9 2 1 9 7
1120 102 1 0 1 63.1 0 0 0 0 0 0
1120 203 2 0 4 32.2 12 7 27 11 5 13
1120 204 1 1 2 26 1 3 0 3 10 3
1269 101 2 0 4 56.1 1 3 1 9 10 14
1269 102 1 1 4 56.3 4 0 3 8 4 4
1269 203 1 0 4 22 2 0 2 0 2 1
1269 204 2 0 4 20.5 0 0 0 1 0 0
1333 101 2 1 1 50.9 2 2 1 0 0 0
1333 102 1 0 1 49.5 3 6 2 9 5 4
1333 203 2 0 3 22.6 0 0 0 0 0 0
1333 204 1 0 2 20.6 0 0 0 1 4 12
1344 101 2 2 1 46.4 0 0 0 2 2 3
1344 203 1 0 1 24 0 1 0 0 0 0
1344 204 1 0 1 28.8 0 0 0 0 0 0
1344 205 1 1 1 20.3 2 0 1 1 0 1
1361 101 2 0 1 71.6 4 7 9 8 3 8
1361 202 2 0 3 35.3 2 4 7 9 10 6
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1361 203 1 0 2 33 3 3 5 2 0 3
1361 204 1 0 3 27.4 1 1 2 2 2 3
1397 101 2 0 3 25.3 7 3 5 7 5 5
1397 102 1 1 1 53 2 4 5 6 6 3
1397 203 1 0 4 27.3 2 0 0 0 0 0
1397 204 1 0 3 22 12 1 2 2 4 4
1637 101 2 1 4 43.5 6 10 2 2 3 3
1637 102 1 1 4 47.4 0 3 4 1 0 0
1637 203 1 0 4 23.1 0 0 0 1 1 0
1637 204 1 1 4 21.7 1 2 2 4 5 2
1664 101 2 2 4 47.2 25 9 8 14 12 29
1664 102 1 2 2 49.2 4 3 9 0 10 4
1664 203 2 0 4 23.5 3 3 0 2 2 1
1664 204 1 1 4 22.3 1 1 0 0 0 0
1669 101 2 0 2 50.6 0 0 0 2 4 1
1669 202 2 0 3 24.7 7 5 5 12 7 6
1669 203 1 0 4 22.5 0 0 1 1 2 0
1669 204 1 0 2 20.9 0 0 1 0 0 3
1682 101 2 1 1 62.1 0 2 3 1 0 0
1682 102 1 4 1 65.2 7 0 0 0 0 0
1682 203 1 3 3 29 9 9 12 5 4 4
1682 404 2 4 1 74.9 13 17 16 15 14 10
1702 101 2 2 1 59.2 6 5 2 1 1 6
1702 102 1 2 1 64 0 0 0 0 0 2
1702 203 1 1 1 21.1 0 0 0 0 0 0
1702 304 2 3 1 85.2 6 7 8 6 24 0
1703 101 2 1 3 56.9 3 4 3 10 4 14
1703 202 1 0 4 25.5 0 0 0 0 0 0
1703 204 2 0 4 22.1 1 0 1 3 0 0
1703 305 2 1 2 80.5 5 7 4 8 4 8
1728 101 2 1 1 40.1 5 3 2 2 2 1
1728 102 1 4 3 51.5 12 13 10 7 22 19
1728 203 2 1 2 24.3 10 11 4 5 7 3
1728 204 1 0 3 20.4 3 2 3 2 2 2
1737 101 2 3 2 43.8 11 6 9 4 4 4
1737 102 1 1 4 44.1 6 0 8 1 0 8
1737 203 2 0 3 21.9 1 4 10 8 25 10
1737 204 1 0 4 22.9 0 0 0 0 0 0
1751 101 2 5 2 52 9 12 11 6 18 15
1751 102 1 0 1 55.5 0 0 2 0 1 0
1751 203 1 1 1 23.6 3 2 8 2 3 6
1751 204 1 0 1 22.6 1 8 3 2 1 3
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1838 101 2 0 2 44.7 3 3 3 2 10 11
1838 102 1 1 1 46 3 1 2 2 0 3
1838 203 1 0 4 23.5 2 3 1 4 1 0
1838 404 2 1 1 76.4 0 0 7 5 8 4
1876 101 2 1 1 46.7 0 0 4 4 0 2
1876 102 1 1 3 51.1 2 10 10 16 10 6
1876 203 2 0 3 24.6 5 2 0 0 0 0
1876 205 2 4 4 21 2 1 1 2 3 5
1925 101 2 1 3 52.6 19 4 12 9 7 5
1925 102 1 0 2 60.2 4 15 13 5 1 7
1925 203 2 0 4 21.5 9 6 4 13 8 0
1925 204 1 0 4 23.2 0 0 1 0 0 0
1935 101 2 1 3 65.9 2 1 3 4 5 12
1935 102 1 1 1 67.6 9 6 7 8 7 7
1935 203 1 0 2 25.6 2 1 0 0 0 0
1935 204 2 0 3 38.4 4 2 4 9 17 18
2046 101 2 0 1 56.3 11 17 4 3 12 9
2046 202 1 0 1 33.4 0 0 0 0 0 0
2046 203 1 0 2 27.8 1 1 0 3 3 9
2046 204 2 0 3 25 0 3 4 5 5 8
2076 101 2 2 3 52 5 3 6 8 3 3
2076 102 1 1 1 53.8 2 0 3 7 6 2
2076 203 2 0 4 24.6 14 11 5 1 2 0
2076 204 1 3 3 31.4 2 1 4 3 4 14

41 102 1 0 1 54 0 0 0 0 0 0
41 203 2 0 4 22 2 2 2 9 7 0
41 204 1 0 4 23 3 2 2 4 7 0

101 101 2 1 1 62.8 2 0 0 0 1 0
101 102 1 5 1 65.9 2 2 5 10 7 2
101 203 1 1 3 24.2 0 0 0 0 0 0
129 101 2 3 1 56.3 10 14 7 9 9 13
129 102 1 1 1 57.1 9 15 8 10 13 2
129 204 1 0 4 21.6 1 1 4 1 0 0
208 102 1 0 4 50.5 0 0 0 7 11 12
208 203 1 0 4 25.3 0 1 1 1 4 1
208 204 1 0 3 23.8 1 1 1 1 0 1
219 101 2 4 1 62.5 11 17 8 18 23 17
219 203 2 1 1 40.4 9 4 2 6 4 2
219 204 2 1 4 21.3 5 2 1 4 0 0
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Table Cont’d

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
522 102 1 0 1 51.2 1 5 7 7 9 6
522 203 2 1 3 21.6 11 7 3 8 20 19
522 204 2 1 2 24.4 12 7 19 6 12 7
605 101 2 1 1 58.2 2 6 0 2 0 2
605 102 1 0 1 58.6 0 0 0 0 0 1
605 203 1 1 2 21.3 0 0 0 0 1 2
622 203 1 0 1 25 0 0 0 0 0 0
622 204 2 0 1 30.5 0 0 0 0 0 0
622 205 2 0 1 22.4 3 5 0 10 23 18
731 101 2 1 3 50.2 4 5 3 8 13 11
731 204 1 0 4 24 0 0 3 3 0 0
731 205 1 1 4 21.9 3 2 5 1 5 0

1097 101 2 0 3 43 2 3 2 1 0 6
1097 102 1 1 4 49.1 3 0 3 2 2 2
1097 203 1 0 4 23.5 1 4 1 3 2 2
1689 101 2 0 1 44.9 3 7 5 16 7 8
1689 102 1 2 3 47.8 1 8 24 22 14 8
1689 204 1 3 2 21.6 6 8 3 2 6 4
1906 101 2 4 1 67.8 27 23 29 39 19 16
1906 202 2 0 2 47.5 2 0 4 5 9 8
1906 203 1 1 2 50.2 12 8 8 11 9 13
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