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Abstract In this chapter we describe patterns that occur in the structure of social networks,
represented as graphs. We describe two main classes of properties, static proper-
ties, or properties describing the structure of snapshots of graphs; and dynamic
properties, properties describing how the structure evolves over time. These
properties may be for unweighted or weighted graphs, where weights may rep-
resent multi-edges (e.g. multiple phone calls from one person to another), or
edge weights (e.g. monetary amounts between a donor and a recipient in a po-
litical donation network).
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What do social networks look like on a global scale? How do they evolve
over time? How do the different components of an entire network form? What
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happens when we take into account multiple edges and weighted edges? Can
we identify certain patterns regarding these weights?

There has been extensive work focusing on static static snapshots of graphs,
where fascinating properties have been discovered, the most striking ones be-
ing the ‘small-world’ phenomenon [38] (also known as ‘six degrees of sepa-
ration’ [24]) and the power-law degree distributions [3, 12]. Time-evolving
graphs have attracted attention only recently, where even more fascinating
properties have been discovered, like shrinking diameters, and the so-called
densification power law [18]. Moreover, we find interesting properties in terms
of multiple edges between nodes, or edge weights.

In this chapter we will describe some of the most important properties ap-
parent in social networks, with a particular emphasis on dynamic properties,
and some of the newer findings with respect to edge weights.

The questions of interest are:

What do social networks look like, on a large scale? Do most nodes have
few connections, with several “hubs” or is the distribution more stable?
What sort of clustering behavior occurs?

How do networks behave over time? Does the structure vary as the net-
work grows? In what fashion do new entities enter a network? Does the
network retain certain graph properties as it grows and evolves? Does
the graph undergo a “phase transition", in which its behavior suddenly
changes?

How do the non-giant weakly connected components behave over time?
One might argue that they grow, as new nodes are being added; and
their size would probably remain a fixed fraction of the size of the GCC.
Someone else might counter-argue that they shrink, and they eventually
get absorbed into the GCC. What is happening, in real graphs?

What distributions and patterns do weighted graphs maintain? How
does the distribution of weights change over time— do we also observe
a densification of weights as well as single-edges? How does the dis-
tribution of weights relate to the degree distribution? Is the addition of
weight bursty over time, or is it uniform?

Answering these questions is important to understand how natural graphs
evolve, and to (a) spot anomalous graphs and sub-graphs; (b) answer questions
about entities in a network and what-if scenarios; and (c) discard unrealistic
graph generators.

Let’s elaborate on each of the above applications: Spotting anomalies is vital
for determining abuse of social and computer networks, such as link-spamming
in a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360 . yahoo . com), Facebook (www . facebook. com) and LinkedIn
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Symbol Description

g Graph representation of datasets
1% Set of nodes for graph G

& Set of edges for graph G

N Number of nodes, or |V|

E Number of edges, or ||

€i,j Edge between node ¢ and node j
W;,j Weight on edge e; ;

wi Weight of node ¢ (sum of weights of incident edges)
A 0-1 Adjacency matrix of the unweighted graph

Ay Real-value adjacency matrix of the weighted graph
ai,j Entry in matrix A

A1 Principal eigenvalue of unweighted graph

A1,w  Principal eigenvalue of weighted graph

Table 2.1. Table of Notations.

(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7,9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.

The rest of this chapter will examine both the static and dynamic properties,
for weighted and unweighted graphs. However, before delving into these static
and dynamic properties, we will next establish some terms and definitions we
will use in the rest of the chapter.

1. Preliminaries

We will first provide some basic definitions and terms we will use, and then
present some particular data sets we will reference. A full list of symbols can
be shown in Table 2.1.

1.1 Definitions

1.1.1 Graphs. We can represent a social network as a graph. For the
rest of the chapter we will use network and graph interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges
E: G = (V,&). We represent the sizes of V and £ as N and E. A graph
may be directed or undirected— for instance, a phone call may be from one
party to another, and will have a directed edge, or a mutual friendship may
be represented as an undirected edge. Most properties we examine will be on
undirected graphs.
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Graphs may also be weighted, where there may be multiple edges occurring
between two nodes (e.g. repeated phone calls) or specific edge weights (e.g.
monetary amounts for transactions). In a weighted graph G, let e; ; be the
edge between node ¢ and node j. We shall refer to these two nodes as the
‘neighboring nodes’ or ‘incident nodes’ of edge e; ;. Let w; ; be the weight on
edge e; ;. The total weight w; of node 7 is defined as the sum of weights of all
its incident edges, that is w; = Zi;l w; i, where d; denotes its degree. As we
show later, there is a relation between a given edge weight w; ; and the weights
of its neighboring nodes w; and w;.

Finally, graphs may be unipartite or multipartite. Most social networks one
thinks of are unipartite— people in a group, papers in a citation network, etc.
However, there may also be multipartite— that is, there are multiple classes of
nodes and edges are only drawn between nodes of different classes. Bipartite
graphs, like the movie-actor graph of IMDB, consist of disjoint sets of nodes
V1 and Vs, say, for authors and movies, with no edges among nodes of the
same type.

We can represent a graph either visually, or with an adjacency matrix A,
where nodes are in rows and columns, and numbers in the matrix indicate the
existence of edges. For unweighted graphs, all entries are 0 or 1; for weighted
graphs the adjacency matrix contains the values of the weights. Figure 2.1
shows examples of graphs and their adjacency matrices.

We next introduce other important concepts we use in analyzing these graphs.

1.1.2 Components.  Another interesting property of a graph is its com-
ponent distribution. We refer to a connected component in a graph as a set
of nodes and edges where there exists a path between any two nodes in the
set. (For directed graphs, this would be a weakly connected component, where
a strongly connected component requires a directed path between any given
two nodes in a set.) We find that in real graphs over time, a giant connected
component (GCC) forms. However, it is also of interest to study the smaller
components— when do they choose to join the GCC, and what size do they
reach before doing so?

In our observations we will focus on the size of the second- and third- largest
components. We will also look at the large scale distribution of all component
sizes, and how that distribution changes over time. Not surprisingly, compo-
nents of rank > 2 form a power law.

1.1.3 Diameter and Effective Diameter. = We may want to answer the
questions: How does the largest connected component of a real graph evolve
over time? Do we start with one large CC, that keeps on growing? We pro-
pose to use the diameter-plot of the graph, that is, its diameter, over time, to
answer these questions. For a given (static) graph, its diameter is defined as
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Figure 2.1. Illustrations of example graphs. On the left is a unipartite, directed, weighted
graph and the corresponding adjacency matrix. On the right is an undirected, bipartite graph

and the corresponding adjacency matrix.
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the maximum distance between any two nodes, where distance is the minimum
number of hops (i.e., edges that must be traversed) on the path from one node to
another, ignoring directionality. Calculating graph diameter is O(/N?). There-
fore, we choose to estimate the graph diameter by sampling nodes from the
giant component. For s = {1,2,...,.5}, we choose two nodes at random and
calculate the distance (using breadth-first search). We then choose to record the
90 percentile value of distances, so we take the .9.5 largest recorded value. The
distance operation is O(dk), where d is the graph diameter and & the maximum
degree of any node— on average this is a much smaller cost. Intuitively, the di-
ameter represents how much of a “small world” the graph is— how quickly one
can get from one “end” of the graph to another. This is described in [35].
We use sampling to estimate the diameter; alternative methods would include
ANF [28].

1.1.4 Heavy-tailed Distributions. While the Gaussian distribution
is common in nature, there are many cases where the probability of events
far to the right of the mean is significantly higher than in Gaussians. In the
Internet, for example, most routers have a very low degree (perhaps “home”
routers), while a few routers have extremely high degree (perhaps the “core”
routers of the Internet backbone) [12] Heavy-tailed distributions attempt to
model this. They are known as “heavy-tailed” because, while traditional ex-
ponential distributions have bounded variance (large deviations from the mean
become nearly impossible), p(x) decays polynomially quickly instead of ex-
ponentially as x — oo, creating a “fat tail” for extreme values on the PDF
plot.

One of the more well-known heavy-tailed distributions is the power law
distribution. Two variables x and y are related by a power law when:

y(x) = Az~ 2.1)

where A and ~ are positive constants. The constant - is often called the power
law exponent.

A random variable is distributed according to a power law when the proba-
bility density function (pdf) is given by:

p(l‘) = Axi’ya v> 1,1 > Tpin (2.2)

The extra 7 > 1 requirement ensures that p(x) can be normalized. Power laws
with v < 1 rarely occur in nature, if ever [26].

Skewed distributions, such as power laws, occur very often in real-world
graphs, as we will discuss. Figures 2.2(a) and 2.2(b) show two examples of
power laws.
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Figure 2.2.  Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of 75, 888
people and 508, 960 edges [11]). Both follow power-laws. In contrast, plot (c) shows the out-
degree distribution of a Clickstream graph (a bipartite graph of users and the websites they
surf [25]), which deviates from the power-law pattern.

While power laws appear in a large number of graphs, deviations from a
pure power law are sometimes observed. Two of the more common deviations
are exponential cutoffs and lognormals.

Sometimes, the distribution looks like a power law over the lower range of
values along the z-axis, but decays very fast for higher values. Often, this
decay is exponential, and this is usually called an exponential cutoff:

ylr = k) x e kIR (2.3)

where e #/# is the exponential cutoff term and k=7 is the power law term.

Similar distributions were studied by Bi et al. [6], who found that a discrete
truncated lognormal (called the Discrete Gaussian Exponential or “DGX” by
the authors) gives a very good fit. A lognormal is a distribution whose loga-
rithm is a Gaussian; it looks like a truncated parabola in log-log scales. The
DGX distribution has been used to fit the degree distribution of a bipartite
“clickstream” graph linking websites and users (Figure 2.2(c)), telecommuni-
cations and other data.

Methods for fitting heavy-tailed distributions are described in [26, 10].

1.1.5 Burstiness and Entropy Plots.  Human activity, including weight
additions in graphs, is often bursty. If that the traffic is self-similar, then we can
measure the burstiness, using the intrinsic, or fractal dimension of the cloud of
timestamps of edge-additions (or weight-additions). Let AW (t) be the total
weight of edges that were added during the ¢-th interval, e.g., the total network
flow on day ¢, among all the machines we are observing.

Among the many methods that measure self-similarity (Hurst exponent, etc.
[31]), we choose the entropy plot [37], which plots the entropy H (r) versus
the resolution r. The resolution is the scale, that is, at resolution 7, we di-
vide our time interval into 2" equal sub-intervals, sum the weight-additions
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AW (t) in each sub-interval k& (k = 1...2"), normalize into fractions py
(= AW (t)/Wiotar ), and compute the Shannon entropy of the sequence py:
H(r) = — >, pi logy py. If the plot H(r) is linear in some range of resolu-
tions, the corresponding time sequence is said to be fractal in that range, and
the slope of the plot is defined as the intrinsic (or fractal) dimension D of the
time sequence. Notice that a uniform weight-addition distribution yields D=1,
a lower value of D corresponds to a more bursty time sequence like a Cantor
dust [31], with a single burst having the lowest D=0: the intrinsic dimension
of a point. Also notice that a variation of the 80-20 model, the so called ‘b-
model’ [37], generates such self-similar traffic.

We studied several large real-world weighted graphs described in detail in
Table 2.2. In particular, BlogNet contains blog-to-blog links, NetworkTraffic
records IP-source/IP-destination pairs, along with the number of packets sent.
Bipartite networks Auth-Conf, Keyw-Conf, and Auth-Keyw are from DBLP,
representing submission records of authors to conferences with specified key-
words. CampaignOrg is from the US FEC, a public record of donations be-
tween political candidates and organizations.

For NetworkTraffic and CampaignOrg datasets, the weights on the edges are
actual weights representing number of packets and donation amounts. For the
remaining datasets, the edge weights are simply the number of occurences of
the edges. For instance, if author ¢ submits a paper to conference j for the first
time, the weight w; ; of edge e; ; is set to 1. If author ¢ later submits another
paper to the same conference, the edge weight becomes 2.

A complete list of the symbols used throughout text is listed in Table 2.1.

1.2 Data description

We will illustrate some properties described in this chapter on different real-
world social networks. These are described in detail in Table 2.2. This in-
cludes both bipartite and unipartite, and weighted and unweighted graphs.

Several of our graphs had no obvious weighting scheme: for example, a
single paper or patent will cite another only a single time. The graphs that did
have weights are also further divided into two schemes, multi-edges and edge-
weights. In the edge-weights scheme, there is an obvious weight on edges, such
as amounts in campaign donations, or packet-counts in network traffic. For
multi-edges, weights are added if there is more than one interaction between
two nodes. For instance, if a blog cites another blog at a given time, its weight
is 1. If it cites the blog again later, the weight becomes 2.

The datasets are gathered from publicly available data. NIPS!, Arxiv and
Patent [19] are academic paper or patent citation graphs with no weighting

lyww.cs.toronto.edu/~roweis/data.html
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Name Weights INJ,|E],time Description

PostNet Unweighted 250K, 218K, 80 d. Blog post citation network

NIPS Unweighted 2K, 3K, 13 yr. Paper citation network

Arxiv Unweighted 30K, 60K, 13 yr. Paper citation network

Patent Unweighted 4M, 8M, 17 yr. Patent citation network

IMDB Unweighted 757K, 2M, 114 yr. Bipartite actor-movie network

Netflix Unweighted 125K, 14M, 72 mo. Bipartite user-movie ratings

BlogNet Multi-edges 60K, 125K, 80 d. Social network of blogs based
on citations

Auth-Conf  Multi-edges 17K, 22K, 25 yr. Bipartite DBLP Author-to-
Conference associations

Key-Conf Multi-edges 10K, 23K, 25 yr. Bipartite DBLP Keyword-to-
Conference associations

Auth-Key Multi-edges 27K, 189K, 25 yr. Bipartite DBLP Author-to-
Keyword associations

CampOrg Edge-weights 23K, 877K, 28 yr. Bipartite U.S. electoral cam-

(Amounts) paign donations from organi-

zations to candidates (avail-
able from FEC)

CamplIndiv  Edge-weights 6M, 10M, 22 yr. Bipartite election donations

(Amounts) from individuals to organiza-

tions

Table 2.2.  The datasets referred to in this chapter.

scheme. /MDB indicates movie-actor information, where an edge occurs if
an actor participates in a movie [3]. Netflix is the dataset from the Netflix
Prize competition?, with user-movie links (we ignored the ratings); we also
noticed that it only contained users with 100 or more ratings. BlogNet and
PostNet are two representations of the same data, hyperlinks between blog
posts [21]. in PostNet nodes represent individual posts, while in BlogNet each
node represents a blog. Essentially, PostNet is a paper citation network while
BlogNet is an author citation network (which contains multi-edges).

Auth-Conf, Key-Conf, and Auth-Key are all from DBLP 3, with the obvious
meanings. CampOrg and Camplndiv are bipartite graphs from U.S. Federal
Election Commission, recording donation amounts from organizations to po-
litical candidates and individuals to organizations *.

In all the above cases, we assume that edges are never deleted, because edge
deletion never explicitly appeared in these datasets.

2www.netflixprize.com

3dblp.uni-trier.de/xml/
4www.cs.cmu. edu/~mmcgloho/fec/data/ fec data.html
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2. Static Properties

We next review static properties of social graphs. While all networks we
examine are evolving over time, there are properties that are measured at sin-
gle points in time, that is, static snapshots of the graphs. For the purposes
of organization we will further divide these properties into those applying to
unweighted graphs and to weighted graphs.

2.1 Static Unweighted Graphs

Here, we present the ‘laws’ that apply to static snapshots of real graphs
without considering the weights on the edges. Those include the patterns in
degree distributions, the number of hops pairs of nodes can reach each other,
local number of triangles, eigenvalues and communities. Next, we describe the
related patterns in more detail.

2.11 S-1: Heavy-tailed Degree Distribution. = The degree distribution
of many real graphs obey a power law of the form f(d) o d~¢, with the
exponent « > 0, and f(d) being the fraction of nodes with degree d. Such
power-law relations as well as many more have been reported in [8, 12, 15,
26]. Intuitively, power-law-like distributions for degrees state that there exist
many low degree nodes, whereas only a few high degree nodes in real graphs.

2.1.2 S-2: Small Diameter.  One of the most striking patterns that real-
world graphs have is a small diameter, which is also known as the ‘small-world
phenomenon’ or the ‘six degrees of separation’.

For a given static graph, its diameter is defined as the maximum distance
between any two nodes, where distance is the minimum number of hops (i.e.,
edges that must be traversed) on the path from one node to another, usually ig-
noring directionality. Intuitively, the diameter represents how much of a “small
world” the graph is— how quickly one can get from one “end” of the graph to
another.

Many real graphs were found to exhibit surprisingly small diameters— for
example, 19 for the Web [2], and the well-known “six-degrees of separation”
in social networks [4]. It has also been observed that the diameter spikes at the
‘gelling point’ [22].

Since the diameter is defined as the maximum-length shortest path between
all possible pairs, it can easily be highjacked by long chains. Therefore, of-
ten the effective diameter is used as a more robust metric, which is the 90-
percentile of the pairwise distances among all reachable pairs of nodes. In
other words, the effective diameter is the minimum number of hops in which
some fraction (usually 90%) of all connected node pairs can be reached [34].
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Computing all-pairs-shortest-path lengths is practically intractable for very
large graphs. The exact algorithm is prohibitively expensive (at least O(N?));
while one can use sampling to estimate it, alternative methods would include
ANF [28].

2.1.3 S-3: Triangle Power Law (TPL).  The number of triangles A and
the number of nodes that participate in A number of triangles should follow
a power-law in the form of f(A) o< A, with the exponent o < 0 [36]. The
TPL intuitively states that while many nodes have only a few triangles in their
neighborhoods, a few nodes participate in many number of triangles with their
neighbors. The local number of triangles is related to the clustering coefficient
of graphs.

2.14 S-4: Eigenvalue Power Law (EPL).  Siganos et.al. [33] exam-
ined the spectrum of the adjacency matrix of the AS Internet topology and re-
ported that the 20 or so largest eigenvalues of the Internet graph are power-law
distributed. Michail and Papadimitriou [23] later provided an explanation for
the ‘Eigenvalue Power Law’, showing that it is a consequence of the ‘Degree
Power Law’.

2.1.5 S-5: Community Structure. Real-world graphs are found to
exhibit a modular structure, with nodes forming groups, and possibly groups
within groups [13, 14, 32]. In a modular graph, the nodes form communities
where groups of nodes in the same community are tighter connected to each
other than to those nodes outside the community. In [27], Newman and Girvan
provide a quantitative measure for such a structure, called modularity.

2.2 Static Weighted Graphs

Here we try to find patterns that weighted graphs obey. In this section
we consider graphs to be directed (and impose a single direction in bipar-
tite graphs), as this will be an important consideration on the weights. The
dataset consist of quadruples: (IP-source, IP-destination, timestamp, number-
of-packets), where timestamp is in increments of, say, 30 minutes. Thus, we
have multi-edges, as well as total weight for each (source, destination) pair.
Let W () be the total weight up to time ¢ (ie., the grand total of all exchanged
packets across all pairs), F(t) the number of distinct edges up to time ¢, and
E,(t) the number of multi-edges (the d subscript stands for duplicate edges),
up to time .

We present three “laws” that our datasets seem to follow: The first is the
“weight power law” (WPL) correlating the total weight, the total number of
edges and the total number of multi-edges, over time. THe second is the “edge
weights power law”, the same law as applied to individual nodes. The third is
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the “snapshot power law” (SPL), correlating the in-degree with the in-weight,
and the out-degree with the out-weight, for all the nodes of a graph, at a given
time-stamp.

2.2.1 SW-1: Weight Power Law (WPL).  As defined above, suppose
we have E(t) total unique edges up to time ¢ (ie., count of pairs that know
each other) and W (¢) being the total count of packets up to time ¢. Is there a
relationship between W (¢) and E(t)? If every pair generated k packets, the
relationships would be linear: if the count of pairs double, the packet count
would double, too. This is reasonable, but it doesn’t happen! In reality, the
packet count over-doubles, following the “WPL” below. We shall refer to this
phenomenon as the “fortification effect”’: more edges in the graph imply super-
linearly higher total weight.

OBSERVATION 2.1 (WEIGHT POWER Law (WPL)) Let E(t), W (t) be
the number of edges and total weight of a graph, at time t. They, they follow a
power law

W(t) = E(t)"

where w is the weight exponent. Power-laws also link the number of nodes
N(t), and the number of multi-edges F4(t), to E(t), with exponents n and
dupFE, respectively.

The weight exponent w ranges from 1.01 to 1.5 for the real graphs we have
studied. The highest value corresponds to campaign donations: super-active
organizations that support many campaigns also tend to spend even more money
per campaign than the less active organizations. For bipartite graphs, we show
the nsre, ndst exponents for the source and destination nodes (which also
follow power laws: Ng,.(t) = E(t)™"¢ and similarly for Ngg (t)).

Fig. 2.5 shows all these quantities, versus F(t), for several datasets. The
plots are all in log-log scales, and straight lines fit well. We report the slopes
in Table 2.

2.2.2 SW-2: Edge Weights Power Law. We observe that the weight
of a given edge and weights of its neighboring two nodes are correlated. Our
observation is similar to Newton’s Gravitational Law stating that the gravita-
tional force between two point masses is proportional to the product of the
masses.

OBSERVATION 2.2 (EDGE WEIGHTS POWER LAW(EWPL)) Given a
real-world graph G, ‘communication’ defined as the weight of the link between
two given nodes has a power law relation with the weights of the nodes. In
particular, given an edge e; j with weight w; j and its two neighbor nodes i
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Figure 2.3.  Illustration of the EWPL. Given the weight of a particular edge in the final snap-
shot of real graphs (x-axis), the multiplication of total weights(y-axis) of the edges incident
to two neighboring nodes follow a power law. A line can be fit to the median values after
logarithmic binning on the x-axis. Upper and lower bars indicate 75% and 25% of the data,
respectively.

and j with weights w; and wj, respectively,

wi,j X (\/(wz — wij) * (wj — wm’))7

We report corresponding experimental findings in Fig. 3.

2.2.3 SW-3: Snapshot Power Laws (SPL).  What about a static snap-
shot of a graph? If node ¢ has out-degree out;, what can we say about its
out-weight outw;? It turns out that there is a “fortification effect” here, too,
resulting in more power laws, both for out-degrees/out-weights as well as for
in-degrees/in-weights.

Specifically, at a given point in time, we plot the scatterplot of the in/out
weight versus the in/out degree, for all the nodes in the graph, at a given time
snapshot. An example of such a plot is in Fig. 2.4 (c) and (d). Here, every point
represents a node and the x and y coordinates are its degree and total weight,
respectively. To achieve a good fit, we bucketize the x axis with logarithmic
binning [26], and, for each bin, we compute the median .

We observed that the median values of weights versus mid-points of the
intervals follow a power law for all datasets studied. Formally, the “Snapshot
Power Law” is:

OBSERVATION 2.3 (SNAPSHOT POWER LAw (SPL)) Consider the i-th
node of a weighted graph, at time t, and let out;, outw; be its out-degree
and out-weight. Then

outw; o outd"
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Figure 2.4.  Weight properties of CampOrg donations: (a) shows all the power laws as well as
the WPL; the slope in (b) is ~ 0.86 indicating bursty weight additions over time; (c) and (d) have
slopes > 1 (“fortification effect”), that is, that the more campaigns an organization supports,
the superlinearly-more money it donates, and similarly, the more donations a candidate gets,
the more average amount-per-donation is received. Inset plots on (¢) and (d) show iw and ow
versus time. Note they are very stable over time.

where ow is the out-weight-exponent of the SPL. Similarly, for the in-degree,
with in-weight-exponent iw.

We studied the snapshot plots for several time-stamps (for brevity, we only
report the slopes for the final timestamp in Table 2 for all the datasets we
studied). We observed that SPL exponents of a graph over time remains almost
constant. In Fig. 2.4 (c) ((d)), the inset plot shows how the iw(ow) exponent
changes over time (years) for the CampOrg dataset. We notice that w and ow
take values in the range [0.9-1.2] and [0.95-1.35], respectively. That is:

OBSERVATION 2.4 (PERSISTENCE OF SNAPSHOT POWER LAW) The in-
and out-exponents tw and ow of the SPL remain about constant, over time.

Looking at Table 2, we observe that all SPL exponents are > 1, which imply
a “fortification effect” with super-linear growth.
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Figure 2.5. Properties of weighted networks. Top: weight power laws for CampIndiv(W, Eq,
N; vs E). The slopes for weight W and multi-edges E are above 1, indicating “fortification”.
Bottom: entropy plots for weight addition. Slope away from 1 indicates burstiness (eg., 0.88 for
Camplndiv) The inset plot shows the corresponding time sequence AW versus time.
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w nsrc  ndst  dupE iw ow fd
CampOrg 1.53 058 073 129 1.16 130 0.86
CampIndiv. 136 053 092 1.14 1.05 148 0.87
BlogNet 1.03 079 NA NA 1.01 1.10 0.96
Auth-Key 1.01 090 0.70 NA 1.01 1.04 095
Auth-Conf  1.08 096 048 NA 1.04 1.81 0.96
Key-Conf 122 085 054 NA 1.26 214 095

Table 2.3.  Power law exponents for all the weighted datasets we studied: The x-axis
being the number of non-duplicate edges I, w: WPL exponent, nsrc, ndst: WPL exponent
for source and destination nodes respectively (if the graph is unipartite, then nsrc is the
number of all nodes), dupE: exponent for multi-edges, iw, ow: SPL exponents for indegree
and outdegree of nodes, respectively. Exponents above 1 indicate fortification/superlinear
growth. Last column, fd: slope of the entropy plots, or information fractal dimension.
Lower fd means more burstiness.

3. Dynamic Properties

We next present several dynamic properties. These are typically studied by
looking at a series of static snapshots and seeing how measurements of these
snapshots compare. Like the static properties we presented previously, we also
divide these into properties that take into account weights and those that don’t.

3.1 Dynamic Unweighted Graphs

The patterns in dynamic time-evolving graphs that do not consider edge
weights include the shrinking diameter property, the densification law, oscillat-
ing around a constant size secondary largest connected components, the largest
eigenvalue law and the bursty and self-similar edge additions over time. We
next describe these laws in detail.

3.1.1 D-1: Shrinking Diameter. Leskovec. et al. [18] showed that
not only is the diameter of real graphs small, but it also shrinks and then sta-
bilizes over time [18]. This pattern can be attributed to the ‘gelling point” and
the ‘densification’ in real graphs both of which are described in the following
sections. Briefly, at the ‘gelling point” many small disconnected components
merge and form the largest connected component in the graph. This can be
thought as the ‘coalescence’ of the graph at which point the diameter ‘spikes’.
Afterwards, with the addition of new edges the diameter keeps shrinking until
it reaches an equilibrium.

3.1.2 D-2: Densification Power Law (DPL).  Time-evolving graphs
follow the ‘Densification Power Law’ with the equation E(t) oc N (t)?, at all
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time ticks ¢ [18], where [ is the densification exponent, and E'(t) and N (t) are
the number of edges and nodes at time ¢, respectively.

All our real graphs we studied obeyed the DPL, with exponents between
1.03 and 1.7. The power-law exponent being greater than 1 indicates a super-
linearity between the number of nodes and the number of edges in real graphs.
That is, it indicates that for example when the number of nodes V in a graph
doubles, the number of edges £/ more than doubles— hence the densification. It
also explains away the shrinking diameter phenomenon observed in real graphs
described earlier. We will attempt to reproduce this property in a generative
model later in this chapter.
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Figure 2.6. Properties of PostNet network. Notice that we experience an early gelling point at
(a) (diameter versus time), stabilization/oscillation of the NLCC sizes in (b) (size of 2nd and 3rd
CC, versus time). The vertical line marks the gelling point. Part (c) gives N (¢) vs E(¢) in log-
log scales - the good linear fit agrees with the Densification Power Law. Part (d): component
size (in log), vs time - the GCC is included, and it clearly dominates the rest, after the gelling
point.

3.1.3 D-3: Diameter-plot and Gelling point. Studying the effective
diameter of the graphs, we notice that there is often a point in time when the di-
ameter spikes. Before that point, the graph is more or less in an establishment
period, typically consisting of a collection of small, disconnected components.
This “gelling point” seems to also be the time where the GCC “takes off”.
After the gelling point, the graph obeys the expected rules, such as the den-
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sification power law; its diameter decreases or stabilizes; the giant connected
component keeps growing, absorbing the vast majority of the newcomer nodes.

OBSERVATION 2.5 (GELLING POINT) Real graphs exhibit a gelling point,
at which the diameter spikes and (several) disconnected components gel into a
giant component.

In most of these graphs, both unipartite and bipartite, there are clear gelling
points. For example, in NIPS the diameter spikes at ¢ = 8 years, which is a
reasonable time for an academic community to gel. In some networks, we only
see one side of the spike, due to massive network size (Patent).

We show full results for PostNet in Fig. 2.6, including the diameter plot
(Fig. 2.6(a)), sizes of the NLCCs (Fig. 2.6(b)), densification plot (Fig. 2.6(c)),
and the sizes of the three largest connected components in log-linear scale, to
observe how the GCC dominates the others (Fig. 2.6(d)). Results from other
networks are similar, and are shown in condensed form for space (Fig. 2.7 for
unipartite graphs, and Fig. 2.8 for bipartite graphs). The left column shows
the diameter plots, and the right column shows the NLCCs, which we describe
next.

3.14 D-4: Constant/Oscillating NLCCs.  We particularly studied the
second and the third connected component over time. We notice that, after
the gelling point, the sizes of these components oscillate over time. Further
investigation shows that the oscillation may be explained as follows: new-
comer nodes typically link to the GCC; very few of the newcomers link to the
2nd (or 3rd) CC, helping them to grow slowly; in very rare cases, a newcomer
links both to an NLCC, as well as the GCC, thus leading to the absorption of
the NLCC into the GCC. It is exactly at these times that we have a drop in the
size of the 2nd CC: Note that edges are not removed, thus, what is reported as
the size of the 2nd CC is actually the size of yesterday’s 3rd CC, causing the
apparent “oscillation”.

An unexpected (to us, at least) observation is that the largest size these com-
ponents can get seems to be a constant. This is counter-intuitive — based on
random graph theory, we would expect the size of the NLCCs to grow with in-
creasing N. Using scale-free arguments, we would expect the NLCCs to have
size that would be a (small, but constant) fraction of the size of the GCC — to
our surprise, this never happened, on any of the real graphs we tried. If some
underlying growth does exist, it was small enough to be impossible to observe
throughout the (often lengthy) time in the datasets.

The second columns of Fig. 2.7 and Fig. 2.8 show the NLCC sizes versus
time. Notice that, after the “gelling” point (marked with a vertical line), they all
oscillate about constant value (different for each network). The only extreme
cases are datasets with unusually high connectivity. For example, Netflixhas
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Figure 2.7. Properties of other unipartite networks. Diameter plot (left column), and NLCCs
over time (right); vertical line marks the gelling point. All datasets exhibit an early gelling point,

and stabilization of the NLCCs.

very small NLCCs. This may be explained by the fact the dataset is masked,
omitting users with less than a hundred ratings (possibly to further protect the
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privacy of the encrypted user-ids). Therefore, the graph has abnormally high
connectivity.

OBSERVATION 2.6 (OSCILLATING NLCCS) After the gelling point, the sec-
ondary and tertiary connected components remain of approximately constant
size, with small oscillations.

3.1.5 D-5: LPL: Principal eigenvalue over time.  Plotting the largest
(principal) eigenvalue of the 0-1 adjacency matrix A of our datasets over time,
we notice that the principal eigenvalue grows following a power law with in-
creasing number of edges. This observation is true especially after the gelling
point. The ‘gelling point’ is defined to be the point at which a giant con-
nected component (GCC) appears in real-world graphs - after this point, prop-
erties such as densification and shrinking diameter become increasingly evi-
dent. See [18] for details.

OBSERVATION 2.7 (A\; POWER Law (LPL)) In real graphs, the princi-
pal eigenvalue \i(t) and the number of edges E(t) over time follow a power
law with exponent less than 0.5, especially after the ‘gelling point’. That is,

A(t) x E(t)*, <05

We report the power law exponents in Fig. 2.9. Note that we fit the given
lines after the gelling point which is shown by a vertical line for each dataset.
Notice that the given slopes are less than 0.5, with the exception of the Cam-
paignOrg dataset, with slope ~ 0.53. This result is in agreement with graph
theory. See [1] for details.

3.2 Dynamic Weighted Graphs

3.21 DW-1: Bursty/self-similar weight additions. We tracked how
much weight a graph puts on at each time interval and looking at the entropy
plots, we observed that the weight additions over time show self-similarity.
For those weighted graphs where the edge weight is defined as the number of
reoccurrences of that edge, the slope of the entropy plot was greater than 0.95,
pointing out uniformity. On the other hand, for those graphs where weight is
not in terms of multiple edges but some other feature of the dataset such as the
amount of donations for the FEC dataset, we observed that weight additions
are more bursty, the slope being as low as 0.6 for the Network Traffic dataset.
Fig. 2.5 (b) column shows the entropy plots for the weighted datasets we stud-
ied. AW values over time are also shown in insets at the bottom right corner
of each figure.

OBSERVATION 2.8 (BURSTY/SELF-SIMILAR WEIGHT ADDITIONS) [In all
our graphs, the addition of weight (AW (t)) was self-similar, with fractal di-
mension ranging from =1 (smooth/uniform), down to 0.6 (bursty).
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Figure 2.8. Properties of bipartite networks. Diameter plot (left column), and NLCCs over
time (right), with vertical line marking the gelling point. Again, all datasets exhibit an early
gelling point, and stabilization of the NLCCs. Netffix has strange behavior because it is masked

(see text).



38 SOCIAL NETWORK DATA ANALYTICS

10°) 10" 107,
+ 0.52856x + (-0.45121) = y] - 0.483x + (-0.45308) = y] - 0.37203x + (0.22082) = | »
»

. b 0 T} 0
10 10 10 10 10

EI

by ] 0 - .
10 10 10 10 10 10

IE|
(a) Committee - Candidate (b) Blog Network (c) Author - Conference

Figure 2.9. Illustration of the LPL. 1°* eigenvalue i (¢) of the 0-/ adjacency matrix A versus
number of edges F(t) over time. The vertical lines indicate the gelling point.

- 091585 + (21645 =y - 0.69559% + (040371 = ¥ | [ oserean~ rozssn =y|
- |
&k P // I
g | A /
- i _.-,..'I . i
D -/
™ T E|_ . - w W r ’I’;‘ = . o s e I;I ™ ot
(a) Committee - Candidate (b) Blog Network (c) Author - Conference

Figure 2.10. Tllustration of the LWPL. 1°* eigenvalue 1,4, (t) of the weighted adjacency ma-
trix A, versus number of edges F(t) over time. The vertical lines indicate the gelling point.

3.2.2 DW-2: LWPL: Weighted principal eigenvalue over time.  Given
that unweighted (0-1) graphs follow the A\; Power Law, one may ask if there
is a corresponding law for weighted graphs. To this end, we also compute the
largest eigenvalue Ay ,, of the weighted adjacency matrix A,,. The entries w; ;
of A, now represent the actual edge weight between node ¢ and j. We notice
that A\, increases with increasing number of edges following a power law
with a higher exponent than that of its A\; Power Law. We show the experi-
mental results in Fig. 2.10.

OBSERVATION 2.9 (A;,, POWER Law (LWPL)) Weighted real graphs ex-
hibit a power law for the largest eigenvalue of the weighted adjacency matrix
M w(t) and the number of edges E(t) over time. That is,

M oaw(t) < B(t)?

In our experiments, the exponent [ ranged from 0.5 to 1.6.
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4. Conclusion

We believe that the Butterfly model and the observation of constant NLCC’s
will shed light upon other research in the area, such as a recent, counter-
intuitive discovery [20]: the GCC of several real graphs has no good cuts, so
graph partitioning and clustering algorithms cannot help identify communities
because no clear communities exist.

We have described the following static patterns:

Heavy-tailed degree distribution, with a few “hubs” and most nodes hav-
ing few neighbors.

Small diameter and community structure— nodes form clusters, and it
takes few “hops” to get between any two nodes in the network.

Several power laws: Triangle Power Law and Eigenalue Power Law for
unweighted graphs, and the Weight Power Law, Edge Weights Power
Law, and Snapshot Power Laws for weighted graphs.

We have also described the following dynamic patterns:

Shrinking diameter and densification— the “world gets smaller” as more
nodes are added— increasingly more edges are added which causes the
diameter to shrink. There is also a gelling point at which this occurs.
Constant-size smaller components The large component takes off in size,
but the others will not grow beyond a certain point before joining it.
Several other power laws: LPL, or principal eigenvalue over time (both
weighted and unweighted), and bursty weight additions.

These patterns are helpful to spot anomalous graphs and sub-graphs, and
answer questions about entities in a network and what-if scenarios. Let’s elab-
orate on each of the above applications: Spotting anomalies is vital for de-
termining abuse of social and computer networks, such as link-spamming in
a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360 . yahoo . com), Facebook (www . facebook. com)and LinkedIn
(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7,9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.
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