Chapter 2
Simplifying RTL Design

Confusion and clutter are the failure of design, not the attributes
of information.

—Edward R. Tufte

This chapter gives an overview of the challenges in RTL designs, and some of the
basic techniques we can use to simplify them.

Challenges

The basic challenge in RTL design is that there are a lot of things going on at the
same time. The design of hardware involves dealing with concurrency. And currency
is inherently a difficult problem.

In addition, in RTL we describe both the function of the design and a great deal
of the implementation details. For instance, we define the basic clocking structure
and whether reset is synchronous or asynchronous. By the way we write the RTL
we determine whether latches or flip-flops will be used.

Historically, we have used code structure and coding style to develop code that
is synthesis friendly, easy to achieve timing closure, and meets our power and gate
count constraints. Clarity of the code has often been a secondary concern.

As designs become more complex, the challenge of describing both function and
implementation at the same time becomes even more difficult. For instance, inter-
face protocols such as USB 3.0 involve a number of complex algorithms. Although
we think about these algorithms as operating on packets, these are serial interfaces;
we must implement the algorithms serially, operating on one bit or one word at a
time. Developing the correct algorithm and at the same time defining its serial

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-
tees the accuracy, adequacy or completeness of any information contained herein. In no event shall
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the
information provided herein. Full disclaimer available at: p. v of Frontmatter.

M. Keating, The Simple Art of SoC Design: Closing the Gap between RTL and ESL, 15
DOI 10.1007/978-1-4419-8586-6_2, © Synopsys, Inc. 2011

16 2 Simplifying RTL Design

implementation is a complex task. As in any complex task, at some point it becomes
easier to divide it into two separate tasks, and solve them separately.

One of the byproducts of designing both the function and the implementation
details simultaneously is that the code size tends to become quite large. Source code
file sizes can often run into the tens of pages. The code tends to be structured to be
friendly to the compilers not necessarily to the humans who read and debug the
code. All this results in code that is difficult to analyze, review, and debug.

Syntactic Fluff

Another byproduct of trying to write synthesis friendly code is that we end up with
a lot of syntactic fluff. For example, describing a simple flop might consist of the
following code:

always @ (posedge clk or negedge reset) begin
if (!reset) foo <= 0;
else foo <= foo + 1;

end

In this case, the only part of the code that is algorithmically significant is
the line:

foo <= foo + 1;

The rest of the code is syntactic fluff. That is, it is required in order to convince
the synthesis tool that a flip-flop should be used and tell it the nature of the clock
and the reset signal as well as the reset value of foo (which is zero for most flops).

Another example of writing synthesis friendly code is the practice of separating
the code into combinational and sequential sections. In the early days of synthesis,
we could get better results by putting all the combinational code at the beginning
of the file and all the sequential code at the end of the file. So code might look
something like the following:

assign a = b;

always @(c or d) begin
e = Cc && d;
£ =c || a;

(continued)

Concurrency and State Space 17

(continued)

end

always @ (posedge clk or negedge resetn) begin
if (!resetn) foo <= 0;
else foo <= a;

end

always @ (posedge clk or negedge resetn) begin
if (!resetn) bar <= 0;
else bar <= e + £f;

end

This structure, of course, makes no logical sense. Logically, the combinational code
that defines the value of a should be right next to the sequential code where a is used.

With today’s synthesis tools, this kind of partitioning provides no value at all.
The synthesis tools can optimize all the code across a very large module regardless
of how the code is organized or structured.

One of the themes of this book is that we need to migrate our coding style from
being synthesis friendly to being human friendly. The synthesis tools have become
much more sophisticated over the last 10 years, but at the same time the designs
have become much more complex. As a result, we have an opportunity to rethink
how we code digital designs make them easier to understand and analyze. The
power of modern synthesis tools gives us a lot of leeway to modify how we write
code in order to make the design process faster and more robust.

Concurrency and State Space

There are several problems in RTL design that are simply the result of how hardware
description languages and synthesis tools evolved. This category includes syntactic
fluff and the fact that we describe function and implementation in the same file.

But there are two major challenges in RTL design that are fundamental to the
problem of digital design: concurrency and state space. These two issues are closely
related.

When we design a digital system, we are really specifying how that system
evolves over time. That is, we are specifying the state space of the system and how
it changes over time. The problem is that the state space may be very complex,
consisting of multiple subsystems that are evolving simultaneously.

Consider, for example, a cell phone. The main digital chip in a cell phone may
be simultaneously controlling the user interface, the audio and video services, net-
work access, and the radio subsystem.

We can demonstrate the challenge of such complex systems from a very simple
example. Consider the state machine in Figure 2-1.

18 2 Simplifying RTL Design

Note: In this book, we use a mix of styles in state machine diagrams. For very
simple diagrams, we use traditional bubble diagrams. For state machine drawings
where we show some code, we use State Chart notation. This format (using rect-
angles instead of circles for states) gives room for including more information
about the state. For an explanation of this format, see [11].

IDLE
[a<=0]
[start == 1;]
STATE1
()
STATE2 [a==7]
[$display ("Counted up to 7 \n");]

N J

Figure 2-1 A simple state machine.

Analyzing the state machine is quite simple. We just have a counter that counts
up to seven once the start signal is asserted.

If we have two state machines that are decoupled, as in Figure 2-2, the analysis
is again simple:

IDLE_O IDLE_A
[a<=0;] [b<=0;]
[start == 1] [start == 1;]

STATE_1 STATE_B

—= 7 b==13;

(STATE_2 (a==7l (STATE_C []
—U$display ("Counted up to 7 \n");] J —L[$display ("Counted up to 13 \n");] J

Figure 2-2 Two decoupled state machines.

Techniques 19

Now we have two state machines that count up to some terminal value, starting
when the start signal is asserted. Note that because the two terminal counts are rela-
tively prime, there is no way to predict the value of b given the value of a. After a
hundred clock cycles or so, the relationships between the values of aand b will
appear to be completely random. Thus, while it is easy to analyze each state
machine independently, analyzing and predicting the values of both states at any
particular time starts to get a bit tricky.

[start1 == 1;] [start2 == 1;]

STATE_1

[a<=a+1]

| STATE_2 T:T 13] j STATE.C E= 7]

‘ [$display ("Done Incrementing a \n");] J ‘ [$display ("Done Incrementing b \n");] J

STATE_B

[b<=b+1]

Figure 2-3 Two coupled state machines.

In Figure 2-3 things are getting dicey. In the above design, the two counters have
separate start signals. Also, we halt incrementing a based on the value of b, and vice
versa. The two state machines are now tightly coupled, and the combined behavior
depends heavily on when the two start signals are asserted. The behavior of this
circuit is a lot more complex than the behavior of the previous two circuits.

As we can see, the concurrent behavior of two tightly coupled state machines
can become very complex to analyze, even when each state machine is simple.

Techniques

The previous sections described three problems in RTL design:

e Syntactic fluff

* The order/structure of RTL code

e The problems of state space size and complexity, and the problem of
concurrency

We now give a brief overview of some of the techniques we can use to address these
problems. These techniques will be explored in more detail in the rest of the
book.

20 2 Simplifying RTL Design

As mentioned earlier, the key technique for managing complexity is to divide
and conquer. In terms of RTL design, and in fact in any code based design, the key
mechanism is encapsulation. We want to partition the design — and the code — so
that each piece can be designed and analyzed separately from the other pieces. To
the degree possible, we would like to encapsulate functionality, hide local informa-
tion so that external pieces of the design don’t see it, and present a simple interface
to the rest of the system.

Even with today’s languages and tools, we can use encapsulation techniques to
raise the level of abstraction above the traditional RTL level. In doing so, we can
make the function of the design more obvious and make the implementation less
obtrusive.

In this section, we will examine four areas for encapsulation and raising the
abstraction level of design:

e Combinational code
* Sequential code

* Interfaces

» Data Types

Encapsulating Combinational Code

Consider the following piece of SystemVerilog code:

input bit a;
input bit b;
input bit control;

bit temp;
bit [7:0] foo;

always_comb begin
if (control == 1) temp = a;
else temp = b;

end

always_comb foo = temp * 3;

In this case, the signal femp has global scope. That means that when we are ana-
lyzing this design, we need to worry about the value of temp at all times. But in fact,
the signal is used only as a temporary or intermediate value in calculating foo.

Techniques 21

Compare the previous counter to the following code:

function automatic bit [7:0] foo (input bita, b,
control) ;
bit temp;
if (control == 1) temp = a;
else temp = b;
foo = temp * 3;
endfunction

This code is slightly shorter than the previous code. But it also has several
additional advantages:

1. It makes it completely explicit that the value of foo depends only on the inputs a,
b and control. This relationship is not at all obvious from the statement always_
comb foo = temp * 3. In fact, if the two always_comb blocks in the previous
example are separated by significant amounts of code, it may not be easy at all
to see the relationship between foo and the inputs a, b, and control.

2. The signal temp is local within the function. It is completely obvious that it is not
used by any other piece of code.

3. All of the code required to calculate foo is grouped together within the function.
There is no possibility of scattering this code throughout the file. This means that
the analysis of how foo is calculated becomes a local rather than a global
activity.

4. The function foo must now be called explicitly whenever it is needed. This makes
coding slightly more burdensome, but it makes analysis significantly easier.
Typically, the function will be called in one or perhaps a few states. That means
whenever the module is in the other states, we can completely ignore foo.

Thus, functions provide an effective encapsulation mechanism for combinational
code.

Structuring Sequential Code

Unfortunately, modern hardware description languages do not provide an equiva-
lent encapsulation mechanism for sequential code. There is no structure that allows
us to group pieces of sequential code together, define explicitly the inputs, or to
hide local or temporary signals. The fask construct allows some degree of encapsu-
lation, since (unlike function) it allows some timing and sequential constructs. And
we will use it in a later chapter. But we are not allowed to have an always @
(posedge clk) block in a task. As a result, we really do not have an equivalent to the
function for sequential code.

22 2 Simplifying RTL Design

Instead, we are left to group sequential code arbitrarily within always @
(posedge clk) blocks. These sequential blocks can be scattered throughout a file.
To analyze the module then, it is necessary to read and memorize virtually the
entire file

Consider the following code:

always @ (posedge clk or negedge resetn) begin
if (!resetn) begin
bar <= 0;
bar_pl <= 0;
end else begin
bar_pl <= bar;
bar <= a + b;
end
end

always @ (posedge clk or negedge resetn) begin
if (!resetn) begin
foo <= 0;
end else begin
foo <= bar_pl + bar;
end
end

Here it is not obvious that foo depends on the inputs a and b. If the two sequen-
tial blocks are separated by significant amount of code, it may be nontrivial to sort
out exactly what the relationship is between foo and bar.

One possible solution is to start grouping more and more sequential code into a
single sequential process. The trouble with this solution is that this process becomes
large and unwieldy.

The best mechanism for structuring sequential code is the state machine. In a
state machine, we can create a single large sequential process that uses the case
statement to structure the sequential code into separate states.

To address the problems of concurrency described earlier, we recommend using
a single state machine per module. Effective decoupling of modules (described in
Chapter 8) then helps manage concurrency between state machines.

The key challenge in grouping large amounts of sequential code into a single
state machine is that this state machine can rapidly become large and unwieldy
itself. In fact, we can easily violate the rule of seven: many interesting state
machines have more than seven to nine states. The solution to this problem is to
code the process as a hierarchical state machine. We discuss hierarchical state
machines Chapter 4, and give an example in Appendix B.

Techniques 23

Using High Level Data Types

Functions and state machines are the two most important mechanisms for
encapsulation in RTL design. But there are some additional techniques available in
SystemVerilog that can be very helpful in raising the abstraction level of RTL
design.

Enumerated types are helpful in defining exactly what values are legal for a
given signal or collection of signals. For instance:

bit read;
bit write;

This code implies that there are four possible values for the combination of the read
and write signals. Most importantly, it implies that it is possible to assert both
read and write at the same time; at least nothing in the declaration implies that this
is impossible.

Instead, we can define an enumerated type signal rw which makes it explicit that
only one of the read or write operations can be active at one time:

enum (NOP, READ, WRITE) rw;

Structs in SystemVerilog are also very useful in providing an encapsulation
mechanism for related signals. For instance:

bit [ADDR_WIDTH] foo_address;
bit [ADDR_WIDTH] bar_address;

enum (NOP, READ, WRITE) foo_rw, bar_rw;

bit [DATA_WIDTH] foo_data;
bit [DATA_WIDTH] bar_data;

As written, the code relies on the signal name to imply the relationship between
the different signals.

24 2 Simplifying RTL Design

typedef struct {
bit [ADDR_WIDTH] address;
bit [DATA_WIDTH] data;
rw_type rw;} my_data_type;

my_data_type foo, bar;

Using a struct data type, we can make it explicit that both foo and bar are exactly
the same data type, with exactly the same type of address, data and control signals.
The relationship between the address, data, and control signals is much more
explicit as well.

The SystemVerilog interface construct provides an encapsulation mechanism at
the interface level. A module definition with 30 or 40 inputs and outputs clearly
violates the rule of seven. Using the interface construct, we can reduce this to seven
to nine interface declarations.

The following is an example of how a simple memory interface can be defined
using interfaces:

interface mem intf ; // interface for i_mem and d_mem
bit [ADDR_WIDTH-1:0] addr;
bit [WORD_SIZE-1:0] write_data;
bit [WORD_SIZE-1:0] read_data;
bit read;
bit write;

modport master (output addr, write data, read, write,
input read data);

modport slave (input addr, write_data, read, write,
output read_data, exc);

endinterface: mem_intf

Then in the top level module, we instantiate an interface and connect it to the
memory. Note how simple the code for the instantiating the memory has become,
since only the interface, and not five different ports, needs to be connected.

Techniques 25

module top ;
mem_intf d_mem_intf () ;
mem d_mem (.ifc(d_mem _intf), .clk(clk));

endmodule

Then our behavioral model for the memory might look something like this. Note
how simple the port declaration has become, since we declare the interface instead
of five different ports.

module mem (input bit clk, mem intf ifc);
bit [WORD_SIZE-1:0] mem_array [MEM_DEPTH-1:0] ;

always @ (posedge clk) begin
if (ifc.read) ifc.read data <= mem arrayl[ifc.addr];
if (ifc.write)mem array[ifc.addr] <= ifc.write data;
end
endmodule

For an extensive discussion of how to use the inferface construct, see [8]. For a
brief discussion of how extensions to the synthesizable subset of SystemVerilog
could make the interface construct even more useful, see the first section of
Appendix D.

Finally, even the for loop now has a small opportunity for encapsulation:

for (int index = 0; index < max_val; index++)

By declaring the loop index inside the for loop, we hide it from the rest of
the code.

Thinking High-level

Most important of all, raising the level of abstraction of RTL code requires us to
think high-level in every aspect of coding. For example, consider the following
piece of code:

26 2 Simplifying RTL Design

if (foo == 1'bl)

This is an example of thinking at the bit level. We are asking if the value of foo
is equal to one, which we associate with a Boolean value true.

The following piece of code is functionally the same as before, but simpler and
at a higher level of abstraction:

if (foo)

In this statement, we simply ask if foo is true. In fact, we know that this is
equivalent to asking if foo is not equal to zero.
There are several (admittedly small) problems with the first approach.

1. It is more verbose than necessary, which can become a significant issue when
reading large amounts of code.

2. It inserts an implementation issue (the fact that we are using a value of one
represent a Boolean value true), when we are really interested in the functional
or algorithmic aspects of the design.

Both ways of writing an if statement are perfectly legal, and both will produce
exactly the same synthesis results, that is, the same gate level netlist. But the second
version is more compact and more functional rather than structural.

All the techniques described in this chapter strive to achieve a single goal. There
are many different ways of writing the same logic in RTL code. In the past, we had
to choose the coding style that lead the synthesis tools to produce the optimum
result. But today, with the explosion of complexity in design, we need to use a
coding methodology that makes the code easy to understand, to review, to analyze
and to debug.

2 Springer
http://www.springer.com/978-1-4419-8585-9

The Simple &rt of SoC Design

Closing the Gap between RTL and ESL
Keating, Synopsys Fellow, M,

2011, X\, 234 p., Hardcover

ISBN: 978-1-4419-8585-9

	Chapter 2: Simplifying RTL Design
	Challenges
	Syntactic Fluff
	Concurrency and State Space
	Techniques
	Encapsulating Combinational Code
	Structuring Sequential Code
	Using High Level Data Types
	Thinking High-level

