
Chapter 2
Wave Propagation Theory

2.1 The Wave Equation

The wave equation in an ideal fluid can be derived from hydrodynamics and the
adiabatic relation between pressure and density. The equation for conservation of
mass, Euler’s equation (Newton’s second law), and the adiabatic equation of state
are respectively
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and for convenience we define the quantity
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where c will turn out to be the speed of sound in an ideal fluid. In the above equa-
tions, � is the density, v the particle velocity, p the pressure, and the subscript S
denotes that the thermodynamic partial derivatives are taken at constant entropy. The
ambient quantities of the quiescent (time independent) medium are identified by the
subscript 0. We use small perturbations for the pressure and density, p D p0 C p0,
� D �0 C �0, and note that v is also a small quantity; that is, the particle veloc-
ity which results from density and pressure perturbations is much smaller than the
speed of sound.
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66 2 Wave Propagation Theory

2.1.1 The Nonlinear Wave Equation

Retaining higher-order terms in (2.1)–(2.3) yields a nonlinear wave equation.
The nonlinear effects we include are contained in the quadratic density term in the
equation of state, (2.3), and the quadratic velocity term (the convection term) in
Euler’s equation, (2.2). First multiply (2.2) by � and take its divergence; next, take
the partial derivative of (2.1) with respect to time. Substituting one into the other
yields
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Here, the indices i; j D 1; 2; 3 indicate x; y; z-components, respectively. Tensor
notation is used; repeated indices signify a summation (e.g., @i vi D r � v).

The first term on the right-hand side of (2.5) can be rewritten using (2.3)
and (2.4) as
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The convection term on the right-hand side of (2.5) is more difficult to evaluate, but
we can obtain an expression for it in the limit of small propagation angles � with
respect to the main direction of propagation, e.g., the x-direction. (This is the same
as the paraxial approximation for the parabolic wave equation discussed in Chap. 6.)
Then we may estimate vi using the linear impedance relation – to be later derived
as (2.20) – together with the equation of state (2.3),
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where ıi;x is the Kronecker delta symbol, so that
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Substituting (2.6) and (2.8) into (2.5), we obtain the nonlinear wave equation
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where � D �0=�0 is the density ratio and ˇ D 1 C .�=c/Œ@c.�0/=@�/� the nonlin-
ear parameter of the medium. We further discuss the nonlinear wave equation in
Chap. 8, where we demonstrate its relationship to the parabolic equation and show
how it can be used to solve problems directly in the time domain without resorting
to Fourier synthesis.
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2.1.2 The Linear Wave Equation

The linear approximations, which lead to the acoustic wave equation, involve
retaining only first-order terms in the hydrodynamic equations [1, 2]. To lowest or-
der, (2.1)–(2.4) become
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where we note that if �0 is constant, the last equation can also be written as

p0 D �0c2: (2.13)

2.1.2.1 Wave Equation for Pressure

Considering that the time scale of oceanographic changes is much longer than the
time scale of acoustic propagation, we will assume that the material properties �0

and c2 are independent of time. Then, take the partial derivative of (2.10) with
respect to time and the divergence of (2.11); next, interchange the derivative op-
erations and use (2.12) to obtain a wave equation for pressure,
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where we have omitted the primes for pressure and density perturbations. If the
density is constant in space, (2.14) can be replaced by the standard form of the wave
equation,
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Using (2.12), the exact same equations for the density perturbation are obtained.
Note that the appearance of c in the wave equation identifies it as the speed of
sound, i.e., the speed of the propagating wave.

2.1.2.2 Wave Equation for Particle Velocity

Alternatively, we can take the divergence of (2.10) and the time derivative of (2.11),
and combine the two using (2.12) to arrive at the wave equation for the particle
velocity
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This form of the wave equation is a vector equation coupling the three spatial
components of the particle velocity. It involves spatial derivatives of both density
and sound speed, and is therefore rarely used, except for uni-axial propagation
problems.

2.1.2.3 Wave Equation for Velocity Potential

If the density is constant or slowly varying, the vector equation (2.16) can be trans-
formed into a simple scalar wave equation by introducing the velocity potential �,
defined by

v D r�: (2.17)

Substituting (2.17) together with the constant density condition r� D 0, into (2.16),
the latter takes the form

r
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This equation is clearly satisfied if � satisfies the simple wave equation
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which is identical to the pressure wave equation, (2.15). Both equations are valid for
varying sound speed, but for constant density only.

We note that there is a simple relationship between velocity and pressure for
plane-wave solutions to the wave equation. This impedance relation is easily found
using the velocity potential form of the wave equation with the solution � D
f .x � ct/. From (2.17), vx D @�=@x D f 0.x � ct/, and from the linearized Euler
equation (2.11), p D �� @�=@t D �0c f

0.x � ct/, where f 0 denotes a derivative
with respect to the argument of the function f . Comparing the pressure and velocity
expressions yields the plane-wave impedance relation,

p
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D �0c: (2.20)

2.1.2.4 Wave Equation for Displacement Potential

By using the kinematic relation between velocity and displacement v D @u=@t , it is
easily shown that the displacement potential  , defined by

u D r (2.21)
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is governed by a simple wave equation as well,
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As was the case for the other wave equations (2.15) and (2.19), also (2.22) is valid
only for media with constant density. However, discrete changes in density can be
handled through appropriate boundary conditions between regions of constant den-
sity. For such problems the boundary conditions require continuity of pressure and
displacement (or velocity), and the potentials become discontinuous.

From the kinematic relations between displacements and velocities, (2.10),
(2.12), and (2.21), we obtain the following expression for the acoustic pressure in
terms of the displacement potential,

p D �K r2 (2.23)

with K being the bulk modulus,

K D �c2: (2.24)

Equation (2.23) is the constitutive equation for an ideal, linearly elastic fluid
(Hooke’s law). Combination of (2.22)–(2.24), yields the alternative expression for
the acoustic pressure,

p D �� @
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2.1.2.5 Source Representation

Underwater sound is produced by natural or artificial phenomena through forced
mass injection. Such forcing terms were neglected in the mass conservation equa-
tion (2.10), and therefore also in the derived wave equations. However, such terms
are easily included, leading to inhomogeneous wave equations, e.g., for the displace-
ment potential

r2 � c�2 @
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where f .r; t/ represents the volume injection as a function of space and time. Sim-
ilar inhomogeneous forms of the wave equations for pressure or velocity are easily
derived. In Sect. 2.3.2, we derive the expression for the forcing term corresponding
to a simple point source.

2.1.2.6 Solution of the Wave Equation

The numerical methods described in Chaps. 3–7 all attempt to solve (2.26), or the
equivalent pressure or velocity potential equations, with associated boundary and
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radiation conditions. The major difference between the various techniques is the
mathematical manipulation of (2.26) being applied before actual implementation
of the solution. Another difference is the form of the wave equation used. Density
changes in the stratified ocean are primarily of discrete nature, e.g., at the seabed and
between layers in the bottom, whereas the density in the water column is virtually
constant. Therefore, the simpler equations are usually used in numerical solutions
which easily handle internal boundary conditions. On the other hand, some numer-
ical methods treat internal discontinuities as smooth transitions, and such methods
should clearly be based on (2.14).

The most direct approach is the Finite Difference Method (FDM), which directly
discretizes (2.26) in space and time though approximations of the differential oper-
ators. This solution technique is described in Sect. 7.3.

The Finite Element Method (FEM) instead discretizes the medium and time into
small blocks within which (2.26) can be solved analytically in terms of a selected
set of degrees-of-freedom. The connectivity between the elements then leads to a
linear system of equations in the degrees-of-freedom to be solved. Details on the
FEM solution technique is given in Sect. 7.4.

In spite of the generality of direct, discrete methods such as FDM and FEM,
their importance in ocean acoustics is rather limited due to excessive computational
requirement. Thus, the FDM/FEM methods all require discretization of the acoustic
field to a small fraction of a wavelength, and realistic propagation problems involve
distances of hundreds to thousands of wavelengths.

The alternative numerical approaches described in Chaps. 3–6 are much more
tractable in terms of numerical requirements and are therefore in more widespread
use in the ocean acoustics community. However, the improved efficiency is obtained
at the cost of generality. Thus, all these approaches are based on assumptions al-
lowing for simplifying mathematical manipulations of the wave equation. These
assumptions are identical to the ones applied in theoretical acoustics to obtain an-
alytical solutions in one or more of the 4 dimensions (3 in space and 1 in time) of
the total problem. All of the widespread numerical techniques could therefore, in
fact, be considered hybrid analytical–numerical approaches, in contrast to the tradi-
tional terminology, where the two approaches are considered distinctly different. As
an example, the Wavenumber Integration (WI) technique described in Chap. 4 only
differs from analytical integral representations for propagation in a plane-parallel
waveguide through the approach used to solve the system of linear equations in the
unknown amplitudes, linked via the boundary conditions. The first uses a numerical
equation solver, the latter pen and paper. In both cases, the final integral must be
evaluated numerically.

In general, the numerical approaches applied in ocean acoustics today are based
on important theoretical developments within the field of wave propagation over the
past five decades, starting with the pioneering work on ocean waveguide theory by
Pekeris [3]. Of particular importance are the various assumptions and approxima-
tions made in order to solve realistic propagation problems with the computer hard-
ware at hand. For acousticians who consider applying one of the available numerical
techniques, it is important to understand the limitations of the different techniques.
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In the rest of this chapter, we therefore describe ocean-acoustic waveguide theory
as it relates to the derivation of the numerical solution techniques. For a detailed
description of the underlying theories, reference is made to the journal literature as
well as the many textbooks devoted to the area of theoretical acoustics [2, 4–11].

2.2 The Helmholtz Equation

Since the coefficients to the two differential operators in (2.26) are independent of
time, the dimension of the wave equation can be reduced to three by use of the
frequency–time Fourier transform pair,
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leading to the frequency-domain wave equation, or Helmholtz equation,
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 .r; !/ D f .r; !/; (2.29)

where k.r/ is the medium wavenumber at radial frequency !,

k.r/ D !

c.r/
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It should be pointed out that although the Helmholtz equation (2.29), due to the
reduction in the dimension of this PDE, is simpler to solve than the full wave equa-
tion, (2.26), this simplification is achieved at the cost of having to evaluate the
inverse Fourier transform, (2.27). However, many ocean acoustic applications are of
narrow-band nature. The Helmholtz equation, rather than the wave equation, there-
fore forms the theoretical basis for the most important numerical methods, including
the Wavenumber Integration (WI), Normal Mode (NM) and Parabolic Equation (PE)
approaches, described in Chaps. 4, 5, and 6, respectively.

It is important to stress the difference between narrow-band processing in ocean
acoustics and wide-band processing in seismics. The latter approach is viable
because the length scale of the environmental features addressed in seismic ex-
periments is of the same order of magnitude as the seismic wavelengths, and
the time scales of the experiments are such that cross-spectral coherence can be
assumed. In other words, seismic experiments are characterized by very few in-
teractions with any single boundary, whereas a typical ocean acoustic experiment
can have hundreds or thousands of interactions. This is basically the reason why
time-domain approaches such as FDM and FEM have never gained widespread
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popularity in ocean acoustics, whereas they are very important numerical analysis
tools in the seismic community. There is, however, much virtue to time-domain
solutions in terms of physical understanding, and time-domain solutions are pro-
duced routinely for exactly that purpose, both by Fourier synthesis and by direct
time-domain solutions of the wave equation (see Chap. 8).

The environmental body forces such as gravity and magnetism are of no signif-
icance to acoustic propagation except for the effect of gravity on the sound speed
variation in depth. The only body forces of importance are the acoustic sources,
which include artificial sound generators as well as natural ones, e.g., noise gen-
eration at the sea surface and by marine animals. Since these sources are local in
nature, most of the ocean environment is sourceless, with the wave field satisfying
the homogeneous Helmholtz equation,

�r2 C k2.r/
	
 .r; !/ D 0: (2.31)

In spite of the relative simplicity of (2.31), there is no universal solution technique
available. The actual solution technique that can be applied depends on the following
factors:

� Dimensionality of the problem.
� Medium wavenumber variation k.r/, i.e., the sound speed variation c.r/.
� Boundary conditions.
� Source–receiver geometry.
� Frequency and bandwidth.

The Helmholtz equation (2.31) is a three-dimensional, elliptic partial differential
equation, which can be solved either by analytical or numerical methods or by a
combination of the two. The most convenient method is determined by the complex-
ity of the medium properties and of the boundary conditions for the actual problem.
Thus, for some problems the environment is so complex that only direct discrete
methods such as FDM and FEM are applicable, whereas typical canonical problems
are characterized by simple environmental models for which analytical methods
are applicable. However, in general an optimum approach is a hybridization of an-
alytical and numerical methods, and all the computational methods described in
the following are of this category. Although these methods all have the Helmholtz
equation as the starting point, they differ in the degree to which the analytical
and numerical components are utilized in the solution scheme. Since the analytical
methods are restricted to canonical problems with simple geometries, the compu-
tational methods with a large analytical component are therefore also restricted to
problems where the actual environment is well represented by an idealized environ-
mental model.

We here review the analytical approaches to the solution of the Helmholtz equa-
tion which, to various degrees, form the mathematical basis for the computational
methods described in the next chapters. Further, we use these analytical methods to
address the basic physics associated with propagation in the ocean waveguide.
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2.3 Homogeneous Media

A very simple acoustic environment is that of a homogeneous medium with
wavenumber k.r/ D k, occupying the volume V bounded by the surface S ,
shown in Fig. 2.1. In spite of the simplicity, this problem is well-suited to illustrate
the basic principles of the solution of the Helmholtz equation.

2.3.1 Coordinate Systems

In a homogeneous medium, the homogeneous Helmholtz equation, (2.31), is easily
solved, with a choice of coordinate system being imposed by the source and bound-
ary geometry. Thus, if plane wave propagation is considered, a Cartesian coordinate
system r D .x; y; z/ is the natural choice, with the Laplace operator,
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yielding plane wave solutions of the form

 .x; y; z/ D


A eik�r
B e�ik�r; (2.33)

where k D .kx; ky ; kz/ is the wave vector and A and B are arbitrary amplitudes.
For a single plane-wave component, the coordinate system can be aligned with

the propagation direction, e.g., with ky ; kz D 0, yielding the simple solution

 .x/ D


A eikx

B e�ikx ;
(2.34)

S

V x

z

y

q

R

r
j

Fig. 2.1 Homogeneous medium occupying the volume V bounded by the surface S
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which corresponds to a forward- and a backward-propagating plane wave solution
with time dependence exp.�i!t/.

Similarly, the field produced by an infinite, homogeneous line source is conve-
niently described in a cylindrical coordinate system r D .r; '; z/, with the z-axis
coinciding with the source. Then, the field satisfies the homogeneous Helmholtz
equation for r > 0 with the Laplace operator,
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For a uniform line source, the field only varies with range r , reducing the Helmholtz
equation to the Bessel equation,
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with the solution
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or, in terms of Hankel functions,
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The latter form represents diverging and converging cylindrical waves for r ! 1,
as is clear from the asymptotic form of the Hankel functions for kr ! 1,
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These asymptotics also show that the cylindrically symmetric field produced by a
line source decays in amplitude proportionally to r�1=2. Approaching the source,
the line source field exhibits a logarithmic singularity.

In the case of an omni-directional point source, the field only depends on the
range from the source, and the solution is conveniently described in a spherical
coordinate system, with the reduced Helmholtz equation being
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which has the solutions

 .r/ D


.A=r/ eikr

.B=r/ e�ikr :
(2.42)

Again, these solutions correspond to diverging and converging spherical waves with
the amplitude decaying proportional to r�1 in range.

The term geometrical spreading loss refers to these geometries. Thus, cylindrical
spreading loss is proportional to r�1=2 and spherical spreading loss is proportional
to r�1.

2.3.2 Source in Unbounded Medium

The derivation of the field expression for an acoustic source in an unbounded
medium is a simple example of how the solution of the homogeneous wave equation
described above is combined with the boundary conditions to yield the solution to a
particular problem.

Assume an acoustic field is produced in an infinite, homogeneous fluid by a small
sphere of radius a (Fig. 2.2), with the surface displacement given as

ur.t; a/ D U.t/: (2.43)

In the homogeneous fluid, the field will be omni-directional, with the radial dis-
placement

ur D @ .r; t/

@r
; (2.44)

where the displacement potential  satisfies a homogeneous wave equation. By ap-
plying the Fourier transform to both the wave equation and the boundary condition
at r D a, we obtain the Helmholtz equation (2.41) and the boundary condition,

ur.a/ D U.!/: (2.45)

The solution to the Helmholtz equation is a linear combination of the two inde-
pendent solutions in (2.42), but since we assume the sphere is the only source in

Fig. 2.2 Vibrating sphere in
an infinite fluid medium

r

U(t)

a
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the infinite medium, we can apply the radiation condition of no incoming waves at
infinity to require that B D 0, i.e.,

 .r/ D A
eikr

r
(2.46)

with the corresponding displacement field given by (2.44) as

ur.r/ D A eikr

�
ik

r
� 1

r2

�
: (2.47)

The amplitude A is now easily found from (2.45).
The simple point source corresponds to the case where the radius of the sphere

is small compared to the acoustic wavelength, i.e., ka � 1, in which case the
expression for the surface displacement takes the form

ur.!; a/ D A eika ika � 1

a2
' � A

a2
(2.48)

yielding

A D �a2 U.!/: (2.49)

Defining the source strength S! D 4�a2 U.!/ as the volume-injection amplitude
produced by the source at frequency !, we then obtain the solution for the field in
the fluid,

 .r/ D �S!

eikr

4�r
: (2.50)

The source strength S! is of unit m3, or volume. If we had based the derivation on
velocity potentials, the source strength would be of unit m3/s, representing volume
rate.

The fraction in (2.50) is called the Green’s function,

g!.r; 0/ D eikr

4�r
(2.51)

or, in general, for a source at r D r0,

g!.r; r0/ D eikR

4�R
; R D jr � r0j: (2.52)

The Green’s function satisfies the inhomogeneous Helmholtz equation,

�r2 C k2
	
g!.r; r0/ D �ı.r � r0/; (2.53)
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which is easily verified by integrating (2.53) over a small volume containing the
source point r0. The inhomogeneous Helmholtz equation for a simple point source
of strength S! at point r0 is therefore,

�r2 C k2
	
 .!; r/ D S! ı.r � r0/: (2.54)

The Green’s function of the time-domain wave equation is obtained by the Fourier
transform of g! as specified by (2.27),

gt .r; r0/ D ı .R=c � t/

4�R
(2.55)

and can be thought of as the impulse response in an unbounded medium. Note that
the Green’s function is symmetric in r and r0,

g!.r; r0/ D g!.r0; r/ (2.56)

in accordance with the principle of reciprocity for the Green’s function described in
Appendix 1.

2.3.3 Source in Bounded Medium

Extending the analysis to a more realistic acoustic environment we next consider the
problem illustrated in Fig. 2.3, where the medium occupies the volume V bounded
by the surface S , with prescribed boundary conditions. An acoustic field is produced
by a distribution of body forces f .r/ within the volume V , and the displacement
potential  .r/ must, therefore, satisfy the inhomogeneous Helmholtz equation,

�r2 C k2
	
 .r/ D f .r/: (2.57)

Fig. 2.3 Sources in a volume
V bounded by the surface S
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In the preceding section, we introduced the free-field Green’s function g!.r; r0/

satisfying (2.53). This was just a particular solution to (2.53) satisfying the radiation
condition. In the case of a boundary value problem, we need the general solution of
(2.53) which is a sum of a particular solution such as g!.r; r0/ and a homogeneous
solutionH!.r/, with the superposition of the two solutions satisfying the boundary
conditions as well as the radiation conditions (for semi-infinite media).

We, therefore, introduce the general Green’s function as

G!.r; r0/ D g!.r; r0/CH!.r/; (2.58)

whereH!.r/ is any function satisfying the homogeneous Helmholtz equation,

�r2 C k2
	
H!.r/ D 0: (2.59)

The general Green’s function then satisfies the same Helmholtz equation as
g!.r; r0/, �r2 C k2

	
G!.r; r0/ D �ı.r � r0/: (2.60)

By multiplying (2.57) by G!.r; r0/ and (2.60) by  .r/ and subtracting the two, we
obtain

G!.r; r0/r2 .r/� .r/r2G!.r; r0/ D  .r/ ı.r�r0/CG!.r; r0/ f .r/: (2.61)

Interchange of r and r0 followed by integration over the volume with respect to r0

then yields
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V
f .r0/G!.r; r0/ dV0; (2.62)

where it has been assumed that the Green’s function is symmetric, i.e., G!.r; r0/ D
G!.r0; r/: We will discuss this property in detail in Appendix 1. Using integration
by parts (see Appendix 1), we now change the integration on the left-hand side to a
surface integral and obtain,

 .r/ D
Z

S

�
G!.r; r0/

@ .r0/

@n0

�  .r0/
@G!.r; r0/

@n0

�
dS0 �

Z
V
f .r0/G!.r; r0/ dV0;

(2.63)

where n0 is the outward-pointing normal on the surface. Equation (2.63) is Green’s
theorem for sources in a bounded medium. By letting the field points r be on the
boundary, (2.63) provides an integral equation, which should be solved for the field
and its normal derivative at the boundary. Then (2.63) can be applied to provide the
field at any point r inside the volume V .
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Green’s theorem provides the most general formulation for acoustic boundary-
value problems, but its use is highly dependent on the ability to solve the integral
equation. Numerical solution can always be applied, but for some types of canonical
problems, closed form analytical solutions are also possible. This is due to the fact
that the general Green’s function is arbitrary in the sense that the only requirements
are that it must be symmetric and satisfy (2.60) everywhere within the volume V ;
otherwise there are no requirements to the particular choice of the homogeneous so-
lution H!.r/. We can, therefore, choose a homogeneous solution which simplifies
the solution of the integral equation. For example, choosing the homogeneous solu-
tion such that the Green’s function vanishes on the boundary will remove half of the
kernel of the surface integral in (2.63). For some problems, a Green’s function can
be found which satisfies the same boundary conditions as the field on parts of the
boundary. In that case the two terms in the kernel of the surface integral are identi-
cal, eliminating the integral on that part of the boundary. Finally, it should be noted
that the surface S does not have to coincide with the physical boundary; Green’s
theorem is valid for any volume containing the sources.

Green’s theorem will be applied in Sect. 2.3.4 to solve a simple boundary value
problem for which a well-known solution exists. However, we first apply it to de-
rive a formal representation of the radiation condition which any field in an infinite
medium must satisfy.

Let the surface S be a sphere centered at the receiver point r and containing all
areas of the medium where sources are present. Since the medium is infinite, the to-
tal field is obtained as an integral over all sources of the free-field Green’s function,
(2.52), times the source strengths, i.e., for general volume source distributions,

 .r/ D �
Z

V
f .r0/ g!.r; r0/ dV0: (2.64)

By comparing this expression with Green’s theorem, (2.63), we find that the surface
integral over the sphere must vanish,

Z
S

�
g!.r; r0/

@ .r0/

@n0

�  .r0/
@g!.r; r0/

@n0

�
dS0 D 0: (2.65)

With the radius of the sphere being R, we can then insert the free-field Green’s
function from (2.52) to yield for R ! 1

Z
S

eikR

4�R

�
@ .r0/

@R
� ik  .r0/

�
dS0 D 0: (2.66)

Since the radius R of the circle is large but arbitrary, the integrand in (2.66) must
decay more rapidly than R�2 to have the surface integral properly converge, which
leads to the radiation condition,

R

�
@

@R
� ik

�
 .r0/ ! 0; R D jr � r0j ! 1: (2.67)
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2.3.4 Point Source in Fluid Halfspace

As an example of the use of Green’s theorem to boundary value problems, we apply
it to the simplest possible example of a bounded acoustic medium, which is the fluid
halfspace shown in Fig. 2.4. The upper halfspace is assumed to be a vacuum, and
the boundary condition to be satisfied by the field in the fluid halfspace therefore
simply is that the pressure must vanish at the free surface .z D 0/. We have here
introduced a Cartesian coordinate system with the origin on the surface and with the
z-axis perpendicular to the surface. A simple point source is assumed to be placed
at rs D .xs ; ys ; zs/.

The pressure is derived from the displacement potential as

p.r/ D �!2  .r/ (2.68)

and we can therefore replace the pressure-release boundary condition by the
condition

 .r0/ � 0; r0 D .x; y; 0/: (2.69)

The field in the fluid halfspace is determined by Green’s theorem, (2.63), which
upon insertion of the boundary conditions, (2.69), takes the form

 .r/ D
Z

S
G!.r; r0/

@ .r0/

@n0

dS0 �
Z

V
f .r0/G!.r; r0/ dV0: (2.70)

For a simple point source, (2.54) shows that the volume force term takes the form

f .r0/ D S! ı.r0 � rs/: (2.71)

If, furthermore, we choose the general Green’s function such thatG!.r; r0/ � 0 for
r0 D .x; y; 0/, then (2.70) simply becomes

 .r/ D �S! G!.r; rs/: (2.72)

Fig. 2.4 Point source
in a fluid halfspace z

Vacuum

zs
Fluid
c, r

x
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For this simple case it is straightforward to choose a Green’s function which
vanishes on the free surface z D 0,

G!.r; r0/ D g!.r; r0/CH!.r/

D eikR

4�R
� eikR0

4�R0 (2.73)

with

R D
p
.x � xs/2 C .y � ys/2 C .z � zs/2; (2.74)

R
0 D

p
.x � xs/2 C .y � ys/2 C .z C zs/2: (2.75)

The solution for the displacement potential now takes the form

 .r/ D �S!

"
eikR

4�R
� eikR

0

4�R
0

#
; (2.76)

which corresponds to the superposition of the free-space solutions for the source at
depth z D zs and an image source at z D �zs in the vacuum halfspace. Thus, the
solution obtained by Green’s theorem is identical to the so-called mirror or image
method, and the constructive and destructive interference of these two fields give
rise to the well-known Lloyd-mirror pattern described in Sect. 1.4.2.

In general, an analytical solution is not easily obtained by Green’s theorem. The
critical issue is the determination of a Green’s function which satisfies the same
boundary conditions as the displacement potential on the boundary, thus eliminat-
ing the surface integral entirely. This is straightforward for problems with simple
boundary geometry and homogeneous boundary conditions, as was the case in the
halfspace problem. For heterogeneous media with simple boundary geometry but
inhomogeneous boundary conditions, other approaches such as those described in
the following sections are more feasible.

The generality of Green’s theorem, on the other hand, makes it applicable to
problems with complex boundary geometry, where it can be used to formulate an
integral equation which can be solved numerically. Here, the numerical implemen-
tation via the Boundary Element Method (BEM) is extremely powerful for radiation
and scattering problems, and it has become an increasingly popular numerical ap-
proach in structural acoustics, seismology, and recently, to some degree, also in
ocean acoustics (Sect. 7.5).

2.3.5 Transmission Loss

In underwater acoustics, the field is traditionally expressed in terms of transmission
loss, defined as

TL.r; rs/ D �10 log
I.r; rs/

I0.rs/
D �10 log

 
Z0.rs/

Z.r; rs/

ˇ̌̌
ˇp.r; rs/

p0.rs/

ˇ̌̌
ˇ
2
!
; (2.77)
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whereZ0.rs/; Z.r; rs/ are the acoustic impedances at the source and the field point,
respectively, and p.r; rs/ is the acoustic pressure at point r for a simple point source
at point rs , and p0.rs/ is the pressure produced at a distance of 1 m from the same
source in an infinite, homogeneous medium with impedance Z0.rs/. For a bounded
medium, p0 is generally different from the actual pressure due to the presence of
the reverberant field from the boundaries. This particular normalization should be
kept in mind when developing or comparing numerical algorithms. In what follows,
we take the impedance at the source and field points to be the same.

With the pressure at range r from the source given in terms of the displacement
potential as

p.r/ D �!2  .!; r/ (2.78)

together with the expression for  .!; r/ in (2.50), we can normalize the source to
yield a pressure amplitude of unity for r D 1, by assuming the source strength,

S! D � 4�

�!2
: (2.79)

This particular source strength is of unit m3s2/kg, or m2/Pa, and represents the vol-
ume injection amplitude necessary to produce a pressure amplitude of 1 Pa at 1 m
distance from the source, at the radial frequency !. It is clear from this expression
that a high-frequency source needs much less volume injection to produce a certain
pressure than does a low-frequency source.

Using this source normalization, and defining the transmission loss pressure as
the ratio,

P.r; rs/ D p.r; rs/

p0.rs/
(2.80)

the associated displacement potential ‰ D P=.�!2/, is found by solving the inho-
mogeneous wave equation,

�r2 C k2
	
‰.r; rs/ D � 4�

�!2
ı.r � rs/: (2.81)

Alternatively, by inserting the relation between pressure and potential, we can for-
mulate the wave equation directly for the transmission loss pressure,

�r2 C k2
	
P.r; rs/ D �4� ı.r � rs/: (2.82)

Since the transmission loss definition refers to the field in an infinite medium, the
same forcing term must be used in the inhomogeneous form of the wave equation
(2.14) for media with density variation,

�r � ���1 rP.r; rs/
	C k2P.r; rs/ D �4� ı.r � rs/: (2.83)
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In the following chapters, these equations will be used variably, with the actual
choice being dependent on the nature of the numerical solution technique. However,
in the remainder of this chapter we concentrate on the simple wave equation as
applied to cases that allow for analytical solutions.

2.4 Layered Media and Waveguides

In heterogeneous media, the sound speed and density varies in one or more space
coordinates. In cases where the variation occurs as discrete discontinuities in the
medium properties, the derivation of the linear wave equation, (2.15), is not valid at
the discontinuity itself, and the problem therefore has to be formulated as a boundary
value problem. For continuously varying media, the space dependency is directly
included in the wave equation.

In reality, the ocean environment is a combination of the two, with the medium
properties changing abruptly at the seabed and at subbottom interfaces between dif-
ferent geological strata, but with the sound speed varying more or less continuously
in the water column. However, since the analytical approach is different in the two
cases, we will describe the solution of the wave equation in discretely and con-
tinuously varying media separately. The numerical approaches, in general, have to
combine the treatment of these two types of medium heterogeneity.

A simple discrete model of the ocean environment is shown in Fig. 2.5. It consists
of a layered waveguide with plane, parallel interfaces and with each layer assumed
to be homogeneous. Although simplified, such a model is reasonable for modeling
propagation in many ocean-acoustic scenarios. Further, the fact that solutions can
be obtained in terms of basic physical components makes the horizontally stratified
ocean model attractive in terms of physical understanding of the underlying propa-
gation mechanisms.

Water

Bottom
layers

z

r, x

Halfspace

Fig. 2.5 Horizontally stratified environment
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2.4.1 Integral Transform Techniques

The integral transform technique is a classical approach to boundary value problems
for environments where both the coefficients of the Helmholtz equation and the
boundary conditions are independent of one or more space coordinates. In such
cases, the dimension of the wave equation and the boundary conditions can be re-
duced through the use of integral transforms, which is equivalent to the technique
of separation of variables.

There are several classes of canonical problems for which separation of variables
can be applied, including spherically stratified Earth models, and laminated spher-
ical and cylindrical shells. However, in underwater acoustics the most important
canonical geometry for which this powerful analytical technique can be applied is
the horizontally stratified or range-independent waveguide shown in Fig. 2.5.

The properties of the horizontally stratified waveguide only depend on the depth
z; all interfaces between the various media are plane and parallel. For this range-
independent problem, the Helmholtz equation takes the form,

�r2 C k2.z/
	
 .r/ D f .r/ (2.84)

with the boundary conditions expressed in a general operator form as,

B Œ .r/� jzDzn
D 0; n D 1 � � �N (2.85)

with zn being the depth of interface number n.
Before proceeding we have to choose a convenient coordinate system. The half-

space problem treated in Sect. 2.3.4 is a very simple example of a range-independent
problem. However, there the boundary conditions were homogeneous and simple,
and we chose a spherical coordinate system for solving the Helmholtz equation be-
cause the source was a simple point source. In general, the boundary conditions are
the complicating factor, and they therefore control the choice of coordinate system.
Thus, to apply separation of variables to the range-independent problem, we must
choose a coordinate system for which one of the axes is normal to the horizontal
interface.

2.4.1.1 Plane Propagation Problems

For plane problems such as those involving an infinite line source parallel to the
stratification it is natural to choose a Cartesian coordinate system .x; y; z/ with the
z-axis perpendicular to the stratification and the y-axis parallel to the line source.
The field then becomes independent of the y-coordinate, reducing the dimension of
the Helmholtz equation to 2, the range x and the depth z, i.e., for a line source at
.x; z/ D .0; zs/,

�
@2

@x2
C @2

@z2
C k2.z/

�
 .x; z/ D S! ı.x/ ı.z � zs/: (2.86)
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We can now apply the Fourier transform pair,

f .x; z/ D
Z 1

�1
f .kx; z/ eikx x dkx; (2.87)

f .kx ; z/ D 1

2�

Z 1

�1
f .x; z/ e�ikx x dx (2.88)

to (2.86) to obtain the depth-separated wave equation,

�
d2

dz2
C .k2 � k2

x/

�
 .kx ; z/ D S!

ı.z � zs/

2�
: (2.89)

We next use the Fourier transform of Green’s theorem in the form of (2.72) to obtain,

 .kx ; z/ D �S! G!.kx; z; zs/; (2.90)

where G!.kx; z; zs/ is called the depth-dependent Green’s function, which clearly
must satisfy the same boundary conditions as  .kx ; z/ for (2.90) to be valid.

Since the depth-dependent Green’s function G!.kx; z; zs/ is the Fourier trans-
form of the general Green’s function, (2.58), it has the form,

G!.kx; z; zs/ D g!.kx; z; zs/CH!.kx; z/; (2.91)

where g!.kx ; z; zs/ is the Fourier transform of the free-field Green’s function satis-
fying the equation,

�
d2

dz2
C .k2 � k2

x/

�
g!.kx; z; zs/ D �ı.z � zs/

2�
I (2.92)

H!.kx; x/ satisfies the corresponding homogeneous differential equation.
Through (2.90) and (2.91), we have expressed the total solution as a superposi-

tion of the field produced by the source in an infinite medium and a homogeneous
solution. The total field, of course, must satisfy the boundary conditions. Since the
boundary conditions, (2.85), are independent of the horizontal coordinates, they can
be Fourier transformed as well. The differential operators BŒ .r/� now become al-
gebraic operations, yielding the boundary conditions for the depth-separated wave
equation in the form

B Œ .kx ; zn/� D 0: (2.93)

The solution is now obtained by determining the homogeneous solution H!.kx; z/
which, superimposed on the free-field Green’s function g!.kx; z; zs/, satisfies the
boundary conditions in (2.93). The total spatial solution then follows by evaluating
the inverse Fourier transform, (2.87).
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2.4.1.2 Axisymmetric Propagation Problems

The more usual problem of a simple point source in a range-independent environ-
ment is treated in a similar way. Since the simple point source is omni-directional,
the field only varies with depth and the horizontal range from the source. It is, there-
fore, natural to choose a cylindrical coordinate system for this problem, with the
vertical z-axis passing through the source and the r-axis being parallel to the inter-
faces.

We can then integrate the Helmholtz equation, (2.84), with the Laplace operator
given in (2.35), with respect to the azimuthal coordinate ' and apply the Hankel
transform pair,

f .r; z/ D
Z 1

0

f .kr ; z/ J0.krr/ kr dkr ; (2.94)

f .kr ; z/ D
Z 1

0

f .r; z/ J0.krr/ r dr (2.95)

to obtain the depth-separated wave equation for the cylindrical coordinate system,

�
d2

dz2
C .k2 � k2

r /

�
 .kr ; z/ D S!

ı.z � zs/

2�
: (2.96)

Equation (2.96) is identical to the depth-separated wave equation for the Cartesian
coordinate system. The solution of the depth-separated wave equation, therefore,
proceeds identically in the two cases. Further, the transforms of the boundary con-
ditions are identical in the two cases, and we can therefore use the solution of (2.96)
as the kernel for both of the inverse transforms, (2.87) and (2.94), for the line source
and point source fields, respectively.

As was the case for the reduction of the wave equation to the frequency domain
Helmholtz equation, the reduction of the three-dimensional Helmholtz equation to
the one-dimensional, depth-separated wave equation is obtained at the cost of having
to evaluate the infinite integrals of the inverse transforms. However, the asymptotic
behavior of the integration kernels makes truncation of the integration interval possi-
ble, with small or insignificant error as a result, and numerical quadrature schemes
are available for accurate evaluation of the truncated inverse transforms. This is
described in detail in Chap. 4, where we discuss wavenumber integration meth-
ods. These methods directly implement the integral transform approach described
here and therefore compute the “exact” solution for the range-independent problem.
Alternative approximate methods are also available, including the method of station-
ary phase and the normal mode expansion. The basic principles of these techniques
are described in this chapter, but much more detail on normal modes is given in
Chap. 5.

Finally, there is much virtue to the integral transform solution in terms of physical
interpretation. As is clear from the form of the inverse transform, (2.87), the integral
transform represents a decomposition of the total field into plane waves propagating
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with horizontal wavenumber kx . Similarly, the Hankel transform, (2.94), represents
a decomposition into conical waves as is clear from the relation

J0.krr/ D 1

2

h
H

.1/
0 .krr/CH

.2/
0 .krr/

i
(2.97)

together with the asymptotic form of the Hankel functions, (2.39) and (2.40).
The solution of the depth-separated wave equation therefore directly yields

important interpretational results such as plane-wave reflection and transmission
coefficients, with the wavenumber kernels providing information on the relative
significance of the various plane-wave components in the total field. This will
be illustrated both in this chapter and in Chap. 4 for increasingly complex range-
independent environments.

2.4.2 Source in Fluid Halfspace

We will illustrate the basic principles of the integral transform solution by applying
it to the case of a point source in a fluid halfspace, treated in Sect. 2.3.4 by means
of Green’s theorem. The environment, shown in Fig. 2.4, can be considered range-
independent or horizontally stratified with just a single interface.

To apply the integral transform, we introduce a cylindrical coordinate system
with the z-axis perpendicular to the surface and passing through the source. For
the line-source problem, a Cartesian coordinate system should be used, yielding the
exact same solution in the wavenumber domain. The field then only depends on
the horizontal range and depth. The depth-separated wave equation for this case is,
therefore, (2.96) with the medium wavenumber being constant, k.z/ D k. The so-
lution is given in terms of the depth-dependent Green’s function in (2.90), where
the Green’s function, (2.91), is found as a superposition of the free-field solution
to (2.92) and the two independent solutions to the corresponding homogeneous
equation.

For a homogeneous medium, the solution to the homogeneous equation is of the
form

H!.kr ; z/ D AC.kr / eikzz C A�.kr / e�ikzz (2.98)

with kz being the vertical wavenumber,

kz D
q
k2 � k2

r : (2.99)

Since the inverse Hankel transform must be evaluated over a semi-infinite wave-
number domain, we have to choose a definition for the square root for kr > k. We
choose the definition

kz D
( p

k2 � k2
r ; kr � k

i
p
k2

r � k2; kr > k:
(2.100)
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With this definition, for z ! 1, the first term in (2.98) corresponds to downward
propagating waves for kr < k, and exponentially decaying waves for kr > k.
Thus, this term can be eliminated for z ! �1 due to the radiation condition for
all values of kr . Similarly, the second term can be eliminated for z ! C1. The
radiation conditions at z ! ˙1 therefore require the homogeneous solutions to be
of the form

H!.kr ; z/ D
(
AC.kr / eikzz; z ! C1
A�.kr / e�ikzz; z ! �1:

(2.101)

If we had defined the square root in (2.100) using �i for kr > k, we would have to
switch the terms when passing kr D k. Although the present definition is chosen
merely for convenience, it is absolutely essential to use the proper definition when
we later introduce attenuation.

We next solve the inhomogeneous depth-separated wave equation for the free-
field Green’s function, (2.92). Except for the source depth z D zs , the Green’s
function satisfies the homogeneous equation, with solutions of the form given in
(2.101). Applying symmetry considerations for the field with respect to the plane
z D zs , we therefore have

g!.kr ; z; zs/ D A.kr/

(
eikz.z�zs/; z � zs

e�ikz.z�zs/; z � zs

D A.kr/ eikzjz�zs j: (2.102)

We now integrate (2.96) from zs � � to zs C � to obtain

�
dg!.kr ; z/

dz

�zsC�

zs��

CO.�/ D � 1

2�
: (2.103)

Inserting the derivative of (2.102) into (2.103) and letting � ! 0, we get,

A.kr/ D � 1

4�ikz
(2.104)

with the free-field depth-dependent Green’s function following as

g!.kr ; z; zs/ D �eikzjz�zs j

4�ikz
: (2.105)

The point-source Green’s function in an infinite medium is now obtained as the
inverse Hankel transform of (2.105),

g!.r; z; zs/ D i

4�

Z 1

0

eikzjz�zs j

kz
J0.krr/ kr dkr ; (2.106)
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Fig. 2.6 Magnitude of the depth-dependent Green’s function for point source in an infinite
medium, computed along a complex contour, offset from the real axis by the amount given in
(4.115). Solid curve: z � zs D 	=10. Dashed curve: z � zs D 2	

which is the Sommerfeld–Weyl integral. This integral decomposes the point-source
field into conical waves, propagating cylindrically in the horizontal direction, and
propagating like plane waves in the vertical direction for kr < k, and decaying
exponentially in the vertical for kr > k.

Before proceeding with the solution of the halfspace problem, we first discuss
the basic physical significance of the depth-dependent Green’s function for the
point source in (2.105). Thus, Fig. 2.6 shows the magnitude of g!.kr ; z; zs/ for re-
ceiver depths 0:1 	 and 2:0 	 below the source. At the medium wavenumber, kr D k,
the Green’s function has a square root singularity, with the magnitude being inde-
pendent of the receiver depth for kr � k. To avoid this singularity, the kernel is
computed along a contour displaced into the complex plane by an amount given by
(4.115), usually applied to obtain a numerically stable integration, as will be dis-
cussed later in Sect. 4.5.5. This part of the wavenumber spectrum corresponds to
waves propagating in the vertical direction due to the purely imaginary argument
of the exponential function in (2.105); it is referred to as the radiating spectrum.
However, for kr > k the vertical wavenumber kz is imaginary and the magnitude
therefore becomes exponentially decaying with depth. This part of the wavenumber
spectrum is called the evanescent spectrum.

It is important to stress that the representation of the depth-dependent Green’s
function in the wavenumber domain is a result of the rather arbitrary mathemat-
ical manipulation we have performed through the integral transformation of the
Helmholtz equation. We can, therefore, not straightforwardly associate the features
of Fig. 2.6 with specific physical wave phenomena. This is particularly evident for
this simple problem of a point source in an infinite, homogeneous medium where
the field is known to be a spherical wave propagating with the medium wavenumber.
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This simple feature is not evident from the form of the depth-dependent Green’s
function in Fig. 2.6. However, after applying the inverse transform of (2.105) the
resulting field will exhibit this behavior.

We can, however, analyze the significance of the two spectral domains by
changing the integration variable for the radiating spectrum, which will dominate
the solution for jz � zs j ! 1. As described above, the depth-dependent Green’s
functions for the point and line sources are identical, and for simplicity we will
therefore do this for the line-source case. Introducing the grazing angle � , we have

kx D k cos �; (2.107)

kz D k sin �; (2.108)

dkx

d�
D �kz: (2.109)

The expression for the frequency-domain Green’s function is obtained by applying
the inverse Fourier transform, (2.87), to the depth-dependent Green’s function. As-
suming large depth separation of source and receiver, we include only the radiating
spectrum in the integration, i.e.,

g!.r; r0/ ' i

4�

Z k

�k

eikzjz�zs j

kz
eikxx dkx

D i

4�

Z �

0

eik jz�zs j sin � C ikx cos � d�: (2.110)

In this form, the integral clearly represents the field as an integral of equal am-
plitude plane waves propagating at an angle � relative to the horizontal x-axis.
Similarly, for the point source, the inverse Hankel transform represents the field
as a superposition of conical waves. For small depth separations, the curvature of
the cylindrically symmetric field produced by the line source cannot be represented
by a superposition of plane waves alone. This curvature is therefore accounted for
by the evanescent spectrum kx > k, which is consistent with the exponential decay
of this spectrum for increasing receiver depth as indicated in Fig. 2.6.

The evanescent spectrum is, in this case, a mathematical abstraction introduced
by the choice of coordinate system, and it does not represent waves that can
exist isolated in an infinite medium (for the radiating spectrum, the plane-wave
components are real waves). However, this does not imply that the evanescent
spectrum can be ignored, and the inverse transform must incorporate this spectrum
to correctly represent the curvature of the wavefronts, in particular for small depth
separations. Furthermore, for stratifications of media with different wave speeds, a
certain value of the horizontal wavenumber kx may be in the evanescent spectrum
in one medium, but in the radiating spectrum in another. In this case, the evanescent
spectrum gains physical significance and must be included in the analysis. Finally,
for normal modes to exist in an ocean waveguide, the field must be evanescent in
the lower halfspace representing the subbottom; otherwise energy would propagate
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away from the waveguide. The same is the case for the seismic interface waves
described in Chap. 4; they are evanescent both in the water and in the bottom. In
conclusion, the evanescent spectrum is just as important for a correct representation
of the field in stratified media as is the radiating spectrum.

Returning to the halfspace problem, we now seek the homogeneous solution,
(2.98), which superimposed with the source Green’s function, (2.105), satisfies the
Fourier transform of the free-surface boundary condition, (2.69), i.e.,

 .kr ; 0/ � 0 (2.111)

as well as the radiation condition for z ! 1. The latter immediately removes the
second term in (2.98), and we therefore have

 .kr ; 0/ D �S! Œg!.kr ; 0; zs/CH!.kr ; 0/�

D S!

"
eikzzs

4�ikz
� AC.kr /

#
D 0; (2.112)

which yields the solution for AC.kr/. The total field solution now becomes

 .kr ; z/ D S!

"
eikzjz�zs j

4�ikz
� eikz.zCzs/

4�ikz

#
: (2.113)

The term in the bracket is the depth-dependent Green’s function for the halfspace.
Since it is a superposition of two free-field depth-dependent Green’s functions, see
(2.52), it is clear that its inverse transform is a superposition of two spherical wave-
fields produced by the real source at z D zs and a virtual source at z D �zs , as
obtained earlier in Sect. 2.3.4. The result is a Lloyd-mirror pattern in the field for
z > zs due to the interference of the two fields, and it is very illustrative of the ver-
satility of the wavenumber representation to relate this physical behavior of the total
field to the behavior of the depth-dependent Green’s function. Thus, Fig. 2.7a shows
the magnitude of the halfspace Green’s function as a function of the horizontal
wavenumber kr (or kx for the line source) for a source at depth zs D 2:5 	 D 5�=k.
The result for receiver depths z D zs C0:1 	 and z D zs C2 	 are indicated by a solid
and a dashed line, respectively. Again the depth-dependence of the evanescent spec-
trum is evident, but the more interesting feature is the oscillating magnitude in the
radiating spectrum. From (2.113) it is clear that the Green’s function vanishes for

kz D .m � 1/ �

zs

; m D 1; 2; � � � (2.114)

and has maxima for

kz D .2m� 1/ �

2zs

: m D 1; 2; � � � (2.115)
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Fig. 2.7 Source in a fluid halfspace. (a) Magnitude of the depth-dependent Green’s function, com-
puted along a complex contour, offset from the real axis by the amount given in (4.115). Solid
curve: z � zs D 	=10. Dashed curve: z � zs D 2	. (b) Pressure field contours
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Introducing the relation between the wavenumbers and the grazing angle, kz D
k sin � , these vertical wavenumbers correspond to the angles �max for the maxima
and �min for the minima, where

sin �max D .2m � 1/ �
2kzs

; (2.116)

sin �min D .m � 1/ �

kzs

: (2.117)

These angles correspond to the angles for which the Lloyd-mirror pattern has
respective maxima and minima, as is evident from Fig. 2.7b, which displays the
transmission loss computed from the inverse Fourier transform, (2.87), of the
Green’s function in Fig. 2.7a. This feature of the field can be directly deduced from
the wavenumber spectrum for the Green’s function. Note that the amplitudes of the
lobes in the Green’s functions are inversely proportional to kz. However, this is again
a result of the transform, and if we change the integration variable to grazing angle
in the radiating spectrum, the lobes will have equal amplitude – in agreement with
the property of the Lloyd-mirror pattern that all lobes are of equal amplitude in the
farfield, as can be seen in Fig. 2.7b.

Defining the reflection coefficient as the complex ratio between the reflected
plane-wave amplitude and the incoming plane-wave amplitude at the surface z D 0,
it is clear from the form of the solution, (2.113), together with the plane wave
decomposition, (2.110), that for all wavenumbers or angles of incidence, the free-
surface reflection coefficient is

R D �1: (2.118)

2.4.3 Reflection and Transmission

The Lloyd-mirror effect described above is a characteristic feature of the interaction
of an acoustic field with a smooth sea surface. However, the interaction with the bot-
tom can be just as important, in particular in shallow water environments. Whereas
the atmosphere is well represented by a vacuum, the seabed is an acoustic medium,
and the bottom interaction problem has to be treated as a propagation problem in a
heterogeneous medium.

The simplest bottom model consists of a fluid halfspace, and we will here analyze
the isolated interaction with the bottom by assuming the upper halfspace to be a
homogeneous fluid medium representing the water column, Fig. 2.8.

A simple point source of strength S! is present in the upper halfspace at depth
z D zs . We have here introduced a cylindrical coordinate system with the r-axis
along the interface and the z-axis passing through the source. Following the same
procedure as in the preceding section, we express the wavenumber kernel for the
field in terms of the Green’s function satisfying the boundary conditions, (2.90),
with G!.kr ; z; zs/ given by (2.91) as a superposition of the free-field Green’s func-
tion for the source and a homogeneous solution.
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Fig. 2.8 Two fluid halfspaces

z

r

zs

Fluid  (water)
c1 , r1

Fluid  (bottom)
c2 , r2

Using the radiation condition, the homogeneous solution in the upper halfspace
with wavenumber k1 D !=c1 and density �1, is

H!;1.kr ; z/ D A�
1 .kr / e�ikz;1z (2.119)

and similarly in the lower halfspace with wavenumber k2 D !=c2 and density �2,

H!;2.kr ; z/ D AC
2 .kr/ eikz;2z; (2.120)

where kz;i ; i D 1; 2; are the vertical wavenumbers for the two media. In the upper
halfspace, the free-field Green’s function, (2.52), must be added to yield the total
Green’s function.

The two unknown amplitudes for the homogeneous solutions are now determined
from the boundary conditions. The first boundary condition expresses continuity of
vertical displacements, i.e., in wavenumber space,

@ 1.kr ; z/

@z
D @ 2.kr ; z/

@z
; z D 0: (2.121)

Replacing  .kr ; z/ by the Green’s functions and inserting the two homogeneous
solutions and the source Green’s function from (2.105), we obtain for z D 0,

kz;2A
C
2 .kr /C kz;1A

�
1 .kr / D kz;1 g!;1.kr ; 0; zs/: (2.122)

The second boundary condition expresses continuity of pressure,

�1  1.kr ; z/ D �2  2.kr ; z/; z D 0: (2.123)
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Again, insertion of the Green’s functions in the two media yields for z D 0,

�2 A
C
2 � �1A

�
1 D �1 g!;1.kr ; 0; zs/: (2.124)

The solution of (2.122) and (2.124) then leads to,

A�
1 D �2kz;1 � �1kz;2

�2kz;1 C �1kz;2
g!;1.kr ; 0; zs/; (2.125)

AC
2 D 2�1kz;1

�2kz;1 C �1kz;2
g!;1.kr ; 0; zs/: (2.126)

Since the wavenumber representation in a Cartesian coordinate system represents a
decomposition into plane-wave solutions, g!.kr ; 0; z/ represents the complex am-
plitude at z D 0 of plane waves incident from above, and A�

1 and AC
2 represent the

amplitudes of the reflected and transmitted plane waves, respectively. Therefore, the
fractions in (2.125) and (2.126) are directly the reflection coefficient R and trans-
mission coefficient T for the displacement potential,

R D �2kz;1 � �1kz;2

�2kz;1 C �1kz;2
; (2.127)

T D 2�1kz;1

�2kz;1 C �1kz;2
: (2.128)

By using (2.108), it is easily verified that these expressions are identical to those
derived in Chap. 1 as (1.56) and (1.57).

We here briefly discuss the properties of the reflection and transmission coef-
ficients. The trivial case of identical media, i.e., k1 D k2; �1 D �2, as expected
yields R � 0; T � 1. The case of the lower medium being vacuum should obvi-
ously yield the free surface reflection coefficient, which is easily verified by letting
k2 D !=c2 ! 1 and �2 D 0, yielding R � �1 and T � 0. For other media we
distinguish between a hard bottom, c2 > c1 and a soft bottom, c2 < c1. Since the
reflection and transmission properties are distinctly different in the two cases, we
discuss them separately.

2.4.3.1 Hard Bottom

For the hard bottom, the medium wavenumber in the bottom is smaller than the
wavenumber in the water, k2 < k1. We, therefore, have three different spectral
regimes to consider in the horizontal wavenumber space, as shown in Fig. 2.9.
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Medium 2:

Radiating Evanescent

Radiating Evanescent
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0 k1k2

kr

Medium 1:

Fig. 2.9 Spectral domains for a hard bottom, k2 < k1

1. kr < k2 : Waves are propagating vertically in both media and energy will be
transmitted into the bottom: jRj < 1.

2. k2 < kr < k1 : Waves are propagating in the upper halfspace (water) but are
evanescent in the lower halfspace (bottom): jRj D 1.

3. k1 < kr : Waves are evanescent in depth in both media: jRj < 1.

This behavior of the reflection coefficient is easily verified by inserting the expres-
sions for the vertical wavenumbers, (2.100), into (2.127). Note that in all three
regimes the transmission coefficient will always be non-vanishing, T > 0. This
is due to the fact that even in the case of perfect reflection, k2 < kr < k1, there will
exist a non-vanishing evanescent field in the bottom, a feature which becomes sig-
nificant for multilayered bottoms as described in Chap. 4. Note that for the simple
halfspace problem, the reflection and transmission coefficients are independent of
the frequency !.

The reflection coefficient is often represented in terms of a magnitude and
phase as,

R.�/ D jR.�/j e�i�.�/; (2.129)

where � is a phase angle and � is the grazing angle of incidence, defined by
� D arccos .kr=k1/. This formulation, of course, only makes sense in the spec-
tral regimes where the field is propagating vertically in the water, i.e., for kz;1 real.

Figure 2.10 shows the magnitude and phase of the plane-wave reflection coef-
ficient for the following halfspace parameters: c1 D 1500m/s, �1 D 1000 kg/m3 in
the water, and c2 D 1800m/s, �2 D 1800 kg/m3 in the bottom.

The critical angle �c D arccos .k2=k1/ D 33:5ı is evident in both the magnitude
and the phase, verifying the description of the behavior of the reflection coeffi-
cient given above, with perfect reflection (jRj D 1) for � < �c and reflection loss
(jRj<1) for larger grazing angles. Note that in the region of perfect reflection, the
phase angle changes from a 180ı shift, i.e., R D �1, for � D 0ı to no phase shift at
the critical angle. Above the critical angle there is no phase shift. In other words, for
small grazing angles the reflection from a fluid–fluid interface is very similar to the
reflection off a free surface, whereas for large grazing angles the reflection is more
like the reflection from a rigid halfspace in terms of phase shift, but with reduced
magnitude. We discuss these features further in relation to the determination of the
acoustic field produced by the point source.
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Fig. 2.10 Reflection coefficient as a function of grazing angle for a hard-bottom halfspace. Solid
curve: Magnitude. Dashed curve: Phase
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Fig. 2.11 Spectral domains for a soft bottom, k1 < k2

2.4.3.2 Soft Bottom

A soft bottom is characterized by a speed of sound less than that of water, i.e.,
c2 < c1 or k2 > k1. Again, the wavenumber spectrum is divided into three different
regimes, as shown in Fig. 2.11.

1. kr < k1 : Waves are propagating vertically in both media and energy will be
transmitted into the bottom: jRj < 1.

2. k1 < kr < k2 : Waves are evanescent in the upper halfspace (water) but propa-
gating in the lower halfspace (bottom): jRj D 1.

3. k2 < kr : Waves are evanescent in depth in both media: jRj < 1.

Since plane waves propagating in the water have horizontal wavenumbers that sat-
isfy the relation kr � k1, only the first of the above spectral regimes is relevant for
plane-wave reflection coefficients.
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Fig. 2.12 Reflection coefficient as a function of grazing angle for a soft-bottom halfspace. Solid
curve: Magnitude. Dashed curve: Phase

Figure 2.12 shows the magnitude and phase of the plane-wave reflection coeffi-
cient for the following halfspace parameters: c1 D 1500m/s, �1 D 1000 kg/m3 in the
water, and c2 D 1300m/s, �2 D 1800 kg/m3 in the bottom. In this case, there is no
critical angle and perfect reflection only occurs in the trivial case of zero grazing an-
gle. However, for the above set of parameters there exists an intromission angle �0 at
which the reflection coefficient is zero and all energy is transmitted into the bottom.
From (1.60) we find �0 D 22:6ı, which is seen to coincide with the phase-angle
shift of 180ı in Fig. 2.12.

The practical application of plane-wave reflection coefficients is rather limited
due to the fact that pure plane waves cannot be generated in reality. However,
the concept of reflection coefficients is important for a physical understanding
of the energy transport in and out of the ocean waveguide, and its application
in numerical modeling of ocean acoustics is important for approaches based on
plane-wave representations such as the ray approaches described in Chap. 3 and
the wavenumber-integration approaches described in Chap. 4. In fact, for classical
ray approaches the reflection and transmission coefficients provide the only means
of incorporating boundaries into the ocean waveguide.

2.4.3.3 The Point Source Field

To obtain the field produced by a point source at depth z D zs , we use the Hankel
transform of the wavenumber kernel,

 .kr ; z/ D
(

�S!

h
g!;1.kr ; z; zs/CH!;1.kr ; z/

i
; z < 0

�S! H!;2.kr ; z/; z > 0;
(2.130)
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with the homogeneous solution H!;1.kr ; z/ given by (2.119) and (2.125), and
with H!;2.kr ; z/ given by (2.120) and (2.126). The free-field Green’s function
g!;1.kr ; z; zs/ is given by (2.105).

The total reflected field is now obtained by evaluating the wavenumber integral

 .r; z/ D
Z 1

0

A�
1 .kr / e�ikz;1z J0.krr/ kr dkr

D 1

2

Z 1

�1
A�

1 .kr/ e�ikz;1zH
.1/
0 .krr/ kr dkr : (2.131)

In general, (2.131) must be evaluated numerically by one of the methods described
in Chap. 4. However, an asymptotic evaluation can be obtained by the method of
stationary phase for receivers in the farfield – see discussion associated with (2.161).
Thus, for krr � 1 the Hankel function in (2.131) can be replaced by its large
argument asymptotic form, (2.39). Insertion of (2.125), (2.127), (2.129) and (2.105)
into (2.131) then yields

 .r; z/ D S! e�i�=4

4�
p
2�r

Z 1

�1
jR.kr/j

p
kr

ikz;1
e�i
�

�.kr /Ckz;1.zCzs/�kr r
	

dkr : (2.132)

If the receiver is far away from the interface, i.e., kz;1.z C zs/ � 1, the integral is
dominated by the contributions from points where the phase term in the kernel is
stationary, i.e.,

@

@kr

h
�.kr /C kz;1 .z C zs/� krr

i
D 0; (2.133)

or
@�.kr /

@kr

� kr .z C zs/

kz;1
� r D 0: (2.134)

Thus, for a particular receiver position .r; z/, the solutions of (2.134) define the
dominant plane-wave components of the field. A geometrical interpretation of this
equation is obtained by introducing the grazing angle � defined by cot � D kr=kz;1,

r D @�.kr /

@kr

� .z C zs/ cot �: (2.135)

As illustrated in Fig. 2.13, the solutions of (2.135) represent plane waves or rays,
hitting the interface at grazing angle � , and propagating along the interface a dis-
tance 
 D @�.kr /=@kr before being launched back toward the receiver, again at
an angle � with respect to the horizontal. It should be noted that the grazing angle
� is related to the horizontal wavenumber kr through the relation cos � D kr=k1,
with the result that the ray displacement 
 is a function of � . The ray displace-
ment is therefore non-zero only for grazing angles where the phase of the reflection
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Fig. 2.13 Ray representation
of reflection from a
homogeneous halfspace

z

θ
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coefficient is varying. For the hard-bottom case shown in Fig. 2.10, there are two
reflection regimes separated by the critical angle �c:

1. � < �c W 
 D @�=@kr > 0,
2. � > �c W 
 D @�=@kr D 0.

Thus, for ranges larger than the critical range, rc D �.z C zs/ cot �c, there will be
a non-vanishing ray displacement. For shorter ranges, there is no displacement and
rays are reflected specularly. It can be shown that a stationary phase point always ex-
ists at the critical angle where the phase curve in Fig. 2.10 has infinite curvature. For
ranges larger than critical, a ray path with grazing angle � D �c always exists, corre-
sponding to the so-called head wave. Similar considerations for the soft-bottom case,
Fig. 2.12, imply that here there is no ray displacement for any angle of incidence.

The physical explanation for the ray displacement is the existence of a evanes-
cent field, propagating horizontally in the bottom for incident grazing angles smaller
than critical, the so-called lateral wave. Although the evanescent spectrum is a math-
ematical abstraction for the infinite homogeneous medium, the ray displacement is
an illustration of the fact that for propagation in inhomogeneous media, the evanes-
cent spectrum has physical significance as well.

Since the phase of the reflection coefficient for the two-halfspace problem is fre-
quency independent, the ray displacement is inversely proportional to frequency.
Ray displacements are therefore usually ignored in high-frequency ray acoustics.
However, for low and intermediate frequencies it is important to properly account
for the ray displacement at the water–bottom interface. Even in cases where the bot-
tom is ignored, a similar ray displacement must be accounted for at turning points in
a refracting ocean. Thus, the �=2 phase shift introduced at turning points in WKB
ray theory (Chap. 3), should be accompanied by the corresponding horizontal ray
displacement in order to obtain an accurate representation of the acoustic field.
Again, the effect is less significant at high frequencies, where accumulated errors
become important only at long ranges.
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F = 150 Hz, SD = −25m
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Fig. 2.14 Pressure contours for reflection from a homogeneous halfspace

A numerical evaluation of the wavenumber integral representation for the total
field yields the solution shown in Fig. 2.14 in the form of pressure contours in deci-
bels. Comparing to the similar contour plot of the field in a fluid halfspace with a
free surface, Fig. 2.7b, we note that for low grazing angles, the interference patterns
are very similar, with a vanishing field for grazing angles approaching horizontal.
This is because the phase of the reflection coefficient (see Fig. 2.10) approaches
180ı for low grazing angles, which is the phase shift introduced also by the free
surface. This clearly illustrates that the common assumption of a hard bottom re-
flecting similarly to an infinitely rigid bottom is a misconception. On the contrary,
hard bottoms reflect as a free surface for small grazing angles.

The reflectivity behavior of various bottom types is more clearly illustrated by
displaying the angular spectra of the total fields 50 m above the bottom, as shown
in Fig. 2.15. As expected, the rigid bottom (dotted curve) has a maximum in the
horizontal direction whereas the pressure-release bottom (dashed curve) has vanish-
ing amplitude. The spectrum for the penetrable hard bottom (solid curve) is very
similar to that of the pressure-release bottom for small grazing angles. On the other
hand, for grazing angles larger than critical .33:5ı/, the reflectivity of the penetrable
bottom is similar to that of the rigid bottom, except for the decrease in amplitude
caused by the loss of energy to the transmitted wave.
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Fig. 2.15 Angular spectrum for reflection from a homogeneous halfspace. Solid curve: Penetrable
bottom. Dashed curve: Pressure release bottom. Dotted curve: Rigid bottom

2.4.4 Ideal Fluid Waveguide

Up to this point we have dealt with the sea surface and sea bottom interactions
as separate processes. However, the general ocean-acoustic propagation scenario
involves interaction with both boundaries.

The simplest model of this ocean waveguide is a range-independent, isoveloc-
ity water column with perfectly reflecting boundaries as shown in Fig. 2.16. Both
the sea surface and the seafloor are taken to be pressure-release boundaries. As dis-
cussed in the previous section, this choice for the seafloor boundary condition is a
reasonable approximation, since a penetrable seafloor at low grazing angles reflects
similarly to a free surface. Moreover, long-range propagation is dominated by small
propagation angles since high-angle energy is rapidly attenuated due to bottom loss.

Although the environmental model in Fig. 2.16 is a strongly over-simplified
model of the real ocean, it is well-suited for illustrating some of the basic wave-
guide phenomena associated with ocean acoustic propagation.

As in the case of the simpler halfspace problems, we can obtain a solution to the
waveguide problem using the superposition principle. The field produced by a point
source at .0; zs/ in the absence of boundaries is given by

 .r; z/ D �S!

eikR

4�R
: (2.136)

Next, we need to add a solution to the homogeneous Helmholtz equation to sat-
isfy the boundary conditions of vanishing pressure at the surface and bottom of the
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Fig. 2.16 Idealized ocean waveguide model with pressure-release surface and bottom

waveguide. One method is to use the image or mirror method derived earlier from
Green’s theorem. However, this method is not easily generalized to more complex
environments such as the Pekeris waveguide described in the next section. Alterna-
tively, we use the integral transform technique, which is more general. The image
method, however, has significant virtue in terms of physical understanding, and we
shall therefore describe both solution approaches here.

2.4.4.1 Image Method

As described in Sect. 2.4.2 for the homogeneous fluid halfspace, the image method
superimposes the free-field solution with the fields produced by the image sources.
In the halfspace case, only a single image source was necessary to satisfy the bound-
ary conditions. In the waveguide problem, sound will be multiply reflected between
the two boundaries, requiring an infinite number of image sources to be included.
Figure 2.17 shows a schematic representation of the contributions from the physical
source at depth zs and the first three image sources, leading to the first 4 terms in the
expression for the total field,

 .r; z/ ' �S!

4�

"
eikR01

R01

� eikR02

R02

� eikR03

R03

C eikR04

R04

#
; (2.137)

where the negative signs correspond to an odd number of reflections and the positive
signs correspond to an even number of reflections. The remaining terms are obtained
by successive imaging of these sources to yield the ray expansion for the total field,

 .r; z/ D �S!

4�

1X
mD0

"
eikRm1

Rm1

� eikRm2

Rm2

� eikRm3

Rm3

C eikRm4

Rm4

#
(2.138)
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Fig. 2.17 Superposition of free-field solution and first three image source solutions for an ideal
waveguide

with

Rmn D
q
r2 C z2

mn;

zm1 D 2Dm� zs C z;

zm2 D 2D.mC 1/� zs � z;

zm3 D 2DmC zs C z;

zm4 D 2D.mC 1/C zs � z

and D being the vertical depth of the duct.
The most important feature of the image approach is the direct association

between individual terms in the ray expansion and a particular multiple arrival.
However, it should be remembered that it is a steady-state solution, and the indi-
vidual arrivals may only be identified in the time-domain solution, and here the
frequency and bandwidth of the source signal plays an important role. Thus, only
short, high frequency pulses can be individually identified as true images of the
source signal.

To illustrate this important point, we substitute the time-domain Green’s function
of (2.55) into the above image solution to get the waveguide impulse response,
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gt .r; z/ D 1

4�

1X
mD0

�
ı.Rm1=c � t/

Rm1

� ı.Rm2=c � t/

Rm2

�ı.Rm3=c � t/

Rm3

C ı.Rm4=c � t/

Rm4

�
: (2.139)

The terms in the sum now represent a series of sharp impulses. For example, the
first four terms, as per Fig. 2.17, represent direct, bottom bounce, surface bounce
and bottom-surface bounce arrivals. One may convolve the results in (2.139) with a
source function or filter these results within a specified bandwidth in order to obtain
the pulse structure that indicates whether the arrivals are actually separated in time
(see Sect. 8.3.1).

At lower frequencies the multiples will interfere in the time domain, and the re-
ceived field will therefore be a distorted pulse. Here, an interpretation in terms of
normal modes is more convenient. In general, the advantage of the source image
approach and other ray approaches in terms of physical interpretation is most pro-
nounced for high-frequency, transient propagation problems.

2.4.4.2 Integral Transform Solution

Since the ideal waveguide is a simple example of a horizontally stratified medium,
we can use the integral transform approach. The total field has the integral represen-
tation

 .r; z/ D
Z 1

0

 .kr ; z/ J0.krr/ kr dkr (2.140)

with the kernel being a superposition of the depth-dependent Green’s function and
homogeneous solutions to the depth-separated wave equation,

 .kr ; z/ D �S!

h
g!.kr ; z; zs/CH!.kr ; z/

i
: (2.141)

The free-field Green’s function is given by (2.105) and the homogeneous solution
by (2.98),

g!.kr ; z; zs/ D �eikzjz�zs j

4�ikz
; (2.142)

H!.kr ; z/ D AC.kr / eikzz C A�.kr / e�ikzz: (2.143)

The amplitudes of the homogeneous solutions are now determined from the bound-
ary conditions. At both boundaries, z D 0 and z D D, the pressure must vanish,
requiring the displacement potential to vanish as well,

AC.kr /C A�.kr / D eikzzs

4�ikz
; (2.144)

AC.kr/ eikzD C A�.kr/ e�ikzD D eikz.D�zs/

4�ikz
: (2.145)
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These equations are now solved for the amplitudes A˙.kr/ of the homogeneous
solution and superimposed onto the free-field solution to obtain,

 .kr ; z/ D �S!

4�

8̂̂
<
ˆ̂:

sin kzz sin kz.D � zs/

kz sin kzD
; z < zs

sin kzzs sin kz.D � z/

kz sin kzD
; z > zs :

(2.146)

This depth-dependent solution has poles for discrete values of the wavenumber
given by

kzD D m�; m D 1; 2 : : : ; (2.147)

or, in terms of the horizontal wavenumber kr D p
k2 � k2

z ,

kr D
r
k2 �

�m�
D

�2

; m D 1; 2 : : : (2.148)

Equation (2.148) defines an infinite set of kr -values, for which the solution has
singularities, or poles, some of which may be real and the rest purely imaginary,
as indicated in Fig. 2.18. The presence of the poles for real values of kr is impor-
tant for the evaluation of the wavenumber integral, (2.140), which by definition is
performed along the real wavenumber axis. Using Cauchy’s theorem we can deform
the contour of integration into the complex plane to avoid the poles. Here, the ra-
diation condition at r ! 1 determines whether the contour should pass above or
below the poles on the real axis. We first use the relation between the Bessel and
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kr - plane

1234

5

6

7
+ w /c
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– w / c

Fig. 2.18 Singularities of the depth-dependent Green’s function for an ideal waveguide
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Hankel functions to change the integral into one containing only the Hankel function
H

.1/
0 .krr/ representing outgoing waves at infinity,

 .r; z/ D 1

2

Z 1

�1
 .kr ; z/H

.1/
0 .krr/ kr dkr : (2.149)

Due to the asymptotic behavior of the Hankel function, (2.39), we can close the
integration contour in the upper imaginary halfplane, replacing the integral by the
sum of the residues for the poles enclosed. To satisfy the radiation condition, only
poles corresponding to outgoing and decaying waves should be enclosed by the
contour. It is easily verified that the poles to be included are those on the positive
real and imaginary axes, i.e., the filled circles in Fig. 2.18. Hence, the contour for
evaluation of (2.149) should pass above the poles on the negative real axis and below
the ones on the positive real axis as shown in Fig. 2.18. In principal, there are three
different ways of evaluating the integral:

1. Asymptotic evaluation of the wavenumber integral by the method of stationary
phase, which yields an expansion in terms of eigenrays, i.e., a series of rays
connecting the source and receiver, including all reflected multiples. For the ideal
waveguide, the terms in the stationary phase expansion are similar to the terms
in (2.138) obtained by the image method. However, the stationary phase terms
approximate the exact spherical wave representation by farfield plane waves. For
horizontally stratified media, the stationary phase evaluation of the wavenumber
integral is equivalent to the ray tracing approach described in Chap. 3.

2. Direct evaluation of the integral in (2.149) using numerical quadrature. This is the
approach taken in the wavenumber integration techniques described in Chap. 4.
This method is applicable to the present waveguide problem as well as to the
earlier reflection and transmission problems.

3. Evaluation of the field as a sum of the residues for the poles enclosed by the
integration contour described above. This is basically the approach taken in the
normal mode methods described in Chap. 5. This method is applicable only to
propagation problems which are dominated by the pole contributions.

2.4.4.3 Normal Modes

The wavenumber integration approach is the most general since it is not dependent
on the pole contributions being dominant. However, for the ideal waveguide an exact
solution is obtained as an infinite sum of residues, and this solution is therefore the
most convenient for this problem. In addition, each term in the sum has a distinct
physical interpretation, as will be clear shortly. By simple algebra, the sum of the
residues is obtained from (2.146) as,

 .r; z/ D � iS!

2D

1X
mD1

sin.kzmz/ sin.kzmzs/H
.1/
0 .krmr/ (2.150)
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Fig. 2.19 Depth dependence of the first 3 normal modes in ideal waveguide at 20 Hz

with the vertical and horizontal wavenumbers given by (2.147) and (2.148), respec-
tively. Equation (2.150) is the normal-mode expansion of the field in the waveguide.
Each term in the expansion has a simple trigonometric depth dependence of the form
sin .kzmz/, as shown in Fig. 2.19.

In the normal-mode solution, the symmetry between source and receiver is evi-
dent. Therefore, if source and receiver are interchanged, the field remains the same,
in accordance with the reciprocity theorem of linear acoustics. Further, it is clear
that the magnitude of a particular mode, the modal excitation, is proportional to the
amplitude of that particular mode at the source depth.

The horizontal dependence is determined by the horizontal wavenumber krm.
There are naturally two groups of normal modes to be considered. The first group
is the one for which krm is real. It is clear from the asymptotic form of the Han-
kel function, (2.39), that these modes are propagating horizontally away from the
source. Similarly, it is easily verified from (2.39) that the modes with positive imag-
inary wavenumber are exponentially decaying in range, with a more rapid decay for
larger absolute values of the wavenumber. The normal modes are therefore often
categorized as follows:

PropagatingmodesW krm real m <
kD

�
;

Evanescent modesW krm imaginary m >
kD

�
:

Here, it is important to emphasize the difference between the evanescent modes and
the evanescent spectrum described earlier. The terms radiating and evanescent spec-
tra refer to the depth behavior of the kernel in the spectral integral, the evaluation of
which leads to the spatial representation of the field. In contrast, the modal sum is
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Fig. 2.20 Geometrical interpretation of a normal mode

a result of the spectral integral being evaluated through contour integration, and the
modal sum therefore directly represents the spatial distribution of the field, with the
terms propagating and evanescent modes representing the field behavior in range.
Consequently, there is no direct correspondence between the evanescent spectrum
and the evanescent modes. In fact, since the spectral integral is evaluated along the
real wavenumber axis, all the components in the kernel are propagating in range.

A normal mode is a superposition of up- and downgoing plane waves of equal
amplitude and vertical wavenumber kzm, as is clear from the relation

sin.kzmz/ D eikzmz � e�ikzmz

2i
: (2.151)

Both of these waves are propagating at grazing angles �m D arctan .kzm=krm/,
where krm is the horizontal wavenumber. The ray path of such a plane wave in the
waveguide is shown in Fig. 2.20. The dashed line shows the common wavefront for
the wave passing through points A and B. The distance traveled between point A
and B is

LAB D 2D

sin �m

� 2D

tan �m

cos �m D 2D sin �m: (2.152)

Insertion of the relation sin �m D kzm=k together with (2.147) then yields,

LAB D 2�m

k
D m	; (2.153)

where 	 is the acoustic wavelength. Therefore, the discrete wavenumbers of the
normal modes are those for which the multiple reflections of a plane wave are in
phase at any point in the waveguide, which, in turn, gives rise to a resonance. It
should be stressed that the ray equivalence of the modes illustrated in Fig. 2.20
is different from the ray representation of the image method in Fig. 2.17. There-
fore, although both expansions in (2.138) and (2.150) provide exact solutions to the
ideal waveguide problem, the physical significance of the individual terms is entirely
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different. The ray expansion is a superposition of the field produced by all image
sources, whereas the modal expansion is a sum of resonances or eigenfunctions for
the waveguide.

We have here derived the modal expansion by complex contour integration of the
Hankel transform solution. Alternatively, we could have derived the result directly
as an eigenfunction expansion as is often done in the numerical models based on the
normal mode approach (see Chap. 5). However, the present derivation clearly illus-
trates the close relationship between the wavenumber integration and normal mode
approaches. Secondly, the present approach directly yields the individual modal am-
plitudes in (2.150), whereas the eigenfunction expansion approach must use the
orthogonality relation of the modes to determine the modal amplitudes. Finally,
since the wavenumber integral provides an exact solution, the derivation by con-
tour integration directly provides an indication of the approximations made when
applying normal mode approaches to non-perfect waveguides where the modal ex-
pansion is not exact. This will be demonstrated in the next section dealing with the
classical Pekeris waveguide problem.

2.4.4.4 Modal Dispersion

The number of propagating modes in a waveguide is dependent on frequency. Thus,
it is clear from (2.148) that for kD < � , or ! < �c=D, no propagating modes
exist. On the other hand, at high frequencies there are many propagating modes.
In addition, the modal wavenumbers relate to frequency in a nonlinear way, with
the waveguide displaying strongly frequency-dependent propagation characteristics.
The frequency dependence or dispersion of the normal modes is determined by
inserting the definition of the medium wavenumber, k D !=c, into (2.148) and
solving for !,

! D c

r
k2

rm C
�m�
D

�2

: (2.154)

This frequency–wavenumber relation for the modes is evident from Fig. 2.21, show-
ing the so-called f � k diagram in the form of contours of the depth-dependent
Green’s function for source and receiver at depths 14 and 86 m, respectively, in
a 100-m deep ideal waveguide. The hatched area indicates the spectral domain,
bounded by the line f D !=2� D ckr=2� , where the field is evanescent. Equa-
tion (2.154) shows that mode number m only has real horizontal wavenumbers for
frequencies above the cutoff frequency f0m given by

f0m D !0m

2�
D mc

2D
; (2.155)

which for the present environmental model (Fig. 2.16) translates into f0m D m 	
7:5Hz. These modal cutoff frequencies are evident also in Fig. 2.21 as regularly
spaced high-intensity peaks along the frequency axis. At high frequencies, all modes
asymptotically approach a propagation wavenumber which is equal to the medium
wavenumber, krm ! k D !=c.
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Fig. 2.21 f � k diagram for a pressure-release waveguide of 100-m depth showing peaks corre-
sponding to the first 6 propagating modes

The horizontal phase velocity of a mode is defined as

vm D !

krm

: (2.156)

It is clear from Fig. 2.21 that the phase velocity is always larger than the medium
velocity c, although it approaches c for increasing frequency. The phase velocity
represents the horizontal velocity of a particular phase in the plane-wave represen-
tation of a mode, and it does not represent the speed of energy transport, which
obviously must be less than or equal to the speed of sound. Thus, for steep propaga-
tion angles, the phase velocity approaches infinity, whereas horizontal propagation
yields a phase velocity equal to the speed of sound. This, in turn, means that
the plane waves interfering to produce a mode propagate nearly vertically when
approaching the cutoff frequency, whereas the modal plane waves in the high-
frequency limit propagate close to the horizontal.

To determine the energy transport velocity or group velocity of a particular mode,
we need to transform the solution into the time domain since the concept of time has
no meaning in the frequency domain. Assuming that we have a narrow-band source,
the time dependence of the signal carried by mode numberm is given by the inverse
Fourier transform,

 .t/ D
Z !C�

!��

 .!/ e�iŒ!t�krm.!/ r� d!: (2.157)

For a small time increment dt the signal will propagate horizontally a distance
dr D um dt . The phase change of each component in the integral is therefore !
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dt � krm.!/ dr . For the signal to be unchanged over the time interval dt all
components of the integral must stay in phase. This requires d! dt � dkrm.!/

dr D 0, or

um D dr

dt
D d!

dkrm

: (2.158)

Therefore, the signal carried by mode m will propagate with the horizontal speed
um, which is the group velocity. It is found as the slope of the dispersion curves in
Fig. 2.21.

Actually, for future reference, the group velocity can be obtained by the method
of stationary phase analogous to the mathematical arguments used to introduce
(2.134). Assuming the typical case that  .!/ is a slowly changing function with
respect to one oscillation of f .!/ � !t�krm.!/r in (2.157), most of the contribu-
tions to the integral will cancel out except in the non-oscillating neighborhood for
those values of ! for which f .!/ is stationary. Then, for

! D !0 C �;

f 0.!0/ D 0 ! r

t
D d!.krm/

dkrm

� urm; (2.159)

we can write the phase of the exponential as

f .!/ D f .!0/C �2

2
f 00.!0/C � � � : (2.160)

The limits of the integral in (2.157) can be extended to ˙1 since the only contri-
bution is from around !0; using (2.160), (2.157) becomes

 .t/ D  .!0/e�iŒ!0t�krm.!0/ r�

Z 1

�1
e�.i=2/�2f 00.!0/d�

D
p
� .!0/ˇ̌

1
2
f 00.!0/

ˇ̌1=2
e�iŒ!0t�krm.!0/ r˙�=4�; (2.161)

where f 00.!0/ is evaluated from its definition and the ˙ refers to whether f 00.!0/

is negative or positive, respectively. The packet is now represented by a wave trav-
eling at the group speed since the exponential above represents a wave satisfying
the condition f 0.!0/ as per (2.159). That is, since x=t D urm, a particular value
of .!; k/ found at .x1; t1/ will be found at other space–time locations such that
x1=t1 D x2=t2. Thus, we say that the energy associated with a particular frequency
group will travel at the group speed urm.

The phase and group velocities versus frequency for the first 3 modes in the ideal
waveguide are shown in Fig. 2.22. As required, the group velocity is always less
than the speed of sound (1500 m/s), although approaching it at high frequencies.
This is consistent with the above observation that at high frequencies the normal
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Fig. 2.22 Frequency dependence of phase and group velocities for the first 3 propagating modes
in an ideal waveguide

modes are produced by interference of plane waves propagating almost horizontally.
Similarly, when approaching cutoff, the plane waves propagate more vertically, and
consequently the group velocity approaches zero.

2.4.4.5 The Waveguide Field

When two or more modes are propagating through the waveguide they will interfere.
To illustrate this, consider two modes with horizontal wavenumberskrm and krn and
amplitudes Am.z/ and An.z/, propagating far away from the source. Using (2.150)
together with the asymptotic expression for the Hankel function, (2.39), the field of
time dependence exp.�i!t/ is then found to have a range-dependent amplitude at
depth z given by

j .r; z/j ' r�1=2
ˇ̌
ˇAm eikrmr CAn eikrnr

ˇ̌
ˇ

D r�1=2
q
A2

m C A2
n C 2AmAn cos Œr .krm � krn/�: (2.162)

In addition to the cylindrical spreading loss r�1=2, the amplitude will oscillate with
the period

L D 2�

krm � krn

; (2.163)
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which is the modal interference length. The magnitude of the oscillations depends
on the amplitudes of the two modes at depth z. Thus, if the two amplitudes are
equal (Am D An), then the amplitude of the total field will vanish at ranges
separated by the interference length L. If the amplitudes are different, the field
never vanishes, but it shows an oscillatory pattern in range. Since the depth de-
pendence is different for the two modes, also the modal interference pattern is depth
dependent.

To illustrate the modal interference, we compute the field produced by a 20-Hz
point source in a 100-m deep isospeed (1500 m/s) ocean environment with pressure-
release surface and bottom. At 20 Hz, the number of propagating modes M is
determined from the inequality

M <
kD

�
D 2fD

c
D 2:6667: (2.164)

Therefore, two propagating modes will exist at 20 Hz, with the shapes given in
Fig. 2.19. By placing the source at 36 m depth the two modes will be almost equally
excited.

Figure 2.23a displays the magnitude of the depth-dependent solution, (2.146),
versus horizontal wavenumber along a complex contour passing slightly below the
real wavenumber axis as shown in Fig. 2.18. The solid curve shows the magnitude
at depth 36 m, i.e., the same depth as the source, and the dashed curve shows the
magnitude at 46 m depth. The two peaks correspond to the two modes of this prob-
lem, mode 1 with a wavenumber of 0.076 m�1, and mode 2 with a wavenumber of
0.055 m�1. At 36 m depth the modes are of almost equal amplitude, whereas mode
1 dominates at 46 m depths. The modal interference length is found from (2.163) to
be L ' 300m, which is confirmed by the plot of the transmission loss versus range
for the two depths, shown in Fig. 2.23b. Here, the change in interference strength
with depth is evident as well.

Mode 1 is symmetric and mode 2 antisymmetric with respect to mid-depth as
seen in Fig. 2.19. Therefore, the minima and maxima in the modal interference pat-
tern will switch range position in the lower part of the waveguide. This is shown
explicitly in Fig. 2.24, which displays transmission loss contours versus depth and
range.

It should be emphasized that the solutions shown here are steady-state solu-
tions of time dependence exp.�i!t/, which means an unlimited duration of the
source signal. For time-limited signals – even narrow-band CW signals – the differ-
ent group velocities will separate the modes in the time domain at long ranges, as
discussed in detail in Chap. 8. At a point in the waveguide where the steady-state
solution predicts a vanishing field, the received field may consist of two identical
CW pulses separated in time by 
t D �.1C 2`/=!, with ` being an integer, yield-
ing a vanishing Fourier component at frequency !. This illustrates that care must be
taken when analyzing experimental data of limited time duration with steady-state
modeling techniques.
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a

b

Fig. 2.23 Acoustic field in an ideal waveguide of thickness 100 m for 20 Hz point source at 36 m
depth. (a) Magnitude of the depth-dependent Green’s function. (b) Transmission loss. Solid curve:
Receiver depth 36 m. Dashed curve: Receiver depth 46 m

2.4.4.6 Relationship Between Image and Modal Solutions

It is of interest to examine the relationship between the image solution and the
modal solution [8]. Intuitively, it is clear, for example, that the Lloyd mirror field is
easily described by using very few images whereas the field very far away from the
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Fig. 2.24 Contours of transmission loss vs. depth and range for 20 Hz point source at 36 m depth
in an ideal waveguide of thickness 100 m

source in a waveguide would require a very large number of images as per (2.205).
On the other hand, the description of the field near the source would require in-
cluding the continuous spectrum, which, from Fig. 2.29a, we see involves a larger
portion of the total wavenumber interval than the discrete part. This latter consid-
eration implies that we must include a large sum of wavenumber components (that
can be approximated by a large number of discrete modes of a much thicker wave-
guide). On the other hand, this near-field case can be treated by only a few images
representing a direct path and a few bounces off either boundary with subsequent
image contributions diminishing because higher angles have higher loss.

The above tradeoffs between images and modes leads us to the idea that the num-
ber of images and modal components have an inverse relationship similar to Fourier
conjugate variables (e.g., the larger the relevant frequency interval, the shorter the
pulse or time-domain interval). For simplicity, we seek the relationship between
modal and image solutions of the ideal waveguide and therefore start with (2.150),

 D � iS!

4D

1X
nD1

sin.kznz/ sin.kznzs/H
.1/
0 .krnr/; (2.165)

where kzn D n�=D � 2n�=d with the latter definition of d � 2D being made for
future convenience. Next, we employ the Poisson sum formula [12] (p. 483),

1X
mD�1

f .dm/ D
p
2�

d

1X
nD�1

F

�
2�

d
n

�
; (2.166)

where we also use the Fourier transform convention in [12] ,

F.x/ D 1p
2�

Z 1

�1
f .y/ eixydy: (2.167)
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We, therefore, will be substituting (2.150) for F , which is even in n with the n D 0

term vanishing, and where krn is given by (2.147) and (2.148). Therefore, each term
is proportional to

F D � iS!

4D
sin.kznz/ sin.kznzs/H

.1/
0 .krnr/

D � iS!

8D
fcos Œ kzn.z � zs/� � cos Œ kzn.z C zs/�gH .1/

0 .krnr/: (2.168)

For the Poisson formula, these terms are all of the form

Fx D ˙ iS!

8D
cos Œkzn.z˙zs/� H

.1/
0 .krnr/ � ˙ iS!

4d
cos.a˙x/H .1/

0

�
r
p
k2 � x2

�
;

(2.169)

where x � 2n�=d , d D 2D, and a˙ D .z˙zs/ and the ˙’s operations are realized
together. The Poisson sum formula requires the Fourier transform over the even
function F.x/ and further, that it vanishes for n; x D 0. Therefore, we only require
the cosine transform of F and the sum starting from n D 1. We can therefore rewrite
the expression for the Poisson sum in the convenient form,

1

2
f .0/C

1X
mD1

f .dm/ D
p
2�

d

1X
nD1

� �iS!

4
p
2�

OF
�
2�

d
n

��
; (2.170)

where we now can use cosine transforms and where,

OF D cos.aCx/H .1/
0 .r

p
k2 � x2/ � cos.a�x/H .1/

0

�
r
p
k2 � x2

�
: (2.171)

We then have for terms of the form f˙ D fC � f�,

f˙.y/ D ˙
r
2

�

iS!

4
p
2�

Z 1

0

cos.xy/ cos.a˙x/H .1/
0

�
r
p
k2 � x2

�
dx

D �iS!

4�

Z 1

0

fcos Œ x.y C a˙/�Ccos Œ x.y � a˙/�gH .1/
0

�
r
p
k2 � x2

�
dx

� ˙S!

4�
Œf .y C a˙/C f .y � a˙/� ; (2.172)

where y D dm D 2Dm. The integrals in all the terms can be evaluated using

Z 1

0

cos.xy/H .1/
0 .r

p
k2 � x2/ dx D � ieikR

R
; R D

p
r2 C y2; (2.173)
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so that four terms are represented by,

f˙.y ˙ a˙/ D ˙�S!

4�

eikR
˙a

R˙a

; R˙a D
p
r2 C .y ˙ a˙/2; (2.174)

where we note that, for a givenm, we have

R˙a D

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

p
r2 C .2mD C z C zs/2;p
r2 C .2mD C z � zs/2;p
r2 C .2mD � zs � z/2;p
r2 C .2mD � z C zs/2:

(2.175)

We can rearrange the ordering of the lhs of (2.170) to be precisely equivalent to
(2.138) since the quantities in the parentheses are a renumbered representation of
the image depths listed below (2.138). For example, in (2.175) there are only two
distinct terms for m D 0 corresponding to

p
r2 C .z ˙ zs/2, which, by our conven-

tion are associated with ˙ signs in front of each f˙ term (note the factor 1
2

on the
lhs of (2.170). These two terms precisely correspond to the first and third terms of
(2.138) for m D 0. The second and fourth terms of m D 0 terms in (2.138) corre-
spond to the third and fourth terms of m D 1 in (2.175). Using all the m D 0 and
the third and fourth m D 1 terms of (2.170) we therefore obtain the four m D 0

terms in (2.138). Subsequent terms in this equation are obtained from the Poisson
sum by similarly combining appropriatem;mC 1 terms.

We have here shown that the modal sum is equivalent to the image sum and
that they are Fourier transforms of each other in which the indices are the corre-
sponding Fourier conjugate independent variables. It is important to note that in this
isovelocity ideal waveguide, the image solution can be thought of as a ray repre-
sentation of the total field that propagates from a point source. This is not at all the
same as the geometrical interpretation or ray–mode analogy as depicted in Fig. 2.20.
The latter refers to a homogeneous (source independent) solution of the waveguide
whereas an image or mode solution corresponds to a particular solution for a specific
source.

2.4.5 The Pekeris Waveguide

For the next level of complexity in modeling the ocean acoustic environment, we
introduce the Pekeris waveguide shown in Fig. 2.25 [3]. Here, the bottom is more
realistically represented by an infinite fluid halfspace, allowing for energy to be
transmitted across the water–bottom interface and thereby introducing an additional
loss mechanism to the waveguide propagation. As above, it is assumed that surface
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Fig. 2.25 Pekeris waveguide with pressure-release surface and penetrable fluid bottom

and bottom are plane and parallel such that we can use the integral transform solu-
tion technique. The sound speeds are denoted c1 and c2 for the water and bottom,
respectively, and the corresponding densities are �1 and �2.

The source of strength S! and time dependence exp.�i!t/ is assumed to be at
depth zs in the water column. Therefore, the kernel of the Hankel transform is,

 1.kr ; z/ D S!

eikz;1jz�zs j

4�ikz;1
C AC

1 .kr / eikz;1z C A�
1 .kr/ e�ikz;1z (2.176)

with kz;1 D .k2
1 � k2

r /
1=2, where k1 D !=c1 is the water wavenumber at frequency

!. In the bottom the upward propagating component must vanish due to the bound-
ary condition at infinity, yielding

 2.kr ; z/ D AC
2 .kr / eikz;2.z�D/; (2.177)

where the vertical wavenumber must be defined as follows in order to satisfy the
radiation condition for z ! 1,

kz;2 D

8̂
<
:̂

q
k2

2 � k2
r ; jkr j < k2

i

q
k2

r � k2
2 ; jkr j > k2;

(2.178)

with k2 D !=c2. We now have three unknown amplitudes of the homogeneous
solutions to be determined from the boundary conditions.

The first boundary condition is that of vanishing pressure at the sea surface,
requiring

AC
1 .kr /C A�

1 .kr/ D S!

ieikz;1zs

4�kz;1
: (2.179)
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The remaining two boundary conditions are related to the field at the water–bottom
interface. They are identical to the boundary conditions used to determine the plane-
wave reflection coefficient, i.e., continuity of particle displacement, (2.122), and
pressure, (2.124), across the interface. We obtain for continuity of bottom particle
displacement,

kz;1 eikz;1D AC
1 .kr /� kz;1 e�ikz;1D A�

1 .kr /� kz;2A
C
2 .kr / D kz;1 S!

ieikz;1.D�zs/

4�kz;1

(2.180)

and for continuity of bottom pressure,

�1 eikz;1D AC
1 .kr /C �1 e�ikz;1D A�

1 .kr/ � �2 A
C
2 .kr/ D �1S!

ieikz;1.D�zs/

4�kz;1
:

(2.181)

Equations (2.179), (2.180) and (2.181) combine into the following matrix equation
for the amplitudes of the homogeneous solutions,

2
66664

1 1 0

kz;1 eikz;1D �kz;1 e�ikz;1D �kz;2

�1 eikz;1D �1 e�ikz;1D ��2

3
77775

8̂̂
ˆ̂<
ˆ̂̂̂
:

AC
1

A�
1

AC
2

9>>>>=
>>>>;

D iS!

4�kz;1

8̂̂
ˆ̂<
ˆ̂̂̂
:

eikz;1zs

kz;1 eikz;1.D�zs/

�1 eikz;1.D�zs/

9>>>>=
>>>>;
:

(2.182)

This system of equations with only three unknowns can obviously be solved an-
alytically to yield a closed-form expression for the integration kernel in (2.176).
However, in the general multi-layered case the number of equations scales approxi-
mately linearly with the number of layers, and the solution will have to be performed
numerically, using one of the approaches described later in Chap. 4. On the other
hand, the simplicity of the system of equations in (2.182) is convenient for demon-
strating the non-triviality of obtaining stable numerical solutions.

Thus, if the coefficients in (2.182) are coded up directly, and the system is solved
using a standard equation solver, numerical instability will occur in the evanes-
cent regime jkr j > k1 where the exponentials in the first and second column
become exponentially growing and decaying, respectively. Once the difference in
order of magnitude between the columns exceeds the arithmetic precision of the
computer (15 digits in double precision), the system of equations becomes ill-
conditioned because the two equations involving the exponentials become linearly
dependent numerically. The solution to this numerical stability problem will be dis-
cussed extensively in Chap. 4, but is easily demonstrated for this simple example.
Thus, unconditional stability is achieved by factoring out the growing exponential
eikz;1D from the first column, instead including it in the unknown complex ampli-
tude AC

1 .kr/. This is achieved simply by using the seabed instead of the sea surface
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as arbitrary origin for the exponential function representing the “upgoing” wave in
(2.176),

 1.kr ; z/ D S!

eikz;1jz�zs j

4�ikz;1
C AC

1 .kr / e�ikz;1.D�z/ C A�
1 .kr/ e�ikz;1z; 0 � z � D:

(2.183)

Repeating the procedure above, the reader can easily verify that this kernel repre-
sentation leads to a system of equation of the form

2
66664

e�ikz;1D 1 0

kz;1 �kz;1 e�ikz;1D �kz;2

�1 �1 e�ikz;1D ��2

3
77775

8̂̂
ˆ̂<
ˆ̂̂̂
:

AC
1

A�
1

AC
2

9>>>>=
>>>>;

D iS!

4�kz;1

8̂̂
ˆ̂<
ˆ̂̂̂
:

eikz;1zs

kz;1 eikz;1.D�zs/

�1 eikz;1.D�zs/

9>>>>=
>>>>;
;

(2.184)

where all terms with growing exponentials have been eliminated, resulting in a well-
conditioned system which can be solved using a standard linear equation solver. It
should be noted, though, that the solver, if based on Gaussian elimination, must
apply pivoting to maintain stability if this system is applied directly in the above
form (upper left coefficient will approach zero for large kr ). As will be discussed in
Chap. 4, even this tool can be avoided, simply by choosing a different ordering of
the unknowns, here interchanging the up- and downgoing terms in (2.183). The use
of proper origins for the exponentials, and a specific ordering of the unknowns are
the basic ingredients of the Direct Global Matrix method described in Sect. 4.3.1.
This procedure ensures unconditional stability at absolutely no computational cost,
even in the general multilayered case.

2.4.5.1 Normal Modes

The solution of (2.182) has poles for values of the horizontal wavenumber where
the determinant of the coefficient matrix vanishes. The determinant is

det.kr / D �2i Œ�1kz;2 sin.kz;1D/C i�2kz;1 cos.kz;1D/� (2.185)

leading to the following characteristic equation for the poles of the depth-dependent
solution in the Pekeris waveguide,

tan.kz;1D/ D � i�2kz;1

�1kz;2
: (2.186)

Like the case for the ideal waveguide, the solutions to (2.186) for which kr is
real correspond to normal modes propagating without loss (other than geometri-
cal spreading loss). It is easily shown that (2.186) has solutions with real kr only in
the interval

jk2j < jkr j < jk1j: (2.187)
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Therefore, no modes exist with real propagation wavenumbers less than k2 D !=c2.
There is a simple physical explanation for this. For the small wavenumbers, the graz-
ing angle of the plane waves constituting a mode would be above critical, with the
field in the bottom being propagating in the vertical direction and therefore leaking
energy out of the duct and into the bottom. A lossless mode can therefore not exist
at these wavenumbers. Equation (2.186) may still have complex roots correspond-
ing to modes decaying in amplitude with range. These solutions are called leaky or
virtual modes.

As for the ideal waveguide, the inverse Hankel transform, (2.149), must be eval-
uated along the real wavenumber axis, passing below the poles on the positive axis
and above the poles on the negative axis. Again, we can either evaluate the inte-
gral along such a contour, which is the wavenumber integration approach, or we
can evaluate the integral by contour integration, closing the contour in the upper
imaginary halfplane, the normal mode approach.

Here, however, the contour integration is not as simple as in the ideal waveguide
case. This is due to the multi-valuedness of the square root function in the complex
plane. Thus, for a complex variable z D � ei.�C2�n/ we have

p
z D p

� ei.�=2Cn�/ D ˙p
� ei�=2; 0 � � < 2�: (2.188)

When choosing a particular definition – or Riemann sheet – for the square root as
in (2.178), a discontinuity is introduced for the argument � D Œ0; 2��, defining a
branch cut for the square root. In (2.188) the branch cut was chosen to be along
the real positive axis for the argument z, i.e., � D Œ0; 2��, but any value of � could
be chosen for the branch cut. Depending on the form of the integration kernel, this
discontinuity of the square root may introduce a discontinuity in the kernel. The
closing of the integration contour requires that the integration kernel be analytic, and
the contour must therefore not cross any discontinuities of the kernel. It is essential
in the contour integration approach that the kernel discontinuities introduced by the
branch cuts for the square root be properly defined.

The kernel for the total field is obtained by adding the free-field source contri-
bution to the solutions of (2.182). Here, it turns out that the kernel is continuous at
branch cuts for the vertical wavenumber kz;1, but discontinuous at branch cuts for
kz;2. It is a general characteristic of integral transform solutions for layered problems
that branch cuts exist for the upper and lower halfspaces, but never for the intermedi-
ate layers. This is clear from the form of the homogeneous solution, where a change
of sign in the vertical wavenumber just switches the two terms, whereas a change
of sign in the halfspace wavenumbers obviously affects the solution due to the fact
that one term has been removed through the radiation condition.

The branch cuts for kz;2 must originate at the points kr D ˙k2, but can otherwise
be chosen arbitrarily as long as they do not cross the real wavenumber axis along
which the original integral is to be evaluated. A convenient choice is the EJP branch
cut, named after Ewing, Jardetzky and Press [4], shown in Fig. 2.26. It is defined
such that the vertical wavenumber kz;2 D .k2

2 � k2
r /

1=2 is real along the branch
cut, which covers the interval Œ�k2; k2� on the real kr axis and the entire imaginary
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Fig. 2.26 Complex wavenumber plane with EJP branch cut, poles and integration contour

axis. The EJP branch cut has the feature of yielding physically meaningful solutions
in the bottom for all complex values of the wavenumber. Furthermore, it can be
shown that no poles exist except for the ones on the real axis. With the choice of
the vertical wavenumber definition given in (2.178), the Hankel transform, (2.149),
must be evaluated along a contour passing below the branch cut on the positive real
axis and above the branch cut on the negative real axis, as shown in Fig. 2.26.

We can now close the integration contour in the upper halfplane, replacing
the original integral along the real axis with a sum of residues corresponding to
the normal modes with real propagation wavenumbers, and a branch line integral
along a contour C enclosing the branch point kr D k2. The branch line integral
represents the contributions from spectral components radiating into the bottom
.0 < kr < k2/ , and from spectral components being evanescent in range. There-
fore, the significance of the branch line integral diminishes with increasing range.
The normal-mode approaches described in Chap. 5 often neglect the branch line
contribution, thus yielding solutions which are not valid at short ranges.

The approximate modal solution for the Pekeris waveguide is similar in form to
the modal sum for the ideal waveguide, (2.150), and given by

 .r; z/ ' � iS!

2D

MX
mD1

am.krm/ sin.kzmz/ sin.kzmzs/H
.1/
0 .krmr/; (2.189)

where the modal wavenumbers krm are now solutions of the transcendental equa-
tion (2.186). The modal excitation is denoted am.krm/, while kzm is the vertical
wavenumber in the water for mode m, kzm D kz;1 D .k2

1 � k2
rm/

1=2. As shown in
Chap. 5, the modal excitation am.krm/ is a function of frequency.
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Fig. 2.27 Depth dependence of acoustic pressure for the 3 normal modes in the Pekeris waveguide
at 35 Hz

Each mode has a non-vanishing field in the bottom of the form given in (2.177),
i.e., exponentially decaying in depth for krm > k2. This is illustrated in Fig. 2.27
where the modal shapes at 35 Hz are shown in both the water column and the bot-
tom for the environment given in Fig. 2.25. Note that the higher modes have smaller
absolute values of the vertical wavenumber in the bottom and hence a longer evanes-
cent tail. As explained earlier, the lower-order modes are very similar in shape to
those of the ideal pressure-release waveguide, with a low amplitude near the bottom.
On the other hand, the higher-order modes approach the shape expected for the ideal
waveguide with a rigid bottom, for which the boundary condition is @ =@z D 0,
leading to a high mode amplitude near the bottom.

2.4.5.2 Modal Dispersion

The modal expansion in (2.189) is truncated to the M modes with real propagation
wavenumbers. As was the case for the ideal waveguide, M increases with increas-
ing frequency. When the frequency is lowered, the propagation wavenumber of a
particular mode decreases according to the modal dispersion defined by the charac-
teristic equation (2.186). When the modal wavenumber reaches the limit krm D k2,
the associated pole leaves the real axis, and although this complex mode still influ-
ences the field, it is said to be cut off. The radial cutoff frequency !0m for mode
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m is determined from (2.186) by inserting krm D k2 D !0m=c2, i.e., kz;2 D 0,
yielding

kzmD D !0mD

q
c�2

1 � c�2
2 D �

2
C .m � 1/ �; m D 1; 2; � � � ; (2.190)

which leads to the following expression for the cutoff frequency for mode num-
ber m,

f0m D !0m

2�
D .m � 0:5/ c1c2

2D

q
c2

2 � c2
1

: m D 1; 2; � � � (2.191)

For increasing frequency, the wavenumber for a given mode approaches the water
wavenumber k1 corresponding to horizontally propagating plane waves. The char-
acteristic equation yields,

kzmD ! m� for ! ! 1; (2.192)

which is exactly the characteristic equation for the ideal waveguide. Therefore, as
frequency increases, the modes of the Pekeris waveguide become more and more
similar to those of the ideal waveguide described earlier. This asymptotic behavior
of the modal dispersion is evident from Fig. 2.28a showing the f �k diagram in the
form of contours of the depth-dependent Green’s function for source and receiver
at 14 and 86 m depth, respectively. The triangle in the lower right part of the figure
bounded by the line f D !=2� D c1kr=2� , represents the spectral regime where
the field is evanescent in the water column. On the other hand, the triangle in the
upper left part bounded by the line f D !=2� D c2kr=2� , represents the contin-
uous spectrum where the field is radiating into the bottom. Therefore, the relatively
narrow, hatched part of the diagram represents the discrete spectrum. It is clear from
Fig. 2.28a that for the Pekeris waveguide the cut off of the normal modes is a grad-
ual process, with the modes having significant amplitudes well into the continuous
spectrum. The continuous spectrum can, therefore, contribute significantly to the
acoustic field as will be illustrated by an example in the next section.

Figure 2.28b displays the phase and group velocities for the first 3 modes versus
frequency, as determined by the expressions vm D !=krm and um D d!=dkrm,
respectively. At high frequencies the phase and group velocities both approach the
water sound speed (1500 m/s), whereas at cutoff, both velocities approach the bot-
tom sound speed (1800 m/s). While the phase velocity is monotonically decreasing
with frequency, the group velocity has a minimum at a certain frequency, which
in time-domain solutions give rise to the so-called Airy phase forming the tail of a
transient modal arrival.

If, instead of the EJP branch cut, we choose the one used by Pekeris [3], poles will
appear for complex wavenumbers close to the real and imaginary axes correspond-
ing to leaky or virtual modes. Although this branch cut does not totally eliminate
the branch line contribution, the inclusion of the virtual modes close to the real axis
provides a better approximation to the full solution than that obtained by excluding
the EJP branch line contribution. This will be discussed in more detail in Chap. 5.
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Fig. 2.28 Dispersion of modes in the Pekeris waveguide. (a) f �k diagram in the form of contours
of the depth-dependent Green’s function. (b) Phase and group velocities vs. frequency for the first
3 modes

2.4.5.3 The Waveguide Field

The presence of the branch line contribution makes the modal solution approxi-
mate, and we will therefore proceed with the wavenumber integration approach. It is
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clear from Fig. 2.26 that the positive wavenumber axis is divided into three different
spectral domains:

� 0 < kr < k2 : The continuous spectrum where waves are radiating into the
bottom, thus leaking energy away from the waveguide. Consequently, no loss-
less modes can exist in this spectral domain. On the other hand this part of the
spectrum reflects the presence of leaky modes.

� k2 < kr < k1 : The discrete spectrum where the field is propagating vertically in
the water and is exponentially decaying in the bottom. This part of the spectrum
contains the discrete poles corresponding to lossless modes.

� k1 < kr : The evanescent spectrum where wave components in both water and
bottom are exponentially decaying in the vertical. For the Pekeris waveguide no
poles exist in this domain. However, for elastic bottoms the seismic interface
waves pertain to this spectral domain.

To illustrate the significance of the different spectral domains, we consider a
numerical example for the Pekeris waveguide given in Fig. 2.25. Except for the pen-
etrable bottom with sound speed c2 D 1800m/s and density �2 D 1800 kg/m3,
all other parameters are identical to those considered earlier for the ideal pressure-
release waveguide.

Figure 2.29a shows the Hankel transform kernel along the same contour used in
Fig. 2.23a for the ideal waveguide. The solid curve shows the kernel for a receiver
depth of 36 m and the dashed curve for a receiver depth of 46 m. The different spec-
tral regimes are separated by vertical dotted lines at kr D k1; k2. There is one
sharp peak in the discrete spectrum corresponding to the first propagating mode.
The second peak at kr D 0:068m�1 is part of the continuous spectrum, indicating
the presence of a leaky mode close to the real axis. The width of the peak is related
to the distance of the pole from the real axis, which is directly related to the modal
damping versus range. In the present case, the leaky mode is very close to the real
axis, and the associated modal damping is small. The modal wavenumbers are also
affected by the presence of the bottom, with the second mode in particular mov-
ing to a higher horizontal wavenumber, and therefore lower vertical wavenumber
compared to the ideal waveguide case. Therefore, the modal excitation is changed
as well. The resultant transmission loss is shown in Fig. 2.29b. Since the propagat-
ing and the leaky modes are closer in terms of wavenumber, the modal interference
length is longer than in the ideal waveguide case. The fact that one of the modes is
attenuated with range due to leakage reduces the modal interference with range, and
the field will ultimately be dominated by the lossless mode.

This example clearly illustrates the limitation of the traditional normal-mode ap-
proach. Thus, if the EJP branch line integral or the leaky modes for the Pekeris
branch cut are ignored, only the propagating mode would be included, thus totally
eliminating the modal interference, and providing accurate results only at very long
ranges. The inclusion of the leaky modes in the solution is most important for cases
with few propagating modes, e.g., in low-frequency shallow-water acoustics.
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Fig. 2.29 Acoustic field in a 100-m deep Pekeris waveguide for 20 Hz point source at 36 m.
(a) Magnitude of depth-dependent Green’s function. (b) Transmission loss. Solid curve: Receiver
depth 36 m. Dashed curve: Receiver depth 46 m

2.4.5.4 Reciprocity

The Pekeris waveguide and other stratified environmental models are characterized
by discrete changes in density at the interfaces, with the displacement potential
consequently being discontinuous. Therefore, the simple wave equation is not valid
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at the interface itself, and the continuity of pressure and particle displacement across
the interface is handled through the boundary conditions. As a consequence, the
Green’s function, although symmetric within each constant-density layer, is not
symmetric across the interfaces. However, the acoustic field must still satisfy the
reciprocity principle of linear acoustics, which is formally derived in Appendix 1.
This is easily confirmed by modifying the discrete changes in density and sound
speed at the interface to a gradual transition over a small region �. Then the trans-
mission loss pressure for a source at rs is governed by the pressure wave equation
(2.83), or for a field of time dependence exp.�i!t/,

�r �
�
1

�
rP.r; rs/

�
C k2P.r; rs/ D �4� ı.r � rs/: (2.193)

As described in Appendix 1, the solutions to (2.193) satisfy the reciprocity relation,

�.rs/ P.r; rs/ D �.r/ P.rs; r/: (2.194)

Now, by letting the transition region � approach zero, the solution will converge
toward the solution for the original problem with discontinuous density and sound
speed, and the transmission loss in the Pekeris waveguide and other stratified fluid
media must therefore satisfy the reciprocity relation in (2.194) as well.

For the elastic stratifications treated in Chap. 4, the field must also satisfy cer-
tain reciprocity relations, specifically the elastodynamic reciprocity theorem ([13],
Sect. 1.13). This classical reciprocity principle, which forms the basis for many
engineering approaches such as the principle of virtual work, states that for two
independent forcing systems, the work carried out by the external forcing of one
system on the response of the second system, is equal to the work carried out by
the external forcing of the second one on the response of the first system. We will
here demonstrate that for fluid media this principle of reciprocity is consistent with
(2.194).

For fluid media, the external forces are represented by the volume injection of
the source, and the response is represented by the acoustic pressure [14]. Using the
source definitions of Sect. 2.3.2, consider a simple point source of strength S! at a
point r1 in an acoustic medium with density �1 and sound speed c1. By definition
this source creates a volume injection of S! ı.r � r1/. At a receiver r2 in a medium
with density �2 and sound speed c2 this source will produce a displacement potential
 .r2/ with associated pressure,

p.r2/ D �2!
2 .r2/: (2.195)

A point source of strength S 0
! placed at r2 will similarly correspond to a forcing, or

volume injection, of S 0
! ı.r � r2/, and produce a pressure at r1 given by

p0.r1/ D �1!
2 0.r1/: (2.196)
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Now, the classical reciprocity principle states,

Z
V
S! ı.r � r1/ p

0.r/ dV D
Z

V
S 0

! ı.r � r2/ p.r/ dV; (2.197)

or
S! p

0.r1/ D S 0
! p.r2/: (2.198)

This is the reciprocity principle for pressure. As described in Sect. 2.3.5, in order for
the field solutions to directly represent transmission loss, the source strengths must
be S! D 4�=.�1!

2/ and S 0
! D 4�=.�2!

2/. Insertion of these into (2.198) directly
yields the reciprocity relation for transmission loss pressure in (2.194).

By inserting the relations between potential and pressure into (2.198), we obtain
the reciprocity relation for the displacement potentials,

�1S! 
0.r1/ D �2S

0
! .r2/: (2.199)

2.4.5.5 Attenuation

Up to this point, we have considered acoustic environments consisting of ideal fluid
media. However, in the real ocean, sound waves are attenuated due to dissipation of
energy into heat. The attenuation in sea water is very low at low and intermediate
frequencies, and acoustic signals may propagate for thousands of kilometers without
significant attenuation except for geometrical spreading loss. However, ocean sed-
iments are characterized by high energy loss due to internal friction. Therefore, in
environments with significant bottom interaction, such as shallow-water ducts sim-
ilar to the Pekeris waveguide, bottom attenuation becomes a significant loss factor
also for waterborne energy. Hence, in these cases it is crucial for a realistic modeling
of the propagation characteristics that bottom attenuation be taken into account. The
integral transform technique used for solving the Pekeris problem is easily modified
to incorporate this effect.

Assume a plane harmonic wave of angular frequency ! propagating in a homo-
geneous medium along the positive x-axis of a Cartesian coordinate system. In the
absence of attenuation, such a wave has the form

 .x; t/ D A e�i.!t�kx/; (2.200)

where k is the medium wavenumber and A is the amplitude. In the ideal fluid, k is
real and the plane wave has constant amplitude for all ranges x. However, in reality
the wave amplitude will decrease with range, and for media behaving in a linear
fashion, e.g., linearly viscoelastic media, this attenuation must be exponential in
range, and the plane-wave solution therefore takes the form

 .x; t/ D A e�i.!t�kx/�˛x; ˛ > 0: (2.201)
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Defining ˛ D kı, (2.201) can be rewritten as

 .x; t/ D A e�iŒ!t�k.1Ciı/x�; (2.202)

which is a solution to the Helmholtz equation (2.31) with complex wavenumber,

ek D k.1C iı/: (2.203)

In isotropic media, the same will be the case for plane, attenuated waves in any
spatial direction, and since the integral transform solution is based on a plane-wave
decomposition, it is obvious that a viscoelastic attenuation can be accounted for by
simply letting the medium wavenumbers be complex. All the waveguide solutions
described above are, therefore, directly applicable to problems involving viscoelas-
tic media.

The attenuation factor ı is called the loss tangent. However, in underwater
acoustics it is more common to express the attenuation in dB=	, where 	 is the
wavelength,

˛ D �20 log

ˇ̌
ˇ̌ .x C 	; t/

 .x; t/

ˇ̌
ˇ̌ D �20 log

h
e�ık�

i
D 40� ı log e ' 54:58 ı:

(2.204)

The attenuation in sediments is typically of the order 0.1–1.0 dB/	 (see Sect. 1.6)
with the corresponding loss tangents of order 0.002–0.02. Even with the imaginary
part of the wavenumber being that small, the attenuation in range can be signif-
icant. Thus, Fig. 2.30 shows the transmission loss versus range at 46 m depth for

Fig. 2.30 Transmission loss vs. range in a Pekeris waveguide with water depth 100 m. Solid curve:
1.0 dB/	 sediment attenuation. Dashed curve: lossless



132 2 Wave Propagation Theory

the Pekeris waveguide example. The solid curve is for a bottom loss of 1.0 dB/	,
whereas the dashed curve is the lossless result, identical to the dashed curve in
Fig. 2.29b.

There are three differences worth commenting on. Firstly, the transmission loss
increases more rapidly with range for the lossy bottom. Secondly, the modal interfer-
ence length is slightly different in the two cases, and finally the modal interference
pattern is disappearing more rapidly with range for the lossy bottom.

Whereas the first difference is expected due to energy loss in the sediment, the
two latter points are less obvious. However, they are quite easily explained by ana-
lyzing the behavior of the modal poles when attenuation is introduced. In that case,
the branch point kr D k2 in Fig. 2.26 moves slightly off the real axis and into the
positive imaginary wavenumber plane. The same is the case for the solutions to the
characteristic equation (2.186), with the imaginary part of the wavenumber repre-
senting the attenuation in range for the corresponding mode. Also, the real part of
the modal wavenumber will change slightly. The effect is stronger the closer the
modal wavenumber is to the branch point kr D k2. Therefore, both the imaginary
and the real part of the propagation wavenumber will change more for the higher-
order modes than for the lower-order modes. As a result the higher-order modes
show more range attenuation than the lower-order modes. In physical terms, this is
consistent with the observation that the higher-order modes have longer evanescent
tails in the bottom and therefore are more sensitive to changes in bottom parameters.

In the present example, the second mode is leaky and therefore not in the discrete
spectrum. However, it is very close to the branch point, thus undergoing bigger
changes in terms of both propagation wavenumber and attenuation than the first,
discrete mode. The result is a change in the modal interference length as well as
a more rapid range decay of the field produced by the second mode, leading to a
decaying interference pattern.

The field solutions shown in Fig. 2.30 are computed by wavenumber integra-
tion, for which the attenuation is actually an advantage due to the fact that the
modal singularities are removed from the real integration axis. However, this ex-
ample again stresses the care that must be exercised when devising approximate
numerical schemes. Thus, as described in Chap. 5, most normal-mode approaches
determine the real modal wavenumbers for the lossless case and add the modal at-
tenuation in a perturbational sense. These methods will therefore not predict the
change in interference pattern caused by changes in the real part of the propagation
wavenumber. In propagation problems with small attenuation and many modes, the
error is insignificant, but in extreme cases with high attenuation and few modes,
such as the present example, the effect on the interference pattern may be important
at long ranges.

2.4.5.6 General Waveguide Image Solution

The Pekeris waveguide has a bottom whose reflection coefficient is given by (1.56).
In general, if we let the reflection coefficient of the upper and lower boundaries of
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the waveguide be given as R1 and R2 evaluated at the appropriate angle associated
with each image term, respectively, then the generalized form of (2.138) (from [8]) is

 .r; z/D�S!

4�

1X
mD0

.R1R2/
m

"
eikRm1

Rm1

CR1

eikRm2

Rm2

CR2

eikRm3

Rm3

CR1R2

eikRm4

Rm4

#
;

(2.205)

where we note that R1 D �1 for the pressure-release surface.

2.4.6 Waveguide Invariants

We have been mainly concerned with narrow-band or single-frequency propagation
such as the two-mode case shown in Fig. 2.30. It turns out, as shown in Fig. 2.31, that
the interference pattern at a slightly shifted frequency for the same propagation con-
ditions has the same structure but with the maxima and minima slightly shifted as
indicated by the lines through the maxima. This shift in the structure of the interfer-
ence pattern as a function of frequency and range is a robust feature of waveguide
propagation and is described by a scalar parameter referred to as the waveguide
invariant [15, 16]. The same formalism associated with this invariant is also de-
scriptive of the shift in the interference pattern with range and some environmental
parameters instead of frequency [17–19]. The waveguide property of maintaining a
robust interference pattern under an assortment of conditions is a consequence, as
we show below, of an important invariant relationship between the change in group
speed with respect to change in phase speed for a group of normal modes in the
waveguide.

2.4.6.1 Frequency–Range Waveguide Invariant

We can obtain an expression for the trajectory in the frequency–range plane of the
interference maxima (or minima) of the waveguide acoustic intensity I by simply
differentiating the normal-mode expression for intensity I.r; z; !/ D const: with
respect to frequency and range and setting this expression equal to zero,

ı!

ır
D �@I

@r



@I

@!
: (2.206)

Intensity is proportional to the mean square pressure, as per (2.162), and can be
written in the form

I.r; zI!/ /
X

n

B2
n C 2

X
m¤n

BmBn cosŒ
kmn.!/ r�; (2.207)

where 
kmn � krm � krn are the interfering differences of pairs of horizontal
modal wavenumbers and Bm;n D r�1=2Am;n are the mode amplitudes of (2.162)
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Fig. 2.31 Acoustic field in an ideal waveguide of thickness 100 m for 20 Hz point source at 36 m
depth. (a) Transmission loss from 21.5 to 26.0 Hz with 2 dB offset between curves. (b) Contour
plot of (a) without offsets and with TL as the z-axis. These intensity bands are often referred to as
striations

and are weakly dependent on range at specific ranges. Differentiating with respect
to ! and r and only retaining the dominant range terms, we obtain

@I

@r
D �

X
m;n

BnBm.
kmn/ sin.
kmn r/; (2.208)

@I

@!
D �r

X
m;n

BnBm

�
@
kmn

@!

�
sin.
kmn r/; (2.209)
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which we can immediately write as

@I

@r
D �!

X
m;n

BnBm

�
1

vm

� 1

vn

�
sin.
kmn r/; (2.210)

@I

@!
D �r

X
m;n

BnBm

�
1

um

� 1

un

�
sin.
kmn r/; (2.211)

where the phase and group velocities vn and un are given by (2.156) and (2.158),
respectively. Assuming a functional relationship between group and phase velocity,
we can express individual phase and group velocities as a Taylor expansion around
the average phase and group velocity v and u of a group of modes. Since (2.210) and
(2.211) involve the inverse of phase and group velocity, which are defined as phase
and group slowness, it is preferable to perform the expansion in terms of phase and
group slowness (1=v and 1=u),

Sn
g D Sg C dSg

dSp

�
Sn

p � Sp

�
; (2.212)

where Sn
p and Sn

g are the phase and group slowness, respectively, of the nth mode. In
addition, S without the superscript refers to the average phase and group slowness
of the group of modes. Inserting the above expressions into (2.206) together with
the definition of phase and group slowness (and taking S to be centered about the
mth mode) gives

ır

ı!
D � r

!

dSg

dSp
: (2.213)

We now define the “invariant” ˇ such that,

1

ˇ
� �dSg

dSp
D �

� v

u

�2 du

dv
; (2.214)

so that we can rewrite (2.213) as

ı!

ır
D ˇ

!

r
(2.215)

or
!

!0

D
�
r

r0

�ˇ

: (2.216)

We now demonstrate that ˇ is approximately constant for a group of modes. Re-
turn to the ideal waveguide as described by the geometry of Fig. 2.20 and note that
kr � !=v D k cos � D .!=c/ cos � , where we have suppressed the modal index.
Therefore, we have for the phase velocity,

v D !

kr

D c

cos �
: (2.217)
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Using (2.158), together with the assumption that the depth (or angle) dependence
of the group of modes we are considering is approximately frequency independent
(e.g., kmz for the ideal waveguide is not a function of frequency), the group velocity
is given by u D c cos � . We can then write the invariant for a simple waveguide as

ˇ D cos2 �: (2.218)

Since typical shallow-water environments have bottom critical angles of less than
20ı, we have that for most bottom-reflecting shallow-water environments, ˇ 
 1.
We will further discuss values of ˇ for various profiles in Chap. 5.

2.4.6.2 Generalized Waveguide Invariant

The previous procedure can be generalized [18] to include variations in environ-
mental parameters instead of either range or frequency. For example, we may seek
the constant intensity trajectory in the frequency–water depth plane, i.e., the change
in the broadband frequency spectrum when the waveguide depth is changed. In that
case, we would simply set the total intensity differential with respect to frequency
and water depth equal to zero. Similarly, if we were interested in the spectral change
with respect to some sound speed variation, we would set the total differential with
respect to frequency and the parameter characterizing the sound speed (change)
equal to zero. In both of the above cases, the partial of the intensity with respect
to water depth or sound speed results in changing the cosine terms in (2.207) to a
sine term. However, we now have to take derivatives of 
kmn with respect to these
parameters rather than the derivative with respect to range which just factored out
the phase slowness terms.

To proceed with the generalization of the invariant formulation, we note from
the derivation of (2.213), that the basic ingredient facilitating this derivation was
that the coefficients of the sin.
kmn r/ are constant and could be factored out of
the summation. We showed this to be true by a Taylor expansion around a group
of modes. This is actually a stationary phase [ıˆ D ı.
kmn r/ D 0] statement
that the lines of constant intensity, which we refer to as striations, for a group of
modes arise from the general condition of keeping the cosine term (and hence, its
argument) in (2.207) constant. We can continue from (2.206) with the assumption
that these terms are constant to obtain, after some straightforward algebra,

ır

ı!
D � r

!

�
@
kmn

@!




kmn

!

�
; (2.219)

which, given the definitions of group and phase speed (and slowness), is identical to
(2.213) and therefore, in analogy to (2.216), we have


kmn

.
kmn/0
D
�
!

!0

�� 1
ˇ

: (2.220)
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Equation (2.220) states how a wavenumber difference changes with frequency
starting from a given wavenumber difference. Recall from (2.163) that the wave-
number difference yields the modal interference length so that we can rewrite
(2.220) in terms of how a modal interference length L0 evolves with frequency,

L D L0

�
!

!0

� 1
ˇ

: (2.221)

Now, let �q represent each of the waveguide parameters qD r; !;D; c, denot-
ing range, frequency, water depth and sound speed, respectively, and define ˆ �

kmnr . The general stationary phase condition is therefore

ıˆ D
X

q

@ˆ

@�q

ı�q: (2.222)

Then, with r � �r ; ! � �! and using the definition of ˆ, we have
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@�c

�c

�
ı�c
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kmn
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@!

!

�
ı!

!
C ır

r
D 0;

(2.223)

which, of course, reduces to (2.219) when there is no variation in water depth or
sound speed.

Now consider the variation in frequency when the water depth is changed, i.e.,
the shift of the power spectrum interference maxima and minima as a function of
waveguide depth. We already know from (2.206) and (2.219) that the expression
in the parentheses of the third term is �1=ˇ. The expression in the first parenthe-
ses can be obtained from (2.148) where we also note from (2.192) that the Pekeris
waveguide wavenumbers approach the ideal waveguide wavenumbers for high fre-
quency. As a matter of fact, the eigenvalues of this general class of Sturm–Liouville
problems go to the ideal waveguide wavenumbers for largem.

Taking km D p
k2 �m2�2=�h

2, and noting that km C kn 
 2km, we get

@
kmn

@�h

D �2
kmn

�h

(2.224)

so that, taken alone, the first and third terms of (2.223) reduce to

ı!

ı�h

D �2ˇ !
�h

: (2.225)

This last expression is equivalent to an expression in Weston et al. [17] in which
they studied time–frequency interference patterns resulting from a shallow-water
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tidal cycle and where they also experimentally confirmed the above factor of 2.
Similarly, consider the second term of (2.223), recalling that k D !=c, we obtain

@
kmn

@�c

D
�
k2

kmkn

�

kmn

�c


 
kmn

�c

; (2.226)

where the last relation comes from the expression in parenthesis being approxi-
mately unity for a mode group such that m 
 n and for kh � 1. Considering
variation in only the second and third terms of (2.223), we arrive at another
invariant-like expression,

ı!

ı�c

D ˇ
!

�c

: (2.227)

Hence, (2.215), (2.225), and (2.227) are “invariant” expressions for the ideal wave-
guide stating that the slope of the lines of constant intensity is an invariant for a
specific mode group in a coordinate system of relative increments of ! and �q .
Though our derivation was specific for ideal waveguides and/or Pekeris waveguides
with high mode numbers, the result is more general; the invariants can be numer-
ically calculated for a much broader class of waveguides and also approximated
analytically for an assortment of waveguides [16]. The generalized invariant equa-
tions can therefore be written as

ı!

ı�q

D �!Wq
!

�q

; (2.228)

where q is either range r , water depthD or sound speed c and we have shown above
that for an ideal waveguide � is given by

�!Wr;D;c 
 1;�2; 1; (2.229)

where the notation indicates that we are considering variations in the interference
structure in which one of the coordinates is always !. Therefore, (2.219), (2.224),
and (2.226) can also be summarized as

@
kmn

@�q

D �!Wq
ˇ


kmn

�q

; q D r;D; c: (2.230)

These invariant expressions are particularly useful for studying a single hydrophone
(and therefore at a single range) observable such as the shift in a spectral (frequency
vs. intensity) broadband interference pattern with respect to the variation in one of
the q parameters. In terms of invariants of the pairwise coordinate systems, i.e.,
.r; !/; .D; !/; .c; !/, we can treat (2.223) as the result of a separation of variables
yielding the three partial differential equations for 
kmn.D; !/, 
kmn.c; !/ and

kmn.r; !/ as summarized by (2.230). After some algebra, the product of the three
separation of variable solutions is


kmn D ˛mn �
�!WD=ˇ
D ��!Wc =ˇ

c !�1=ˇ ; (2.231)
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where ˛mn is a mode number dependent constant. Thus, for the ideal waveguide,
we obtain


kmn D ˛mn

c

!D2
D ˛mn

1

kD2
: (2.232)

To check these results, we can just write out the expression for 
kmn and take the
limit of kh � 1 to obtain


kmn 
 .n2 �m2/�2

2

1

kD2
; (2.233)

which agrees with (2.232).
The results presented in this section were mostly for an ideal waveguide. For

more complicated environments, we must use numerical methods to compute the
relevant modal quantities. This is discussed in some detail in Sect. 5.14.

2.5 Deep-Ocean Waveguides

In the previous section, we discussed propagation in waveguides composed of ho-
mogeneous fluid layers. Such environmental models are rather simplistic but they
are useful for illustrating the fundamental characteristics of ocean acoustic propa-
gation. Real sound-speed profiles have depth dependence and consequently need to
be represented by a combination of layering and variable sound speed within the
layers.

In general, the ocean environment varies in all spatial coordinates as well as
time, with the latter giving rise to temporal fluctuations. Although the fluctuations
will usually be characterized by temporal scales long compared to the acoustic time
scales, they may have significant effect on advanced, high-resolution signal process-
ing schemes based on ensemble averaging of the acoustic field. The development of
ocean acoustic models for determining the stochastic properties of the field is still in
its infancy, and the temporal variability is generally addressed through Monte Carlo
simulations with deterministic models.

In terms of the spatial variability, the scales play an important role as well. Thus,
the variability on scales smaller than the wavelength are best incorporated in a
stochastic sense, and in recent years a significant effort has gone into the model-
ing of ocean environments with small-scale stochastic variability such as interface
roughness and volume inhomogeneities–important mechanisms for scattering and
reverberation. However, the propagation models in widespread use do not include
stochastic variability but only large scale variability of deterministic nature.

The complexity of the acoustic modeling depends on the nature of the spa-
tial variability. Thus, the real ocean has variation in sound speed with depth as
well as in the horizontal. In general, the two- and three-dimensional variation re-
quires the use of one of the numerical models described in later chapters, such as
three-dimensional ray tracing, adiabatic or coupled modes, or parabolic equation
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approaches. However, the basic physics of deep-ocean-waveguide propagation can
be addressed by simpler methods due to the fact that the spatial scales of the horizon-
tal variability in most cases are much larger than the scales of the vertical variability.
Therefore, a range independent environmental model for the deep ocean can provide
a realistic prediction of the acoustic propagation. This is particularly true at Arctic
latitudes where the atmospheric influence on the underwater acoustic environment
is limited by the ice cover and where the strongly upward refracting sound-speed
profile eliminates effects of bottom bathymetry on long-range propagation.

Realistic range independent environmental models for the deep ocean are shown
in Fig. 1.1. The deep ocean waveguide cannot, in general, be represented by a
homogeneous fluid layer. However, if the range-independent ocean waveguide is
represented by an increasing number of homogeneous layers, a numerical solution
based on the field representation for homogeneous layers will converge toward the
correct solution. It turns out, however, that a satisfactory convergence requires the
layers to be less than one quarter of a wavelength thick. Such a technique is there-
fore only computationally convenient for low-frequency propagation in moderate
water depths.

In general, it is much more convenient to divide the deep ocean into a relatively
few number of layers with depth-varying properties in a form that allows for an
analytic solution to the wave equation within each layer. We therefore seek solutions
to the Helmholtz equation for the range-independent ocean environment,

�r2 C k2.z/
	
 .r; z/ D S!

ı.r/ ı.z � zs/

2�r
; (2.234)

where the medium wavenumber k.z/ is now a function of depth. We can still solve
this equation by separation of variables or by integral transforms to yield,

 .r; z/ D
Z 1

0

 .kr ; z/ J0.krr/ kr dkr (2.235)

with  .kr ; z/ satisfying the depth-separated wave equation,
�
4

d2

dz2
C �

k2.z/ � k2
r

��
 .kr ; z/ D S!

ı.z � zs/

2�
: (2.236)

The use of the integral transform approach is dependent on the availability of so-
lutions to (2.236). For certain variations of the medium wavenumber k.z/, exact
solutions can be obtained. Alternatively, approximate solutions may be obtained. In
the following we describe such exact and approximate solutions to (2.236).

2.5.1 Exact Solutions

The deep-ocean waveguide is generally represented by a series of layers, within
which the depth-dependence of the field has an analytic representation. A few
examples of sound speed interpolation functions for which this is possible are given
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in [20]. However, the actual choice of interpolation function is not very critical since
the profile is usually measured at discrete depths with a finite uncertainty. We, here,
describe the solution for a medium with the pseudo-linear sound speed variation

c.z/ D
r

1

az C b
: (2.237)

Such a medium has a linear variation of the square of the index of refraction,
n2 D az C b, and is therefore also referred to an n2-linear acoustic medium. The
expression for the sound speed in (2.237) obviously only has physical meaning for
depths satisfying the inequality az C b > 0. For this sound speed variation, the
homogeneous, depth-separated wave equation becomes,

�
d2

dz2
� �
k2

r � !2 .az C b/
	�
 .kr ; z/ D 0: (2.238)

By introducing the variable transformation,


 D .!2a/�2=3
�
k2

r � !2 .az C b/
	

(2.239)

the following wave equation is obtained,

�
d2

d
2
� 


�
 .
/ D 0: (2.240)

This is a special form of the Bessel differential equation, with two independent solu-
tions given by the Airy functions Ai .
/ and Bi .
/ [21]. Independent homogeneous
solutions to (2.238) are therefore

 C.kr ; z/ D Ai
�
Œ!2a��2=3

�
k2

r � !2 .az C b/
	�
; (2.241)

 �.kr ; z/ D Bi
�
Œ!2a��2=3

�
k2

r � !2 .az C b/
	�
: (2.242)

The field produced by a point source at depth zs in such a medium is determined by
introducing a thin homogeneous layer of sound speed c.zs/ and thickness � around
the source, see Fig. 2.32. In the limit � ! 0, the solution of this layered problem
converges to the solution of the original problem.

In Fig. 2.32, the sound speed variation is shown for the case in which a > 0, i.e.,
limz!1 c.z/ D 0 and limz!�b=a c.z/ D 1. The argument 
 of the Airy functions,
(2.239), therefore has the limits,

lim
z!1 
 D �1; (2.243)

lim
z!�b=a


 D C1: (2.244)
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Fig. 2.32 Point source
in n2-linear fluid medium r

z

zs

c(z)

e

Since no sources are present in the two halfspaces, the field is given by (2.241)
and (2.242), respectively. However, the field must satisfy the radiation condition for
z!1 and the field must be limited for z ! �b=a. Since lim	!1 Bi .
/ D 1 [21],
the latter condition requires the depth dependence of the field in the upper halfspace
to be of the form

 1.kr ; z/ D AC
1 Ai .
/: (2.245)

Similarly, the radiation condition requires that only downgoing waves exist for
z!1. Because of the asymptotic behavior of the Airy functions for 
 ! �1 [21],
it is required that the field in the lower halfspace be of the form

 3.kr ; z/ D A�
3 ŒAi .
/� i Bi .
/� : (2.246)

For the intermediate isovelocity layer, the depth-dependence of the field is directly
given by (2.141), (2.142) and (2.143) as

 2.kr ; z/ D AC
2 eikz;2 z C A�

2 e�ikz;2 z C S!

eikz;2jz�zs j

4�ikz;2
: (2.247)

The next step is to satisfy the boundary conditions of continuity of vertical displace-
ment and pressure at the two interfaces at z D zs ˙ �=2. The expressions for the
vertical displacement and pressure in terms of the displacement potential, (2.21)
and (2.23), then leads to the following system of equations expressing the boundary
conditions for � ! 0,

AC
1

h
� �!2a

�1=3
Ai 0 .
s/

i
� ikz;2

�
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2 � A�
2

� D �S!

4�
; (2.248)

�AC
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2 C A�
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; (2.249)
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� � A�
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s/� i Bi 0 .
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	� D �S!

4�
; (2.250)
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2 C A�

2

�C A�
3 ŒAi .
s/� i Bi .
s/� D S!

4�ikz;2
: (2.251)
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Here, the primes denote differentiation with respect to the argument. All terms in-
volving the coefficients AC

2 and A�
2 are easily eliminated by pair-wise addition, and

the resulting two equations give the following solutions,

AC
1 D �S!

4�

2 .!2a/�1=3 ŒAi .
s/ � i Bi .
s/�

Ai 0.
s/ ŒAi .
s/ � i Bi .
s/� � Ai .
s/ ŒAi 0.
s/ � i Bi 0.
s/�
; (2.252)

A�
3 D �S!

4�

2 .!2a/�1=3Ai .
s/

Ai 0.
s/ ŒAi .
s/� i Bi .
s/� � Ai .
s/ ŒAi 0.
s/� i Bi 0.
s/�
: (2.253)

The source field representations for the case where the sound speed increases with
depth, i.e., a < 0, is directly determined by symmetry considerations. The choice of
depth axis z is arbitrary, and we can therefore perform the variable transformation
z ! �z. This will change the sign of a in (2.237), and, as can be observed from
(2.239), 
 is then invariant to this transformation, and consequently the results above
are still valid; they just have to be interchanged between the two halfspaces. The
depth-dependent solution for a source in a n2-linear fluid medium is therefore,

 .kr ; z/ D �S!

4�

	

8̂̂
ˆ̂<
ˆ̂̂̂:

2.!2a/�1=3ŒAi .
s/ � i Bi .
s/�Ai .
/

Ai 0.
s/ŒAi .
s/� i Bi .
s/� � Ai .
s/ŒAi 0.
s/ � i Bi 0.
s/�
; a.z � zs/ � 0

2.!2a/�1=3Ai .
s/ŒAi .
/ � i Bi .
/�

Ai 0.
s/ŒAi .
s/� i Bi .
s/� � Ai .
s/ŒAi 0.
s/ � i Bi 0.
s/�
; a.z � zs/ � 0:

(2.254)

In the next section, we use the approximate WKB ray solution to explain the phys-
ical significance of the solution in (2.254). Furthermore, in Chap. 4 we show how
these solutions are applied to solve wave propagation problems in the deep ocean by
dividing the environment into a set of discrete layers with an n2-linear sound speed
variation, (2.237), in each layer.

2.5.2 WKB Solutions

The depth-separated wave equation (2.236) is an ordinary differential equation
which, without the source term, has the form

d2 .z/

dz2
C k2

z .z/  .z/ D 0; (2.255)

where kz.z/ is the depth-dependent vertical wavenumber. In the WKB approxima-
tion [7], we seek solutions to (2.255) in the form

 .z/ D A.z/ ei�.z/; (2.256)
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where A.z/ and �.z/ are real functions of depth. For a homogeneous medium,
solutions of this form are exact, with A.z/ D A and �.z/ D ˙kzz. However, for
general variations of the wavenumber, only approximate solutions of this form can
be obtained, and the relative accuracy depends on the actual sound-speed profile.
Inserting (2.256) into (2.255) yields
�
A

00

.z/C
�
k2

z .z/ �
h
�

0

.z/
i2
�
A.z/

�
C i

�
2A

0

.z/ �
0

.z/C A.z/ �
00

.z/

�
D 0:

(2.257)

This equation requires that both the real and the imaginary term vanish. If we assume
that the amplitude of the solution varies slowly in depth, such that

ˇ̌
ˇ̌̌ A

00

.z/

k2
z .z/ A.z/

ˇ̌
ˇ̌̌ � 1; (2.258)

then the equation for the real part of (2.257) takes the form

h
�

0

.z/
i2 D k2

z .z/ (2.259)

with the solution

�.z/ D ˙
Z z

z0

kz.z/ dz; (2.260)

where z0 is an arbitrary constant. Inserting �
0

.z/ D ˙kz.z/ into the equation for the
imaginary part then yields

2A
0

.z/ kz.z/C A.z/ k
0

z.z/ D 0 (2.261)

with the solution

A.z/ D Bp
kz.z/

; (2.262)

where B is an arbitrary amplitude. Inserting these solutions into (2.256) then yields
the WKB approximation to the depth-separated wave equation,

 .z/ D Bp
kz.z/

e˙i
R z

z0
kz.z/ dz

: (2.263)

In terms of physical significance, the WKB approximation is a representation in
terms of local plane-wave solutions, propagating horizontally with wavenumber kr

and vertically with wavenumber kz.z/. It is, therefore, a solution in terms of rays
propagating at grazing angle �.z/ D arctan Œkz.z/=kr � D arccos Œkr=k.z/�, i.e.,
plane waves satisfying Snell’s law. The two solutions in (2.263) are propagating
downward and upward for the positive and negative exponents, respectively. The in-
dividual solutions therefore do not contain internal reflections, as an exact solution
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must do. The condition given by (2.258) represents the contribution from internal
reflections. By inserting the amplitude solution, (2.262), into (2.258), the WKB con-
dition can be rewritten as

ˇ̌
ˇ̌̌ 1

k2
z .z/

 
d2

dz2
ln k2

z .z/�
�

d

dz
ln kz.z/

�2
!ˇ̌ˇ̌̌ � 1: (2.264)

If kz.z/ is assumed to be locally linear, then this condition is equivalent to

1

kz.z/

ˇ̌
ˇ̌ d

dz
ln kz.z/

ˇ̌
ˇ̌ � 1; (2.265)

which shows that the WKB approximation is valid if the variation in the vertical
wavenumber is small over a vertical wavelength. The WKB ray solution is therefore
a high-frequency approximation. However, even at high frequencies the approxima-
tion will break down at points where the vertical wavenumber vanishes. In other
words, the internal reflection cannot be neglected when the grazing angle of the
WKB rays approach horizontal, i.e., kr D k.z/. The behavior of the WKB ray
solution, therefore, needs special consideration for rays approaching such turning
points.

In a downward refracting sound-speed profile (Fig. 2.33), we assume an upward
propagating ray of horizontal wavenumber kr , represented by the solution with the
negative exponent in (2.263),

 �.z/ D B�p
kz.z/

e�i
R z

z� kz.z/ dz: (2.266)
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Fig. 2.33 Reflection of a WKB ray at a turning point



146 2 Wave Propagation Theory

After passing through the turning point at depth z0 this ray will be downward
refracted and must be represented by the solution with the positive exponent in
(2.263),

 C.z/ D BCp
kz.z/

e i
R z

zC
kz.z/ dz

: (2.267)

To determine the arbitrary constants BC and zC we can introduce an interface just
below the turning point at depth z0 C �, and represent the solution at and above
the turning point by the exact solution Ai .
/, assuming the medium to have an
n2-linear sound speed variation locally. We can then determine the constants from
the boundary conditions of continuity of pressure and displacement at depth z0 C �.
Since the amplitudes of the WKB solutions were assumed to be real, the phase of
the downgoing ray is determined by the difference between zC and z�. However,
for simplicity we can choose these to be identical, z� D zC, and instead allow B˙
to be complex entities.

We now determine BC by solving a standard reflection problem, BC D RB�,
with R being the reflection coefficient. Since energy must be conserved, the ray
must be totally reflected, requiring jBCj D jB�j. By representing the Airy function
in terms of Bessel functions, the solution of the reflection problem shows that in the
high-frequency limit, the ray must have a �=2 phase shift [7], i.e.,

BC D B�e�i�=2 : (2.268)

An important feature of the WKB solution is its direct physical interpretation in
terms of rays, and we can therefore use it to address the physical significance of the
exact solution in (2.254) for the n2-linear medium. Assume that a plane wave, rep-
resented by a ray, of horizontal wavenumber kr is launched upward from a source
at depth zs > z0 D a .k2

r =!
2 � b/, in a medium with a > 0, i.e., the sound speed

is decreasing with depth. At the source the argument to the Airy function Ai .
/ is
negative. At the depth z0 the horizontal wavenumber is equal to the local medium
wavenumber, kr D k.z0/, corresponding to a horizontally propagating plane wave,
with the argument to the Airy function being 
 D 0. Above this turning point, the
field will decay rapidly for z ! �b=a. This evanescent field is only predicted by
the exact Airy function solution, but not by the WKB ray solution. After reaching the
turning point the ray will refract downward, superimposed with the upgoing compo-
nent yielding a standing wave solution in the vertical above the source, represented
by the Airy function Ai .
/. Below the source the ray as well as the exact depth
solution must propagate downward to infinity, a behavior represented by the linear
combination of the Airy functions Ai .
/ � i Bi .
/.

The difference between the WKB approximation and the exact solution is most
dramatic at and beyond the turning point. However, when the turning points are
close to the waveguide boundaries in terms of wavelengths, such that the reflection
of the evanescent “tail” cannot be neglected, then the field elsewhere in the wave-
guide will be affected as well. These fundamental differences between the WKB ray
approximation and exact solutions for the n2-linear medium will be illustrated by
numerical examples in Chap. 3.
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The WKB approach is rarely used in wavenumber integration approaches.
However, it has been used extensively in relation to ray tracing in range-independent
environments as described in Chap. 3. In addition, the WKB approach provides a
very simple means of determining approximations to the modal eigenvalues in the
normal mode approach. As described earlier, the modal wavenumbers are those for
which two ray multiples are in phase. We can therefore use the WKB approach
to trace a ray upward from some depth zs , through a turning point, incorporating
the phase shift, or through a surface reflection. The downgoing ray is then traced
similarly through the deep ocean turning point or the bottom reflection until it again
reaches the depth zs . If the up- and downgoing field components at this point are
in phase, then the horizontal wavenumber is a modal wavenumber. The use of the
WKB mode approximation is described in more detail in Chap. 5.

Appendix 1: Principle of Reciprocity

In deriving Green’s theorem in Sect. 2.3.3, we had to assume that G!.r; r0/ is sym-
metric in r and r0. In Sect. 2.3.2, we showed that the free-field Green’s function
g!.r; r0/ is symmetric, but the same is not the case unconditionally forG! , in spite
of the fact that the two functions satisfy the same differential equation. For example,
if we choose the homogeneous solution as a plane wave, H!.r/ D exp.ik � r/, then
G! satisfies (2.60), but is clearly not symmetric.

The symmetry of the Green’s function is a result of the general principle of reci-
procity of linear acoustics, and in this appendix we shall derive this very important
principle.

Let G!.r; r1/ and G!.r; r2/ be two pressure Green’s functions satisfying the
differential equations

�.r/r � ���1.r/rG!.r; r1/
	C k2 G!.r; r1/ D �ı.r � r1/; (2.269)

�.r/r � ���1.r/rG!.r; r2/
	C k2 G!.r; r2/ D �ı.r � r2/: (2.270)

Now, multiplying the first equation by G!.r; r2/ and the second by G!.r; r1/, and
subtraction of the two, followed by integration over a volume V 0, yield

G!.r1; r2/

�.r1/
� G!.r2; r1/

�.r2/
D
Z

V 0

˚
G!.r0; r2/r � ���1.r0/rG!.r0; r1/

	

�G!.r0; r1/r � ���1.r0/rG!.r0; r2/
	�

dV 0: (2.271)

Using integration by parts in the form of Green’s identity,

Z
V
gr � f dV D �

Z
V
.rg/ � f dV C

I
S
g f � n dS (2.272)



148 2 Wave Propagation Theory

with f D ��1 rG! , we change the volume integral to a surface integral over the
surface S 0 of the volume V 0,

G!.r1; r2/

�.r1/
� G!.r2; r1/

�.r2/

D
Z

S 0

�
G!.r0; r2/ �

�1.r0/
@G!.r0; r1/

@n
�G!.r0; r1/ �

�1.r0/
@G!.r0; r2/

@n

�
dS 0:

(2.273)

Now it is clear that the Green’s function satisfies the reciprocity relation

�.r2/G!.r1; r2/ D �.r1/G!.r2; r1/; (2.274)

if there exists a boundary S 0 where G! satisfies boundary conditions of the form

@G!.r0; r/
@n

� �.r0/G!.r0; r/ D 0; (2.275)

where �.r0/ is an arbitrary factor.
Boundary conditions of the form given in (2.275) are called natural bound-

ary conditions and include as special cases both the Dirichlet boundary condition
.�.r0/ D 1 / and the Neumann boundary condition .�.r0/ D 0/. As shown in
Sect. 2.3.3, the radiation condition in infinite media can also be expressed in this
form. Other boundary conditions covered by (2.275) are impedance conditions with
prescribed ratio between pressure and normal particle velocity.

Equation (2.275) is clearly a sufficient condition for reciprocity, but not a neces-
sary one. However, all physically realistic environmental models will have natural
boundary or radiation conditions. Thus, for example, the Pekeris waveguide has
a Dirichlet boundary condition at the free surface, and radiation conditions at
.r; z/ ! 1. On the other hand, the boundary conditions do not have to be natural
on any surface S 0. Thus in the Pekeris waveguide the boundary conditions at the
seabed cannot be written in the form given in (2.275). The reason is that (2.275)
represents only local boundary conditions, whereas the boundary conditions at the
Pekeris waveguide seabed are non-local, involving the field propagating to a point
on the boundary from everywhere else on the same boundary. However, the sur-
face integral will still vanish along the seabed. This is easily verified by inserting
the wavenumber integral representation for the Green’s functions into the surface
integral, interchanging the order of integration, and reformulating the boundary con-
ditions for the depth-dependent Green’s function at the seabed to an impedance
condition using the radiation condition in the lower halfspace.

We will see in Chap. 7 that the natural boundary conditions play an important
role in formulating the finite-element solution to the wave equation.
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Problems

2.1. Sound propagating in a moving medium is governed by a so-called convected
wave equation. Consider the case where the background flow velocity is uniform in
the x-direction with velocity V .

a. Following the procedure in Sect. 2.1, derive the convected wave equation for
sound in a one-dimensional environment with flow velocity V :

�
1 � V 2

c2

�
pxx � 2V

c2
pxt � 1

c2
ptt D 0:

Note that setting V D 0 gives the usual wave equation.
b. Show that this equation can also be derived from the standard wave equation by

changing to a moving coordinate system .�; �/ D .x C V t; t/.
c. What is the form of this equation in three dimensions?

2.2. Assume an acoustic source is designed as a small, spherical balloon of radius a,
within which the pressure is oscillating with frequency f , with maximum pressure
amplitude P .

a. Derive the expression for the acoustic pressure vs range.
b. Determine the expression for P which directly yields transmission loss, i.e., unit

pressure at r D 1m.

2.3. Derive Green’s theorem for a fluid medium with variable density, where the
wave equation is of the form given in (2.14).

2.4. Make a computer code for computing the magnitude and phase of the plane-
wave reflection coefficient at an interface separating two fluid halfspaces.

a. As a test of your code reproduce the results of Figs. 2.10 and 2.11.
b. Discuss in physical terms the grazing angle dependence of the results.
c. Add a second fluid layer in the bottom and then add frequency as an independent

variable to your computer program. Contour your reflection results as a function
of angle and frequency. Discuss the resulting structure of the contoured output.

2.5. For an ideal waveguide bounded above by a pressure-release surface and below
by an infinitely rigid wall, derive a ray expansion for the acoustic field.

2.6. Write a code evaluating the ray expansion in (2.138) for the pressure field in
an ideal waveguide with pressure-release boundaries.

a. For a 100-m deep waveguide, compute the transmission loss for both source and
receiver at depth 36 m, at every 100 m range out to 2 km. Compare your results
to Fig. 2.23b.

b. Perform a convergence analysis for a few selected ranges and discuss the range
dependence.
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2.7. Show that (5.299) represents the sum of the residues of the wavenumber kernel
in (2.146).

2.8. Consider an isovelocity waveguide of thickness D, bounded above and below
by infinitely rigid walls.

a. Derive the characteristic equation for the horizontal wavenumber of the normal
modes.

b. Sketch the vertical pressure distribution of the first few normal modes.
c. Derive the dispersion relation for the normal modes. Discuss the differences com-

pared to the waveguide with pressure release boundaries.

2.9. Consider an environment similar to the Pekeris waveguide in Fig. 2.25, but with
the bottom speed being changed to c2 D 1300m/s.

a. Make a sketch of the complex wavenumber plane for this problem (similar to
Fig. 2.26), indicating the integration contour and the EJP branch cuts.

b. Discuss the existence of normal modes in this case. If they exist, show their
approximate positions.

c. Make a sketch of the branch cuts corresponding to the vertical wavenumber being
purely imaginary, with the corresponding closed integration contour.

2.10. Consider a Pekeris waveguide with the speed of sound c1 D 1500m/s and
density �1 D 1000 kg/m3 in the water column, and with c2 D 1800m/s and �2 D
2000 kg/m3 in the bottom. The water depth is 100 m. A line source at depth zs is
generating a plane acoustic field in the waveguide.

a. Defining the slowness of the mth normal mode as

pm D kxm

!
;

where kxm is the horizontal wavenumber of the mode, state the upper and lower
limit of pm for modes propagating in the positive x-direction.

b. For a source frequency exciting 3 modes, make a sketch of the mode functions
for pressure and for the particle velocity potential. Discuss the differences.

c. Derive the expression for the vertical wavelength of the modes.
d. Using the results from questions (a) and (c), state the lower limit for the vertical

wavelength of a mode at angular frequency !.
e. Use the result from (d) to determine how many modes you have at frequency
f D 30Hz.

2.11. In (2.189), am.krm/ represents a waveguide-specific modal excitation
function.

a. Derive the expression for am.krm/ for the Pekeris waveguide.
b. Show that the modal excitation function has its maximum at the Airy phase fre-

quency, i.e., the frequency where the mode has its minimum group velocity.
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c. Compute and plot vs frequency the magnitude of the excitation function for the
first 3 modes in the Pekeris waveguide in Fig. 2.25. Discuss the results.

2.12. A storm has created a 1 m thick surface layer with a uniform distribution of
small air bubbles. The fraction of the volume occupied by the bubbles is 10�3.

a. What assumption(s) do you have to make to treat the bubble layer as a homoge-
neous acoustic medium?

b. Under these assumptions, find the numerical values of the sound speed c and
density � of the bubble layer. The sound speed of water and air are cw D
1500m/s and ca D 340m/s, respectively, and the corresponding densities are
�w D 1000 kg/m3 and �a D 1:2 kg/m3.

c. Show that the characteristic equation for normal modes in the bubble layer is

cot.kzh/ D �˛w

kz

�

�w
;

where h is the thickness of the bubble layer, and

˛w D
s
k2

r �
�
!

cw

�2

;

kz D
r�!

c

�2 � k2
r :

d. Discuss the physical significance of ˛w and kz.
e. What is the value of the cutoff frequency below which no normal modes can exist

in the bubble layer?

2.13. In seismics, volume attenuation is often expressed in terms of the quality
factor, defined as the ratio between the real and the imaginary part of the bulk mod-
ulus, i.e., Q D K 0=K 00 for K D K 0 � iK 00. For small attenuations, .Q � 1/,
derive the relation betweenQ and the loss tangent ı, and the loss factor ˛ in dB per
wavelength.

2.14. Consider the reflection of plane waves from a bottom with the sound speed
profile

c.z/ D
8<
:
.az C b/�1; 0 < z < 100m;

1600m/s; z � 100m:

The sound speed is continuous at the seabed (z D 0) and at z D 100m, and the
speed of sound in the water column (z < 0) is 1500 m/s.

a. Determine the constants a and b.
b. What is the critical grazing angle for waves incident from the water column?
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c. Use the WKB approximation to derive expressions for the magnitude and phase
of the reflection coefficient. Derive the result for grazing angles smaller and
larger than critical. Hint:

Z p
˛ C ˇx2dx D 1

2

"
x
p
˛ C ˇx2 C ˛p

ˇ
log

�
x
p
ˇ C

p
˛ C ˇx2

�#
:

d. For a frequency of 100 Hz, compute the phase of the reflection coefficient at
grazing angles of incidence 30ı; 40ı; 50ı; 60ı; 70ı; 80ı, and make a sketch of
the result.

2.15. Using the procedure to derive generalized invariants, derive the corresponding
invariant quantities in which range can be taken as the independent variable. In
particular, show that

�rW!;D;c D 1;�2; 1:
Next, show that the ideal waveguide trajectory of constant-intensity interference
maxima along a horizontal array (with elements at r) for a changing sound speed c
would be described by

ıc

ır
D c

r
:
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